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GRAPHON MEAN FIELD GAMES AND THEIR EQUATIONS\ast 

PETER E. CAINES\dagger AND MINYI HUANG\ddagger 

Abstract. The emergence of the graphon theory of large networks and their infinite limits has
enabled the formulation of a theory of the centralized control of dynamical systems distributed on
asymptotically infinite networks. Furthermore, the study of the decentralized control of such systems
has been initiated in which graphon mean field games (GMFG) and the GMFG equations have been
formulated for the analysis of noncooperative dynamic games on unbounded networks; in that work,
existence and uniqueness results have been introduced for the GMFG equations, together with an
\epsilon -Nash theory for GMFG systems which relates infinite population equilibria on infinite networks
to finite population equilibria on finite networks. Those results are rigorously established in this
paper.
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1. Introduction. One response to the problems arising in the analysis of sys-
tems of great complexity is to pass to an appropriately formulated infinite limit. This
approach has a distinguished history since it is the conceptual principle underlying the
celebrated Boltzmann equation of statistical mechanics and that of the fundamental
Navier--Stokes equation of fluid mechanics (see, e.g., [38, 23, 15, 16]). Similarly the
Fokker--Planck--Kolmogorov (FPK) equation for the macroscopic flow of probabilities
[13, 28] is used to describe a vast range of phenomena which at a micro or mezzo level
are modeled via the random interactions of discrete entities.

The work in this paper is formulated within two recent theories which were de-
veloped with an analogous motive to that above, namely, the mean field game (MFG)
theory for the analysis of equilibria in very large populations of noncooperative agents
(see [26, 24, 31, 32, 10, 11, 9]) and the graphon theory of the infinite limits of graphs
and networks (see [34, 2, 3, 4, 33]).

A mathematically rigorous study of MFG systems with state values in finite
graphs is provided in [22], and MFG systems where the agent subsystems are defined
at the nodes (vertices) of finite random Erd\"os--R\'enyi graphs are treated in [12]. The
system behavior in [22] is subject to a fixed underlying network. The random graphs
in [12] have unbounded growth but do not create spatial distinction of the agents due
to symmetry properties of the interactions. However, graphon theory gives a rigorous
formulation of the notion of limits for infinite sequences of networks of increasing size,
and the first application of graphon theory in dynamics appears to be in the work of
Medvedev [35, 36] and Kaliuzhnyi-Verbovetskyi and Medvedev [27]. The law of large
numbers for graphon mean field systems is proven in [1] as a generalization of results
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4374 PETER E. CAINES AND MINYI HUANG

Table 1
Notation.

Gk the kth graph in a sequence of graphs
gk weights of Gk as a step function
Mk the number of nodes in Gk

\scrC i the cluster of agents residing at node i of Gk

\scrC (i) the cluster that agent i belongs to
I\ast i , I

\ast (i) the midpoint of an interval of length 1/Mk

g the graphon function
\mu \alpha (t) the local mean field generated by agents at vertex \alpha \in [0, 1]
\mu G(t) an ensemble of local mean fields (\mu \alpha (t))0\leq \alpha \leq 1

\scrM [0,T ] a class of \mu G(\cdot ) satisfying a H\"older continuity condition
CT the space of continuous functions on [0, T ]
\scrF T \sigma -algebra induced by cylindrical sets in CT

(CT ,\scrF T ,m\alpha ) probability measure space for the path space at vertex \alpha 
MT the set of probability measures on (CT ,\scrF T )
DT Wasserstein metric on MT

MG
T the product space

\prod 
\alpha \in [0,1] MT

MG0
T , MG1

T subsets of MG
T

mG an ensemble of measures (m\alpha )0\leq \alpha \leq 1 \in MG
T

Proj\alpha (mG) the component m\alpha at vertex \alpha 
Margt(m\alpha ) the time t-marginal of m\alpha 

x\alpha the state of a generic agent at vertex \alpha 
w\alpha the standard Brownian motion of a generic agent at vertex \alpha 

\varphi (t, x\alpha | \mu G(\cdot ); g\alpha ) the best response at vertex \alpha with \mu G(\cdot ) given by the
GMFG system; abbreviated as \varphi (t, x\alpha , g\alpha ) or \varphi \alpha 

\phi (t, x\alpha | \mu G(\cdot ); g\alpha ) the best response at vertex \alpha with respect to an arbitrary
\mu G(\cdot ); abbreviated as \phi \alpha (t, x\alpha | \mu G(\cdot )) or \phi \alpha 

for standard interacting particle systems. Furthermore, the work in [39] derives the
McKean--Vlasov limit for a network of agents described by delay stochastic differential
equations that are coupled by randomly generated connections.

The first applications of graphon theory in systems and control theory are those
in [18, 19, 17, 20, 21] which treat the centralized and distributed control of arbitrarily
large networks of linear dynamical control systems for which a direct solution would
be intractable. Approximate control is achieved by solving control problems on the
infinite limit graphon and then applying control laws derived from those solutions on
the finite network of interest. The analogy with the strategies for finding feedback laws
resulting in \epsilon -Nash equilibria in the MFG framework is obvious. In this connection we
note that work on static game theoretic equilibria for infinite populations on graphons
was reported in [37].

A natural framework for the formulation of game theoretic problems involving
large populations of agents distributed over large networks is given by the MFG
theory defined on graphons. The resulting basic idea and the associated fundamental
equations for what we term graphon MFG (GMFG) systems and the GMFG equations
are the subject of the current paper and its predecessors [6, 7]. The GMFG equations
are of significant generality since they permit the study, in the limit, of both dense and
sparse infinite networks of noncooperative dynamical agents. Moreover the classical
MFG equations are retrieved as a special case. We observe that an early analysis
of linear quadratic Gaussian (LQG) models in MFGs on networks with nonuniform
edge weightings can be found in [25]. However, in that work there was no application
of graphon theory, and in the uniform system parameter case there is one agent per
node and a single mean field, whereas in the present work there is a subpopulation
with its own mean field at each node.
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GRAPHON MEAN FIELD GAMES 4375

The basic \epsilon -Nash equilibrium result in MFG theory and its corresponding form in
GMFG theory are vital for the application of MFG-derived control laws. This is the
case since the solution of the MFG and GMFG equations is necessarily simpler than
the effectively intractable task of finding the solution to the game problems for the
large finite population systems. Indeed, this was one of the original motives for the
creation of MFG theory, and it is a basic feature of graphon systems control theory
[18].

The paper is organized as follows. Section 2 provides preliminary materials on
graphons. Section 3 introduces the GMFG equation system and proves the existence
and uniqueness of a solution. For the decentralized strategies determined by the
GMFG equations, an \epsilon -Nash equilibrium theorem is proven in section 4. The GMFG
equations are illustrated by an LQG example in section 5.

For the reader's convenience, a list of key notation is provided in Table 1.

2. The concept of a graphon. The basic idea of the theory of graphons is
that the edge structure of each finite cardinality network is represented by a step
function density on the unit square in \BbbR 2 on which the so-called cut norm and cut
metrics are defined. The set of finite graphs endowed with the cut metric then gives
rise to a metric space, and the completion of this space is the space of graphons. Let
G\bfs \bfp 

\bfzero denote the linear space of bounded symmetric Lebesgue measurable functions
W : [0, 1]2 \rightarrow \BbbR , which are called kernels. The space G\bfs \bfp of graphons is a subset of
G\bfs \bfp 

\bfzero and consists of kernels W : [0, 1]2 \rightarrow [0, 1] which can be interpreted as weighted
graphs on the vertex set [0, 1]. We note that functions W \in G\bfs \bfp taking values in
finite sets satisfy this definition and so, in particular, graphons are defined on finite
graphs.

The cut norm of a kernel W \in G\bfs \bfp 
\bfzero then has the expression

\| W\| \square = sup
M,T\subset [0,1]

\bigm| \bigm| \bigm| \bigm| \int 
M\times T

W (x, y)dxdy

\bigm| \bigm| \bigm| \bigm| ,
with the supremum taking over all measurable subsets M and T of [0, 1]. Denote the
set of measure preserving bijections [0, 1] \rightarrow [0, 1] by S[0,1]. The cut metric between

two graphons V and W is then given by \delta \square (W,V ) = inf\phi \in S[0,1]
\| W\phi  - V \| \square , where

W\phi (x, y) := W (\phi (x), \phi (y)) and any pair of graphons at zero distance are identified
with each other. The space (G\bfs \bfp , \delta \square ) is compact in the topology given by the cut
metric [33]. Furthermore, sets in (G\bfs \bfp , \delta \square ) which are compact with respect to the L2

metric are compact with respect to the cut metric. Since G\bfs \bfp is compact in the cut
metric all sequences of graphons have subsequential limits.

In this paper, we start with the modeling of the game of a finite population based
on a finite graph. Specifically, the population resides on a weighted finite graph Gk

with a set of nodes (or vertices) \scrV k = \{ 1, . . . ,Mk\} and weights gkij \in [0, 1] for (i, j) \in 
\scrV k\times \scrV k, where a value gkii is assigned in the case i = j. We call gki := (gki1, . . . , g

k
iMk

) a

section of gk at i. Each node l is occupied by a set of agents which is called a cluster
of the population, and hence the number of clusters is Mk. We list the clusters as
\scrC 1, . . . , \scrC Mk

. Without loss of generality, we assume the lth cluster occupies node
l. Let \scrC (i) denote the cluster that agent i belongs to. So i \in \scrC (i). Our further
analysis in the paper is based on the convergence of gk to a graphon limit g. We may
naturally identify (gkij)1\leq i,j\leq Mk

with a graphon gk(\alpha , \beta ) as a step function defined
on [0, 1] \times [0, 1] (see [33]). However, convergence in the cut norm or the cut metric
is inadequate for the analysis in this paper as it does not capture sufficiently strong
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4376 PETER E. CAINES AND MINYI HUANG

sectional information of the difference gk  - g. We will adopt a different convergence
notion strengthening the sectional requirement as in assumption (H11) below. To
indicate its arguments, we may write g(\alpha , \beta ) or alternatively g\alpha ,\beta . We define the
section of g at \alpha by g\alpha : \beta \mapsto \rightarrow g\alpha ,\beta , \beta \in [0, 1].

Since clusters \scrC i1 and \scrC i2 reside on nodes i1 and i2 of Gk, respectively, we define
gk\scrC i1

\scrC i2
= gki1i2 . Similarly, we define the section gk\scrC i

= gki .

We partition [0, 1] into Mk subintervals of equal length. Here Ikl = [(l  - 1)/Mk,
l/Mk] for 1 \leq l \leq Mk. When it is clear from the context, we omit the superscript k
and write Il. To relate the clusters of agents to the vertex set [0, 1], we let the cluster
\scrC l correspond to Il.

Throughout this paper, C,C0, C1, . . . denote generic constants, which do not de-
pend on the graph index k and population size N and may vary from place to place.

3. GMFG systems and the GMFG equations.

3.1. The standard MFG model and its graphon generalization. In the
diffusion-based models of large population games the state evolution of N agents
\scrA i, 1 \leq i \leq N, is specified by a set of N controlled stochastic differential equations
(SDEs). A simplified form of the general case is given by the following set of controlled
SDEs:

(3.1) dxi(t) =
1

N

N\sum 
j=1

f(xi(t), ui(t), xj(t))dt+ \sigma dwi(t),

where xi \in \BbbR n is the state, ui \in \BbbR nu the control input, and wi \in \BbbR nw a standard
Brownian motion, and where \{ wi, 1 \leq i \leq N\} are independent processes. All initial
states are taken to be independent and have finite second moment. The cost of agent
\scrA i is given by

(3.2) JN
i (ui, u - i) = E

\int T

0

1

N

N\sum 
j=1

l(xi(t), ui(t), xj(t))dt,

where l(\cdot ) is the pairwise running cost and u - i denotes the controls of all other agents.
The dynamics of a generic agent \scrA i in the infinite population limit of this system

is then described by the controlled McKean--Vlasov (MV) equation

(3.3) dxi = f [xi, ui, \mu t]dt+ \sigma dwi, 0 \leq t \leq T,

where \mu t is the distribution of xi(t), f [x, u, \mu t] :=
\int 
\BbbR n f(x, u, y)\mu t(dy) and where the

initial distribution \mu x
0 of xi(0) is specified. Setting l[x, u, \mu t] =

\int 
\BbbR n l(x, u, y)\mu t(dy),

the corresponding infinite population cost for \scrA i takes the form

(3.4) Ji(ui;\mu (\cdot )) := E

\int T

0

l[xi(t), ui(t), \mu t]dt.

For notational simplicity, we present the GMFG framework with scalar individual
states and controls; i.e., n = nu = nw = 1. Its extension to the vector case is
evident.

