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Abstract. This paper considers a class of mean field linear-quadratic-Gaussian (LQG) games
with model uncertainty. The drift term in the dynamics of the agents contains a common unknown
function. We take a robust optimization approach where a representative agent in the limiting
model views the drift uncertainty as an adversarial player. By including the mean field dynamics in
an augmented state space, we solve two optimal control problems sequentially, which combined with
consistent mean field approximations provides a solution to the robust game. A set of decentralized
control strategies is derived by use of forward-backward stochastic differential equations (FBSDE)
and shown to be a robust ε-Nash equilibrium.

Key words. mean field game, model uncertainty, robust control, decentralized control, Nash
equilibrium

AMS subject classifications. 91A10, 91A23, 91A25, 93E20

1. Introduction. Mean field game theory provides an effective methodology for
the analysis and strategy design in a large population of players which are individually
insignificant but collectively have strong impact (see e.g. [29, 31, 32, 38]). A typical
modeling analyzes a system of N players with mean field coupling in their dynamics
or costs, or both. The linear-quadratic-Gaussian (LQG) framework is of particular
interest since it allows an explicit solution procedure. Consider a large population of
N agents. The dynamics of agent i are given by the stochastic differential equation
(SDE)

dxi(t) = (Axi(t) +Bui(t) +Gx(N)(t))dt+DdWi(t), t ≥ 0,(1)

where x(N) = (1/N)
∑N

i=1 xi denotes the mean field coupling term. The cost of agent
i is given by

(2) Ji(ui, . . . , uN ) = E
[ ∫ T

0

(
|xi − Γx(N) − η|2Q + uTi Rui

)
dt+ xTi (T )Hxi(T )

]
,

where we denote |z|Q = (zTQz)
1
2 and the symmetric matrices Q ≥ 0,H ≥ 0 and

R > 0. The LQG modeling framework was first developed in [29, 31] to obtain a set
of strategies (û1, . . . , ûN ) such that each ûi only uses the local sample path information
of xi and some deterministic functions reflecting the collective behavior of the agents
and such that (û1, . . . , ûN ) is an ε-Nash equilibrium. There has existed a substantial
body of literature adopting the LQG framework [4, 9, 35, 39, 47, 52].
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For further literature, the reader is referred to [13, 14, 15, 22, 32, 36] for non-
linear diffusion based games and the associated SDE analysis, [12, 38] for study of
the coupled system of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck equations,
[7, 10, 30, 45, 46] for models containing a major player, [8, 20] for time consistent
strategies in mean field games, [57] for mean field oscillator games, [55] for Markovian
switching mean field games, [16] for application to Bertrand and Cournot equilibrium
models, and [1] for a related solution notion called stationary equilibrium where play-
ers optimize assuming a steady-state long-run average for the empirical distribution
of others’ states. For an overview on mean field game theory, see [7, 11, 23].

Within the traditional research on games, there has existed a fair amount of lit-
erature on model uncertainty. For an N player static game with finite action spaces
and an uncertain payoff matrix, a robust-optimization equilibrium is introduced in
[2] where each player optimizes its worst case payoff with respect to the uncertain
set. A similar method is applied to hierarchical static games [25]. Robustness has
been addressed in dynamic games as well. A linear-quadratic (LQ) game with system
parameter uncertainties is presented in [33], and the deviation from the Nash equilib-
rium is estimated for a set of nominal strategies. Robust Nash equilibria are analyzed
in [54] for an LQ game with an unknown time-varying disturbance signal as an ad-
versarial player. In the first case, a soft-constrained game is solved where the cost
includes a quadratic penalty term for the disturbance. The second case introduces a
hard constraint by specifying an L2 bound on the disturbance function. The work
[34] deals with stochastic games where the payoff and state transition probabilities
contain uncertainty. The solution is developed by letting each player solve a robust
Markov decision problem to optimize its worst case cost while other players’ strategies
are fixed.

This paper aims to address model uncertainty in the mean field LQG game con-
text. Specifically, we focus on drift uncertainty by adding to (1) a common unknown
L2-disturbance f . A practical motivation is that in many decision problems, a large
number of agents can share a common uncertainty source fluctuating with time, and
examples include taxation, subsidy, interest rates, and so on. A direct consequence
of our modeling is that this disturbance has global influence on the population. To
address robustness, each agent locally views the disturbance as an adversarial player,
and for this purpose we incorporate into (2) an effort penalty term for the disturbance
which in turn maximizes the resulting cost first. The agent minimizes subsequently.
The framework of letting the disturbance maximize while its effort is penalized is
called the soft-constraint approach [5, 21, 54]. It has the advantage of analytical
tractability. When a hard constraint is considered, the robust mean field game is
more difficult to tackle; see some preliminary analysis in [27]. Regarding robustness
in mean field games, a related work is [51] where each agent is paired with its local
disturbance as an adversarial player. The resulting solution is to replace the usual
HJB equation by a Hamilton-Jacobi-Isaacs (HJI) equation in the solution.

To design the individual strategies it is necessary to build the dynamics of the
mean field (i.e. state average of the agents) evolving under the disturbance. This
technique shares its spirit with the state augmentation method in major player models
[30, 45, 46]. The subsequent robust optimization problem, as a minimax control
problem, leads to two optimal control problems with indefinite state weights [56].
They are different from the well known stochastic control problems with indefinite
control weights [18, 41]. We will follow a convex optimization approach to solve
the two control problems via variational analysis and forward-backward stochastic
differential equations (FBSDE) [26, 44, 48]. Both the information structure and the
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solution procedure for our model are different from [51] where each player and its
local disturbance have access to its state and so dynamic programming is applicable.
Our main contributions are summarized as follows:

• We formulate a class of mean field LQG games where the players face a
common uncertainty source, and introduce the robust optimization approach
to solve two convex optimal control problems.

• Decentralized strategies are obtained for the robust mean field game via a set
of FBSDE.

• The performance of the decentralized strategies for the N players is charac-
terized as a robust ε-Nash equilibrium.

The rest of this paper is organized as follows. Section 2 introduces the mean
field LQG game with a common disturbance and defines the worst case cost for a
player. Section 3 studies the limiting robust optimization problem which leads to two
optimal control problems solved sequentially by the disturbance and the representative
player. The solution equation system of the mean field game is obtained in Section
4 based on consistent mean field approximations. A key error estimate of the mean
field approximation is developed in Section 5. Section 6 characterizes the set of
decentralized strategies as a robust ε-Nash equilibrium, and Section 7 concludes the
paper.

2. Mean Field LQG Games with Drift Uncertainty. Consider a finite time
horizon [0, T ] for T > 0. Suppose that (Ω,F , {Ft}0≤t≤T ,P) is a complete filtered
probability space. Throughout this paper, we denote by Rk the k-dimensional Eu-
clidean space, Rn×k the set of all n × k matrices. We use | · | to denote the norm of
a Euclidean space, or the Frobenius norm for matrices. For a vector or matrix M ,
MT denotes its transpose. Let L2

F (0, T ;Rk) denote the space of all Rk-valued Ft-

progressively measurable processes x(·) satisfying E
∫ T

0
|x(t)|2dt < ∞; C([0, T ];Rk)

(resp., C1([0, T ];Rk)) is the space of all Rk-valued functions h(·) defined on [0, T ]
which are continuous (resp., continuously differentiable); L2(0, T ;Rk) is the space of

all Rk-valued measurable functions h(·) on [0, T ] satisfying
∫ T

0
|h(t)|2dt < ∞, and

we denote the norm ∥h∥L2 = (
∫ T

0
|h(t)|2dt)1/2. Throughout the paper, we use C (or

C1, C2, . . .) to denote a generic constant which does not depend on the population
size N and may vary from place to place.

2.1. The game with a finite population. Consider N agents (or players)
denoted by Ai, 1 ≤ i ≤ N , respectively. The state xi of Ai is Rn-valued and satisfies
the linear SDE

(3) dxi(t) = (Axi(t) +Bui(t) +Gx(N)(t) + f(t))dt+DdWi(t), 1 ≤ i ≤ N,

where x(N) = (1/N)
∑N

j=1 xj . The control ui takes its value in Rn1 . The Rn2 -
valued standard Brownian motions {Wi(t), 1 ≤ i ≤ N} are independent. The initial
states {xi(0), 1 ≤ i ≤ N} are deterministic and their empirical mean has the limit

limN→∞(1/N)
∑N

i=1 xi(0) = m0. We take {Ft}0≤t≤T as the natural filtration gen-
erated by the Nn2-dimensional Brownian motion (W1(t), . . . ,WN (t)), and F = FT .
The admissible control set U of Ai is

U :=
{
ui(·) : ui ∈ L2

F (0, T ;Rn1)
}
.

Denote u = (u1, . . . , uN ) and u−i = (u1, . . . , ui−1, ui+1, . . . , uN ).
The function f ∈ L2(0, T ;Rn) is an unknown disturbance to characterize the

model uncertainty, and represents an influence from the common environment for
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decision-making. A natural motivation for considering deterministic disturbance is
the following. Although each player Ai regards the disturbance as adversarial, it
should not be excessively pessimistic by assuming that the latter will use the sample
path information ofWi to play against it, and instead only considers a deterministic f .
We note that dynamical systems with both deterministic disturbance and stochastic
noise have been considered in the control literature to account for different uncertainty
causes (see e.g. [6, 24, 49]), often leading to robust controller design problems.

The cost functional of Ai is

(4) Ji(ui, u−i, f) = E
[∫ T

0

(
|xi − (Γx(N) + η)|2Q + uTi Rui −

1

γ
|f(t)|2

)
dt

+ xTi (T )Hxi(T )

]
,

where the symmetric matrices Q ≥ 0, R > 0, H ≥ 0 and the constant γ > 0.
We assume uniform agents in the sense that they share the same parameter datum
(A,B,G,D; Γ, η,Q,R, γ,H). Also, to simplify the analysis, we consider constant pa-
rameters.

