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Social Optima in Mean Field LQG Control:
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Abstract—We study a class of linear-quadratic-Gaussian (LQG)
control problems with decision makers, where the basic objec-
tive is to minimize a social cost as the sum of individual costs con-
taining mean field coupling. The exact socially optimal solution (de-
termining a particular Pareto optimum) requires centralized infor-
mation for each agent and has high implementational complexity.
As an alternative we subsequently exploit a mean field structure in
the centralized optimal control problem to develop decentralized
cooperative optimization so that each agent only uses its own state
and a function which may be computed offline; the resulting set of
strategies asymptotically achieves the social optimum as .
A key feature in this scheme is to let each agent optimize a new cost
as the sum of its own cost and another component capturing its so-
cial impact on all other agents. We also discuss the relationship
between the decentralized cooperative solution and the so-called
Nash Certainty Equivalence based solution presented in previous
work on mean field LQG games.

Index Terms—Decentralized control, linear-quadratic-Gaussian
(LQG) control, mean field models, Nash equilibria, Pareto optima,
social optima.

I. INTRODUCTION

I N decision problems with a large number of agents, mean
field models have attracted extensive attention due to their

significance in many domains [3], [5], [8], [9], [12], [19], [20],
[23], [29], [30]. A distinctive feature of such models is the in-
teraction between any given agent and the average effect of the
overall population. In the search for decentralized optimization
paradigms, game theoretic solutions have been successfully de-
veloped by different researchers [12], [13], [21]–[23], [25], [30],
[31]; along this line, decentralized solutions may be obtained
by identifying a consistency relationship between the individual
and the mass behavior such that in the population limit each in-
dividual optimally responds to the mass effect and these indi-
vidual strategies also collectively replicate the mass effect ini-
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tially presumed [11]–[15]. This work rests upon the fact that
under reasonable conditions one may show the existence of a
mass effect satisfying such a fixed point property and prove
that the resulting set of decentralized individual strategies is an
asymptotic Nash equilibrium. This solution property has been
designated as the Nash Certainty Equivalence (NCE) principle
[13], [16]. Closely related mean field approximation approaches
were developed in [30], [31] using the notion of oblivious equi-
libria (OE) for game models on industry dynamics, and OE with
unbounded costs were analyzed in [1]. The works [21]–[23]
adopted a similar consistency based approach for mean field
games, but for each finite population size a simplifying assump-
tion was used stipulating that each agent’s strategy depends
only on its own driving Brownian motion. In [25], the inter-
action consistency based approach was applied to LQG games
with long run average costs. A significant application and de-
velopment of the NCE principle appears in [34] where a game
theoretic framework was proposed for the control of a large
number of coupled nonlinear oscillators; the mean field approx-
imation approach gives decentralized strategies, and phase tran-
sition phenomena are observed in the closed-loop system.

When developing the above game theoretic solution frame-
work, the starting point is that these agents are individually
incentive driven and noncooperative. In this paper, within the
mean field modeling we study a different situation where the
agents are cooperative and seek socially optimal decisions. The
notion of social optima provides an appropriate solution concept
in decision problems with multiple agents who are willing to
cooperate, and Pareto optimality is a useful necessary condition
of social optimality [2], [26]. In various network optimization
problems involving an aggregate cost as the sum of individual
costs, social optima have been widely studied, either for their in-
trinsic interest or as a benchmark against which to measure the
efficiency loss of Nash equilibria (see, e.g., [17], [18], [27]), but
in general only static models have been considered. The goal
of this paper is to study how the agents in a mean field LQG
model should choose their strategies for optimizing a social ob-
jective. We consider both 1) centralized strategies where each
agent may use the state information of all agents and 2) decen-
tralized strategies where each agent only uses local information.
To find the solution with centralized strategies, one may solve
a standard LQG control problem and each agent is required to
know the states of all the agents. By contrast, the solution with
decentralized strategies, if computable, has much lower infor-
mational requirements. For this reason, our analysis focusses on
decentralized strategies. A related numerical comparison of the
optimized costs between the socially optimal solution and the
NCE based game theoretic solution was provided in [24], where
each agent assigns nonuniform cost coupling weights across the
population. For stochastic differential games, cooperation issues
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were addressed in [33] by extending concepts such as coalition
and Shapley value to dynamic models.

It is worth briefly comparing the current work with classical
team decision problems, where all the agents share a common
cost but have different information regarding the system state
and other agents’ strategies, which is specified by the so-called
information structure [6], [10]. Our social optimization problem
with decentralized information may be viewed as a mean field
generalization of team problems where each agent has a priori
information but no real time information on other agents. The
local forecast of the mean field effect is now a part of the control
problem. This leads to the development of the Social Certainty
Equivalence (SCE) methodology, whereby the fundamental idea
is to first quantify the social cost change due to the control pertur-
bation ofa given agent and next apply mean field approximations.