Now we consider a finite population distributed over the finite graph Gk. Let
\bfitx Gk

=
\bigoplus Mk

l=1\{ xi| i \in \scrC l\} denote the states of all agents in the total set of clusters

of the population. This gives a total of N =
\sum Mk

l=1 | \scrC l| individual states. The key
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GRAPHON MEAN FIELD GAMES 4377

feature of the GMFG construction beyond the standard MFG scheme is that at any
agent in a network the averaged dynamics (3.1) and cost function (3.2) decompose
into averages of subpopulations distributed at that agent's neighboring nodes plus an
average term for the local cluster. In the limit, the summed subpopulation averages
are given by an integral over the local mean fields of the neighboring agents.

For \scrA i in the cluster \scrC (i), two coupling terms in the dynamics take the form

f0(xi, ui, \scrC (i)) =
1

| \scrC (i)| 
\sum 

j\in \scrC (i)

f0(xi, ui, xj),(3.5)

fGk
(xi, ui, g

k
\scrC (i)) =

1

Mk

Mk\sum 
l=1

gk\scrC (i)\scrC l

1

| \scrC l| 
\sum 
j\in \scrC l

f(xi, ui, xj).(3.6)

They model intra- and intercluster couplings, respectively. The specification of fGk

relies on the sectional information gk\scrC (i)\bullet . Concerning the coupling structure in (3.6)
we observe that with respect to \scrA i, all individuals residing in cluster \scrC l are symmetric
and their state average generates the overall impact of that cluster on \scrA i mediated
by the graphon weighting gk\scrC (i)\bullet . The two coupling terms are combined additively
resulting in the local dynamics

\~fGk
(xi, ui, g

k
\scrC (i)) = f0(xi, ui, \scrC (i)) + fGk

(xi, ui, g
k
\scrC (i)).

Note that \scrA i interacts with the overall population through a function of the complete
system state \bfitx Gk

and the cluster sizes. These details shall be suppressed in this paper,
and we only indicate the graph Gk and the section gk\scrC (i). The state process of \scrA i is
then given by the SDE

dxi(t) = \~fGk
(xi, ui, g

k
\scrC (i))dt+ \sigma dwi, 1 \leq i \leq N,

where \sigma > 0 and the initial states \{ xi(0), 1 \leq i \leq N\} are independent and identically
distributed (i.i.d.) with distribution \mu x

0 \in \scrP 1(\BbbR ), the set of probability measures on \BbbR 
with finite mean.

The limit of the two dynamic coupling terms of an agent at a node \alpha (called an
\alpha -agent), as the number of nodes of the graph Gk and the subpopulation at each node
tend to infinity, is described by the expressions

f0[x\alpha , u\alpha , \mu \alpha ] :=

\int 
\BbbR 
f0(x\alpha , u\alpha , z)\mu \alpha (dz),(3.7)

f [x\alpha , u\alpha , \mu G; g\alpha ] :=

\int 1

0

\int 
\BbbR 
f(x\alpha , u\alpha , z)g(\alpha , \beta )\mu \beta (dz)d\beta ,(3.8)

which give the complete local graphon dynamics via

(3.9) \widetilde f [x\alpha , u\alpha , \mu G; g\alpha ] := f0[x\alpha , u\alpha , \mu \alpha ] + f [x\alpha , u\alpha , \mu G; g\alpha ].

We call \mu \beta the local mean field at node \beta , which is interpreted as the limit of the
empirical distributions of agents at node \beta . \mu G = \{ \mu \beta , 0 \leq \beta \leq 1\} is the ensemble of

local mean fields. Due to the integration with respect to \beta , the dependence of \widetilde f on
the graphon limit g is through the section g\alpha . Since \mu G contains \mu \alpha , we do not list
\mu \alpha as an argument of \widetilde f .
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4378 PETER E. CAINES AND MINYI HUANG

Parallel to the standard MFG case, in the graphon case the SDE

(3.10)
[MV-SDE](\alpha ) dx\alpha (t) = \widetilde f [x\alpha (t), u\alpha (t), \mu G(t); g\alpha ]dt+ \sigma dw\alpha (t),

0 \leq t \leq T, \alpha \in [0, 1],

generalizes the standard controlled MV equation (3.3). We note that in a parallel
development of graphon-based stochastic dynamical populations [1] the system dis-
turbance intensity \sigma is also a function of graphon-weighted state functions at other
clusters. For simplicity, we consider a constant \sigma , and our analysis may be gener-
alized to the case of a state and mean field dependent diffusion term. Similarly, for
simplicity our dynamics and cost do not include a separate parametrization by \alpha .

Analogously, in the GMFG case, we define the cost coupling terms for \scrA i to be

l0(xi, ui, \scrC (i)) =
1

| \scrC (i)| 
\sum 

j\in \scrC (i)

l0(xi, ui, xj),

lGk
(xi, ui, g

k
\scrC (i)) =

1

Mk

Mk\sum 
l=1

gk\scrC (i)\scrC l

1

| \scrC l| 
\sum 
j\in \scrC l

l(xi, ui, xj).

Define \~lGk
(xi, ui, g

k
\scrC (i)) = l0(xi, ui, \scrC (i)) + lGk

(xi, ui, g
k
\scrC (i)). The cost of \scrA i in a finite

population on a finite graph Gk is given in the form

Ji = E

\int T

0

\~lGk
(xi, ui, g

k
\scrC (i))dt.(3.11)

Denote

l0[x\alpha , u\alpha , \mu \alpha ] =

\int 
\BbbR 
l0(x\alpha , u\alpha , z)\mu \alpha (dz),

l[x\alpha , u\alpha , \mu G; g\alpha ] =

\int 1

0

\int 
\BbbR 
l(x\alpha , u\alpha , z)g(\alpha , \beta )\mu \beta (dz)d\beta ,

\widetilde l[x\alpha , u\alpha , \mu G; g\alpha ] = l0[x\alpha , u\alpha , \mu \alpha ] + l[x\alpha , u\alpha , \mu G; g\alpha ].

In the infinite population graphon case, the individual \alpha -agent has the cost function

J\alpha (u\alpha ;\mu G(\cdot )) = E

\int T

0

\widetilde l[x\alpha (t), u\alpha (t), \mu G(t); g\alpha ]dt.(3.12)

3.2. The GMFG model and its equations. In this section the standard MFG
equations (see, e.g., [5, 9]) will be generalized so that they subsume the standard
(implicitly uniform totally connected) dense network case and cover the fully general
graphon limit network case. Specifically, agent \scrA i in a population of N agents will
be located at the lth node in an Mk node network (identified with its graphon), and
in the infinite population graphon limit that node will be taken to map to \alpha \in [0, 1].
It is important to note here that although the limit network is assumed dense it is
not assumed to be uniformly totally connected; indeed, the connection structure of the
infinite network is represented precisely by its graphon g(\alpha , \beta ), 0 \leq \alpha , \beta \leq 1.

The generalized GMFG scheme below on [0, T ] is given for each \alpha by (i) the
Hamilton--Jacobi--Bellman (HJB) equation generating the value function V \alpha when all
other agents' control laws and the ensemble \mu G of local mean fields are given, (ii) the
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GRAPHON MEAN FIELD GAMES 4379

FPK equation generating the local mean field \mu \alpha given \mu G, and (iii) the specification
of the best response (BR) feedback law.

Suppressing the time index on the measures for simplicity of notation, we have
the GMFG equations:

[HJB](\alpha )  - \partial V \alpha (t, x)

\partial t
= inf

u\in U

\Biggl\{ \widetilde f [x, u, \mu G; g\alpha ]
\partial V \alpha (t, x)

\partial x

+ \widetilde l[x, u, \mu G; g\alpha ]

\Biggr\} 
+
\sigma 2

2

\partial 2V \alpha (t, x)

\partial x2
,(3.13)

V \alpha (T, x) = 0, (t, x) \in [0, T ]\times \BbbR , \alpha \in [0, 1],

[FPK](\alpha )
\partial p\alpha (t, x)

\partial t
= - \partial \{ \widetilde f [x, u0, \mu G; g\alpha ]p\alpha (t, x)\} 

\partial x

+
\sigma 2

2

\partial 2p\alpha (t, x)

\partial x2
,(3.14)

[BR](\alpha ) u0 := \varphi (t, x| \mu G; g\alpha ).

Here p\alpha (t, x) with initial condition p\alpha (0) is used to denote the density of the measure
\mu \alpha (t) whenever a density is assumed to exist. In this paper, the FPK equation will
be replaced by the following closed-loop MV-SDE:

[MV](\alpha ) dx\alpha (t) = \widetilde f [x\alpha (t), \varphi (t, x\alpha (t)| \mu G; g\alpha ), \mu G(t); g\alpha ]dt+ \sigma dw\alpha (t),(3.15)

where x\alpha (0) has initial distribution \mu x
0 . Our subsequent analysis will directly treat

the pair (V \alpha (t, x), \mu \alpha (t)), where \mu \alpha (t) is specified as the law of x\alpha (t) in (3.15).
If a solution exists for the GMFG equations, the resulting BR \varphi (t, x| \mu G; g\alpha ) de-

pends upon the ensemble \mu G of local mean fields and the individual agent's state. This
is a natural generalization of the standard case. The standard MFG case is simply ob-
tained by setting g(\alpha , \beta ) \equiv 0, 0 \leq \alpha , \beta \leq 1, which results in \widetilde f [x, u, \mu G; g\alpha ] = f0[x, u, \mu ]

and \widetilde l[x, u, \mu G; g\alpha ] = l0[x, u, \mu ] [5, 9].
A collection of measures on some measurable space which are indexed by the

vertex set [0, 1] is called a measure ensemble. Thus, for each fixed t, \mu G(t) is a
measure ensemble.

On \scrP 1(\BbbR ) we endow the Wasserstein metricW1: for any \mu , \nu \in \scrP 1(\BbbR ),W1(\mu , \nu ) =
inf\widehat \gamma \int | x - y| \widehat \gamma (dx, dy), where \widehat \gamma is a probability measure on \BbbR 2 with marginals \mu , \nu .

Let C([0, 1],\scrP 1(\BbbR )) be the set of measure ensembles \nu G = (\nu \beta )\beta \in [0,1] satisfying
\nu \beta \in \scrP 1(\BbbR ), and lim\beta \prime \rightarrow \beta W1(\nu \beta \prime , \nu \beta ) = 0 for any \beta \in [0, 1].

In order to analyze the solvability of the GMFG equations, we need to restrict
\mu G(\cdot ) to a certain class. We say \{ \mu G(t), 0 \leq t \leq T\} is from the admissible set \scrM [0,T ]

if and only if the following apply:
(C1) For each fixed t, \mu G(t) is in C([0, 1],\scrP 1(\BbbR )).
(C2) There exists \eta \in (0, 1] such that for any bounded and Lipschitz continuous

function \phi on \BbbR ,

sup
\beta \in [0,1]

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 
\phi (y)\mu \beta (t1, dy) - 

\int 
\BbbR 
\phi (y)\mu \beta (t2, dy)

\bigm| \bigm| \bigm| \bigm| \leq Ch| t1  - t2| \eta ,

where Ch may be selected to depend only on the Lipschitz constant Lip(\phi ) for \phi .
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Condition (C1) ensures that integration with respect to d\beta in (3.8) is well defined.
Condition (C2) ensures that the drift term in the HJB equation (3.13) has a certain
time continuity, which facilitates the subsequent existence analysis of the BR.

3.3. Existence analysis. We introduce the following assumptions:
(H1) U is a compact set.
(H2) f0(x, u, y), f(x, u, y), l0(x, u, y), and l(x, u, y) are continuous and bounded

functions on \BbbR \times U \times \BbbR and are Lipschitz continuous in (x, y), uniformly with respect
to u.

(H3) f0(x, u, y) and f(x, u, y) are Lipschitz continuous in u, uniformly with respect
to (x, y).

(H4) For any q \in \BbbR , \alpha \in [0, 1], and probability measure ensemble \nu G \in C([0, 1],
\scrP 1(\BbbR )), the set

S\nu G
\alpha (x, q) = argmin

u\in U
\{ q( \widetilde f [x, u, \nu G; g\alpha ]) + \widetilde l[x, u, \nu G; g\alpha ]\} 

is a singleton, and for any given compact interval \scrI = [q, \=q], the resulting u as a
function of (x, q) \in \BbbR \times \scrI is Lipschitz continuous in (x, q), uniformly with respect to
\nu G and g\alpha , 0 \leq \alpha \leq 1.

The next two assumptions will be used to ensure that the BRs have continuous
dependence on \alpha . In particular, (H5) is a continuity assumption on the graphon

function g(\alpha , \beta ). Under (H5), \widetilde f and \widetilde l have continuity in \alpha .