Due to the unknown function f , Ai cannot evaluate its cost even if all control
policies (u1, . . . , uN ) are known. To address this indeterminacy, we approach the game
from a robust optimization point of view where each agent takes f as an adversarial
player. Here a soft-constraint [5, 21, 54] for the disturbance is adopted in that the
term − 1

γ |f(t)|
2 is included in (4) while f attempts to maximize. For given (ui, u−i),

define the worst case cost of Ai as

Jwo
i (ui, u−i) = sup

f∈L2(0,T ;Rn)

Ji(ui, u−i, f).

A set of strategies (û1, . . . , ûN ) is a robust ε-Nash equilibrium for the N players
if for ε ≥ 0,

Jwo
i (ûi, û−i)− ε ≤ inf

ui∈U
Jwo
i (ui, û−i) ≤ Jwo

i (ûi, û−i).(5)

Our central objective is to design decentralized strategies based on the above solution
notion.

3. The Limiting Robust Optimization Problem. We start by making an
appropriate approximation of the coupling term x(N). Adding up the N equations in
(3) and normalizing by 1/N , we obtain

dx(N) = [(A+G)x(N) +Bu(N) + f ]dt+D(1/N)
N∑
j=1

dWj ,

where u(N) = (1/N)
∑N

j=1 uj . Intuitively, from the point of view of Ai, u
(N) may be

approximated by a deterministic function ū. Moreover, (1/N)
∑N

j=1 dWj vanishes as
N → ∞ due to the law of large numbers. In turn, a deterministic function m can
be used to approximate x(N). The above reasoning suggests to introduce the limiting
ordinary differential equation (ODE)

ṁ = (A+G)m+Bū+ f, m(0) = m0.(6)
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3.1. The limiting model of the mean field game. Consider the optimization
problem of a representative agent Ai:

(7)

{
dxi = (Axi +Bui +Gmi + f)dt+DdWi,

ṁi = (A+G)mi +Bū+ f,

where the second equation is motivated from (6) and mi(0) = m0. For the limiting
model (7), (Wi, xi(0)) is the same as in (3). We reuse (xi,Ai) to denote the state
and the corresponding agent. This shall cause no risk of confusion. Since f will be
determined as its worst case form depending on xi(0), mi is associated with the agent
index i so that it is ready as an appropriate notation for the subsequent closed-loop
dynamics. The cost functional is given by

J̄i(ui, f) = E
∫ T

0

{
|xi − (Γmi + η)|2Q + uTi Rui −

1

γ
|f(t)|2

}
dt+ ExTi (T )Hxi(T ).

We aim to find a solution pair (f̂ , ûi) such that

J̄i(ûi, f̂) = min
ui∈U

max
f∈L2(0,T ;Rn)

J̄i(ui, f).(8)

Finally, we need a consistency condition, i.e., 1
N

∑N
i=1 ûi converges to ū in some

sense (this will be made precise in Section 4) and we look for ū ∈ C([0, T ];Rn1); the
feasibility of doing so will be clear from our solution procedure. The next part of our
plan is to show that such strategies have the property in (5) when applied in the game
of N agents. In the following, we solve the optimization problem (8) in two steps.

3.2. The control problem with respect to the disturbance. Let ui ∈ U
and ū ∈ C([0, T ];Rn1) be fixed. The optimal control problem is

(P1) maximizef∈L2(0,T ;Rn)J̄i(ui, f).(9)

Clearly (P1) is equivalent to the following problem

(P1a) minimizef∈L2(0,T ;Rn)J̄
′
i(ui, f) = E

∫ T

0

{
−|xi − (Γmi + η)|2Q +

1

γ
|f(t)|2

}
dt

− ExTi (T )Hxi(T ).

(P1a) is an optimal control problem with negative semi-definite state weights. We
are interested in the situation where (P1a) is a strictly convex problem with a coer-
civity property. This ensures that the worse case disturbance is uniquely determined
by Ai. The procedure below to identify conditions for ensuring convexity is similar
to [41].

To study the convexity of J̄ ′
i in f , we construct a simpler auxiliary optimal control

problem. Denote

Q̂ = (I − Γ)TQ(I − Γ).

Consider the dynamics

ż = (A+G)z + g, z(0) = 0,(10)
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where g ∈ L2(0, T ;Rn). The optimal control problem is

(P1b) minimize J̄ ′′
i (g) =

∫ T

0

{
−zT Q̂z + 1

γ
|g(t)|2

}
dt− zT (T )Hz(T ).

For any s ∈ R, we have J̄ ′′
i (sg) = s2J̄ ′′

i (g), and so view J̄ ′′
i as a quadratic functional

of g.

Definition 3.1. Let F (g) be a real-valued functional of g ∈ L2(0, T ;Rn). If
F (g) ≥ 0 for all g, F is said to be positive semi-definite. If furthermore, F (g) > 0
for all g ̸= 0, F is said to be positive definite.

Lemma 3.2. J̄ ′
i(ui, f) is convex (resp., strictly convex) in f if and only if J̄ ′′

i (g)
is positive semi-definite (resp., positive definite).

Proof. Let (xi,mi) and (x′i,m
′
i) be the state processes of (7) corresponding to

(ui, f) and (ui, f
′), respectively. Take any λ1 ∈ [0, 1] and denote λ2 = 1− λ1. Then

λ1J̄
′
i(ui, f) + λ2J̄

′
i(ui, f

′)− J̄ ′
i(ui, λ1f + λ2f

′)

= λ1λ2E
∫ T

0

{
|xi − x′i − Γ(mi −m′

i)|2Q +
1

γ
|f(t)− f ′(t)|2

}
dt

− λ1λ2E|xi(T )− x′i(T )|2H .

Denote g = f − f ′, and z = xi − x′i. Therefore, z is deterministic and satisfies (10).
In addition, mi −m′

i = z for t ∈ [0, T ]. Hence

λ1J̄
′
i(ui, f) + λ2J̄

′
i(ui, f

′)− J̄ ′
i(ui, λ1f + λ2f

′) = λ1λ2J̄
′′
i (g)

and the lemma follows. �
For our further existence analysis, we need to ensure J̄ ′

i(ui, f) to be both strictly
convex and coercive in f . For this purpose, we introduce the following assumption.

(H1) There exists a small ϵ0 > 0 such that J̄ ′′
i (g) − ϵ0∥g∥2L2 is positive semi-

definite.

Note that (H1) is completely determined by the parameters (Q̂, γ, ϵ0,H, T ), and
does not depend on ui. Concerning (H1), we have the following result.

Proposition 3.3. The following statements are equivalent:
(i) (H1) holds true on [0, T ].
(ii) The Riccati equation

Ṗ + (A+G)TP + P (A+G)− γP 2 − Q̂ = 0, P (T ) = −H(11)

has a unique solution on [0, T ].
(iii) For any t ∈ [0, T ],

det{[(0, I)eAt(0, I)T ]} > 0,

where

A =

(
A+G+ γH −γI

Q̆ −(A+G+ γH)T

)
and Q̆ = γH2 + Q̂+ (A+G)TH +H(A+G).
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Proof. In fact, (H1) is the uniform convexity condition proposed in [50], and the
equivalence between (i) and (ii) is a corollary of Theorem 4.5 of [50]. Moreover, (iii)
=⇒ (ii) is given in [44, Theorem 4.3, p. 48]. On the other hand, (ii) =⇒ (iii) is
implied by Theorems 2.7 and 2.9 of [59, Ch. 6]. �

For illustration of condition (ii), we give the following example.

Example 3.4. Consider system (3)-(4) with parameters A = 0.5, B = 1, G =

0.25, Q = 1, Γ = 0.8, R = 1.5, H = 0, γ = 1. Denote Â = A+G. We solve (11) to
obtain

P (t) =
−Q̂(eα(t−T ) − e−α(t−T ))

λ2eα(t−T ) − λ1e−α(t−T )
,(12)

where

λ1 = −Â+

√
Â2 − γQ̂ = −0.027158, λ2 = −Â−

√
Â2 − γQ̂ = −1.472842,

α =

√
Â2 − γQ̂ = 0.722842.

If 0 < T < Tmax = 1
2α ln(λ2/λ1) = 2.752198, P (t) given by (12) is well defined on

[0, T ]. By the local Lipschitz continuity property of the vector field in (11), P (t) is the
unique solution.

Note that (11) is not a standard Riccati equation since the state weight ma-

trix −Q̂ is not positive semi-definite. In general, the solvability of (11) cannot be
ensured on an arbitrary time horizon. Condition (iii) enables us to determine the
solvability of (11) on a given time horizon. Note that condition (iii) is equivalent
to det{[(0, I)eAt(0, I)T ]} ≠ 0, ∀t ∈ [0, T ] by noting det{[(0, I)eAt(0, I)T ]}t=0 = 1.
Condition (iii) is more checkable as illustrated by the following example.

Example 3.5. Consider system (3)-(4) with parameters A = −0.5, G = 0.25,
Q = 1, Γ = 0.8, H = 0, γ = 1. We obtain

A =

(
−0.25 −1
0.04 0.25

)
,

eAt =

(
−1

3e
3
20 t + 4

3e
− 3

20 t −10
3 e

3
20 t + 10

3 e
− 3

20 t

2
15e

3
20 t − 2

15e
− 3

20 t 4
3e

3
20 t − 1

3e
− 3

20 t

)
,

det{[(0, 1)eAt(0, 1)T ]} =
4

3
e

3
20 t − 1

3
e−

3
20 t > 0, ∀t ≥ 0.

Thus for any T > 0, (11) admits a unique solution on [0, T ]. Therefore, (H1) holds
true on [0, T ].