We mention that a mean field Markov team decision problem
with discrete state and action spaces was studied in [29]. The
authors focus on long run behaviors by considering stationary
policies. Since a discounted cost and general initial conditions
are used, the restriction to stationary policies may result in op-
timality losses with respect to general policies. By the compact
parametrization of stationary policies, the problem in [29] is
viewed as an abstract static optimization problem on a compact
space. This approach does not give an explicit characterization
of the minimizing policy. Our paper differs from the above work
since it takes into account the impact of the initial states and
the resulting transient behavior. Our approach is to take consis-
tent mean field approximations to decompose the original so-
cial optimization problem into (equivalent) local optimal con-
trol problems.

The organization of the paper is as follows. The socially op-
timal control problem is formulated in Section II. The central-
ized solution is analyzed in Section III. Section IV develops
the SCE methodology for obtaining decentralized strategies and
proves the asymptotic optimality theorem. Section V provides
an in-depth analysis of the scalar case, where a comparison with
the NCE based solution is also presented. Section VI presents
the explicit calculation of the asymptotic average social op-
timum. Section VII compares the costs of different solutions,
and Section VIII concludes the paper. Finally, in this Introduc-
tion we set a convention about notation. Throughout the paper
we use to denote a generic constant not depending on ,
the population size and agent index, and its value may change
from place to place. For a positive semi-definite matrix , the
quadratic form is sometimes written as to make the
expression more compact.

II. SOCIALLY OPTIMAL CONTROL PROBLEM

A. Dynamics and Costs

Consider a system of agents. The dynamics of agent are
given by the stochastic differential equation (SDE)

(1)

The underlaying filtered probability space is
, where is a collection of

non-decreasing -algebras. The state and control are,
respectively, and dimensional vectors. The initial states

, are independent and .
The noise processes are -dimensional
independent standard Brownian motions adapted to , which
are also independent of . The constant
matrices , and have compatible dimensions. Here,
is a dynamic parameter to model a population of nonuniform
agents. For notational brevity the time argument of a process
( , , etc.) is often suppressed when its value at time is
used. Denote and

The individual cost for agent , , is given by

(2)

where and is
called the mean field term. The constant matrices or vector ,

, and have compatible dimensions. We only take
to be dependent on so that in the subsequent analysis we

may keep the notation relatively light. When other constant ma-
trices and vectors in (1)–(2) also depend on , the methodology
of this paper may be easily applied. We use (or ) to denote
the individual control processes, and also call it the control
of the overall system. By a slight abuse of notation sometimes
we write . The social cost is defined as

The objective is for the agents to minimize . To achieve
this, from the point of view of an individual’s control selection,
it is necessary to maintain a delicate balance in reducing its own
cost and also taking into account the social impact of such re-
ductions (i.e., affecting the sum of the costs of all other agents).

For the large population system, a natural way of modeling
the sequence of dynamic parameters is to view it as
being sampled from an underlying parameter space such that
when , the sequence exhibits certain statistical proper-
ties; this is made precise by assumption (A1) below. However,
we stipulate that is treated as a deterministic se-
quence. We assume that all ’s are in a compact set .
Define the empirical distribution function

(3)

where and means that the inequality holds
componentwise for the two vectors. We use the convention:

if holds, and otherwise. We make
the assumptions.

(A1) There exists a distribution function on
such that converges to weakly, i.e., for

any bounded and continuous function on ,

(A2) The initial states are inde-
pendent, for a fixed and all ,
and there exists independent of such that

.
(A3) is a continuous matrix function of , where

is a compact subset of .
(A4) For , i) the pair is stabiliz-
able and ii) the pair is detectable.
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The reader is referred to [13] for discussions on “random-
ized” generation of dynamic parameters from an underlying dis-
tribution so that the resulting empirical distributions converge
weakly. In the special case where for some fi-
nite integer , the empirical distribution of reduces
to a probability mass function on , denoted as , and (A1)
reduces to the convergence of to a limit . In addition,
(A3) is trivially true under the discrete topology of where an
open set is the union of singletons or is the null set. Thus (A3)
becomes redundant.

For simplicity, in (A2) it is assumed that all agents have the
same initial mean . It is possible to generalize our analysis to
different initial means as long as has a limiting
empirical distribution (see related discussions in [13]).

B. Two Solutions Based on Different Information Patterns

We will study two problems for optimizing according
to different information patterns.

1) Problem I-A: Find a social solution with
centralized information (SSCI), where each is in a feedback
form as a function of for attaining the minimum
of .

