
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 12, DECEMBER 2010 2799

The NCE (Mean Field) Principle With
Locality Dependent Cost Interactions

Minyi Huang, Peter E. Caines, and Roland P. Malhamé

Abstract—We study large population stochastic dynamic games where
each agent assigns individually determined coupling strengths (with pos-
sible spatial interpretation) to the states of other agents in its performance
function. The mean field methodology [14] yields a set of decentralized con-
trols which generates an -Nash equilibrium for the population of size .
A key feature of the mean field approximation (here with localized interac-
tions) is that the resulting th individual agent’s control law depends
on that agent’s state and the precomputable weighted average trajectory of
the collection of all agents each applying a decentralized control law.

Index Terms—Decentralized control, large-population, linear-quadratic-
Gaussian (LQG) control, Nash certainty equivalence (NCE) principle, Nash
equilibrium, stochastic dynamic game.

I. INTRODUCTION

For noncooperative games with mean field coupling, the Nash Cer-
tainty Equivalence (NCE) methodology developed in our past work
[13]–[16], [18] provides an effective analytical tool for obtaining de-
centralized strategies. The key idea of this methodology is to specify a
certain consistency relationship between the individual strategies and
the mass effect (i.e., the overall effect of the population on a given
agent) within the population limit such that individual strategies are
individually optimal responses to the mass effect and further replicate
the same mass effect, and each player may ignore the fine details of any
other individual player. This procedure leads to decentralized strategies
for the individual players in a large but finite population. For this class
of game problems, a closely related approach has recently been inde-
pendently developed by Lasry and Lions [21], [22], while for models
of many firm industry dynamics, Weintraub, Benkard, and Van Roy
proposed the notion of oblivious equilibrium by use of mean field ap-
proximations [29], [30]. Long run average costs and horizon discounted
costs were used in [23] and [31] for dynamic games with mean field
coupling. For the analysis of mean field models in the setting of math-
ematical physics, see [9], [27]. To see the rich economic backgrounds
of noncooperative games with many players, the reader is referred to
[10], [11], [19], [20] and references therein.

Although mean field models in their usual uniform aggregation form
have a broad scope of applications [4], [8], [13], [20], [22], they may
be too limited to capture structural properties in certain problems. For
instance, in a vaccination mean field model, each person assesses his
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or her infection risk and as a rough approximation may simply refer
to the vaccination coverage of the overall population [4], [8], but in
reality, the different sub-populations around the respective individuals
may differently impact each person. It is obvious that an individual’s
close friends, colleagues (or classmates) have a much higher immediate
influence than those more distant in a social and physical sense. A sim-
ilar situation arises in economic models. In a crowded business area, a
service unit (such as a retail store or a restaurant) and its nearby neigh-
bors may strongly interact while the level of such interactions decreases
with distance. In mathematical biology, distance dependent interaction
models have been employed to study selfish herd behavior of animals
[25].

It is worthwhile briefly reviewing the extent to which game theory
has dealt with the issue of locality. Blume [7] considered strategic inter-
actions on lattice models as motivated by retailing services. Schelling
[26] presented a simple line topology to examine social segregation
phenomena where each agent attempts to move to a more favorable
location. Despite the fact that they involve very different contexts, a
common feature of the above works is their investigation of the rela-
tionship between the microscopic local behavior of individual agents
and the resulting macroscopic phenomena (also see, e.g., [6], [12],
[24]).

Motivated by these problems, we present here a generalized mean
field version of the Nash Certainty Equivalence theory of our previous
work (see [13], [14], [16]–[18]) which now takes into account the pos-
sibility of the local nature of agent interactions. As in [14], our ap-
proach relies on identifying a certain consistency relationship between
each individual and the mass effect but the latter may now be specific
to individual agents. We will be particularly interested in addressing
the validity issue of mean field approximations in relation to spatial
decay rates of the interaction. The reader is referred to [28, pp. 95] and
[3, pp. 60–63] for a similar validity problem in statistical mechanics.
Namely, the mean field approximation is valid when the particles have
sufficiently long interaction ranges.