Lemma 3.6. Assume (H1). Then J̄ ′
i(ui, f) is strictly convex in f . Moreover,

J̄ ′
i(ui, f) is coercive in f and, in particular, there exists a constant Cui,xi(0) depending

on (ui, xi(0)) such that

J̄ ′
i(ui, f) ≥

ϵ0
2
∥f∥2L2 − Cui,xi(0).

Proof. Since J̄ ′′
i (g) − ϵ0∥g∥2L2 is positive semi-definite by (H1), J̄ ′′

i (g) is positive
definite. By Lemma 3.2, J̄ ′

i(ui, f) is strictly convex in f . Following the method in
proving Lemma 3.2, we can further show that χ(f) := J̄ ′

i(ui, f) − ϵ0∥f∥2L2 is convex
in f . By (7) and direct estimates, we can show

sup
∥f∥L2≤1

|χ(f)| ≤ C0,ui,xi(0),
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where the constant C0,ui,xi(0) depends on (ui, xi(0)). Now consider f with ∥f∥L2 ≥ 1.

Define f1 = f
∥f∥L2

. The convexity of χ(f) implies

χ(f1) ≤
1

∥f∥L2

χ(f) +
∥f∥L2 − 1

∥f∥L2

χ(0) ≤ 1

∥f∥L2

χ(f) + C0,ui,xi(0).(13)

Consequently, for ∥f∥L2 ≥ 1, (13) gives

χ(f) ≥ −2C0,ui,xi(0)∥f∥L2 .

Hence for any f , χ(f) ≥ −C0,ui,xi(0)(2∥f∥L2 + 1). It follows that

J̄ ′
i(ui, f) = χ(f) + ϵ0∥f∥2L2

≥ ϵ0∥f∥2L2 − C0,ui,xi(0)(2∥f∥L2 + 1)

≥ ϵ0
2
∥f∥2L2 − Cui,xi(0)

for some constant Cui,xi(0). �
Theorem 3.7. Suppose that (H1) holds and let ui ∈ U and ū be fixed. Then

(i) J̄ ′
i(ui, f) has a unique minimizer f̂ , or equivalently, J̄i(ui, f) has a unique

maximizer f̂ ;
(ii) there exists a unique solution (xi,mi, pi) ∈ L2

F (0, T ;Rn) × L2(0, T ;R2n) to
the equation system

(14)


dxi = (Axi +Bui +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū+ γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

where mi(0) = m0 and pi(T ) = HExi(T ), and furthermore f̂ = γpi.

Proof. (i) By Lemma 3.6, J̄ ′
i is strictly convex and coercive. In addition, J̄ ′

i is

continuous in f . Hence there exists a unique f̂ such that J̄ ′
i(ui, f̂) = inff J̄

′
i(ui, f)

[37, Chap. 7], [43].
(ii) We start by establishing existence. Let the optimal state-control pair be

denoted by (xi,mi, f̂), which is uniquely determined. We have the relation

dxi = (Axi +Bui +Gmi + γf̂)dt+DdWi,(15)

ṁi = (A+G)mi +Bū+ γf̂ ,(16)

where mi(0) = m0. By using (xi,mi), we obtain a unique solution pi from

(17) ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

where pi(T ) = HExi(T ).
Now we consider another control f = f̂ + f̃ ∈ L2(0, T ;Rn) in place of f̂ . Let

x̃i and m̃i be the first variations of xi and mi, respectively, which result from the
variation f̃ for f̂ . Then we have x̃i = m̃i for all t ∈ [0, T ] and

dx̃i
dt

= (A+G)x̃i + f̃ , x̃i(0) = 0.
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Since J̄ ′
i has a minimum at (xi,mi, f̂), the first variation of the cost satisfies

0 =
δJ̄ ′

i

2
= E

∫ T

0

{
−[xi − (Γmi + η)]TQ(I − Γ)x̃i +

1

γ
f̂T f̃

}
dt

− ExTi (T )Hx̃i(T ).(18)

On the other hand,

d

dt
(pTi x̃i) = x̃Ti ṗi + pTi

dx̃i
dt

= −[Exi − (Γmi + η)]TQ(I − Γ)x̃i + pTi f̃ .(19)

Integrating both sides of (19) and invoking (18), we obtain

pTi (T )x̃i(T ) =

∫ T

0

(
pTi f̃ − 1

γ
f̂T f̃

)
dt+ ExTi (T )Hx̃i(T ).(20)

Recalling pi(T ) = HExi(T ), since f̃ is arbitrary, it follows from (20) that

f̂ = γpi

for a.e. t ∈ [0, T ]. Therefore, (xi,mi, pi) determined by (15)-(17) is a solution to (14).
We proceed to show uniqueness. Suppose that (x′i,m

′
i, p

′
i) is another solution of

(14). Set the control f ′ = γp′i. It is straightforward to show that the first varia-
tion of J̄ ′

i at the state control pair (x′i,m
′
i, f

′) is zero. Since J̄ ′
i is strictly convex,

this implies that (x′i,m
′
i, f

′) is the unique optimal state-control pair and so coincides

with (xi,mi, f̂) where (xi,mi) is the optimal state process determined from (15)-(17).
This further implies p′i = pi. So uniqueness follows. The last part of (ii) is now
obvious. �

3.3. The control problem of player Ai. Assume that (H1) holds. This will
ensure that all the equation systems in this section have a well defined solution. The
dynamics are given by

dxi = (Axi +Bui +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū+ γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

(21)

where mi(0) = m0 and pi(T ) = HExi(T ). The optimal control problem is

(P2) minimizeui∈L2
F (0,T ;Rn1 )J̄i(ui, f̂ui) = E

∫ T

0

{
|xi − (Γmi + η)|2Q

+ uTi Rui − γ|pi(t)|2
}
dt+ ExTi (T )Hxi(T ).

Here we have taken f̂ui = γpi which depends on ui. We may simply write J̄i(ui).
This is again a linear quadratic optimal control problem with indefinite weight for
the state vector (xi,mi, pi). Note that a perturbation in ui will cause a change of the
mean term Exi. So this is essentially a mean field type optimal control problem; see
related work [3, 58].
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We continue to identify conditions under which (P2) is strictly convex and co-
ercive. These conditions will be characterized by using an auxiliary control problem
with dynamics

(22)


żi = Azi +Bνi +Gz + γq,

ż = (A+G)z + γq,

q̇ = −(A+G)T q − (I − Γ)TQ(zi − Γz),

where zi(0) = z(0) = 0 and q(T ) = Hzi(T ). The control νi ∈ L2(0, T ;Rn1). The
optimal control problem is

(P2a) minimize J̄a
i (νi) =

∫ T

0

{
|zi − Γz|2Q + νTi Rνi − γ|q(t)|2

}
dt+ |zi(T )|2H .

We may view this as a deterministic optimal control problem with two point boundary
value conditions for the state trajectory. We say J̄a

i is positive semi-definite if J̄a
i (νi) ≥

0 for all νi; if furthermore, J̄a
i (νi) > 0 whenever νi ̸= 0, we say J̄a

i is positive definite.
In order to have a well defined optimal control problem, we need to show that (22)
has a unique solution.

Lemma 3.8. Assume (H1). For each νi, there exists a unique solution (zi, z, q) ∈
C1([0, T ];R3n) to (22).

Proof. Indeed, by taking ui = 0 and ui = νi ∈ L2(0, T ;Rn1) in (21), we obtain
two solutions (x0i ,m

0
i , p

0
i ) and (xνi

i ,m
νi
i , p

νi
i ), respectively. It is easy to show that

(zi, z, q) := (xνi
i − x0i ,m

νi
i − m0

i , p
νi
i − p0i ) is a solution of (22) by observing that

xνi
i − x0i is deterministic.

If there exist two different solutions to (22) for some νi, then we can construct
two different solutions to (21) for a given ui, which is a contradiction to Theorem
3.7. �

Lemma 3.9. J̄i(ui) is convex (resp., strictly convex) in ui ∈ U if and only if
J̄a
i (νi) is positive semi-definite (resp., positive definite).

Proof. See appendix A. �
We introduce the following assumption.

(H2) There exists a small constant δ0 > 0 such that J̄a
i (νi)− δ0∥νi∥2 ≥ 0 for all

νi ∈ L2(0, T ;Rn1).

3.4. Representation of the quadratic functional. We intend to find an
expression of J̄a

i (νi) so that (H2) can be characterized in a more explicit form. A
change of coordinates will make the computation more convenient. Define ž = zi − z.
Then (22) becomes 

˙̌z = Až +Bνi,

ż = (A+G)z + γq,

q̇ = −Q̂z − (A+G)T q − (I − Γ)TQž,

(23)

where ž(0) = z(0) = 0 and q(T ) = H(ž(T ) + z(T )).
Define the Hamiltonian matrix

H =

[
A+G γI

−Q̂ −(A+G)T

]
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and the matrix ODE Φ̇(t) = HΦ(t) where Φ(0) = I. Denote the partition

Φ(t) =

[
Φ11(t) Φ12(t)
Φ21(t) Φ22(t)

]
,

where each submatrix Φij is an n× n matrix function.
We have

ž(t) =

∫ t

0

eA(t−τ)Bνi(τ)dτ.(24)

By solving (z, q) in (23), we obtain

z(t) = Φ12(t)q(0)−
∫ t

0

Φ12(t− s)(I − Γ)TQž(s)ds,

q(t) = Φ22(t)q(0)−
∫ t

0

Φ22(t− s)(I − Γ)TQž(s)ds,

where q(0) is to be determined. At the terminal time,

z(T ) = Φ12(T )q(0)−
∫ T

0

Φ12(T − s)(I − Γ)TQž(s)ds

and

q(T ) = Φ22(T )q(0)−
∫ T

0

Φ22(T − s)(I − Γ)TQž(s)ds

= Hž(T ) +HΦ12(T )q(0)−H

∫ T

0

Φ12(T − s)(I − Γ)TQž(s)ds,

where the second equality is due to the terminal condition of q. It follows that

[Φ22(T )−HΦ12(T )]q(0)

= Hž(T ) +

∫ T

0

[Φ22(T − s)−HΦ12(T − s)](I − Γ)TQž(s)ds.(25)

Proposition 3.10. If (H1) holds, Φ22(T )−HΦ12(T ) is nonsingular.