2) Problem I-B: Find a social solution with
decentralized information (SSDI), where each is a function of

. Note that when restricted to decentralized information,
one cannot in general attain the same cost as in Problem I-A.
Instead, a set of decentralized strategies is
sought such that the optimality loss with respect to Problem I-A
in minimizing tends to zero when .

For comparison with our previous work, the following
problem will be reviewed.

3) Problem II: Find a competitive solution
with decentralized information (CSDI), where agent is asso-
ciated with cost and the objective is to obtain a set of -Nash
strategies such that each is a function of .

For a detailed account of this competitive solution frame-
work, the reader is referred to [13].

To facilitate further analysis, denote
for ,

which is the -algebra generated by and the
Brownian motions up to time . Denote the control set

is adapted to , where
explicitly indicates the dependence of on the sample.

Each is called an -adapted control
and may be viewed as a functional of and the Brownian
motions without being directly related to the state process .
Let is adapted to . In the subsequent
exposition, the distinction between -adapted controls and
feedback strategies should be clear from the context.

Given , a very important observation for
Problem I-A is that any feedback control law

, if continuous in and Lipschitz
continuous in (thus ensuring a unique strong solution to the
closed-loop system), naturally induces a process on ,
denoted as which belongs to . This is due to the
fact that we may express the closed-loop solution in
terms of and the Brownian motions. Note that under the
stabilizability and detectability conditions, the optimal control
law is a linear feedback control law, indeed satisfying the above
continuity assumptions; see [4], [11], [32] for details.

III. CENTRALIZED SOLUTION

For Problem I-A, we first consider a scalar model with uni-
form agents (i.e., agents having the same dynamic parameter),
and develop the asymptotic analysis of the optimal cost and
closed-loop dynamics, which will be used later to compare with
the SCE approach. Problem I-A of the general case, in principle,
may be treated as a standard LQG control problem and the op-
timal control law may be determined from a high
dimensional algebraic Riccati equation (ARE) if the standard
stabilizability and detectability conditions are satisfied [32]. The
calculation of the optimal control law is difficult due to dimen-
sionality when is very large. Section III-B provides an op-
timality interpretation of a fixed component in ,
which will motivate the mean field approximation scheme. This
optimality interpretation is similar to the person-by-person op-
timality characterization of team decision problems [10].

A. Explicit Solutions: Uniform Agents With Scalar States

For uniform agents with scalar individual states, in (1)
is denoted by the same number . Without loss of generality, we
set in (2). We write and . To avoid triviality,
suppose . We introduce the parametrization

(4)

So and are scaled by the same parameter . If we apply
(4) to the model (1)–(2), a larger means stronger interaction
between and . Now .
Denote consisting of ones. By rearranging
the integrand of , we write

(5)
where and is given by

(6)

and , . The eigenvalues
of are given by

A similar LQG control problem was briefly analyzed in
[13], where the coupling term in agent ’s cost is

instead of and

where the social cost is . A subtle difference
exists between the two formulations. Given any , the pair

in [13] is always observable for all suffi-
ciently large , where appears in the quadratic term
in . When is used and , is always an
unobservable subspace for the system so that the state vector’s
projection within is not penalized by the cost. To
minimize (5), we set a deterministic initial condition
and write the optimal cost in the form

(7)

Invoking the standard results of LQG control [4], [11], [28], we
have

(8)



HUANG et al.: SOCIAL OPTIMA IN MEAN FIELD LQG CONTROL: CENTRALIZED AND DECENTRALIZED STRATEGIES 1739

(9)

(10)

which results in of the form

if
if .

(11)

We consider two cases. Let be the identity matrix.
1) Case 1: so that . Then clearly and the

pair is observable, so that (8) has a unique
solution .

2) Case 2: so that . Then
is not fully observable. By using an orthogonal transformation

such that , from (8) we obtain

We require the entry of at the first row and the first
column to be zero, corresponding to the unobservable state
in the new coordinate system. Then we may find a unique

of rank , and subsequently find a solution
to (8).

For simplicity, below we analyze Case 1 in detail. Substi-
tuting (11) into (8) and denoting , , we
obtain the following equations:

(12)

(13)

Under the condition , solving (12)-(13) yields

(14)

(15)

Furthermore, we obtain

(16)

We summarize the above results as follows.
Proposition 3.1: If , then the pair

is controllable, the pair is observable, and
(8) has a unique solution given by (11) and (14)-(15).

Let be the optimal control law. Then

(17)

Define . We state two propositions
which are proven in Appendix B.