(H5) For any bounded and measurable function h(\beta ), the function
\int 1

0
g(\alpha ,

\beta )h(\beta )d\beta is continuous in \alpha \in [0, 1].
(H6) For given \nu G \in C([0, 1],\scrP 1(\BbbR )), S\nu G

\alpha (x, q) is continuous in (\alpha , x, q).
Although the GMFG equation system only involves \{ \mu G(t), 0 \leq t \leq T\} , which

may be viewed as a collection of marginals at different vertices, it is necessary to
develop the existence analysis in the underlying probability spaces (see related dis-
cussions in [26, p. 240]).

We begin by introducing some analytic preliminaries. For the space CT =
C([0, T ],\BbbR ), we specify a \sigma -algebra \scrF T induced by all cylindrical sets of the form
\{ x(\cdot ) \in CT : x(ti) \in Bi, 1 \leq i \leq j for some j\} , where Bi is a Borel set. LetMT denote
the space of probability measures on (CT ,\scrF T ). The canonical process X is defined by
Xt(\omega ) = \omega t for \omega \in CT . On CT , we define the metric \rho (x, y) = supt | x(t) - y(t)| \wedge 1.
Then (CT , \rho ) is a complete metric space. Based on \rho , we introduce the Wasserstein
metric on MT . For m1,m2 \in MT , denote

DT (m1,m2) = inf\widehat m
\int 
CT\times CT

\biggl( 
sup
s\leq T

| Xs(\omega 1) - Xs(\omega 2)| \wedge 1

\biggr) 
d\widehat m(\omega 1, \omega 2),

where \widehat m is called a coupling as a probability measure on (CT ,\scrF T ) \times (CT ,\scrF T ) with
the pair of marginals m1 and m2, respectively. Then (MT , DT ) is a complete metric
space [41].

We introduce the product of probability measure spaces
\prod 

\alpha \in [0,1](CT ,\scrF T ,m\alpha ),
where each individual space is interpreted as the path space of the agent at vertex
\alpha with a corresponding probability measure m\alpha . Denote the product of spaces of
probability measures MG

T =
\prod 

\alpha \in [0,1] MT . An element in MG
T is a measure ensemble.

Given mG \in MG
T , the projection operator Proj\alpha picks out its component m\alpha asso-

ciated with \alpha \in [0, 1]. Let MG0
T consist of all (m\alpha )\alpha \in [0,1] \in MG

T such that for any
\alpha \in [0, 1], DT (m\alpha \prime ,m\alpha ) \rightarrow 0 as \alpha \prime \rightarrow \alpha .

For two measure ensembles mG := (m\alpha )\alpha \in [0,1] and \=mG := ( \=m\alpha )\alpha \in [0,1] in MG
T ,

define d(mG, \=mG) = sup\alpha \in [0,1]DT (m\alpha , \=m\alpha ).

D
ow

nl
oa

de
d 

11
/2

8/
21

 to
 1

34
.1

17
.1

0.
20

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPHON MEAN FIELD GAMES 4381

Lemma 3.1. (MG
T , d) is a complete metric space.

Proof. If \{ mk
G, k \geq 1\} is a Cauchy sequence in MG

T , then for each given \alpha , the
sequence \{ Proj\alpha (mk

G), k \geq 1\} (of probability measures) is a Cauchy sequence in the
complete metric space MT , and so it contains a limit. This in turn determines a limit
in MG

T .

Given the probability measure m\alpha \in MT , we define the t-marginal \mu \alpha (t) by
\mu \alpha (t, B) = m\alpha (\{ x(\cdot ) \in CT : x(t) \in B\} ) for any Borel set B \subset \BbbR and denote the
mapping from MT to \scrP (\BbbR ) (the set of probability measures on \BbbR ):

\mu \alpha (t) = Margt(m\alpha ).(3.16)

Consider the measure ensemble mG = (m\alpha )\alpha \in [0,1] \in MG
T with \mu \alpha (t) given by (3.16).

Define the time t-marginals by the following mapping:

Margt(mG) = (\mu \alpha (t))\alpha \in [0,1],(3.17)

where the right-hand side is simply written as \mu G(t). For a given t, \mu G(t) may be
interpreted as a measure valued function defined on the vertex set [0, 1]. Further
denote the mapping Marg(mG) = (\mu G(t))t\in [0,T ] = \mu G(\cdot ).

Take a fixed \mu G(\cdot ) \in \scrM [0,T ] with its associated H\"older parameter \eta in (C2), and
denote \widetilde f\ast \alpha (t, x, u) = \widetilde f [x, u, \mu G(t); g\alpha ], \widetilde l\ast \alpha (t, x, u) = \widetilde l[x, u, \mu G(t); g\alpha ].

Lemma 3.2. Assume (H1) and (H2). For h\alpha = \widetilde f\ast \alpha (t, x, u) or \widetilde l\ast \alpha (t, x, u), there
exist constants C and C\mu G

, where the latter depends on \mu G(\cdot ), such that

sup
t\leq T,u\in U,\alpha \in [0,1]

| h\alpha (t, x, u) - h\alpha (t, y, u)| \leq C| x - y| ,

sup
x\in \BbbR ,u\in U,\alpha \in [0,1]

| h\alpha (t, x, u) - h\alpha (s, x, u)| \leq C\mu G
| t - s| \eta .

Proof. The Lipschitz continuity of \widetilde f\ast \alpha with respect to x follows from (H2), (3.7),

and (3.8). For t1, t2 \in [0, T ], we estimate | \widetilde f [x, u, \mu G(t1); g\alpha ]  - \widetilde f [x, u, \mu G(t2); g\alpha ]| by
using the Lipschitz condition of f0, f and condition (C2) for \scrM [0,T ]. This establishes

the H\"older continuity of \widetilde f\ast \alpha in t. The other cases can be similarly checked.

In order to analyze the BR of the \alpha -agent, we introduce the HJB equation

 - V \alpha 
t (t, x) = inf

u\in U
\{ \widetilde f\ast \alpha (t, x, u)V \alpha 

x (t, x) + \widetilde l\ast \alpha (t, x, u)\} + \sigma 2

2
V \alpha 
xx(t, x),(3.18)

where V \alpha (T, 0) = 0. It differs from (3.13) by allowing an arbitrary \mu G(\cdot ) \in \scrM [0,T ].
For studying (3.18), we introduce some standard definitions. Denote QT =

(0, T ) \times \BbbR and QT = [0, T ] \times \BbbR . Let C1,2(QT ) (resp., C1,2(QT )) denote the set
of functions with continuous derivatives vt, vx, vxx on QT (resp., QT ). Let C1,2

b (QT )
be the set of bounded functions in C1,2(QT ), and let the open (or closed) set Qb be
a bounded subset of QT . W 1,2

\lambda (Qb), 1 \leq \lambda < \infty , shall denote the Sobolev space
consisting of functions v such that each v and its generalized derivatives vt, vx, vxx
are in L\lambda (Qb); further we have the norm

\| v\| (2)\lambda ,Qb
= \| v\| \lambda ,Qb

+ \| vt\| \lambda ,Qb
+ \| vx\| \lambda ,Qb

+ \| vxx\| \lambda ,Qb
,(3.19)
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where \| v\| \lambda ,Qb
= (

\int 
Qb

| v(t, x)| \lambda dtdx)1/\lambda . Set | v| Qb
= sup(t,x)\in Qb

| v(t, x)| . For Qb =

(T1, T2)\times \scrI , where \scrI is a bounded open subset of \BbbR and \beta \in (0, 1), define the H\"older
norms

| v| \beta Qb
= | v| Qb

+ sup
t\in (T1,T2),x,y\in \scrI 

| v(t, x) - v(t, y)| \cdot | x - y|  - \beta 

+ sup
s,t\in (T1,T2),x\in \scrI 

| v(s, x) - v(t, x)| \cdot | s - t|  - \beta /2,

| v| 1+\beta 
Qb

= | v| \beta Qb
+ | vx| \beta Qb

, | v| 2+\beta 
Qb

= | v| 1+\beta 
Qb

+ | vt| \beta Qb
+ | vxx| \beta Qb

.

Lemma 3.3. Under (H1)--(H4) and for fixed \mu G(\cdot ) \in \scrM [0,T ], the following holds:

(i) Equation (3.18) has a unique solution V \alpha in C1,2
b (QT ), and moreover

supQT
| V \alpha 

xx| \leq C.

(ii) The BR

u\alpha = \phi \alpha (t, x| \mu G(\cdot )), \alpha \in [0, 1](3.20)

as the optimal control law solved from (3.18) is bounded and Borel measurable on
[0, T ] \times \BbbR , and Lipschitz continuous in x, uniformly with respect to \alpha for the given
\mu G(\cdot ).

Proof. (i) Denote \bfitH \alpha (t, x, q) = minu\in U\{ q \widetilde f\ast \alpha (t, x, u) + \widetilde l\ast \alpha (t, x, u)\} . Then (3.18)
may be rewritten as

 - V \alpha 
t (t, x) = \bfitH \alpha (t, x, V

\alpha 
x ) +

\sigma 2

2
V \alpha 
xx, V \alpha (T, x) = 0.(3.21)

As in the proof of [26, Thm. 5], we use H\"older and Lipschitz continuity (with respect

to t and x, respectively) of \widetilde f\ast \alpha and \widetilde l\ast \alpha in Lemma 3.2 and follow the method in the
proof of Theorem VI.6.2 of [14, p. 210] to show that (3.18) has a unique solution
V \alpha \in C1,2

b (QT ), where uniqueness follows from a verification theorem using the closed-
loop state process.

Next we show that V \alpha 
xx is bounded on QT . Take any x0 \in \BbbR . Denote Br(x0) =

(x0  - r, x0 + r) for r > 0, and Qx0,r
T = (0, T ) \times Br(x0). We use two steps involving

local estimates. Each step gets refined information about V \alpha in a region based on
available bound information in a larger region. It suffices to obtain a bound of V \alpha 

xx

on Qx0,1
T as long as this bound does not change with x0.
Step 1. First, there exists a constant C1 such that

sup
t,x,\alpha 

| V \alpha | \leq C1, sup
t,x,\alpha 

| V \alpha 
x | \leq C1.(3.22)

The first inequality is obtained using (H1) and (H2) and the fact that V \alpha is the value
function of the associated optimal control problem. The second inequality is proven
by the difference estimate of | V \alpha (t, x) - V \alpha (t, y)| as in [14, p. 209].

By (H1), (H2), and (3.22), we have sup\alpha sup(t,x)\in QT
| \bfitH \alpha (t, x, V

\alpha 
x (t, x))| \leq C2.

We use a typical method for analyzing semilinear parabolic equations. Once V \alpha 

is known to be a solution of (3.21), we view V \alpha as the solution of a linear equation
with the free term \bfitH \alpha (t, x, V

\alpha 
x ). For further estimates, we need \lambda > n + 2 when

using the norm (3.19). Fix \lambda = n+ 3 = 4. This yields the bound \| V \alpha \| (2)
\lambda ,Q

x0,2

T

\leq C3,

where C3 depends on (C2, T, \sigma ) and the bound of (f, f0, l, l0) but not on x0, \alpha ; see
[14, p. 207] and also [30, p. 342] for local estimates of the Sobolev norm of solutions
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defined on unbounded domain using a cutoff function. Take \beta = 1 - (n+ 2)/\lambda = 1/4.
Subsequently, since \lambda > n+ 2, we have the H\"older estimate

| V \alpha | 1+\beta 

Q
x0,2

T

\leq C4\| V \alpha \| (2)
\lambda ,Q

x0,2
T

\leq C3C4,(3.23)

where C4 is determined by \lambda = 4 without depending on x0, \alpha ; see [14, p. 207], [30, p.
343].

Step 2. On [0, T ] \times \BbbR \times [ - C1, C1], we can show \bfitH \alpha (t, x, q) is H\"older continu-
ous in t and Lipschitz continuous in (x, q). Denote \beta 1 = min\{ \eta , \beta \} . Next we view
\bfitH \alpha (t, x, V

\alpha 
x (t, x)) as a function of (t, x). Then by use of (3.23) we further obtain a

bound on the H\"older norm:

sup
\alpha 

sup
x0

| \bfitH \alpha (\cdot , \cdot , V \alpha 
x )| \beta 1

Q
x0,2

T

\leq C5.(3.24)

Subsequently, by the method in [14, pp. 207--208] with its cutoff function technique
and [30, pp. 351--352], we use (3.24) and local H\"older estimates of (3.21) to obtain

| V \alpha | 2+\beta 1

Q
x0,1

T

\leq C6,(3.25)

where C6 depends on C5 but not on x0, \alpha . Since x0 is arbitrary, it follows that

sup
\alpha 

sup
QT

| V \alpha 
xx| \leq C6.(3.26)

(ii) By (H4), the optimal control law (3.20) as a function of (t, x) is well defined
and is bounded on [0, T ] \times \BbbR by compactness of U . It is Borel measurable on QT ;
see [14, p. 168]. Since S\nu G

\alpha (x, q) is Lipschitz continuous in (x, q) \in \BbbR \times [ - C1, C1] and
V \alpha 
x (t, x) is Lipschitz continuous in x \in \BbbR by (3.26), uniformly with respect to \alpha in

each case, \phi \alpha is uniformly Lipschitz continuous in x.