Proof. Under (H1), (23) has a unique solution by Lemma 3.8, and accordingly,
q(0) is uniquely determined. If Φ22(T )−HΦ12(T ) is singular, we may find two different
solutions of q(0) from (25) which further give two different solutions to (23), leading
to a contradiction. Hence, Φ22 −HΦ12(T ) is nonsingular. �

By solving q(0) in (25) and further eliminating ž, we write z and q as integrals
depending on νi. Define the linear operator

[L(νi)](t) =

 ž(t)
z(t)
q(t)

 .
By standard estimates we can show that L is a linear and bounded operator from
L2(0, T ;Rn1) to L2(0, T ;R3n). Let L∗ be its adjoint operator from L2(0, T ;R3n) to
L2(0, T ;Rn1). Define the operator

LT νi = ž(T ) + z(T ).
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It can be shown that LT is a linear and bounded operator from L2(0, T ;Rn1) to Rn.
Let L∗

T be its adjoint operator. Now J̄a
i may be represented in terms of the inner

product on L2(0, T ;Rn1):

J̄a
i (νi) = ⟨Θνi, νi⟩+ ⟨Rνi, νi⟩+ ⟨ΘT νi, νi⟩,(26)

where

Θνi = L∗

 Q Q(I − Γ) 0

(I − Γ)TQ Q̂ 0
0 0 −γI

Lνi, ΘT νi = L∗
THLT νi.

Proposition 3.11.
(i) J̄i(ui) is convex in ui ∈ U if and only if ⟨(Θ + ΘT + R)νi, νi⟩ ≥ 0 for all

νi ∈ L2(0, T ;Rn1).
(ii) (H2) holds if and only if there exists δ0 > 0 such that ⟨(Θ+ΘT +R)νi, νi⟩ ≥

δ0∥νi∥2L2 for all νi ∈ L2(0, T ;Rn1).

Proof. (i) follows from Lemma 3.9 and the representation (26). (ii) follows from
(26). �

The criterion in part (ii) of Proposition 3.11 still involves the operators Θ and ΘT

on an infinite dimensional space. Here we give a sufficient condition to endure (H2)
based on some more computable parameters. It is clear that ⟨(Θ + ΘT + R)νi, νi⟩ ≥∫ T

0
(|νi(t)|2R − γ|q(t)|2)dt. For simplicity, we only consider the case H = 0, and simple

computations lead to

q(t) = Φ22(t)Φ
−1
22 (T )

∫ T

0

Φ22(T − s)(I − Γ)TQ

∫ s

0

eA(s−τ)Bνi(τ)dτds

−
∫ t

0

Φ22(t− s)(I − Γ)TQ

∫ s

0

eA(s−τ)Bνi(τ)dτds =: q1(t)− q2(t).

Denote b1 = sup0≤t≤T |Φ22(t)|, b2 = sup0≤t≤T |Φ22(t)Φ
−1
22 (T )|, b3 = |Q(I − Γ)|,

b4 =
∫ T

0
|eAsB|ds and b5 = sup0≤t≤T |eAtB|. By exchanging the order of integration

in q1 and q2, it is easy to show

|q1(t)|2 ≤ (b1b2b3b4)
2T

∫ T

0

ν2i (s)ds, |q2(t)| ≤ b1b3b5

∫ t

0

(t− τ)|νi(τ)|dτ,

which further gives ∫ T

0

|q(t)|2dt ≤ Cq

∫ T

0

|νi(t)|2dt,(27)

where Cq = 2(b1b2b3b4)
2T 2+ 1

6 (b1b3b5)
2T 4. For the case H = 0, (H2) holds whenever

R > γCqI.

3.5. The solution of (P2). Let ū ∈ C([0, T ];Rn1) be fixed.

Lemma 3.12. Assume (H1)-(H2). Then (P2) has a unique optimal state-control
pair of the form (xi,mi, pi, ûi) satisfying

(28)


dxi = (Axi +Bûi +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū+ γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],
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where pi(T ) = HExi(T ). Furthermore, the backward stochastic differential equation
(BSDE)

(29)

{
dyi =

{
−AT yi +Q[xi − (Γmi + η)]

}
dt+ ζidWi,

yi(T ) = −Hxi(T )

has a unique solution (yi, ζi) ∈ L2
F (0, T ;R2n) and

(30) ûi = R−1BT yi.

Proof. Under (H2), by adapting Lemma 3.9 to the auxiliary control problem

with cost functional J̄i(ui)− δ0E
∫ T

0
|ui|2dt, we can show that J̄i(ui)− δ0E

∫ T

0
|ui|2dt

is convex in ui. By the method in proving Lemma 3.6, we can further show that J̄i
is strictly convex and coercive in ui. Hence (P2) has a unique optimal state-control
pair (xi,mi, pi, ûi) which minimizes J̄i(ui).

Given (xi,mi, pi, ûi), (29) is a standard linear BSDE and so has a unique solution
(yi, ζi). Further define the BSDE

dy =
{
−GT yi − (A+G)T y − ΓTQ[xi − (Γmi + η)]

}
dt+ ζdWi,

where y(T ) = 0. It also has a unique solution (y, ζ) ∈ L2
F (0, T ;R2n). It can be

checked that
d

dt
[E(y + yi) + pi] = −(A+G)T [E(y + yi) + pi]

and E(y(T ) + yi(T )) + pi(T ) = 0. So

E(yi + y) + pi = 0(31)

for all t ∈ [0, T ].
Let ûi be replaced by ûi + ũi ∈ L2

F (0, T ;Rn1) in (28), and the resulting solution
be denoted by (xi + x̃i,mi + m̃i, pi + p̃i), which exists and is unique by Theorem 3.7.
It follows that 

˙̃xi = Ax̃i +Bũi +Gm̃i + γp̃i,
˙̃mi = (A+G)m̃i + γp̃i,
˙̃pi = −(A+G)T p̃i − (I − Γ)TQ(Ex̃i − Γm̃i),

where x̃i(0) = m̃i(0) = 0 and p̃i(T ) = HEx̃i(T ). The first variation of J̄i about ûi
satisfies

0 =
δJ̄i
2

= E
∫ T

0

{
(x̃i − Γm̃i)

TQ[xi − (Γmi + η)] + ũTi Rûi − γp̃Ti pi
}
dt

+ Ex̃Ti (T )Hxi(T ).(32)

By applying Ito’s formula to x̃Ti yi, we obtain

Ex̃Ti (T )yi(T )− Ex̃Ti (0)yi(0)

= E
∫ T

0

{
x̃Ti Q[xi − (Γmi + η)] + yTi (Bũi +Gm̃i + γp̃i)

}
dt.
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Similarly,

Em̃T
i (T )y(T )− Em̃T

i (0)y(0)

= E
∫ T

0

{
γyT p̃i − m̃T

i (G
T yi + ΓTQ[xi − (Γmi + η)])

}
dt.

Therefore, adding up the two equations yields

− Ex̃Ti (T )Hxi(T )

= E
∫ T

0

{
(x̃i − Γm̃i)

TQ[xi − (Γmi + η)] + yTi Bũi + γ(y + yi)
T p̃i
}
dt.(33)

By (32) and (33),

E
∫ T

0

[ũTi Rûi − γp̃Ti pi − ũTi B
T yi − γp̃Ti (y + yi)]dt = 0.

Note that by (31),

E
∫ T

0

p̃Ti (pi + y + yi)dt =

∫ T

0

p̃Ti [pi + E(y + yi)]dt = 0.

Hence,

E
∫ T

0

ũTi (Rûi −BT yi)dt = 0.

Since ũi ∈ L2
F (0, T ;Rn1) is arbitrary, (30) follows. �

After substituting ûi = R−1BT yi into (28), we form the equation system

(34)


dxi = (Axi +BR−1BT yi +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū+ γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

dyi =
{
−AT yi +Q[xi − (Γmi + η)]

}
dt+ ζidWi,

where xi(0) is given, mi(0) = m0, pi(T ) = HExi(T ), and yi(T ) = −Hxi(T ). This
equation system consists of 2 forward equations and 2 backward equations. It is clear
that the solution of the optimal control problem (P2) satisfies the above FBSDE. A
natural question is whether this FBSDE’s solution completely determines the optimal
control. This is answered by the next theorem. Denote

S[0, T ] = L2
F (0, T ;Rn)× C1([0, T ];R2n)× L2

F (0, T ;R2n).

Theorem 3.13. Assume (H1)-(H2). Then the FBSDE (34) has a unique solution
(xi,mi, pi, yi, ζi) ∈ S[0, T ] and the optimal control for (P2) is given by ûi = R−1BT yi.

Proof. We solve (P1) and next (P2) to determine ûi. By Lemma 3.12, we ob-
tain (xi,mi, pi, yi, ζi) to satisfy (28)-(29) and ûi = R−1BT yi. Then (xi,mi, pi, yi, ζi)
satisfies (34).