Proposition 3.2: Assume and (A2) holds with
, for all . Then

(18)

and the asymptotic average social optimum (per agent) is

(19)

We continue to examine the limiting dynamics of the closed-
loop system when . By (17), agent has the closed-loop
dynamics

(20)Let us denote the ordinary differential equation (ODE)

where . It is easy to solve in terms of and
. Set

Proposition 3.3: Denote in (20).
Assume and let satisfy

(21)

where . Let be fixed such that
. Then

(22)

For the control law (17), let be approximated
by using . Next as . This gives the
approximation of by the decentralized control law

These steps show that we may construct decentralized strate-
gies by using the limiting behavior of the centralized optimal
control law. However, when a large population of nonuniform
agents is considered, this procedure faces substantial mathemat-
ical difficulties.

B. Centralized Optimal Control: Person-by-Person Optimality

We consider controls from . The benefit is that one can fix
the controls of other agents while perturbing the control of a
selected agent. Let be minimized by ,
which is interpreted as a control from . Let correspond
to . Denote and
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. Given , define
, and is defined similarly.

Lemma 3.4: Assume (A4) and let be given. Suppose
that minimizes with the admissible control set .
Then is the unique optimal control for the control problem

(23)

(24)

where is to be minimized with .
Proof: Since the integrand of is convex in and

, the existence and uniqueness of an optimal control
holds. If is fixed and is replaced by such that

, then .
Let be as in Lemma 3.4. Due to the mean field term in

, in general depends on all , . We give
a reformulation of Problem (P0).

Lemma 3.5: Assume (A4). In finding the optimal control
, Problem (P0) is equivalent to the optimal control

problem
(25)

(26)

where is to be minimized with and

(27)

Proof: Since , has been specified in advance
and does not change with . Hence, each , , does
not change with . We may write

where

and does not change with . For , we have

where

and does not change with . So minimizing in (24)
is equivalent to minimizing , which is
equal to in (26).

The cost (26) identifies the components of which are af-
fected by when is given. The significance of Lemma 3.5
lies in the determination of a mean field structure where all other
agents’ effect on appears in the form of , which does
not change with . This feature is useful for finding a decentral-
ized control in Section IV by a deterministic approximation
of .

IV. SOCIAL CERTAINTY EQUIVALENCE METHODOLOGY AND

DECENTRALIZED STRATEGIES

For integer and real number , define
consisting of all such

that for some , where may
depend on .

A. Mean Field Approximation

For large , it is plausible to approximate
in (27) by a deterministic function . To

approximate Problem (P1), we construct the auxiliary optimal
control problem

(28)

where is to be minimized and

(29)

is an approximation of in (27). To ensure that is finite, we
impose that .

For , denote the ARE

(30)

where . Under (A4), (30) has a unique solution
. Denote the ODE

(31)

which does not have a pre-specified initial condition . In
fact, if , one may use the asymptotic sta-
bility of to identify a unique
provided that is required to be within ; see
[11, Lemma A.2] for related details.

Assume that has been given. By using the method in [4],
[11], [13], [15], we may show that if (A4) holds and if

satisfies (31) after setting , the optimal
control law for Problem (P2) is

(32)

The closed-loop dynamics take the form

(33)

where the initial condition is .
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We construct the equation system with the parameter

(34)

(35)

(36)

where due to (A2), and is sought within
. The first two equations are based on (31)

and (33), and (36) is based on the consistency requirement that
the mean field initially assumed should be replicated when
averaging the closed-loop states of a large number of agents.
This equation system is called the Social Certainty Equivalence
(SCE) equation system.

The existence and uniqueness analysis of a solution to
(34)–(36) may be developed using fixed point methods similar
to those in [13] and [14] for NCE equation systems. For the
analysis in this paper, we adopt the following assumption.

(A5) There exists a solution to the SCE
equation system (34)–(36) such that each component of

, as a function of , is within
and such that both and are continuous in for each
fixed .

After a solution is obtained, the agents may determine their
decentralized strategies by (32).

B. Social Optimality Theorem

We give a prior error estimate for the mean field approxima-
tion. Let be specified by (A1). Define by

(37)
Lemma 4.1: Suppose that (A1)–(A5) hold. Let be the

closed-loop solution of agent under the SCE based control law
(32) and . Then

where .
Proof: For within , there exist and

such that for . Denote
, whose eigenvalues all have a real

part less than . By using (34) and following the argument
in [11, Eq. (A.9)], we obtain

(38)

By [32, p. 54], the continuity of ensures that the stabi-
lizability of the pair depends continuously on . Fur-
thermore, by [7], depends continuously on
and hence on . Since is compact, . In ad-
dition, there exists a fixed satisfying 1) all eigenvalues
of have a real part less than , and hence 2) for

some , , where without loss of
generality we assume . Subsequently, (38) leads to

(39)

Combining (39) with (35), we further obtain

(40)

By our convention, may take different values. Since
are independent processes of zero mean:

Since where does not depend
on due to the compactness of and (39)–(40), we have

(41)

Moreover,

By weak convergence in (A1), for each
since is continuous in by (A5).