Denote

\Psi \alpha (t, x) = (V \alpha (t, x), V \alpha 
t (t, x), V \alpha 

x (t, x), V \alpha 
xx(t, x)), (t, x) \in QT .

We prove the following continuity lemma for the solution of (3.18). For QT , define
the compact subsets Bj = \{ (t, x)| 0 \leq t \leq T, | x| \leq j\} , j \in \BbbN .

Lemma 3.4. Assume (H1)--(H5), and let \mu G(\cdot ) \in \scrM [0,T ] in (3.18) be fixed. Then
the following holds:

(i) For all compact set Bj, lim\alpha \prime \rightarrow \alpha | \Psi \alpha \prime  - \Psi \alpha | Bj
= 0.

(ii) lim\alpha \prime \rightarrow \alpha V
\alpha \prime 

x (t, x) = V \alpha 
x (t, x) for all (t, x) \in [0, T ]\times \BbbR .

Proof. It suffices to show (i) as (ii) follows immediately from (i).
Step 1. By (3.25) and the fact that the constant C6 can be selected without de-

pending on \alpha , there exists a constant C such that sup\alpha | V \alpha | 2+\beta 1

Bj
\leq C, which implies

that \{ \Psi \alpha , \alpha \in [0, 1]\} is uniformly bounded and equicontinuous on Bj . For any se-
quence \{ \alpha k, k \geq 1\} converging to \alpha , by Ascoli--Arzela's lemma, for j = 1, there exists
a subsequence denoted by \{ \=\alpha k, k \geq 1\} such that \Psi \=\alpha k converges uniformly on B1. By
a diagonal argument, we may further extract a subsequence of \{ \=\alpha k, k \geq 1\} , denoted
by \{ \^\alpha k, k \geq 1\} , such that \Psi \^\alpha k converges uniformly on each set Bj , j \geq 1. Hence there
exists a function V \ast with continuous derivatives V \ast 

t , V
\ast 
x , V

\ast 
xx on QT such that
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lim
k\rightarrow \infty 

\Psi \^\alpha k(t, x) = \Psi \ast (t, x) for all (t, x) \in QT ,(3.27)

where \Psi \ast = (V \ast , V \ast 
t , V

\ast 
x , V

\ast 
xx). Since

 - V \^\alpha k
t (t, x) = \bfitH \alpha k

(t, x, V \^\alpha k
x ) +

\sigma 2

2
V \^\alpha k
xx , V \alpha k(T, x) = 0,

it follows from (3.27) that

 - V \ast 
t (t, x) = \bfitH \alpha (t, x, V

\ast 
x ) +

\sigma 2

2
V \ast 
xx, V \ast (T, x) = 0.

We have used the fact that \bfitH \alpha (t, x, q) is continuous in \alpha due to (H5) and condition
(C1) of \scrM [0,T ]. It is clear that V \ast = V \alpha by uniqueness of the solution of (3.21). So

\Psi \ast = \Psi \alpha . Now it follows that limk\rightarrow \infty | \Psi \^\alpha k  - \Psi \alpha | Bj
= 0 for all j \geq 1.

Step 2. Suppose (i) does not hold so that for some \^j we have that | \Psi \alpha \prime  - \Psi \alpha | B\^j

does not converge to 0 as \alpha \prime \rightarrow \alpha , which implies that there exist some \epsilon 0 > 0 and a
sequence \{ \alpha 0

k\} converging to \alpha such that for each k,

| \Psi \alpha 0
k  - \Psi \alpha | B\^j

\geq \epsilon 0.(3.28)

Step 3. Recall that \{ \alpha k\} in Step 1 is arbitrary as long as it converges to \alpha .
Now we just take \{ \alpha k\} in Step 1 as \{ \alpha 0

k\} . By Step 1, there exists a subsequence of

\{ \alpha 0
k\} , denoted by \{ \^\alpha 0

k\} , such that limk\rightarrow \infty | \Psi \^\alpha 0
k  - \Psi \alpha | B\^j

= 0, which contradicts (3.28).

Hence (i) holds.

Lemma 3.5. Assume (H1)--(H6). For \mu G(\cdot ) \in \scrM [0,T ], the BR \phi \alpha (t, x| \mu G(\cdot )) in
(3.20) continuously depends on \alpha . Specifically, for any \alpha \in [0, 1],

lim
\alpha \prime \rightarrow \alpha 

\phi \alpha \prime (t, x| \mu G(\cdot )) = \phi \alpha (t, x| \mu G(\cdot )) for all t, x.(3.29)

Proof. The BRs can be written as

\phi \alpha (t, x| \mu G(\cdot )) = S\mu G(t)
\alpha (x, V \alpha 

x (t, x)), \phi \alpha \prime (t, x| \mu G(\cdot )) = S
\mu G(t)
\alpha \prime (x, V \alpha \prime 

x (t, x)).

It follows that

| S\mu G(t)
\alpha (x, V \alpha 

x (t, x)) - S
\mu G(t)
\alpha \prime (x, V \alpha \prime 

x (t, x))| 

\leq | S\mu G(t)
\alpha (x, V \alpha 

x (t, x)) - S\mu G(t)
\alpha (x, V \alpha \prime 

x (t, x))| 

+ | S\mu G(t)
\alpha (x, V \alpha \prime 

x (t, x)) - S
\mu G(t)
\alpha \prime (x, V \alpha \prime 

x (t, x))| .

Given \mu G(\cdot ) we have the prior upper bound sup\alpha ,t,x | V \alpha 
x (t, x)| \leq C. It suffices to

show that (3.29) holds for any given C0 > 0 and t \in [0, T ], | x| \leq C0. By (H6),

for the given \mu G(t), S
\mu G(t)
\alpha (x, q) is uniformly continuous in \alpha \in [0, 1], | x| \leq C0,

q \in [ - C,C]. For any \epsilon > 0, there exists \delta > 0 such that | \alpha  - \alpha \prime | < \delta implies

sup| x| \leq C0,| q| \leq C | S\mu G(t)
\alpha (x, q) - S

\mu G(t)
\alpha \prime (x, q)| \leq \epsilon /2, and moreover,

sup
| x| \leq C0

| S\mu G(t)
\alpha (x, V \alpha 

x (t, x)) - S\mu G(t)
\alpha (x, V \alpha \prime 

x (t, x))| \leq \epsilon 

2

in view of Lemma 3.4 (i). Therefore (3.29) holds.
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We proceed to show the existence of a solution to the GMFG equations (3.13)
and (3.15) in terms of \{ (V \alpha , \mu \alpha (\cdot ))| \alpha \in [0, 1]\} . For \mu G \in \scrM [0,T ], denote the mapping

(\phi \alpha )\alpha \in [0,1] = \Gamma (\mu G(\cdot )),

where (\phi \alpha )\alpha \in [0,1] is given by (3.20) as the set of BRs with respect to \mu G(\cdot ). Next,
we combine (\phi \alpha )\alpha \in [0,1] with \mu G(\cdot ) to determine the law m\alpha of the closed-loop state
process:

dx\alpha (t) = \widetilde f [x\alpha (t), \phi \alpha (t, x\alpha (t)| \mu G(\cdot )), \mu G(t); g\alpha ]dt+ \sigma dw\alpha (t),

where x\alpha (0) has distribution \mu 
x
0 . The choice of the Brownian motion for x\alpha is immate-

rial. For m\alpha above, denote the mapping from \scrM [0,T ] to MG
T : (m\alpha )\alpha \in [0,1] = \widehat \Gamma (\mu G(\cdot )).

Define the set MG1
T := \widehat \Gamma (\scrM [0,T ]) \subset MG

T . Now the existence analysis may be
formulated as the problem of finding a fixed point of the form

mG = \widehat \Gamma \circ Marg(mG),(3.30)

in case mG \in MG1
T . Note that Marg(mG) = \{ (Margt(m\alpha ))\alpha \in [0,1], 0 \leq t \leq T\} .

Remark 3.6. The fixed point problem requires mG to be from the subset MG1
T of

MG
T . If one simply looks for mG \in MG

T , the resulting \mu G(\cdot ) = Marg(mG) lacks the
H\"older continuity in (C2), and this will cause difficulties in establishing Lemma 3.3
for the HJB equation.

Lemma 3.7. Under (H1)--(H6), the following assertions hold:
(i) MG1

T \subset MG0
T .

(ii) For any mG \in MG1
T , \mu G(\cdot ) := Marg(mG) \in \scrM [0,T ].

(iii) The BR \phi \alpha (t, x| \mu G(\cdot )) with \mu G(\cdot ) given in (ii) is Lipschitz continuous in x,
uniformly with respect to \alpha \in [0, 1] and mG \in MG1

T .

Proof. (i) and (ii) For mG \in MG1
T , there exists \mu \prime 

G \in \scrM [0,T ] such that mG =\widehat \Gamma (\mu \prime 
G(\cdot )). To estimate DT (m\alpha ,m\=\alpha ) and W1(\mu \alpha (t), \mu \=\alpha (t)), let x\alpha and x\=\alpha be state

processes generated by (3.10) with \mu \prime 
G, the same initial state and Brownian mo-

tion under the control laws \phi \alpha (t, x| \mu \prime 
G(\cdot )) and \phi \=\alpha (t, x| \mu \prime 

G(\cdot )), respectively. Then
DT (m\alpha ,m\=\alpha ) \leq E supt\leq T | x\alpha (t)  - x\=\alpha (t)| , and W1(\mu \alpha (t), \mu \=\alpha (t)) \leq E| x\alpha (t)  - x\=\alpha (t)| .
Fixing \=\alpha , we have

| x\alpha (t) - x\=\alpha (t)| \leq 
\int t

0

| \widetilde f [x\alpha (s), \phi \alpha (s, x\alpha (s)| \mu \prime 
G(\cdot )), \mu \prime 

G(s); g\alpha ](3.31)

 - \widetilde f [x\=\alpha (s), \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 
G(\cdot )), \mu \prime 

G(s); g\=\alpha ]| ds.

Denote

\delta 1 = | f0[x\=\alpha (s), \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 
G(\cdot )), \mu \prime 

\alpha (s)] - f0[x\=\alpha (s), \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 
G(\cdot )), \mu \prime 

\=\alpha (s)]| ,
\delta 2 = | f [x\=\alpha (s), \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 

G(\cdot )), \mu \prime 
G(s); g\alpha ] - f [x\=\alpha (s), \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 

G(\cdot )), \mu \prime 
G(s); g\=\alpha ]| .

Then by (3.31) and the Lipschitz continuity in x of \phi \alpha in Lemma 3.3 (ii), we obtain

| x\alpha (t) - x\=\alpha (t)| \leq C1

\int t

0

| x\alpha (s) - x\=\alpha (s)| ds(3.32)

+ C2

\int t

0

\Bigl\{ 
| \phi \alpha (s, x\=\alpha (s)| \mu \prime 

G(\cdot )) - \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 
G(\cdot ))| + \delta 1(s) + \delta 2(s)

\Bigr\} 
ds,
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4386 PETER E. CAINES AND MINYI HUANG

where C2 depends only on the Lipschitz constants of f0, f and C1 does not change
with \alpha for the fixed \mu \prime 

G. Since W1(\mu 
\prime 
\alpha (s), \mu 

\prime 
\=\alpha (s)) \rightarrow 0 as \alpha \rightarrow \=\alpha , by (H2) E\delta 1(s) \rightarrow 0

as \alpha \rightarrow \=\alpha . By (H5), we have E\delta 2(s) \rightarrow 0 as \alpha \rightarrow \=\alpha . Then using Lemma 3.5 and
boundedness of the integrand below, we obtain

lim
\alpha \rightarrow \=\alpha 

E

\int T

0

\Bigl\{ 
| \phi \alpha (s, x\=\alpha (s)| \mu \prime 

G(\cdot )) - \phi \=\alpha (s, x\=\alpha (s)| \mu \prime 
G(\cdot ))| + \delta 1(s) + \delta 2(s)

\Bigr\} 
ds = 0.