We continue to show uniqueness. Let (xi,mi, pi, yi, ζi) and (x′i,m
′
i, p

′
i, y

′
i, ζ

′
i) be

two solutions of (34). Define ǔi = R−1BT yi and u′i = R−1BT y′i which are both
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well-determined elements in L2
F (0, T ;Rn1). In particular, we have

(35)


dxi = (Axi +Bǔi +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū+ γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

dyi =
{
−AT yi +Q[xi − (Γmi + η)]

}
dt+ ζidWi,

where xi(0) is given, mi(0) = m0, pi(T ) = HExi(T ), and yi(T ) = −Hxi(T ).
As in the proof of Lemma 3.12, we evaluate the first variation of J̄i(ui) at

(xi,mi, pi, ǔi) and can show δJ̄i = 0. Since J̄i is convex, this zero first varia-
tion condition implies that ǔi is an optimal control of (P2). By the same reason-
ing, u′i is also an optimal control. By strict convexity, we have ǔi = u′i. Subse-
quently, we have (xi,mi, pi) = (x′i,m

′
i, p

′
i) by Theorem 3.7. This further implies

(yi, ζi) = (y′i, ζ
′
i). �

4. The Solution of the Robust Game. Note that Theorem 3.13 determines
the strategy of a representative agent when ū is fixed. Denote

x(N) =
1

N

N∑
i=1

xi, y(N) =
1

N

N∑
i=1

yi, m(N) =
1

N

N∑
i=1

mi, p(N) =
1

N

N∑
i=1

pi.(36)

By (34), we obtain

(37)


dx(N) =

(
Ax(N) +BR−1BT y(N) +Gm(N) + γp(N)

)
dt+ D

N

∑N
i=1 dWi,

dm(N)

dt = (A+G)m(N) +Bū+ γp(N),
dp(N)

dt = −(A+G)T p(N) − (I − Γ)TQ
[
Ex(N) − (Γm(N) + η)

]
,

dy(N) =
{
−AT y(N) +Q[x(N) − (Γm(N) + η)]

}
dt+ 1

N

∑N
i=1 ζidWi,

where x(N)(0) = (1/N)
∑N

i=1 xi(0), m
(N)(0) = m0, p

(N)(T ) = HEx(N)(T ), and
y(N)(T ) = −Hx(N)(T ).

As an approximation to (37), we construct the following limiting system

(38)


ẋ = Ax+BR−1BTy +Gm+ γp,

ṁ = (A+G)m+Bū+ γp,

ṗ = −(A+G)Tp− (I − Γ)TQ[x− (Γm+ η)],

ẏ = −ATy +Q[x− (Γm+ η)],

where x(0) = m(0) = m0, p(T ) = Hx(T ), and y(T ) = −Hx(T ). This is a two point
boundary value problem.

Note that y is intended as an approximation of y(N) when N → ∞. The consis-
tency requirement imposes

(39) ū = R−1BTy.

Under the condition (39), the first two equations in (38) coincide to give x = m
for all t ∈ [0, T ]. Consequently, we eliminate the equation of x and introduce the new
system

(40)


ṁ = (A+G)m+BR−1BTy + γp,

ṗ = −(A+G)Tp− (I − Γ)TQ[m− (Γm+ η)],

ẏ = −ATy +Q[m− (Γm+ η)],
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where m(0) = m0, p(T ) = Hm(T ), and y(T ) = −Hm(T ). This is still a two point
boundary value problem. The next corollary follows from Theorem 3.13.

Corollary 4.1. Assume (H1)-(H2). Suppose that (40) has a unique solution
(m,p,y) ∈ C1([0, T ];R3n) and take ū = R−1BTy in (34). Then (34) has a unique
solution (xi,mi, pi, yi, ζi) ∈ S[0, T ].

4.1. The special case of same initial conditions. Consider the special case
where all agents have the same initial condition xi(0) = m0 for all i ≥ 1. The FBSDE
(34) defines a mapping

Λ(ū) = R−1BTEyi,

where ū ∈ C([0, T ];Rn1). Clearly R−1BTEyi is an Rn1 -valued continuous function of
t ∈ [0, T ].

By the consistency requirement ū = Λ(ū), we set ū = R−1BTEyi in the second
equation of (34) to obtain the equation system of the mean field game:

(41)


dxi = (Axi +BR−1BT yi +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +BR−1BTEyi + γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

dyi =
{
−AT yi +Q[xi − (Γmi + η)]

}
dt+ ζidWi,

where xi(0) = mi(0) = m0, pi(T ) = HExi(T ), and yi(T ) = −Hxi(T ).
Remark 1. For this special case, it can be shown that (41) has a unique solution

(xi,mi, pi, yi, ζi) ∈ S[0, T ] if and only if (40) has a unique solution; see the detailed
analysis in [28].

4.2. Existence of a solution to (40). To study the existence and uniqueness
of a solution to (40), we use a fixed point approach and introduce the equation system

(42)


ṁ = (A+G)m+ h+ γp,

ṗ = −(A+G)Tp− Q̂m+ (I − Γ)TQη,

ẏ = −ATy +Q[m− (Γm+ η)],

where h ∈ C([0, T ];Rn), m(0) = m0, p(T ) = Hm(T ), and y(T ) = −Hm(T ). The
next lemma identifies a sufficient condition for (42) to have a unique solution for any
h ∈ C([0, T ];Rn).

Lemma 4.2. Suppose that the Riccati equation

K̇ +K(A+G) + (A+G)TK − γK2 − Q̂ = 0, K(T ) = −H(43)

has a unique solution on [0, T ]. Then (42) defines a mapping from C([0, T ];Rn) to
itself:

Λ1 : h 7−→ BR−1BTy.

Proof. We write p = −Km+ ϕ for (42) and obtain the ODE

ϕ̇ = −(A+G− γK)ϕ+Kh+ (I − Γ)TQη, ϕ(T ) = 0.

It follows that

ṁ = (A+G− γK)m+ h+ γϕ.
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Let the fundamental solution matrices of the two ODEs

φ̇ = (A+G− γK)φ, ψ̇ = −(A+G− γK)Tψ

be Φ(t, s) and Ψ(t, s), respectively, with Φ(s, s) = Ψ(s, s) = I. Then Ψ(t, s) =
ΦT (s, t). We obtain

ϕ(t) = −
∫ T

t

Ψ(t, s1)[K(s1)h(s1) + (I − Γ)TQη]ds1.

This in turn gives

m(t) = Φ(t, 0)m0 +

∫ t

0

Φ(t, s1)h(s1)ds1

− γ

∫ t

0

Φ(t, s2)

∫ T

s2

Ψ(s2, s1)[K(s1)h(s1) + (I − Γ)TQη]ds1ds2.

We further solve

y(t) = −
∫ T

t

e−AT (t−s3)Q[(I − Γ)m(s3)− η]ds3 − e−AT (t−T )Hm(T ),

which implies y ∈ C([0, T ];Rn). The lemma follows. �
To simplify the existence analysis for (40) in this section, we consider the case

H = 0. Below Υk denotes a continuous function of t which does not depend on h and
can be easily determined. Consequently,

y(t) = −
∫ T

t

e−AT (t−s3)Q[(I − Γ)m(s3)− η]ds3

= −
∫ T

t

e−AT (t−s3)Q(I − Γ)m(s3)ds3 +Υ1(t)

= −
∫ T

t

e−AT (t−s2)Q(I − Γ)

∫ s2

0

Φ(s2, s1)h(s1)ds1ds2

+ γ

∫ T

t

e−AT (t−s3)Q(I − Γ)

∫ s3

0

Φ(s3, s2)

∫ T

s2

Ψ(s2, s1)K(s1)h(s1)ds1ds2ds3

+Υ2(t).

Now we have

Λ1(h)(t) = BR−1BTy(t)

= −BR−1BT

∫ T

t

e−AT (t−s2)Q(I − Γ)

∫ s2

0

Φ(s2, s1)h(s1)ds1ds2

+ γBR−1BT

∫ T

t

e−AT (t−s3)Q(I − Γ)

∫ s3

0

Φ(s3, s2)

·
∫ T

s2

Ψ(s2, s1)K(s1)h(s1)ds1ds2ds3 +BR−1BTΥ2(t)

=: Λ0(h)(t) +BR−1BTΥ2(t).

It is clear that Λ0 and subsequently Λ1 are from C([0, T ];Rn) to itself. �
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Define the constants

c1 = max
t∈[0,T ]

|K(t)|, c2 = max
0≤t,s≤T

|Φ(t, s)|,

c3 = max
t∈[0,T ]

∫ T

t

|eA(s−t)|sds, c4 = max
t∈[0,T ]

∫ T

t

|eA(s−t)|(Ts− s2

2
)ds.

Note that Ts− s2

2 ≥ 0 for s ∈ [0, T ]. Denote |h| = maxt∈[0,T ] |h(t)|.
Theorem 4.3. Assume H = 0. If

(44) c2|BR−1BT | · |Q(I − Γ)| (c3 + γc1c2c4) < 1,

then (40) has a unique solution.

Proof. For each t,

|Λ0(h)(t)| ≤ c2|h| · |BR−1BT | · |Q(I − Γ)|
∫ T

t

|eA
T (s2−t)|s2ds2

+ γc1c
2
2|h| · |BR−1BT | · |Q(I − Γ)|

∫ T

t

|eA
T (s3−t)|

∫ s3

0

∫ T

s2

ds1ds2ds3

= c2|h| · |BR−1BT | · |Q(I − Γ)|
∫ T

t

|eA(s2−t)|s2ds2

+ γc1c
2
2|h| · |BR−1BT | · |Q(I − Γ)|

∫ T

t

|eA(s3−t)|(Ts3 −
s23
2
)ds3

= c2|BR−1BT | · |Q(I − Γ)| (c3 + γc1c2c4) |h|.

Hence, Λ1 is a contraction and has a unique fixed point. So (40) has a unique solu-
tion. �

The constants c1, . . . , c4 in (44) do not depend on BR−1BT . If BR−1BT is
suitably small, (44) can be ensured.