For any , by (40) there exists a sufficiently large such
that

Since the sequence is uniformly bounded
on and converges to 0 for each ,

. Then for each
sufficiently large , . Since is
arbitrary,
Recalling (41), the lemma follows.

The asymptotic performance of the SCE based strategies is
characterized by the theorem below.

Theorem 4.2: Assume i) (A1)–(A3), (A4)-i) and (A5) hold;
ii) and is nonsingular. Then the set of SCE based
control laws has
asymptotic social optimality, i.e., for :

where is defined in Section II-B as a set of centralized infor-
mation-based controls.

Proof: See Appendix C.
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For the scalar model with uniform agents and the
parametrization (4), the requirement of a nonsingular
reduces to . The invertibility of is used for prior
integral estimates of the state process provided that the social
cost is finite (see Lemma C.1, Appendix C).

C. Explicit Solutions With Uniform Agents

For uniform agents (i.e., and ), the SCE
equation system (34)–(36) becomes

(42)

(43)

where we denote , and by omitting the
subscript and

(44)

A solution of (42)-(43) is said to be within
if both and are within .

We have the following existence and uniqueness theorem. The
explicit calculation of the solution is given in the proof in
Appendix B.

Theorem 4.3: Suppose that (A4) holds for and that
. Then (42)-(43) has a unique

solution .

D. The Social Variational Interpretation

We describe a social variational interpretation to the SCE
methodology, and this is potentially useful for generalization to
nonlinear models. We assume (A1)–(A4) and illustrate the idea
by starting with finite horizon. Let the dynamics of agent be
given by (1) and its cost be

Define the social cost .
Let be minimized by , which is

adapted to defined in Section II-B. Let correspond to ,
and . Then

(45)

Let the control variation be adapted to and satisfy
. Suppose that gives rise to the state

variation . By the linearity of the dynamics,
. Denote . We have

This gives the first variation of with respect to as

Denote . To find the cost
variation of agent , we write

Let be the first variation of with a control variation
at . Then

Denote . The aggregate cost variation
(over all agents except agent ) is obtained as

The social cost variation is . The
zero first variational condition combined with the
approximation of and by a deterministic function
gives the following condition in the large population limit

(46)

We write (46) in the equivalent form

(47)

The key observation is that we may reinterpret (47) as the
variational condition for the optimal control problem with dy-
namics (1) and cost

(48)

for which the determination of the optimal state and control pair
is straightforward. Subsequently, letting be replicated

by the closed-loop dynamics of a large number of agents, we
will again obtain the equation system (34)–(36) when .
The details are omitted here. So in the linear quadratic setting
this variational approach is equivalent to the approach based on
the construction of in (29).

E. Connection With the NCE Equation System

To compare with our past work on Problem II, we review the
NCE approach for the game problem where agent is associated
with cost (see, e.g., [13]). To obtain decentralized strategies,
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this approach proceeds as follows. First, the representative agent
approximates the coupling term in (2) by a determin-

istic function and solves an auxiliary optimal tracking
problem. Next, the mean trajectory for the closed-loop of
agent is determined by an ODE. Finally, the state average of all
the individual agents shall replicate initially assumed. This
procedure leads to the NCE equation system

(49)

(50)

(51)

The superscript in distinguishes the solution from
that of the SCE equation system. The set of strategies

(52)

is an -Nash equilibrium [13], where as , and
an intuitive interpretation of this property is as follows. When
the strategies are given by (52), the
term in the cost (2) of agent is nearly equal to

for large and agent has little room to further re-
duce its cost by using a strategy other than (52) since (49) has
been constructed to let optimally track . The NCE

and SCE equation systems differ by a different equation for .
The reason is that in the socially optimal control problem, each
agent must consider its social impact when choosing its strategy
and cannot simply make an optimal response to a deterministic
approximation of .

V. SCALAR MODEL WITH UNIFORM AGENTS

Recall that for the scalar model, we set ,
and assume , and that

and are parametrized according to (4). Let be the
solution to the ARE

Let and . Following
the notation in Section III-A, denote , .
We have .

A. Comparison of Solvability of the Two Equation Systems

Now the SCE equation system (34)–(36) reduces to

(53)

(54)

Recall that the proof of Theorem 4.3 describes a procedure to
solve the SCE equation system with uniform agents and it re-
quires , which translates here to . Now we
drop that assumption and identify a much more general solv-
ability condition.

The NCE equation system (49)–(51) reduces to

(55)

(56)

For further analysis of (53)-(54), we introduce the set of al-
gebraic equations

(57)

(58)

The notation is only for constructing the algebraic
equations by dropping the derivative terms in (53)-(54). It does
not necessarily mean , and in fact the
solution is allowed to be unbounded. Similarly, for
(55)-(56) we introduce

(59)

(60)

Denote

Note that if Further

denote . The following lemma may be easily
verified and the proof is omitted.