By Gronwall's lemma and (3.32), it follows that lim\alpha \rightarrow \=\alpha E sup0\leq t\leq T | x\alpha (t) - x\=\alpha (t)| =
0. Subsequently, as \alpha \rightarrow \=\alpha , we obtainDT (m\alpha ,m\=\alpha ) \rightarrow 0, which implies (i); in addition,
W1(\mu \alpha (t), \mu \=\alpha (t)) \rightarrow 0, which verifies condition (C1) of \scrM [0,T ] for \mu G. Since each m\alpha 

is the distribution of x\alpha , for \mu G(\cdot ) we take the H\"older parameter \eta = 1/2 and a
constant Ch independent of \mu \prime 

G for (C2). So (ii) holds.
(iii) Due to the choice of \eta and Ch for \mu G(\cdot ) in (ii), we may select a fixed constant

C5 in (3.24), which does not change with (\alpha , \mu G(\cdot )). Subsequently, the upper bound

C6 in (3.26) for | V \alpha 
xx| does not change with \alpha \in [0, 1], \mu G(\cdot ) \in Marg( \widehat \Gamma (\scrM [0,T ])). This

ensures a uniform bound for the Lipschitz constant for x in \phi \alpha .

We introduce the sensitivity condition.
(H7) For mG, \=mG \in MG1

T = \widehat \Gamma (\scrM [0,T ]), there exists a constant c1 such that

sup
t,x,\alpha 

| \phi \alpha (t, x| \mu G(\cdot )) - \=\phi \alpha (t, x| \=\mu G(\cdot ))| \leq c1d(mG, \=mG),(3.33)

where the set of control laws \{ \phi \alpha (t, x| \mu G(\cdot )), \alpha \in [0, 1]\} (resp., \{ \=\phi \alpha (t, x| \=\mu G(\cdot )), \alpha \in 
[0, 1]\} ) is determined by use of \mu G = Marg(mG) (resp., \=\mu G = Marg( \=mG)) in the
optimal control problem specified by (3.10) and (3.12) with the graphon section g\alpha .

Assumption (H7) is a generalization from the finite type model in [26] where an
illustration via a linear model is presented. Related sensitivity conditions are studied
in [29].

Let (\phi \alpha )\alpha \in [0,1] in (3.20) be applied by all agents, where \mu G(\cdot ) \in \scrM [0,T ]. We
consider the following generalized MV equation

dx\alpha (t) = \widetilde f [x\alpha (t), \phi \alpha (t, x\alpha (t)| \mu G), \nu G(t); g\alpha ]dt+ \sigma dw\alpha (t),(3.34)

where x\alpha (0) is given with distribution \mu x
0 . For this equation, \nu G is part of the solution.

If \nu G is determined, we have a unique solution x\alpha on [0, T ] which further determines
its law as the measure m\alpha on (CT ,\scrF T ). Note that m\alpha does not depend on the choice
of the standard Brownian motion w\alpha . We look for \nu G \in \scrM [0,T ] to satisfy the condition

Margt(m\alpha ) = \nu \alpha (t) for all \alpha \in [0, 1], t \in [0, T ];(3.35)

i.e., \nu \alpha (t) is the law of x\alpha (t) for all \alpha , t (and we say (x\alpha )0\leq \alpha \leq 1 is consistent with \nu G).

Lemma 3.8. Assume (H1)--(H6). For the BR \phi \alpha (t, x\alpha | \mu G(\cdot )) in (3.20), where
\mu G(\cdot ) \in \scrM [0,T ], there exists a unique \nu G(\cdot ) for (3.34) satisfying (3.35).

Proof. In order to solve (x\alpha , \nu G) in (3.34), we specify the law of the process x\alpha 
instead of just its marginal \nu \alpha (t). This extends the fixed point idea for treating
standard MV equations [41].

For (m\alpha )\alpha \in [0,1] \in MG0
T , we determine \nu 1G according to \nu 1\alpha (t) = Margt(m\alpha ), which

is used in (3.34) by taking \nu G = \nu 1G to solve x\alpha on [0, T ]. Let mnew
\alpha denote the law of

x\alpha . It in general does not satisfy Margt(m
new
\alpha ) = \nu \alpha (t) for all t. Denote the mapping

(mnew
\alpha )\alpha \in [0,1] = \Phi \bfM G0

T
((m\alpha )\alpha \in [0,1]).
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By (H5) and Lemma 3.5, \Phi \bfM G0
T

is a mapping from MG0
T to itself. Similarly, for

( \=m\alpha )\alpha \in [0,1] \in MG0
T we determine \=\nu 1G for (3.34) and solve \=x\alpha with its law \=mnew

\alpha .
Denote ( \=mnew

\alpha )\alpha \in [0,1] = \Phi \bfM G0
T
(( \=m\alpha )\alpha \in [0,1]).

If h(x, y) is a bounded Lipschitz continuous function with | h(x, y)  - h(\=x, \=y)| \leq 
C1| x - \=x| + C2(| y  - \=y| \wedge 1), we have\bigm| \bigm| \bigm| \bigm| \int h(x, y)g(\alpha , \beta )\nu 1\beta (t, dy)d\beta  - 

\int 
h(\=x, \=y)g(\alpha , \beta )\nu 2\beta (t, d\=y)d\beta 

\bigm| \bigm| \bigm| \bigm| 
\leq C1| x - \=x| + sup

\beta 

\bigm| \bigm| \bigm| \bigm| \int h(\=x, y)\nu 1\beta (t, dy) - 
\int 
h(\=x, \=y)\nu 2\beta (t, d\=y)

\bigm| \bigm| \bigm| \bigm| 
= C1| x - \=x| + sup

\beta 

\bigm| \bigm| \bigm| \bigm| \int 
CT

h(\=x,Xt(\omega ))dm\beta (\omega ) - 
\int 
CT

h(\=x,Xt(\=\omega ))d \=m\beta (\=\omega )

\bigm| \bigm| \bigm| \bigm| 
\leq C1| x - \=x| + C2 sup

\beta 

\int 
CT\times CT

(| Xt(\omega ) - Xt(\=\omega )| \wedge 1)d\widehat m\beta (\omega , \=\omega ),

where X is the canonical process, \omega , \=\omega \in CT , and \widehat m\beta is any coupling of m\beta and \=m\beta .
Hence \bigm| \bigm| \bigm| \bigm| \int h(x, y)g(\alpha , \beta )\nu 1\beta (t, dy)d\beta  - 

\int 
h(\=x, \=y)g(\alpha , \beta )\nu 2\beta (t, d\=y)d\beta 

\bigm| \bigm| \bigm| \bigm| 
\leq C1| x - \=x| + C2 sup

\beta 
Dt(m\beta , \=m\beta ).(3.36)

By (H2), (H3), the uniform Lipschitz continuity of \phi \alpha in x by Lemma 3.3 (ii),
and (3.36),

| \widetilde f [x\alpha , \phi \alpha (t, x\alpha | \mu G), \nu 
1
G(t); g\alpha ] - \widetilde f [\=x\alpha , \phi \alpha (t, \=x\alpha | \mu G), \nu 

2
G(t); g\alpha ]| 

\leq C1(| x\alpha  - \=x\alpha | \wedge 1) + C2 sup
\beta 
Dt(m\beta , \=m\beta ).

Hence by (3.34),

sup
s\leq t

| x\alpha (s) - \=x\alpha (s)| \leq C1

\int t

0

| x\alpha (s) - \=x\alpha (s)| \wedge 1ds+ C3

\int t

0

sup
\beta 

| Ds(m\beta , \=m\beta )| ds.

Therefore, by Gronwall's lemma, sups\leq t | x\alpha (s)  - \=x\alpha (s)| \wedge 1 \leq C4

\int t

0
sup\beta | Ds(m\beta ,

\=m\beta )| ds, which combined with the definition of the Wasserstein metric Dt(\cdot , \cdot ) implies
that

sup
\beta 

| Dt(m
new
\beta , \=mnew

\beta )| \leq C4

\int t

0

sup
\beta 

| Ds(m\beta , \=m\beta )| ds.(3.37)

By iterating (3.37) as in [41, p. 174], we can show that for a sufficiently large k0, \Phi 
k0

\bfM G0
T

is a contraction. We can further show that \{ \Phi k
\bfM G0

T
(mG), k \geq 1\} is a Cauchy sequence,

and we obtain a unique fixed point m\ast 
G for \Phi \bfM G0

T
. Then we obtain a solution of (3.34)

by taking \nu \alpha (t) = Margt(m
\ast 
\alpha ). If there are two different solutions with \nu G \not = \nu \prime G, we

can derive a contradiction by using uniqueness of the fixed point of \Phi \bfM G0
T
.

Consider two sets of BRs (\phi \alpha (t, x\alpha | \mu G))\alpha \in [0,1] and (\=\phi \alpha (t, x\alpha | \=\mu G))\alpha \in [0,1], where
\mu G = Marg(mG), \=\mu G = Marg( \=mG) for mG, \=mG \in MG1

T (then \mu G, \=\mu G \in \scrM [0,T ]), and
use Lemma 3.8 to solve (x\alpha , \nu G) and (x\prime \alpha , \=\nu G) from the generalized MV-SDEs:

D
ow

nl
oa

de
d 

11
/2

8/
21

 to
 1

34
.1

17
.1

0.
20

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4388 PETER E. CAINES AND MINYI HUANG

dx\alpha = \widetilde f [x\alpha , \phi \alpha (t, x\alpha | \mu G), \nu G(t); g\alpha ]dt+ \sigma dw\alpha ,(3.38)

dx\prime \alpha = \widetilde f [x\prime \alpha , \=\phi \alpha (t, x\prime \alpha | \=\mu G), \=\nu G(t); g\alpha ]dt+ \sigma dw\alpha ,(3.39)

where x\prime \alpha (0) = x\alpha (0) is given. Let m
mv
\alpha (resp., \=mmv

\alpha ) denote the law of x\alpha (resp., x\prime \alpha ).
The following lemma is a generalization of [26, Lem. 9] to the graphon network case.

Lemma 3.9. For (3.38) and (3.39) there exists a constant c2 independent of
(mG, \=mG) such that

sup
\alpha 
DT (m

mv
\alpha , \=mmv

\alpha ) \leq c2 sup
t,x,\alpha 

| \phi \alpha (t, x| \mu G(\cdot )) - \=\phi \alpha (t, x| \=\mu G(\cdot ))| .

Proof. For (3.38) and (3.39), denote

\Delta s = \widetilde f [x\alpha (s), \phi \alpha (s, x\alpha (s)| \mu G), \nu G(s); g\alpha ] - \widetilde f [x\prime \alpha (s), \=\phi \alpha (s, x\prime \alpha (s)| \=\mu G), \=\nu G(s); g\alpha ].

Then x\alpha (t) - x\prime \alpha (t) =
\int t

0
\Delta sds. Noting \nu \alpha (t) = Margt(m

mv
\alpha ) and \=\nu \alpha (t) = Margt( \=m

mv
\alpha ),

we have

| \Delta s| \leq | \widetilde f [x\alpha (s), \phi \alpha (s, x\alpha (s)| \mu G), \nu G(s); g\alpha ] - \widetilde f [x\prime \alpha (s), \phi \alpha (s, x\prime \alpha (s)| \mu G), \=\nu G(s); g\alpha ]| 
(3.40)

+ | \widetilde f [x\prime \alpha (s), \phi \alpha (s, x\prime \alpha (s)| \mu G), \=\nu G(s); g\alpha ] - \widetilde f [x\prime \alpha (s), \=\phi \alpha (s, x\prime \alpha (s)| \=\mu G), \=\nu G(s); g\alpha ]| 
\leq C1| x\alpha (s) - x\prime \alpha (s)| + C2 sup

\beta 
Ds(m

mv
\beta , \=mmv

\beta )

+ C3 sup
t,x

| \phi \alpha (t, x| \mu G(\cdot )) - \=\phi \alpha (t, x| \=\mu G(\cdot ))| ,

where C1, C2, and C3 do not depend on (\alpha ,mG, \=mG). The difference term on the first
line is estimated by the method in (3.36). We have used the fact that \phi \alpha is uniformly
Lipschitz continuous in x by Lemma 3.7 (iii). Therefore, by (3.40),

| x\alpha (t) - x\prime \alpha (t)| \leq 
\int t

0

\Bigl[ 
C1| x\alpha (s) - x\prime \alpha (s)| + C2 sup

\beta 
Ds(m

mv
\beta , \=mmv

\beta )
\Bigr] 
ds(3.41)

+ C3t sup
t,x

| \phi \alpha (t, x| \mu G(\cdot )) - \=\phi \alpha (t, x| \=\mu G(\cdot ))| .

Applying Gronwall's lemma to (3.41) and next using the definition of Dt(\cdot , \cdot ), we
obtain

Dt(m
mv
\alpha , \=mmv

\alpha ) \leq E

\biggl( 
sup

0\leq s\leq t
| x\alpha (s) - x\prime \alpha (s)| \wedge 1

\biggr) 
\leq eC1tC2

\int t

0

sup
\beta 
Ds(m

mv
\beta , \=mmv

\beta )ds+ eC1tC3t sup
t,x,\alpha 

| \phi \alpha (t, x| \mu G(\cdot )) - \=\phi \alpha (t, x| \=\mu G(\cdot ))| .