Example 4.4. Consider the system with parameters given by Example 3.4. Take
T = 1.3. Similar to (12), we can solve K(t) on [0, T ] for (43). It can be shown that
K(t) ≤ 0 for t ∈ [0, T ] and |K(t)| attains its maximum on [0, T ] at t = 0. We have
K(0) = −0.171417 which gives c1 = 0.171417. So c2 ≤ e(A+G+|K(0)|)T = 3.312961.
Furthermore,

c3 ≤
∫ T

0

eAssds = 1.318243, c4 ≤
∫ T

0

eAs(Ts− s2

2
)ds = 1.112937.

Subsequently,

c2|BR−1BT | · |Q(I − Γ)| (c3 + γc1c2c4) ≤ 0.861493.

So (44) holds.

Remark 2. For the two-point boundary value problem, the contraction estimate
in the fixed point method may be conservative and typically works on small time
intervals for the solvability of (40) (see, e.g., Ch.1, Sec. 5, [44]).

We continue to derive another condition under which (40) is solvable without
restriction to a small time horizon. To this end, we first rewrite (40) in the following
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form:

(45)


 ṁ

ṗ
ẏ

 = Ã

 m
p
y

+ η̃,

m(0) = m0, p(T ) = Hm(T ), y(T ) = −Hm(T ),

where

Ã =

 A+G γ BR−1BT

−(I − Γ)TQ(I − Γ) −(A+G)T 0
Q(I − Γ) 0 −AT

 , η̃ =

 0
(I − Γ)TQη

−Qη

 .

Then, by the variation of constant formula, we have

(46)

 m(t)
p(t)
y(t)

 = Θ(t)

 m0

µ
ν

+Θ(t)

∫ t

0

Θ−1(s)η̃ds,

where Θ(t) = eÃt and p, y have the initial conditions p(0) = µ, y(0) = ν. Noting the
terminal condition in (45), now we present the following result.

Proposition 4.5. [44, Ch.2, Sec. 3] If for given T > 0, det(Θ̃(T )) ̸= 0, where

Θ̃(T ) =

(
−H I 0
H 0 I

)
Θ(T )

 0 0
I 0
0 I

 ,

then (40) has a unique solution on [0, T ] for any initial value m0.

For illustration, we give the following example.

Example 4.6. Consider system (3)-(4) with all parameters being scalar-valued
and Γ = 1, H = 0. We calculate

A =

(
A+G −γ

0 −(A+G)

)
, Ã =

 A+G γ R−1B2

0 −(A+G) 0
0 0 −A

 ,

where A is defined in Proposition 3.3. By direct computations, we obtain

det{[(0, I)eAt(0, I)T ]} = e−(A+G)t > 0

for all t ∈ [0, T ], which ensures (H1) by Proposition 3.3. Moreover, b3 = 0 gives

Cq = 0 in (27) so that (H2) always holds true for R > 0. Finally, det(Θ̃(t)) =
e−(2A+G)t > 0, and subsequently, (40) has a unique solution on any interval [0, T ]. To
summarize, (H1), (H2) and the solvability of (40) are all satisfied by the system.

Note that the solvability of (40) in Example 4.6 does not depend on the value of
R−1B2, which is different from the condition in Theorem 4.3.

5. Error Estimate of the Mean Field Approximation. We suppose that
(40) has a unique solution (m,p,y) and accordingly take ū in (34) as

ū∗ = R−1BTy.(47)
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The FBSDE system (34) now becomes

(48)


dxi = (Axi +BR−1BT yi +Gmi + γpi)dt+DdWi,

ṁi = (A+G)mi +Bū∗ + γpi,

ṗi = −(A+G)T pi − (I − Γ)TQ[Exi − (Γmi + η)],

dyi =
{
−AT yi +Q[xi − (Γmi + η)]

}
dt+ ζidWi,

where xi(0) is given, mi(0) = m0, pi(T ) = HExi(T ), and yi(T ) = −Hxi(T ). By
Corollary 4.1, this FBSDE has a unique solution. In the game of N players, let yi be
solved from (48) and denote the control for Ai by

ûi = R−1Byi, 1 ≤ i ≤ N,(49)

which is a well defined process in L2
F (0, T ;Rn1).

For û(N) = (1/N)
∑N

i=1 ûi, we aim to estimate

E|û(N)(t)− ū∗(t)|2.

Note that û1, . . . , ûN are independent, but they are not necessarily with the same dis-
tribution due to possibly different initial states of the agents. This fact will somehow
complicate our error estimate. The key result of this section is the following theorem.

Theorem 5.1. Assume that (H1)-(H2) hold and that (40) has a unique solution.
We have

sup
0≤t≤T

E|û(N) − ū∗|2 = O(1/N) +O(|x(N)(0)−m0|2),

where x(N)(0) = (1/N)
∑N

i=1 xi(0).

The proof of Theorem 5.1 is provided in the remaining part of this section. To do
this, we need to prove some lemmas under the assumptions of the theorem. Recalling
(36), we take ū = ū∗ in (37) to write

(50)


dx(N) =

(
Ax(N) +BR−1BT y(N) +Gm(N) + γp(N)

)
dt+ D

N

∑N
i=1 dWi,

dm(N)

dt = (A+G)m(N) +Bū∗ + γp(N),
dp(N)

dt = −(A+G)T p(N) − (I − Γ)TQ
[
Ex(N) − (Γm(N) + η)

]
,

dy(N) =
{
−AT y(N) +Q[x(N) − (Γm(N) + η)]

}
dt+ 1

N

∑N
i=1 ζidWi,

where x(N)(0) = (1/N)
∑N

i=1 xi(0), m
(N)(0) = m0, p

(N)(T ) = HEx(N)(T ), and
y(N)(T ) = −Hx(N)(T ).

Denote the ODE system

(51)


ẋN = AxN +BR−1BTyN +GmN + γpN ,

ṁN = (A+G)mN +Bū∗ + γpN ,

ṗN = −(A+G)TpN − (I − Γ)TQ[xN − (ΓmN + η)],

ẏN = −ATyN +Q[xN − (ΓmN + η)],

where xN (0) = (1/N)
∑N

i=1 xi(0), mN (0) = m0, pN (T ) = HxN (T ), and yN (T ) =
−HxN (T ). The initial condition xN (0) is different from that of (38).

Lemma 5.2. (51) has a unique solution which can be denoted as

(xN ,mN ,pN ,yN ) = (Ex(N),m(N), p(N),Ey(N)).
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Proof. Existence follows by taking expectation in (50). To show uniqueness, sup-
pose that (51) has two different solutions (xN ,mN ,pN ,yN ) and (x′

N ,m
′
N ,p

′
N ,y

′
N ).

Then for any λ ∈ R,

(xi,mi, pi, yi, ζi) + λ(xN − x′
N ,mN −m′

N ,pN − p′
N ,yN − y′

N , 0)

satisfies (34), which is a contradiction to Theorem 3.13. Uniqueness follows. �
Lemma 5.3. We have

sup
0≤t≤T

(
E|x(N) − Ex(N)|2 + E|y(N) − Ey(N)|2

)
= O(1/N).

Proof. Define
(θ1, θ2) = (x(N) − Ex(N), y(N) − Ey(N)).

By (50), (51) and Lemma 5.2,{
dθ1 = (Aθ1 +BR−1BT θ2)dt+

D
N

∑N
i=1 dWi,

dθ2 = (−AT θ2 +Qθ1)dt+
1
N

∑N
i=1 ζidWi,

where θ1(0) = 0 and θ2(T ) = −Hθ1(T ).
Let P be the solution of the Riccati equation

Ṗ +ATP + PA− PBR−1BTP +Q = 0, P (T ) = H.

Denote θ2 = −Pθ1 + ψ, where ψ(T ) = 0. This gives the equation

dψ = −(A−BR−1BTP )Tψdt+
1

N

N∑
i=1

(PD + ζi)dWi,

where ψ(T ) = 0. There is a unique solution ψ = 0 for t ∈ [0, T ]. This implies

dθ1 = (A−BR−1BTP )θ1dt+
D

N

N∑
i=1

dWi.

Hence, sup0≤t≤T E|θ1(t)|2 = O(1/N). The lemma follows since θ2 = −Pθ1. �
When (m,p,y) is a unique solution of (40), it can be shown that (x,m,y,p) :=

(m,m,y,p) is a unique solution of (38) under the condition (39).

Lemma 5.4. We have

sup
0≤t≤T

[|xN − x|+ |mN −m|+ |pN − p|+ |yN − y|] = O(|x(N)(0)−m0|).

Proof. Consider

(52)


ḣ1 = Ah1 +BR−1BTh4 +Gh2 + γh3,

ḣ2 = (A+G)h2 + γh3,

ḣ3 = −(A+G)Th3 − (I − Γ)TQ(h1 − Γh2),

ḣ4 = −ATh4 +Q(h1 − Γh2),

where h1(0) is given, h2(0) = 0, h3(T ) = Hh1(T ), and h4(T ) = −Hh1(T ). It is
constructed as a homogeneous version of (51). We claim that (52) has a unique
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solution for any given value of h1(0). If this were not true, there would exist h1(0)
such that (52) has multiple solutions which, in turn, can be used to construct multiple
solutions to (51). This would give a contradiction to Lemma 5.2.

It is clear that

(xN − x,mN −m,pN − p,yN − y) =: (h1, h2, h3, h4),

is a solution of (52) with h1(0) = xN (0)−m0.
Let e1, . . . en be a canonical basis of Rn. For h1(0) = ek, we obtain a solution of

(52), denoted by hk = (hk1 , h
k
2 , h

k
3 , h

k
4). Let (z)k be the kth component of a vector z.

We may uniquely denote (xN − x,mN −m,pN − p,yN − y) as a linear combination
of h1, . . . , hn:

(xN − x,mN −m,pN − p,yN − y) =

n∑
k=1

(xN (0)−m0)k(h
k
1 , h

k
2 , h

k
3 , h

k
4).