Lemma 5.1: If , (57)-(58) has a unique solution

We study the solvability of (53)-(54) and (55)-(56) in
terms of the parameter such that each function is within

.
Theorem 5.2: Suppose . We have the following asser-

tions.
1) If and , then (53)-(54) has a unique solution

for any .

2) If , then (59)-(60) has a unique solution
. If

(61)

the equation system (55)-(56) has a unique solution
for any . If

(62)

the equation system (55)-(56) has a unique so-
lution within

when coincides with ,
and otherwise there is no solution in such a function class.
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Proof: 1) Let be given by Lemma 5.1. De-
note and . From
(53)-(54), we obtain

(63)

(64)

for which the coefficient matrix is denoted by . Then has
eigenvalues and as

(65)

The solution to (63)-(64) is given by
(as a column vector), which is in if and only
if is an eigenvector of such that

(66)

By (66), we determine

where . Subsequently, we obtain a unique solution
, where

(67)

2) If , so that (59)-(60) has a unique solution

Denote and .
The pair satisfies a linear ODE system which has two
eigenvalues and as

If (61) holds, . By the same method as in proving part
1), we may find a unique solution

(68)

(69)

If (62) holds, then , and both and have a
real part equal to . The only solution for within

is a constant solution

which is equivalent to . Now, if
, we further select the initial condition

to obtain as a constant vector. If
, there is no solution with the required growth

condition.
Remark: The existence and uniqueness of a bounded solution

to (55)-(56) was analyzed in [13] via a fixed point approach
under the additional conditions and . In
Theorem 5.2-2) the solution is allowed to be unbounded and we
identify the maximum range for .

Remark: If , and , we may use (67) to
compute in the SCE based control law
for agent , which leads to

(70)

In fact (70) coincides with the limiting dynamics (21) of the
centralized optimal control problem since we may verify that

, .

B. Limiting Average Costs and Blowup Effect

For the LQG game with individual costs , , we
use the solution of (55)-(56) to compute the individual cost in
the population limit. To simplify the calculation, let .
We evaluate the optimal cost to the limiting control problem

(71)

(72)

where is to be determined by (55)-(56).
Note that in the closed-loop with the NCE based control laws for
all agents, is an approximation of .

Lemma 5.3: If and , the
optimal cost of (71)-(72) is

(73)

where

Proof: Let be given by (55)-
(56). First, the NCE based control law

minimizes . Next, we use Lemma A.1 to calculate the
optimal cost with . Denote the ODE

where . In view of (A.8)

(74)

By substituting (68)-(69) into (74) and using , we
obtain (73).

Note that is an eigenvalue of (59)-(60) and, as ,

becomes unbounded if . When approaches

from the left side, has a growth nearly equal to
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, which the discount rate in the cost can barely handle. A
natural question is under these situations how the corresponding
costs behave. The following theorem provides a classification.

Theorem 5.4: Suppose that and is given by

(73) for . Then the following holds:

1) If , then and .

2) If , then and
.

3) If , then and is

finite.
4) If , then and

.
Proof: Note that , , and

. We have

We show 1). If , . When ,
converges to a finite limit and . Hence, 1)

follows.
For 2), if , we have and

Hence, 2) follows from
and .

We continue to check 3) and 4). For
, we have

Note that does not depend on , and
. Denote . We

write as a function of with parameters
so that , where is a poly-
nomial of and is uniquely determined. Obviously, if

. We have

. Let be the coefficient of in , .
By lengthy but elementary calculations, we may further show
that and

By using , we may verify that
.
If , we have . In addition,

, , and

Hence,

and 3) follows. Finally, if , we have

, and
So .

Theorem 5.4 shows that cost blowup occurs at if ,

and is a removable pole of the cost function. For the socially
optimal solution, there is no blowup effect for the asymptotic
average social optimum as
approaches any given value. To show this fact, we take

for all . By (19)

Clearly, is continuous and bounded on
and .

VI. ASYMPTOTIC AVERAGE SOCIAL OPTIMUM

Now we give a closed form expression of the asymptotic av-
erage social optimum in terms of the solution of the SCE equa-
tion system. Denote the ODE

By Lemma A.1 there exists a unique such that
. Let be the set of

SCE-based control laws given by (32) and correspond to .
Lemma 6.1: Assume (A1)–(A5) and let be defined by (2).

Then

where is defined by (37) and

Proof: Let in be approxi-
mated by . Next, by Schwarz’s inequality, (C.4) and Lemma
4.1, we obtain the desired estimate.