The lemma follows from applying Gronwall's lemma again to sup\alpha Dt(m
mv
\alpha , \=mmv

\alpha ).

3.4. Existence theorem. We state the main result on the existence and unique-
ness of solutions to the GMFG equation system. We introduce a contraction condition:

(H8) c1c2 < 1, where c1 is the constant in the sensitivity condition (H7) and c2
is specified in Lemma 3.9.

Remark 3.10. Under weak coupling effect or small T , a small c2 can be obtained.
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Remark 3.11. For linear models, a verification of the contraction condition can
be done under reasonable model parameters, as in [26].

Theorem 3.12. Under (H1)--(H8), there exists a unique solution (V \alpha , \mu \alpha (\cdot ))\alpha \in [0,1]

to the GMFG equations (3.13) and (3.15), which (i) gives the feedback control BR
strategy \varphi (t, x\alpha | \mu G(\cdot ); g\alpha ), \alpha \in [0, 1], depending only upon the agent's state and the
ensemble \mu G of local mean fields (i.e., (x\alpha , \mu G)), and (ii) generates a Nash equilib-
rium.

Proof. Step 1. We return to the fixed point equation (3.30), which is redisplayed
below:

mG = \widehat \Gamma \circ Marg(mG),(3.42)

where mG = (m\alpha )\alpha \in [0,1] \in MG1
T . For mG \in MG1

T , the H\"older continuity in t of
the regenerated \mu G(\cdot ) = Marg(mG) can be checked by elementary SDE estimates by
adapting the proof of [26, Lem. 7].

Step 2. Take any mG \in MG1
T to determine \mu G = Marg(mG) and \phi \alpha (t, x\alpha | \mu G(\cdot )).

When \=mG \in MG1
T is used, we determine \=\mu G and \=\phi \alpha (t, x\alpha | \=\mu G(\cdot )). Once the set of

strategies (\phi \alpha )\alpha \in [0,1] is applied to the generalized MV equation (3.34), by Lemma 3.8,
we may solve for (x\alpha , \nu G(\cdot )) such that x\alpha has the law mnew

\alpha and Margt(m
new
\alpha ) = \nu \alpha (t).

This is done in parallel for \=mG to generate \=mnew
\alpha . We accordingly determine mnew

G

and \=mnew
G .

Step 3. By (3.33) and Lemma 3.9, we obtain d(mnew
G , \=mnew

G ) \leq c1c2d(mG, \=mG).
Based on the above contraction property, we construct a Cauchy sequence in the com-
plete metric space MG

T by iterating with mG and establish existence of a solution to
the GMFG equation system. To show uniqueness, suppose mG and \~mG are two fixed
points to (3.42). We obtain d(mG, \~mG) \leq c1c2d(mG, \~mG), which implies mG = \~mG.

The Nash equilibrium property follows from the BR property of \varphi \alpha for given
\alpha .

3.5. An example on Lipschitz feedback. The main analysis in section 3
relies on (H4) to ensure Lipschitz feedback. We provide a concrete model to check
this assumption.

Example 3.13. The dynamics and cost have

f0(x, u, y) = f0(x, y)u, f(x, u, y) = f(x, y)u,

l0(x, u, y) = l1(x, y) + l2(x, y)u
2, l(x, u, y) = l3(x, y) + l4(x, y)u

2,

where x, y \in \BbbR and u \in U = [a, b]. The functions f0, f , l1, l2, l3, l4 satisfy (H1)--(H3),
and there exists c0 > 0 such that l2, l4 \geq c0 for all x, y.

Given \nu G \in C([0, 1],\scrP 1(\BbbR )), for x, q \in \BbbR , we check the minimizer

S\nu G
\alpha (x, q) = argmin

u\in U
\{ q(f0[x, \nu \alpha ] + f [x, \nu G; g\alpha ])u+ (l2[x, \nu \alpha ] + l4[x, \nu G; g\alpha ])u

2\} .

Proposition 3.14. Given any compact interval \scrI , S\nu G
\alpha (x, q) in Example 3.13 is

a singleton and Lipschitz continuous in (x, q), where x \in \BbbR and q \in \scrI , uniformly with
respect to (\nu G, \alpha ).

Proof. Consider the function \Phi (u) = u2 - 2su, where u \in U and s is a parameter.
Its minimum is attained at the unique point \^u = \Theta (s) which is defined to be equal to
(i) a if s \leq a, (ii) s if a < s < b, and (iii) b if s \geq b. Denote the function

h\alpha ,\nu G
(x) =  - f0[x, \mu \alpha ] + f [x, \nu G; g\alpha ]

2(l2[x, \mu \alpha ] + l4[x, \nu G; g\alpha ])
.
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4390 PETER E. CAINES AND MINYI HUANG

By elementary estimates we obtain sup\alpha ,\nu G
| h\alpha ,\nu G

(x)  - h\alpha ,\nu G
(y)| \leq C0| x  - y| . We

have

S\nu G
\alpha (x, q) = argmin

u
(u2  - 2qh\alpha ,\nu G

(x)u) = \Theta (qh\alpha ,\nu G
(x)).

It is clear that S\nu G
\alpha (x, q) is a continuous function of (x, q). For (xi, qi) \in \BbbR \times \scrI , i = 1, 2,

| S\nu G
\alpha (x1, q1) - S\nu G

\alpha (x2, q2)| \leq Lip(\Theta )| q1h\alpha ,\nu G
(x1) - q2h\alpha ,\nu G

(x2)| 

\leq Lip(\Theta )
\Bigl( 
| q1  - q2| sup

x
| h\alpha ,\nu G

(x)| + C0| x1  - x2| | q2| 
\Bigr) 
.

In fact, the Lipschitz constant Lip(\Theta ) = 1. Note that supx,\alpha ,\nu G
| h\alpha ,\nu G

(x)| \leq C for
some constant C. This proves the proposition.

If (H1), (H2), (H3), and (H5) hold for Example 3.13, they further imply (H4) and
(H6) so that the BR is Lipschitz continuous in x by Lemma 3.3 and Proposition 3.14.

4. Performance analysis. In the MFG case it is shown [26, 9] that the joint
strategy \{ uoi (t) = \varphi i(t, xi(t)| \mu \bullet ), 1 \leq i \leq N\} yields an \epsilon -Nash equilibrium; i.e., for all
\epsilon > 0, there exists N(\epsilon ) such that for all N \geq N(\epsilon )

(4.1) JN
i (u\circ i , u

\circ 
 - i) - \epsilon \leq inf

ui\in \scrU i

JN
i (ui, u

\circ 
 - i) \leq JN

i (u\circ i , u
\circ 
 - i).

This form of approximate Nash equilibrium is a principal result of the MFG analyses
in the sequence [26, 9, 40] and in many other studies. The importance of (4.1) is that
it states that the cost function of any agent in a finite population can be reduced
by at most \epsilon if it changes unilaterally from the infinite population MFG feedback law
while all other agents remain with the infinite population based control strategies.
The main result of this section is that the same property holds for GMFG systems.

Throughout this section, let \mu G(\cdot ) be solved from the GMFG equations (3.13)
and (3.15).

4.1. The \bfitepsilon -Nash equilibrium. The analysis of GMFG systems as limits of
finite objects necessarily involves the consideration of graph limits and double limits
in population and graph order. A corresponding set of assumptions is given below.

(H9) Mk \rightarrow \infty and min1\leq l\leq Mk
| \scrC l| \rightarrow \infty as k \rightarrow \infty .

(H10) All agents have i.i.d. initial states with distribution \mu x
0 and E| xi(0)| \leq C0.

Remark 4.1. (H10) is a simplifying assumption to keep further notation light. It
may be generalized to \alpha dependent initial distributions.

(H11) The sequence \{ Gk; 1 \leq k <\infty \} and the graphon limit satisfy

lim
k\rightarrow \infty 

max
i

Mk\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \bigm| g
k
\scrC i\scrC j

Mk
 - 
\int 
\beta \in Ij

gI\ast 
i ,\beta 
d\beta 

\bigm| \bigm| \bigm| \bigm| \bigm| = 0,

where I\ast i is the midpoint of the subinterval Ii \in \{ I1, . . . , IMk
\} of length 1/Mk.

Remark 4.2. Assumption (H11) specifies the nature of the approximation error
between gk for the finite graph and the graphon function g.

Remark 4.3. Given \{ gk, k \geq 1\} under (H9), if there exists a graphon function g
satisfying (H5) and (H11), it is unique. This can be proven by showing that the cut
norm \| g  - \^g\| \square = 0 if \^g also satisfies (H5) and (H11). A key step is to show that
limk\rightarrow \infty | 

\int 
\scrS \times \scrT (g

k  - g)dxdy| = 0 for any fixed measurable sets \scrS , \scrT \subset [0, 1]. See [8]
for details.
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For the \epsilon -Nash equilibrium analysis, we consider a sequence of games each defined
on a finite graph Gk. Recall that there is a total of N =

\sum Mk

l=1 | \scrC l| agents. Suppose
the cluster \scrC (i) of agent \scrA i corresponds to the subinterval I(i) \in \{ I1, . . . , IMk

\} . The
agent \scrA i takes the midpoint I\ast (i) of I(i) and uses the GMFG system-based control
law

\^ui = \varphi (t, xi| \mu G(\cdot ); gI\ast (i)), 1 \leq i \leq N,(4.2)

which we simply write as \varphi (t, xi, gI\ast (i)).
Recall f0 and fGk

in (3.5) and (3.6). The closed-loop system of N agents on the
finite graph Gk under the set of strategies (4.2) is given by

System A: d\^xNi = f0(\^x
N
i , \varphi (t, \^x

N
i , gI\ast (i)), \scrC (i))dt

+ fGk
(\^xNi , \varphi (t, \^x

N
i , gI\ast (i)), g

k
\scrC (i))dt+ \sigma dwi,(4.3)

where 1 \leq i \leq N and \^xNi (0) = xNi (0). The superscript N is added to indicate the
population size. We state the following main result.

Theorem 4.4 (\epsilon -Nash equilibrium). Assume (H1)--(H11) hold. Then when the
strategies (4.2) determined by the GMFG equations (3.13) and (3.15) are applied to
a sequence of finite graph systems \{ Gk; 1 \leq k < \infty \} , the \epsilon -Nash equilibrium property
holds, where \epsilon \rightarrow 0 as k \rightarrow \infty and where the unilateral agent \scrA i uses a centralized
Lipschitz feedback strategy \psi (t, xi, x - i), where x - i denotes the set of states of all other
agents.

We first explain the basic idea for the demonstration of the \epsilon -Nash equilibrium
property. Suppose all other players, except agent \scrA \iota , employ the strategies in (4.2).
When \scrA \iota employs a different strategy, the resulting change in its performance can be
measured using a limiting stochastic control problem where both the system dynamics
and the cost are subject to small perturbation due to the mean field approximation of
the effects of all other agents. The proof is technical and preceded by some lemmas.

4.2. Proof of Theorem 4.4. Suppose \scrA \iota applies a general feedback control
law uN\iota instead of (4.2) while all other agents \scrA j , j \not = \iota , still adopt strategies in (4.2).
Consider

System B:

\left\{         
dxN\iota = f0(x

N
\iota , u

N
\iota , \scrC (\iota ))dt+ fGk

(xN\iota , u
N
\iota , g

k
\scrC (\iota ))dt+ \sigma dw\iota ,

dxNj = f0(x
N
j , \varphi (t, x

N
j , gI\ast (j)), \scrC (j))dt

+fGk
(xNj , \varphi (t, x

N
j , gI\ast (j)), g

k
\scrC (j))dt+ \sigma dwj ,

j \not = \iota , 1 \leq j \leq N.

(4.4)

We note that xNj is affected by the unilateral choice of strategy by \scrA \iota due to the

coupling in f0 and fGk
. For this reason, xNj differs from \^xNj in (4.3) although the

control law of \scrA j , j \not = \iota , remains the same. The central task is to estimate by how
much \scrA \iota can reduce its cost.