The lemma follows readily. �
Proof of Theorem 5.1. For ū = ū∗, we write û(N) = R−1BT (1/N)

∑N
i=1 yi =

R−1BT y(N). We have

|û(N) − ū∗|2 = E|R−1BT (y(N) − y)|2

≤ CE|y(N) − y|2

= CE|y(N) − Ey(N) + Ey(N) − y|2

≤ C(1/N) + C|yN − y|2

= O(1/N) +O(|x(N)(0)−m0|2).

The second inequality follows from Lemmas 5.2 and 5.3, and the last step follows from
Lemma 5.4. �

6. Robust Nash Equilibrium. Throughout this section, we assume that (40)
has a unique solution and take ū = ū∗ determined by (47). For f ∈ L2(0, T ;Rn) and
ui ∈ L2

F (0, T ;Rn1), 1 ≤ i ≤ N , recall the worst case cost

Jwo
i (ui, u−i) = sup

f∈L2(0,T ;Rn)

Ji(ui, u−i, f).

It is clear that for each i and any (ui, u−i), supf Ji(ui, u−i, f) ≥ 0.
Consider the set of strategies (ûi, û−i) given by (49) for a population of N players

with dynamics (3). It should be emphasized that we only use (48)-(49) to make a
well defined process ûi in L

2
F (0, T ;Rn1) which should not be understood as a feedback

strategy. The main result of this section is the next theorem which characterizes the
performance of this set of strategies.

Theorem 6.1. Assume (i) (H1)-(H2) hold; (ii) supi≥0 |xi(0)| ≤ M0 where M0

does not depend on N ; (iii) (40) has a unique solution. Then the set of strategies
(û1, . . . , ûN ) given by (49) is a robust εN -Nash equilibrium for the N players, i.e.,

Jwo
i (ûi, û−i)− εN ≤ inf

ui∈U
Jwo
i (ui, û−i) ≤ Jwo

i (ûi, û−i),(53)

where 0 ≤ εN = O(1/
√
N + |x(N)(0)−m0|) and x(N)(0) = (1/N)

∑N
j=1 xj(0).
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The rest part of this section is devoted to the proof of Theorem 6.1. For any
given f ∈ L2(0, T ;Rn), denote the state processes of (3) corresponding to (ûi, û−i, f)

by x̂j , 1 ≤ j ≤ N , and x̂(N) = (1/N)
∑N

j=1 x̂j . Denote

(54) ˙̄m = (A+G)m̄+Bū∗ + f, m̄(0) = m0

All subsequent lemmas are proved under the assumptions of Theorem 6.1.

Lemma 6.2. We have

sup
0≤t≤T,f

E|x̂(N) − m̄|2 ≤ C(1/N + |x(N)(0)−m0|2).

Proof. Note that

dx̂(N) = [(A+G)x̂(N) +Bû(N) + f ]dt+ (D/N)

N∑
i=1

dWi.

Therefore,

d(x̂(N) − m̄) = [(A+G)(x̂(N) − m̄) +B(û(N) − ū∗)]dt+ (D/N)

N∑
i=1

dWi.

By linear SDE estimates,

E|x̂(N)(t)− m̄(t)|2 ≤ C|x(N)(0)−m0|2 + C/N

+ CE
∫ t

0

|û(N)(τ)− ū∗(τ)|2dτ.

By Theorem 5.1, the lemma follows. �
Lemma 6.3. There exists a constant Ĉ0 independent of N such that

max
1≤i≤N

sup
f
Ji(ûi, û−i, f) ≤ Ĉ0.

Proof. Denote

dx′i = (Ax′i +Bûi +Gm̄+ f)dt+DdWi,(55)

where x′i(0) = xi(0). By Lemma 6.2, it is easy to show

sup
0≤t≤T,f

E|x̂i(t)− x′i(t)|2 ≤ C(1/N + |x(N)(0)−m0|2).

We have

Ji(ûi, û−i, f) = J̄i(ûi, f) + E
∫ T

0

|(x̂i − x′i) + Γ(m̄− x̂(N))|2Qdt+ E|x̂i(T )− x′i(T )|2H

+ 2E
∫ T

0

[x′i − (Γm̄+ η)]TQ[(x̂i − x′i) + Γ(m̄− x̂(N))]dt

+ 2E[x′Ti (T )H(x̂i(T )− x′i(T ))].(56)
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Combining Lemma 3.6 with condition (ii) in Theorem 6.1, we obtain

J̄i(ûi, f) ≤ C − (ϵ0/2)∥f∥2L2(57)

for ϵ0 > 0, where C does not depend on (i,N). Since neither x̂i − x′i nor m̄ − x̂(N)

depend on f , there exists a constant C1 such that∣∣∣∣∣E
∫ T

0

[x′i − (Γm̄+ η)]TQ[(x̂i − x′i) + Γ(m̄− x̂(N))]dt

∣∣∣∣∣
≤ C1

(
E
∫ T

0

|x′i − (Γm̄+ η)|2Qdt

)1/2

≤ C2(1 + ∥f∥2L2)1/2

≤ C3 + (ϵ0/16)∥f∥2L2 ,(58)

where the second inequality follows from elementary estimates based on the solutions
of (54) and (55). Similarly,

E[x′Ti (T )H(x̂i(T )− x′i(T ))] ≤ C4 + (ϵ0/16)∥f∥2L2 .(59)

Finally combining (56)-(59) with Lemma 6.2 leads to

Ji(ûi, û−i, f) ≤ C − (ϵ0/4)∥f∥2L2 .

The lemma follows. �
Consider the set of strategies (ui, û−i) and the corresponding state processes

dxi = (Axi +Bui +Gx(N) + f)dt+DdWi,(60)

dxj = (Axj +Bûj +Gx(N) + f)dt+DdWj , 1 ≤ j ≤ N, j ̸= i.(61)

Lemma 6.4. If ui in (60) satisfies supf Ji(ui, û−i, f) ≤ Ĉ0, there exists Ĉ1 inde-
pendent of N such that

E
∫ T

0

|ui(t)|2dt ≤ Ĉ1.(62)

Proof. Suppose supf Ji(ui, û−i, f) ≤ Ĉ0. Then for any f ,

E
∫ T

0

(
|xi − (Γx(N) + η)|2Q + uTi Rui −

1

γ
|f(t)|2

)
dt+ E[xTi (T )Hxi(T )] ≤ Ĉ0,

where (x1, · · · , xN ) is generated by (ui, û−i) and f . Taking f = 0, we obtain

E
∫ T

0

(
|xi − (Γx(N) + η)|2Q + uTi Rui

)
dt ≤ Ĉ0.

Therefore, (62) holds. �
Let UĈ1

denote the set of processes ui ∈ L2
F (0, T ;Rn1) which satisfy (62). For

(60)-(61), denote x(N) = (1/N)
∑N

j=1 xj .
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Lemma 6.5. Suppose ui ∈ UĈ1
in (60). Then

sup
0≤t≤T,f,ui∈UĈ1

E|x(N)(t)− m̄(t)|2 = O(1/N + |x(N)(0)−m0|2).

Proof. Rewrite (60) in the form

dxi = [Axi +Bûi +Gx(N) + f ]dt+B(ui − ûi)dt+DdWi.(63)

By (61) and (63),

dx(N) = [(A+G)x(N) +Bû(N) + f ]dt+
B

N
(ui − ûi)dt+

D

N

N∑
j=1

dWj ,

which combined with (54) gives

d(x(N) − m̄) = [(A+G)(x(N) − m̄) +B(û(N) − ū∗)]dt

+
B

N
(ui − ûi)dt+

D

N

N∑
j=1

dWj .

By Theorem 5.1 and the fact E
∫ T

0
|ui−ûi|2dt ≤ C for all ui ∈ UĈ1

, where the constant
C does not depend on (f, ui), elementary SDE estimates lead to

sup
0≤t≤T,f

E|x(N)(t)− m̄(t)|2 ≤ C(1/N + |x(N)(0)−m0|2),

where C does not depend on ui. The lemma follows. �
Lemma 6.6. For each ui ∈ UĈ1

, supf Ji(ui, û−i, f) is finite and attained by some
f depending on ui and so denoted as fui . Moreover,

sup
ui∈UĈ1

| sup
f
Ji(ui, û−i, f)− J̄i(ui, f̂ui

)| = O(1/
√
N + |x(N)(0)−m(0)|),

where f̂ui is determined by Theorem 3.7 for the given ui.