Let be defined by (29). We have the relation

(75)

Theorem 6.2: Assume i) the conditions of Theorem 4.2 hold;
ii) have the same initial mean and initial
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covariance . Then the asymptotic average so-
cial optimum is given by

Proof: By Theorem 4.2 and Lemma 6.1, it suffices to find
. Let

be the optimal cost of Problem (P2) with its optimal control law
where is now given by the SCE equation system. By (75)

By Schwarz’s inequality and Lemma 4.1

(76)

where . By (76)

By the continuity of and for each fixed , we may
use (A.8) to show that is continuous in . By the weak
convergence of to , we obtain from Lemma A.1-3) that

and the the-
orem follows.

Remark: If we apply Theorem 6.2 to uniform agents with
scalar states and if , , , the asymptotic average
social optimum may be evaluated using the expression of
in Theorem 5.2. By lengthy but elementary calculations, we may
further verify that the result coincides with (19).

Remark: In a system of uniform agents with vector states,
one may solve the SCE equation system and explicitly calculate
the asymptotic average social optimum. For such a model, the
standard LQG solution faces substantial difficulty to evaluate
the performance.

VII. COST COMPARISON OF DIFFERENT SOLUTIONS

We now provide a comparison of the costs based on
the scalar model in Section V. For simplicity, we sup-
pose for each agent, and the randomness
comes only from the noises. The parameters are given by

.
We first consider a population of agents. Let be

the cost of the set of SCE based control laws , and
be the cost of the centralized optimal control law . By Propo-
sition 3.2 and , .

Under , we have ,
. By (5), where

To evaluate , we consider a general initial condition
at time for the agents, and

denote
By

and Ito’s formula for , we obtain

(77)

By writing and sub-
stituting it into (77), we determine
and further obtain the ordinary differential equations for and

, respectively, which can be uniquely solved in explicit forms
subject to the growth conditions and

. We obtain
due to . Fig. 1(a) shows ,

and the cost difference
as a measure of the optimality loss per agent, where

and increases from 2 to 50.
Next, we compare the per agent costs and

within the population limit based on the SCE and NCE solutions
determining the mean field, respectively. By the remark after
Theorem 6.2, we see that .
In fact, when , Theorem 5.2-1) still holds since the above
parameters ensure and (65), and the SCE based control
law still gives a cost expression as above. For the NCE based

solution, we have and . Fig. 1(b) shows
, and , where has a

blowup at .
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Fig. 1. (a) Costs for a finite population of � agents. (b) Costs as a function of
� in the population limit.

VIII. CONCLUSION

This paper develops the social certainty equivalence approach
for asymptotically achieving the social optima in mean field de-
cision models. In this solution scheme, each agent only needs
to know the distribution of the dynamic parameters across the
population to solve an ODE system offline and then uses its own
state to construct a feedback strategy. An interesting generaliza-
tion is to consider models quantifying the level of willingness
of individual agents in cooperation. This may be achieved by
letting each agent optimize a cost as a convex combination of a
social component and a selfish component, where the weights
of the two components vary continuously over the population.
This modeling will enable us to characterize the impact of co-
operation willingness on the formation of mean field behavior.
Also, the social variational approach has the potential to be ap-
plied to general nonlinear models to construct limiting optimal
control problems for decentralized control synthesis.

APPENDIX A
THE OPTIMAL CONTROL LEMMA

Let be an underlying filtered probability
space. Consider

(A.1)

where , , , and
is an dimensional standard Brownian motion adapted

to . The initial condition is independent of and

. The admissible control set consists of all
controls adapted to with . For

, let the cost function be given by

(A.2)

where , , and .
The matrices , , , and have compatible dimensions.
Denote the ARE

(A.3)

Denote the ODEs

(A.4)

(A.5)

where and are to be sought within and
, respectively. The initial conditions and

are not pre-specified.
Lemma A.1: For the optimal control problem (A.1)–(A.2),

assume 1) the pair is detectable and
is stabilizable which together give a solution

for (A.3) such that is asymp-
totically stable, and 2) both and are in .
Then we have

1) there exists a unique solution to
(A.4);

2) the optimal control law is given by
;

3) there exists a unique solution to
(A.5). The optimal cost is given by

Proof: We may show part 1) using the method in [11,
Lemma A.2]. We prove part 2) by first obtaining a prior integral
estimate of [see (A.6)] and then using a completion of squares
technique. Compared with [11], the cost integrand in (A.2) does
not necessarily allow rewriting the term in the
form for some functions and . For

, we show that for some prior upper bound
implies

(A.6)

where is associated with . We have
for any . Hence,

leads to
, which implies

(A.7)

If necessary, we may apply a nonsingular linear transforma-
tion. Here without loss of generality we simply assume

, where all eigenvalues of (resp., )
have a real part greater than or equal to (resp., less than)

. Write , where and correspond
to the sub-matrices and , respectively, in the dy-
namics. We write so that
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, where is observable due to
the detectability of . By [11, Lemma A.1] and

, it follows that ,
which combined with (A.7) implies

By the observability of , we may
further show that there exist fixed and , both
independent of , such that

(see [11] for a similar argument).
Hence, By taking a suffi-
ciently small such that , (A.6) follows. The rest
part of the proof of part 2) is similar to [11, Lemma A.2] and is
omitted.