The technical note is organized as follows. The individual dynamics
and costs are introduced in Section II where the uniform aggregate cost
coupling [13], [14] is reviewed; we also identify some novel features
for locality based interactions by examining their tolerable decay rates
so that the mean field approximation is valid. Section III presents the
equilibrium analysis for the set of strategies calculated via the NCE
equation system. Section IV gives a numerical example. Section V con-
cludes the technical note.

II. THE STOCHASTIC DYNAMIC GAME MODEL

In a population of� agents, consider the dynamics for an individual
agent

������������������������ �����	����
 �� ���
 ��� (1)

where �� � �, �� � � is the control input, and �	�
 � � � � ��
denotes� independent � dimensional standard Wiener processes. The
matrices ��, �� and � have compatible dimensions. The initial states
������
� � � � �� are mutually independent and also independent
of �	�
 � � � � ��. In addition, �������� � �. In (1), the pair of
coefficients �� 	� ���
 ��� will be called the dynamic parameter. The
variability of �� is used to model a heterogenous population of players.
Denote the state configuration � � ���
 
 
 
 
 ���, and the population
average state ���� � ����� �

��� �� .

A. The NCE Principle With Mean Field Cost Coupling

We begin by giving a brief summary of our previous modeling of cost
coupling which dealt with scalar individual states and control inputs.
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Thus, in Section II-A we restrict our attention to the case � � � � �,
and the dynamics are assumed to be of the form

��� � ������� ������ 	�
�� � � � � �

The cost function is given as

��
� � �

�

�

���� �� � �� ����
�

� ���� ����� (2)

where � � � is a discount factor, �� � ������ � ��, ���� �
���� �

��� ��, � � �, � � � and � � is a constant. It should
be noted that for this mean field coupling of the uniform aggrega-
tion form, �� does not distinguish the ordering of the entries within
� � ���� � � � � ���.

Let 	� � � be the positive solution to the algebraic Riccati equation

�	 � 
�	 � ������	� � �� (3)

For simplicity we assume zero initial mean for all agents, i.e.,
������ � �, � � �. Also, we assume that the sequence of parameters
���� � � �� is contained in a given compact set � � and has a lim-
iting empirical distribution � ���. The NCE consistency requirement
leads to the equation system

��� �
���
��

� ��� � ������	��� � �� (4)

����
��

� �� ������	� ��� � �������� (5)

�� �

���

����� ��� (6)

�� � ���� � �� (7)

where ������ � � corresponds to the zero initial mean assumption. See
[13], [14], [16] for details on the construction of this equation system
in a linear-quadratic-Gaussian (LQG) context.

Under mild assumptions, the equation system (4)–(7) admits a
unique bounded solution ����	�� ����	�� ���	��. The function �� is
uniquely determined by its boundedness condition and it is unneces-
sary to state the initial condition ����� separately. In fact, when the
system consists of uniform agents (i.e., all ��’s take the same value �),
��� and �� may be solved explicitly ([16]). Denote the control law

��� � �
�

�
�	� �� � �� � (8)

which may be interpreted as the optimal tracking control law with re-
spect to �� in place of �������� in (2). It has been shown that the set
of decentralized control laws ���� � � � � � � results in an �-Nash
equilibrium, where � 
 � as  
 �. The formal definition of an
�-Nash equilibrium will be stated in Section III; also see [2].

B. Illustrative Problem With Locality Dependent Coupling

To motivate the general LQG game with locality dependent cost in-
teractions, we consider the uplink power control problem for  users
in a single cell of a code-division multiple access (CDMA) wireless
communication network. For simplicity of parametrization, we denote
the cell by a circle of radius �� and the base station is located at its
center. Let user � be associated with a locality parameter �� � ���� ���.
Here �� denotes the distance between the user and the base station, and
�� is a target signal-to-interference (SIR) ratio. Assume a system of �
service classes so that �� can take one of � different values, depending

on the service class of user �. Suppose that the power level �� of user �
is adjusted by the rule

��� � ����� 	���� � � � �  (9)

where �� is the up/down adjustment of the power. The  independent
standard Wiener processes ���� � � � � � are used to model control
uncertainty during signal amplification and transmission.