Proof. Note that we have

dxi = [Axi +Bui +Gm̄+G(x(N) − m̄) + f ]dt+DdWi,(64)

˙̄m = (A+G)m̄+Bū∗ + f,

where m̄(0) = m0. Define the auxiliary process

dx†i = (Ax†i +Bui +Gm̄+ f)dt+DdWi,

where x†i (0) = xi(0) and (ui, f,Wi) is the same as in (64). By Lemma 6.5, it is easy
to show

sup
0≤t≤T,f

E|xi(t)− x†i (t)|
2 = O(1/N + |x(N)(0)−m(0)|2).(65)

We have the relation

|xi − (Γx(N) + η)|2Q = |x†i − (Γm̄+ η)|2Q + |(xi − x†i ) + Γ(m̄− x(N))|2Q
+ 2[x†i − (Γm̄+ η)]TQ[(xi − x†i ) + Γ(m̄− x(N))].
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The cost can be rewritten as

Ji(ui, û−i, f) = J̄i(ui, f) + E
∫ T

0

|(xi − x†i ) + Γ(m̄− x(N))|2Qdt

+ E
[
|xi(T )− x†i (T )|

2
H

]
+ 2E

∫ T

0

[
x†i − (Γm̄+ η)

]T
Q
[
(xi − x†i ) + Γ(m̄− x(N))

]
dt

+ 2E
[
(x†i (T ))

TH(xi(T )− x†i (T ))
]

(66)

≤ J̄i(ui, f) + C
(
1/N + |x(N)(0)−m0|2

)
+ 2E

∫ T

0

[
x†i − (Γm̄+ η)

]T
Q
[
(xi − x†i ) + Γ(m̄− x(N))

]
dt

+ 2E
[
(x†i (T ))

TH(xi(T )− x†i (T ))
]
,(67)

where the inequality follows from Lemma 6.5 and (65). Note that neither xi − x†i
nor m̄− x(N) in (66) depend on f . The terms x†i and x†i − (Γm̄+ η) are affine in f ,
and −J̄i(ui, f) is convex in f by Lemma 3.6. Consequently, it follows from (66) that
−Ji(ui, û−i, f) is convex in f . For ui ∈ UĈ1

, in analogue to (57), we obtain

J̄i(ui, f) ≤ C − (ϵ0/2)∥f∥2L2 ,(68)

where C doest not depend on ui. We have∣∣∣∣∣E
∫ T

0

[
x†i − (Γm̄+ η)

]T
Q
[
(xi − x†i ) + Γ(m̄− x(N))

]
dt

∣∣∣∣∣
≤

{
E
∫ T

0

|x†i − (Γm̄+ η)|2Qdt

}1/2

·

{
E
∫ T

0

|(xi − x†i ) + Γ(m̄− x(N))|2Qdt

}1/2

≤ C
(
1/
√
N + |x(N)(0)−m0|

)
(1 + ∥f∥2L2)1/2

≤ C + (ϵ0/16)∥f∥2L2 .

Similarly, ∣∣∣E [(x†i (T ))TH(xi(T )− x†i (T ))
]∣∣∣ ≤ C + (ϵ0/16)∥f∥2L2 .

Hence, (67) gives

Ji(ui, û−i, f) ≤ C − (ϵ0/4)∥f∥2L2 ,(69)

where C does not depend on (N,ui). So for given ui ∈ UĈ1
, Ji(ui, û−i, f) attains a

finite supremum at some fui since it is a continuous functional of f and satisfies (69)
[37, Theorem 7.3.7], and by (69) we may further find a constant Ĉ2 such that

sup
ui∈UĈ1

∥fui∥L2 ≤ Ĉ2.(70)
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By (67),

Ji(ui, û−i, f) ≤ J̄i(ui, f) + C(1/N + |x(N)(0)−m0|2)

+ C
(
1/N + |x(N)(0)−m0|2

)1/2(
E
∫ T

0

|x†i − (Γm̄+ η)|2Qdt

)1/2

+ C
(
1/N + |x(N)(0)−m0|2

)1/2 (
E|x†i (T )|

2
)1/2

.(71)

Now for ui ∈ UĈ1
and the resulting fui satisfying (70), we further obtain

E|x†i (T )|
2 + E

∫ T

0

|x†i − (Γm̄+ η)|2Qdt ≤ C.

For ui ∈ UĈ1
, (71) gives

sup
f
Ji(ui, û−i, f) ≤ J̄i(ui, fui) + C(1/

√
N + |x(N)(0)−m0|)

≤ J̄i(ui, f̂ui) + C(1/
√
N + |x(N)(0)−m0|),

where f̂ui is determined by Theorem 3.7. Due to (68),

sup
ui∈UĈ1

∥f̂ui∥L2 ≤ C(72)

for some constant C. By (72) and the method in (66), we similarly derive

Ji(ui, û−i, f̂ui) ≥ J̄i(ui, f̂ui)− C(1/
√
N + |x(N)(0)−m0|).

Hence, for all ui ∈ UĈ1
,

sup
f
Ji(ui, û−i, f) ≥ J̄i(ui, f̂ui)− C(1/

√
N + |x(N)(0)−m0|).

The constant C in various places does not depend on ui. The lemma follows. �
Proof of Theorem 6.1. It suffices to show the first inequality by checking

ui ∈ UĈ1
. By Lemma 6.6, we have

sup
f
Ji(ui, û−i, f) ≥ J̄i(ui, f̂ui)− C1(1/

√
N + |x(N)(0)−m0|)

≥ J̄i(ûi, f̂ûi
)− C1(1/

√
N + |x(N)(0)−m0|).(73)

On the other hand, by taking the particular control ûi in Lemma 6.6,

sup
f
Ji(ûi, û−i, f) ≤ J̄i(ûi, f̂ûi

) + C2(1/
√
N + |x(N)(0)−m0|).(74)

Subsequently, (73) and (74) imply

sup
f
Ji(ui, û−i, f) ≥ sup

f
Ji(ûi, û−i, f)− (C1 + C2)(1/

√
N + |x(N)(0)−m0|).

This completes the proof. �
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7. Conclusion. This paper introduces a class of mean field LQG games with
drift uncertainty. By using the idea of robust optimization, the individual agent’s
strategy is designed by minimizing the worst case cost. When the resulting decen-
tralized strategies are implemented in a finite population, their performance is char-
acterized as a robust ε-Nash equilibrium.

In this paper we only deal with drift uncertainty. If the Brownian motions are
also subject to an uncertain coefficient process to model volatility uncertainty [19, 42],
the resulting optimal control problems will give a set of more complicated FBSDE.
It is also of potential interest to address model uncertainty of the mean field game
in a different setup by considering measure uncertainty [17, 40, 53] in the robust
optimization problem. This will necessitate the use of different techniques for analysis.
DE.

Appendix A. For proving Lemma 3.9, we give another lemma first. Consider
an auxiliary optimal control problem with dynamics żi = Azi +Bvi +Gz + γq,

ż = (A+G)z + γq,
q̇ = −(A+G)T q − (I − Γ)TQ(Ezi − Γz),

(A.1)

where zi(0) = z(0) = 0, q(T ) = HEzi(T ) and vi ∈ L2
F (0, T ;Rn1). Following the

argument in the proof of Lemma 3.8, under (H1) we can show the existence and
uniqueness of a solution to (A.1). The optimal control problem is

(P2b) minimize J̄b
i (vi) = E

∫ T

0

{
|zi − Γz|2Q + vTi Rvi − γ|q(t)|2

}
dt+ E|zi(T )|2H .

Similarly, we may define positive definiteness of J̄b
i as in Section 3.

Lemma A.1. J̄a
i is positive semi-definite (resp., positive definite) if and only if

J̄b
i is positive semi-definite (resp., positive definite).

Proof. If suffices to show the “only if” part.
Suppose that J̄a

i is positive semi-definite. Consider any control vi ∈ L2
F (0, T ;Rn1)

for J̄b
i , and this gives a unique solution (zi, z, q). We take expectation in (A.1) to

obtain 
˙̄zi = Az̄i +Bv̄i +Gz + γq,

ż = (A+G)z + γq,

q̇ = −(A+G)T q − (I − Γ)TQ(z̄i − Γz),

where z̄i = Ezi and v̄i = Evi.
It follows that

J̄b
i (vi) = J̄a

i (v̄i) + E
∫ T

0

[
|zi − Ezi|2Q + |vi − Evi|2R

]
dt+ E|zi(T )− Ezi(T )|2H

≥ J̄a
i (v̄i) ≥ 0.

On the other hand, J̄a
i (0) = 0. This shows that J̄b

i is positive semi-definite. The
above reasoning is also valid for the positive definite case. This proves the “only if”
part. �
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Proof of Lemma 3.9. Let (xi,mi, pi) and (x′i,m
′
i, p

′
i) be two state processes in

(P2) corresponding to the controls ui and u′i, respectively. Assume λ1 ∈ [0, 1] and
λ1 + λ2 = 1. We have

λ1J̄i(ui) + λ2J̄i(u
′
i)− J̄i(λ1ui + λ2u

′
i)

= λ1λ2E
∫ T

0

{
|xi − x′i − Γ(mi −m′

i)|2Q + |ui − u′i|2R − γ|pi(t)− p′i(t)|2
}
dt

+ λ1λ2E|xi(T )− x′i(T )|2H .

Denote zi = xi − x′i, z = mi −m′
i, q = pi − p′i and vi = ui − u′i. It is obvious

λ1J̄i(ui) + λ2J̄i(u
′
i)− J̄i(λ1ui + λ2u

′
i) = λ1λ2J̄

b
i (vi).

Recalling Lemma A.1, this completes the proof. �
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[38] J.-M. Lasry and P.-L. Lions, Mean field games, Japan. J. Math., 2 (2007), pp. 229–260.
[39] T. Li and J.-F. Zhang, Asymptotically optimal decentralized control for large population

stochastic multiagent systems, IEEE Trans. Automat. Control, 53 (2008), pp. 1643–1660.
[40] A. Lim and J. Shanthikumar, Relative entropy, exponential utility, and robust dynamic pric-

ing, Operations Research, 55 (2007), pp. 198–214.
[41] A. Lim and X. Y. Zhou, Stochastic optimal LQR control with integral quadratic constraints

and indefinite control weights, IEEE Trans. Automat. Control, 44 (1999), pp. 1359–1369.
[42] D. P. Looze, H. V. Poor, K. S. Vastola, and J. C. Darragh, Minimax control of lin-

ear stochastic systems with noise uncertainty, IEEE Trans. Automat. Control, 28 (1983),
pp. 882–888.

[43] D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.
[44] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applica-

tions, Lecture Notes in Math. 1702, Springer-Verlag, New York, 1999.
[45] S. L. Nguyen and M. Huang, Linear-quadratic-Gaussian mixed games with continuum-

parametrized minor players, SIAM J. Control Optim., 50 (2012), pp. 2907–2937.
[46] M. Nourian and P. E. Caines, ϵ-Nash mean field game theory for nonlinear stochastic dynam-

ical systems with major and minor agents, SIAM J. Control Optim., 51 (2013), pp. 3302–
3331.
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