For the performance estimate in System B, we introduce two auxiliary systems
below. Consider

System C: dyNi =

\int 
\BbbR 
f0(y

N
i , \varphi (t, y

N
i , gI\ast (i)), z)myN

i
(dz)dt

+
1

Mk

Mk\sum 
l=1

gk\scrC (i)\scrC l

| \scrC l| 
\sum 
j\in \scrC l

\int 
\BbbR 
f(yNi , \varphi (t, y

N
i , gI\ast (i)), z)myN

j
(dz)dt
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4392 PETER E. CAINES AND MINYI HUANG

+ \sigma dwi

=

\int 
\BbbR 
f0(y

N
i , \varphi (t, y

N
i , gI\ast (i)), z)myN

i
(dz)dt

+
1

Mk

Mk\sum 
l=1

gk\scrC (i)\scrC l

\int 
f(yNi , \varphi (t, y

N
i , gI\ast (i)), z)m

N
l (t, dz)dt

+ \sigma dwi,(4.5)

where 1 \leq i \leq N and yNi (0) = xNi (0), and myN
j (t) denotes the law of yNj (t). Each

Brownian motion wi is the same as in (4.3). The second equality holds since all
processes in cluster \scrC l have the same distribution denoted by mN

l (t, dz) at time t. It
is clear that the processes yN1 , . . . , y

N
N are independent, and \{ yNj , j \in \scrC l\} are i.i.d. for

any given l.
Next we introduce

System D: dy\infty i (t) = \widetilde f [y\infty i (t), \varphi (t, y\infty i (t), gI\ast (i)), \mu G(t); gI\ast (i) ]dt+ \sigma dwi(t),(4.6)

where 1 \leq i \leq N and y\infty i (0) = xNi (0). Here wi is the same as in (4.3). The process
y\infty i is generated by the closed-loop dynamics for an agent at vertex I\ast (i) using the
GMFG-based control law (4.2) while situated in an infinite population represented by
the ensemble \mu G(\cdot ) of local mean fields. We view (4.6) as an instance of the generic
equation (3.10) under the control law (4.2). By Theorem 3.12, y\infty i (t) has the law
\mu I\ast (i)(t). If j \in \scrC (i), y\infty i and y\infty j are two processes of the same distribution.

We shall denote the A to C system deviation by \epsilon 1,N , the C to D deviation by
\epsilon 2,N , and the (nonunilateral agent) B to D deviation by \epsilon 3,N . Specifically, we set

\epsilon 1,N = sup
i\leq N,t

E| \^xNi (t) - yNi (t)| , \epsilon 2,N = sup
i\leq N,t

E| yNi (t) - y\infty i (t)| ,

\epsilon 3,N = sup
uN
\iota ,t,\iota \not =j\leq N

E| xNj (t) - y\infty j (t)| ,

where xNj is given by (4.4).

Lemma 4.5. The SDE system (4.5) has a unique solution (yN1 , . . . , y
N
N ).

Proof. The proof is similar to [26, Thm. 6].

Lemma 4.6. \epsilon 1,N \rightarrow 0 as N \rightarrow \infty (due to k \rightarrow \infty ).

Proof. By the Lipschitz property of the SDE of \^xNi  - yNi , we derive an integral
inequality for E| \^xNi (t)  - yNi (t)| and apply Gronwall's inequality under (H9); see [8]
for details.

Lemma 4.7. We have \epsilon 2,N \rightarrow 0 as N \rightarrow \infty .

Proof. In the integral equation of y\infty i , we approximate (\mu \beta (t))\beta \in [0,1] by discrete
points of \beta and use Gronwall's lemma and Lemma A.1 to estimate E| y\infty i (t) - yNi (t)| 
under (H11). See [8] for details.

Lemma 4.8. limN\rightarrow \infty supt,i\leq N E| \^xNi  - y\infty i | = 0.

Proof. The lemma follows from Lemmas 4.6 and 4.7.

Lemma 4.9. limN\rightarrow \infty \epsilon 3,N = 0.

Proof. For (\^xN1 , . . . , \^x
N
N ) in System A and (xN1 , . . . , x

N
N ) in System B, we compare

the SDEs of \^xNj and xNj and apply Gronwall's lemma to obtain supuN
\iota ,t,j \not =\iota | xNj  - \^xNj | \leq 

C/minl | \scrC l| . Next by Lemma 4.8, we obtain the desired estimate.
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Consider the limiting optimal control problem with dynamics and cost

dx\infty \iota = \widetilde f [x\infty \iota , u\iota , \mu G; gI\ast (\iota )]dt+ \sigma dw\iota ,(4.7)

J\ast 
\iota = E

\int T

0

\widetilde l[x\infty \iota , u\iota , \mu G; gI\ast (\iota )]dt,(4.8)

where x\infty \iota (0) = xN\iota (0) and \mu G(\cdot ) is given by the GMFG equation system.
To establish the \epsilon -Nash equilibrium property, the dynamics and cost of \scrA \iota in

System B can be written using the mean field limit dynamics and cost up to small
error terms that can be bounded uniformly with respect to uN\iota . We rewrite the first
equation in (4.4) of System B as

dxN\iota = \widetilde f [xN\iota , uN\iota , \mu G; gI\ast (\iota )]dt+ (\delta kf0(t) + \delta kf (t))dt+ \sigma dw\iota ,(4.9)

where we denote \delta kf0 = f0(x
N
\iota , u

N
\iota , \scrC (\iota )) - f0[xN\iota , uN\iota , \mu I\ast (\iota )], \delta 

k
f = fGk

(xN\iota , u
N
\iota , g

k
\scrC (\iota )) - 

f [xN\iota , u
N
\iota , \mu G; gI\ast (\iota )]. Similarly the cost of \scrA \iota in System B is written as

JN
\iota (uN\iota ) = E

\int T

0

\Bigl( \widetilde l[xN\iota , uN\iota , \mu G; gI\ast (\iota )] + \delta kl0(t) + \delta kl (t)
\Bigr) 
dt,

where we have \delta kl0 = l0(x
N
\iota , u

N
\iota , \scrC (\iota )) - l0[xN\iota , uN\iota , \mu I\ast (\iota )] and \delta 

k
l = lGk

(xN\iota , u
N
\iota , g

k
\scrC (\iota )) - 

l[xN\iota , u
N
\iota , \mu G; gI\ast (\iota )]. Note that all other agents have applied the strategies \varphi (t, xNj ,

gI\ast (j)), j \not = \iota . So we only indicate uN\iota within JN
\iota . It is clear that \delta kf0 , \delta 

k
f , \delta 

k
l0
, and \delta kl

are all affected by the control law uN\iota . Let \bfity \infty 
t = (y\infty 1 (t), . . . , y\infty N (t)) for System D.

Our next step is to derive a uniform small upper bounded for E| \delta kf | and E| \delta kl | with
respect to uN\iota .

Let z \in \BbbR and u \in U be deterministic and fixed; define the two random variables

\Delta k
f (z, u,\bfity 

\infty 
t ) =

1

Mk

Mk\sum 
l=1

gk\scrC (\iota )\scrC l

1

| \scrC l| 
\sum 
j\in \scrC l

f(z, u, y\infty j (t)) - f [z, u, \mu G(t); gI\ast (\iota )],

\Delta k
l (z, u,\bfity 

\infty 
t ) =

1

Mk

Mk\sum 
l=1

gk\scrC (\iota )\scrC l

1

| \scrC l| 
\sum 
j\in \scrC l

l(z, u, y\infty j (t)) - l[z, u, \mu G(t); gI\ast (\iota )].

Lemma 4.10. We have limk\rightarrow \infty supz,u,tE(| \Delta k
f (z, u,\bfity 

\infty 
t )| 2+ | \Delta k

l (z, u,\bfity 
\infty 
t )| 2) = 0.

Proof. As in the proof of Lemma 4.7, we approximate \mu \beta , \beta \in [0, 1], by using
a finite number of points of \beta and next expand the two quadratic terms | \Delta k

f | 2 and

| \Delta k
l | 2. The estimate is carried out using (H11) and Lemma A.1.

Lemma 4.11. For any given constant Cz > 0 and any \epsilon \in (0, 1),

lim
k\rightarrow \infty 

inf
t
P
\bigl( 
\cap (z,u)\in [ - Cz,Cz ]\times U \{ | \Delta k

f (z, u,\bfity 
\infty 
t )| \leq \epsilon \} 

\bigr) 
= 1,(4.10)

lim
k\rightarrow \infty 

inf
t
P
\bigl( 
\cap (z,u)\in [ - Cz,Cz ]\times U \{ | \Delta k

l (z, u,\bfity 
\infty 
t )| \leq \epsilon \} 

\bigr) 
= 1.(4.11)

Proof. We establish (4.10) and may deal with (4.11) in the same way. The event

\scrE k
fCz

:= \cap (z,u)\in [ - Cz,Cz ]\times U\{ | \Delta k
f (z, u,\bfity 

\infty 
t )| \leq \epsilon \} (4.12)

is well defined since\Delta k
f is continuous in (z, u) and the intersection may be equivalently

expressed using only a countable number of values of (z, u) in [ - Cz, Cz]\times U .
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4394 PETER E. CAINES AND MINYI HUANG

Take any \epsilon \in (0, 1). By (H2) and (H3), we can find \delta \epsilon > 0 such that | \Delta k
f (z, u,\bfity 

\infty 
t ) - 

\Delta k
f (z

\prime , u\prime ,\bfity \infty 
t )| \leq \epsilon /2 whenever | z  - z\prime | + | u  - u\prime | \leq \delta \epsilon . For the selected \delta \epsilon , we

can find a fixed p0 and (zj , uj) \in [ - Cz, Cz] \times U , j = 1, . . . , p0 such that for any
(z, u) \in [ - Cz, Cz]\times U , there exists some j0 ensuring | z  - zj0 | + | u - uj0 | \leq \delta \epsilon .

By Lemma 4.10 and Markov's inequality, for any \delta > 0, there exists K\delta ,p0
such

that for all k \geq K\delta ,p0 , we have

P
\bigl( 
\{ | \Delta k

f (z
j , uj ,\bfity \infty 

t )| \leq \epsilon /2\} 
\bigr) 
\geq 1 - \delta /p0 for all j, t.(4.13)

Let \scrE k
j denote the event \{ | \Delta k

f (z
j , uj ,\bfity \infty 

t )| \leq \epsilon /2\} . By (4.13), P (\cap p0

j=1\scrE k
j ) \geq 1 - \delta for

k \geq K\delta ,p0
. Now if \omega \in \scrE k := \cap p0

j=1\scrE k
j , k \geq K\delta ,p0

, then for any (z, u) \in [ - Cz, Cz]\times U ,

we have | \Delta k
f (z, u,\bfity 

\infty 
t )| \leq \epsilon . Hence \scrE k \subset \scrE k

fCz
. It follows that for all k \geq K\delta ,p0 ,

P (\scrE k
fCz

) \geq 1 - \delta . Since \delta \in (0, 1) is arbitrary and K\delta ,p0 does not depend on t, the first
limit follows.

Lemma 4.12. We have

lim
k\rightarrow \infty 

sup
t,uN

\iota 

E
\Bigl( 
| \Delta k

f (x
N
\iota (t), uN\iota (t),\bfity \infty 

t )| + | \Delta k
l (x

N
\iota (t), uN\iota (t),\bfity \infty 

t )| 
\Bigr) 
= 0.

Proof. Fix any \epsilon \in (0, 1). By (H1) and (H2) we can find a sufficiently large
Cz, independent of (k,N), such that for all uN\iota (\cdot ), P (\scrE x) \geq 1  - \epsilon , where \scrE x :=
\{ sup0\leq t\leq T | xN\iota (t)| \leq Cz\} . By Lemma 4.11, for the above \epsilon and \scrE k

fCz
given by (4.12),

there exists K0 independent of t such that for all k \geq K0, P (\scrE k
fCz

) \geq 1  - \epsilon . Now if

\omega \in \scrE x \cap \scrE k
fCz

, then | \Delta k
f (x

N
\iota (t), uN\iota (t),\bfity \infty 

t )| \leq \epsilon . We have P (\scrE x \cap \scrE k
fCz

) \geq 1 - 2\epsilon , and
so

P
\bigl( 
| \Delta k

f (x
N
\iota (t), uN\iota (t),\bfity \infty 

t )| \leq \epsilon 
\bigr) 
\geq P (\scrE x \cap \scrE k

fCz
) \geq 1 - 2\epsilon .

It follows that for all k \geq K0, E| \Delta k
f (x

N
\iota (t), uN\iota (t),\bfity \infty 

t )| \leq \epsilon + 2\epsilon C, where C does

not depend on (uN\iota (\cdot ), t). The bound for E| \Delta k
l (x

N
\iota (t), uN\iota (t),\bfity \infty 

t )| is similarly
obtained.

Lemma 4.13. limk\rightarrow \infty supt,uN
\iota (\cdot )E(| \delta kf | + | \delta kl | ) = 0.

Proof. By Lipschitz continuity of (f, l), we estimate supt,uN
\iota 
E| \delta kf  - \Delta k

f (x
N
\iota , u

N
\iota ,

\bfity \infty 
t )| and supt,uN

\iota 
E| \delta kl  - \Delta k

l (x
N
\iota , u

N
\iota ,\bfity 

\infty 
t )| and next apply Lemma 4.9 to show that

they converge to zero as k \rightarrow \infty . Recalling Lemma 4.12, we complete the proof.