We prove 3) as follows. Let the initial condition of (A.5) be
to give

It is straightforward to show that if and only
if

(A.8)

where the integral in (A.8) converges. Next, we apply Ito’s for-
mula to to obtain the expression of

, where is the closed-loop solution under .
Remark: If and are constant vectors, we obtain the

unique solutions to (A.4)-(A.5) with the required growth con-
ditions as a constant vector and a constant , which in turn are
determined by

APPENDIX B

Proof of Proposition 3.2: When is a random vari-
able, (18) is obtained from (7) by calculating

. By independence of

and (18) follows readily. Denote . We have
and

. Hence,

Next, we use (14)–(16) to compute and subsequently
. These calculations give the expression (19).

Proof of Proposition 3.3: By adding up the equations
given by (20) with and multiplying both sides of the
resulting equation by , we obtain

Since , we may use the SDE
of to verify

(B.1)

Denote and
. It follows that

which gives . By
using the SDE of and (B.1), we may fur-
ther show since

.
Proof of Theorem 4.3: We first find a solution satisfying

the growth condition. Denote the ARE

(B.2)

where . Equation (B.2) has a
unique solution since is asymptotically stable, and
furthermore, is also asymptotically stable (see
[32]). Denote , where is a function of . The
left-hand side of (43) becomes

(B.3)

The right-hand side of (43) is now expressed as

(B.4)

Letting the right-hand sides of both (B.3) and (B.4) be equal, we
obtain

(B.5)

where each eigenvalue of has
a real part greater than . We may identify a unique
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such that and the resulting solution
is a constant vector

(B.6)

Now (42) gives

(B.7)

where is given by (B.6). Since and each eigenvalue
of has a real part less than , we
obtain . Subsequently,

. Hence, we have obtained a solution pair
satisfying the growth condition.

To show uniqueness, suppose that gives another so-
lution within . Denote . So

. It can be shown that satisfies (B.5)
and is necessarily given by (B.6). Subsequently, satisfies the
same equation (B.7) with as does. Hence, ,
which further implies that .

APPENDIX C
PROOF OF THEOREM 4.2

The admissible control set is defined as in Section II-B.
Lemma C.1: Suppose that and is a non-

singular matrix. For , implies that
for all .

Proof: Since is nonsingular, leads to
. We also obtain

. Since is nonsingular, this yields

(C.1)

for each , which further implies

(C.2)

Since is nonsingular, , so that
by (C.1).

Proof of Theorem 4.2:
Step 1 (Prior Upper Bounds of the Cost and State):

Note that implies (A4)-ii). Hence, it is ensured
by (A4) that (30) has a unique solution and that

is asymptotically stable. Con-
sider the closed-loop system

(C.3)
where . By the eigenvalue distribution of

in Lemma 4.1 and (39)–(40), there exist
constants both independent of such that

(C.4)

(C.5)

where . By (C.4), we obtain
for some independent of .

It suffices to consider all such that

(C.6)

Given satisfying (C.6), we have

(C.7)

Denote and . By
Lemma C.1

(C.8)

It follows from (C.3) and (C.7) that

(C.9)

where . By (C.9) and (C.8) for , we may use the
ODE of to show

(C.10)

where the right-hand side is allowed to change with since it
is only shown that .

Step 2 (Cost Integrand Approximation): Note that

(C.11)

Denote and
The first summation in (C.11) gives

(C.12)

Notice that does not change with . Since , for
satisfying (C.6) we have

(C.13)
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By the inequality for two real-
valued vectors and , we obtain

(C.14)

It follows from (C.13)–(C.14) that

On the other hand, by (C.4) we may show that
So for satisfying (C.6)

(C.15)

By using (C.15), we obtain

which further implies that for some independent of ,

(C.16)

By replacing by in , denote

(C.17)

By the definition of

It follows that

Now we write

Step 3 (Estimate of Optimality Loss): We have

As in [11, Eq. (A.13)], we apply Ito’s formula
to and use (C.5), (C.10)
to show that . Note that

. Hence,

We have

By (C.16), Schwarz’s inequality and Lemma 4.1, we can show
that for satisfying (C.6)

where does not depend on . Moreover,
The theorem follows.
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