Lemma 4.14. limk\rightarrow \infty supt,uN
\iota (\cdot )E(| \delta kf0 | + | \delta kl0 | ) = 0.

Proof. The proof is similar to that of Lemma 4.13, and the details are
omitted.

Denote \epsilon kfl = supt,uN
\iota (\cdot )E(| \delta kf0 | + | \delta kl0 | + | \delta kf | + | \delta kl | ).

Lemma 4.15. For any admissible control uN\iota in System B and J\ast 
\iota in (4.8),

JN
\iota (uN\iota ) \geq inf

u\iota 

J\ast 
\iota (u\iota ) - C\epsilon kfl,

where the constant C does not depend on uN\iota .

Proof. Take any full state-based Lipschitz feedback control uN\iota . It together with
the other agents' control laws generates the closed-loop state processes xN1 (t), . . . ,
xNN (t). Let uN\iota (t, \omega ) denote the realization as a nonanticipative process. Now we take
\v u\iota = uN\iota (t, \omega ) in (4.7), and let \v x\infty \iota be the resulting state process. It is clear from (4.8)
that
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J\ast 
\iota (\v u\iota ) \geq inf

u\iota 

J\ast 
i (u\iota ).(4.14)

Recalling (4.9) and applying Gronwall's lemma to estimate the difference \v x\infty \iota  - xN\iota ,
we can show there exists C independent of uN\iota such that | JN

\iota (uN\iota ) - J\ast 
\iota (\v u\iota )| \leq C\epsilon kfl,

which combined with (4.14) completes the proof.

Lemma 4.16. Let \varphi I\ast (\iota ) = \varphi (t, x, gI\ast (\iota )) be the GMFG-based control law (4.2).

We have JN
\iota (\varphi I\ast (\iota )) \leq infu\iota 

J\ast 
\iota (u\iota ) + C\epsilon kfl.

Proof. Let \varphi I\ast (\iota ) be applied to the two systems (4.7) and (4.9). We further use
Gronwall's lemma to estimate E| x\infty \iota  - xN\iota | . We obtain

| JN
\iota (\varphi I\ast (\iota )) - J\ast 

\iota (\varphi I\ast (\iota ))| \leq C\epsilon kfl.

Note that J\ast 
\iota (\varphi I\ast (\iota )) = infu\iota 

J\ast 
\iota (u\iota ). This completes the proof.

Proof of Theorem 4.4. The theorem follows from Lemmas 4.13, 4.14, 4.15, and
4.16.

5. The LQG case. This section considers a special class of LQG GMFGmodels.
Consider the graph Gk with vertices \scrV k = \{ 1, . . . ,Mk\} and graph adjacency matrix
gk = [gkjl]. For agent \scrA i in subpopulation cluster \scrC q situated at node q, let the intra-
and intercluster coupling terms be denoted by z0,i and zi, respectively, where

z0,i =
1

| \scrC q| 
\sum 
j\in \scrC q

xj , zi =
1

| Mk| 
\sum 
l\in \scrV k

gkql
1

| \scrC l| 
\sum 
j\in \scrC l

xj , xj , z0,i, zi \in \BbbR n.

The dynamics of \scrA i are given by the linear system

dxi = (Axi +D0z0,i +Dzi +Bui)dt+\Sigma dwi, 1 \leq i \leq N,

where ui \in \BbbR nu is the control input, wi \in \BbbR nw is a standard Brownian motion, and
A, B, D0, D, \Sigma are conformally dimensioned matrices. Assume Exi(0) = x0 for all i.

The individual agent's cost function takes the form

Ji(ui; \nu i) = E

\int T

0

\bigl[ 
(xi  - \nu i)

TQ(xi  - \nu i) + uTi Rui
\bigr] 
dt

+ E
\bigl[ 
(xi(T ) - \nu i(T ))

TQT (xi(T ) - \nu i(T ))
\bigr] 
, 1 \leq i \leq N,

where Q, QT \geq 0, R > 0, and \nu i = \gamma 0z0,i + \gamma zi + \eta is the process tracked by \scrA i. Here
\eta \in \BbbR n and \gamma 0, \gamma \in \BbbR .

In the infinite population and graphon limit case, denote the local mean\int 
\BbbR n x\mu \alpha (dx) at t for an \alpha -agent situated at vertex \alpha by \=x\alpha and the graphon weighted

mean
\int 1

0
g(\alpha , \beta )\=x\beta d\beta by z\alpha . The \alpha -agent's state equation is given by

dx\alpha = (Ax\alpha +D0\=x\alpha +Dz\alpha +Bu\alpha )dt+\Sigma dw\alpha , \alpha \in [0, 1].

The \alpha -agent's cost function is

J\alpha (u\alpha ; \nu \alpha ) = E

\int T

0

\bigl[ 
(x\alpha  - \nu \alpha )

TQ(x\alpha  - \nu \alpha ) + uT\alpha Ru\alpha 
\bigr] 
dt

+ E
\bigl[ 
(x\alpha (T ) - \nu \alpha (T ))

TQT (x\alpha (T ) - \nu \alpha (T ))
\bigr] 
,

where \nu \alpha = \gamma 0\=x\alpha + \gamma z\alpha + \eta .
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Consider the Riccati equation

0 = \.\Pi t +AT\Pi t +\Pi tA - \Pi tBR
 - 1BT\Pi t +Q,

where \Pi T = QT , and

0 = \.s\alpha (t) + (A - BR - 1BT\Pi t)
T s\alpha (t) +\Pi t(D0\=x\alpha (t) +Dz\alpha (t)) - Q\nu \alpha (t),

where s\alpha (T ) =  - QT \nu \alpha (T ). The BR for the \alpha -agent is given by

u\alpha (t) =  - R - 1BT [\Pi tx\alpha (t) + s\alpha (t)].

Now the mean state process of x\alpha is

\.\=x\alpha = (A - BR - 1BT\Pi t +D0)\=x\alpha +Dz\alpha  - BR - 1BT s\alpha , \alpha \in [0, 1].

The existence analysis reduces to verifying the existence and uniqueness of solu-
tions for the equation system:

\.\=x\alpha = (A - BR - 1BT\Pi t +D0)\=x\alpha  - BR - 1BT s\alpha +D

\int 1

0

g(\alpha , \beta )\=x\beta d\beta ,(5.1)

\.s\alpha =  - (A - BR - 1BT\Pi t)
T s\alpha + (\gamma 0Q - \Pi tD0)\=x\alpha (5.2)

+ (\gamma Q - \Pi tD)

\int 1

0

g(\alpha , \beta )\=x\beta d\beta +Q\eta ,

where \=x\alpha (0) = x0 and s\alpha (T ) =  - QT [\gamma 0\=x\alpha (T ) + \gamma 
\int 1

0
g(\alpha , \beta )\=x\beta (T )d\beta + \eta ].

To analyze (5.1) and (5.2), let \Phi (t, s) and \Psi (t, s) be the fundamental solution
matrix of

\.x = (A - BR - 1BT\Pi t +D0)x, \.y =  - (A - BR - 1BT\Pi t)
T y

for x(t), y(t) \in \BbbR n. For the special case with D0 = 0, \Psi (t, s) = \Phi T (s, t) holds. We
convert the existence analysis into a fixed point problem. We view \=x\beta (t) = \=x(\beta , t) as a
function of (\beta , t). Below we derive an equation for \=x\alpha (t) by eliminating s\alpha (t). Denote
the function space D\Kappa consisting of continuous \BbbR n-valued functions on [0, 1] \times [0, T ]
with norm \| \v x\| = sup\alpha ,t | \v x(\alpha , t)| . We use | \cdot | to denote the Frobenius norm of a vector
or matrix. Define the operator \Kappa as follows: for \v x \in D\Kappa ,

(\Kappa \v x)(\alpha , t) =

\int t

0

\Phi (t, r)BR - 1BT

\Biggl\{ \int T

r

\Psi (r, \tau )

\biggl[ 
(\gamma 0Q - \Pi \tau D0)\v x(\alpha , \tau )

+ (\gamma Q - \Pi \tau D)

\int 1

0

g(\alpha , \beta )\v x(\beta , \tau )d\beta 

\biggr] 
d\tau 

+ \Psi (r, T )QT

\biggl[ 
\gamma 0\v x(\alpha , T ) + \gamma 

\int 1

0

g(\alpha , \beta )\v x(\beta , T )d\beta 

\biggr] \Biggr\} 
dr

+

\int t

0

\Phi (t, r)D

\int 1

0

g(\alpha , \beta )\v x(\beta , r)d\beta dr.

If (H5) holds, \Kappa is from D\Kappa to itself.
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The solution of the LQG GMFG reduces to finding a fixed point \v x to the equation

\v x(\alpha , t) = (\Kappa \v x)(\alpha , t) + \Phi (t, 0)x0

+

\int t

0

\Phi (t, r)BR - 1BT

\Biggl[ \int T

r

\Psi (r, \tau )Qd\tau + \Psi (r, T )QT

\Biggr] 
\eta dr.

Denote cg = max\alpha 
\int 1

0
g(\alpha , \beta )d\beta . We have the bound for the operator norm:

\| \Kappa \| \leq c\Kappa := sup
t\in [0,T ]

\Biggl\{ \int t

0

\int T

r

| \Phi (t, r)BR - 1BT\Psi (r, \tau )| \cdot 
\bigl( 
| \gamma 0Q - \Pi \tau D0| 

+ cg| \gamma Q - \Pi \tau D| 
\bigr) 
d\tau dr

+

\int t

0

\bigl[ 
| \Phi (t, r)BR - 1BT\Psi (r, T )QT | \cdot (| \gamma 0| + cg| \gamma | ) + cg| \Phi (t, r)D| 

\bigr] 
dr

\Biggr\} 
.

If c\Kappa < 1, \Kappa is a contraction and (5.1) and (5.2) have a unique solution.
As an example for illustration, we assume the graphon weighted mean at vertex

\alpha arises from an underlying uniform attachment graphon, and consequently

z\alpha =

\int 1

0

(1 - max(\alpha , \beta ))

\int 
\BbbR n

x\mu \beta (dx)d\beta , \alpha , \beta \in [0, 1],

where it is readily verified that the uniform attachment graphon satisfies (H5).

Appendix A.

Lemma A.1. Assume (H1)--(H8). Let \varphi \alpha be the GMFG-based BR (4.2) and \mu \alpha (t)
the distribution of the closed-loop process x\alpha (t), \alpha \in [0, 1], in (3.15) with initial dis-
tribution \mu x

0 . Then we have

lim
r\rightarrow 0

sup
| t - t\ast | +| \beta  - \beta \ast | <r

W1(\mu \beta (t), \mu \beta \ast (t\ast )) = 0,

where t, t\ast \in [0, T ], and \beta , \beta \ast \in [0, 1].

Proof. Due to limited space, we only give a sketch; see [8] for a more detailed
proof.

Step 1. Take any \beta , \beta \ast \in [0, 1]. For \mu G(\cdot ) determined from the GMFG equations
(3.13) and (3.15), define two processes:

dy\beta \ast = \widetilde f [y\beta \ast , \varphi (t, y\beta \ast , g\beta \ast ), \mu G; g\beta \ast ]dt+ \sigma dw\beta \ast ,

dy\beta = \widetilde f [y\beta , \varphi (t, y\beta , g\beta ), \mu G; g\beta ]dt+ \sigma dw\beta \ast ,

where y\beta \ast (0) = y\beta (0) = xNi (0) and the same Brownian motion is used. Then the
distributions of y\beta \ast (t) and y\beta (t) are \mu \beta \ast (t) and \mu \beta (t), respectively.

By comparing the two SDEs, we estimate sup0\leq t\leq T E| y\beta (t) - y\beta \ast (t)| , and next by
W1(\mu \beta (t), \mu \beta \ast (t)) \leq E| y\beta (t) - y\beta \ast (t)| , we obtain lim\beta \rightarrow \beta \ast suptW1(\mu \beta (t), \mu \beta \ast (t)) = 0.

Step 2. Now we consider a given (\beta \ast , t\ast ) \in [0, 1] \times [0, T ]. By use of the SDE of
y\beta and elementary estimates, we obtain lim| t - t\ast | \rightarrow 0 sup\beta W1(\mu \beta (t

\ast ), \mu \beta (t)) = 0. Since
W1(\mu \beta (t), \mu \beta \ast (t\ast )) \leq W1(\mu \beta (t), \mu \beta (t

\ast ))+W1(\mu \beta (t
\ast ), \mu \beta \ast (t\ast )), we conclude that \mu \beta (t)

as a mapping from the compact space [0, 1]\times [0, T ] to \scrP 1(\BbbR ) with the metric W1(\cdot , \cdot )
is continuous and hence must be uniformly continuous. The lemma follows.
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