Let the power attenuation of user � be denoted by  ���� as a function
of distance from the base station. We consider a large system. After
matched filtering, the interference on user �’s signal as received by the
base station may be denoted by �!��

� ���  ���������, where �� is
the background noise and where !� is due to the use of a spreading
code of length proportional to  [13]. Thus the SIR for user � after
matched filtering is

�� �
 ������

�!��
� ���  ������ � ��

� (10)

The control objective is to have �� � ��, or equivalently

 ������ � �� �!��
� ���

 ������ � �� � (11)

Based on the requirement (11), we adopt the discounted quadratic cost
function

�

�

�

���� ���
� ���

"���
� � ������� � �����

��

�

� ���� �� (12)

where "
���
� � � ���!��� ����� ����� and � � �. The penalty of ����

is used to prevent abrupt power change since in an uncertain environ-
ment power control should be cautiously performed. An important fea-
ture of the cost (12) is that each �� in the coupling term

� ��� "
���
� � ��

has a weight "���
� � depending on both locality parameters �� and �� .

C. NCE Principle With Locality Dependent Cost Interactions

Now we formulate the LQG game with locality dependent cost in-
teractions and generalize the basic NCE equation system to this case.
To this end, we assign the agents a “locality” (or “spatial”) parameter.
Note that this locality parameter may have different interpretations and
is not necessarily required to be a physical location. For instance, it may
be used to measure the relative locations of the players or their social
distances in a social interaction context [1]. The locality parameter for
agent � is denoted by ��.

Suppose that the system dynamics are given by (1). Let the cost for
the �th agent be given by

�� � �

�

�

���� �� � ���
	#�� � ��� � �	� ��� �� (13)

where � � �, �� � �� �

��� $
���
� � �� � ��, � � �, � � 
, # � �

and � � �. We make the assumption:
(A1) The weight allocation satisfies:

i) $
���
� � � ���� %;

ii) �

��� $
���
� � � ���;

iii) ������ ��������
�

��� $
���
� � �

�
� ��

For each fixed �, (A1)-ii) stipulates that the total weight of unit is allo-
cated to the agents. Compared to (12), the use of this unit total weight
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condition will simplify our asymptotic analysis. For notational sim-
plicity, the summation in (A1)-ii) includes the index � itself. Whether
or not this self-weight is included has no impact on our asymptotic anal-
ysis when � � �. The interpretation of (A1)-iii) is that the weights
are not allowed to highly concentrate on a small number of agents. This
restriction is important for obtaining good mean field approximations.

Example A: Let ��, � � � � � , denote � locations, uniformly
spaced on the interval [0, 1], where �� � �� � ����� � ��. Take
�
���
� � � � for each � and

����
� � � �� � �������� � � � �� � � � (14)

where 	 � ��� �� and �� � �
����� ��� �� � ���� is the normalizing

factor.
For all 	 � ��� �� in Example A, (A1) can be verified by elementary

calculations. The mean field model of the uniform aggregation form
corresponds to taking 	 � � so that equal weights are assigned to all
other locations.

Example B: Consider the two dimensional grid 
� generated by
partitioning the square [0, 1]� [0, 1] to obtain� � ������ points of
the form ��� � ����� ����, where � � �, � �� . Define the distance
between two points in the grid
�: 	��������	 � 	
�
����� ������.
Let the weight allocation be given by the rule: ����

� �� � ���	��� �

���	
�� for two distinct points, and ����

� �� � �, where ��� is the
normalizing factor so that all weights add up to one.

We can show that for all 	 � ��� ��, condition (A1) is satisfied by
Example B.

We consider a representative agent with dynamic parameter � �
�����, and locality parameter denoted by � belonging to a compact
set �  	 . For instance, in Examples A and B, we may take � �
��� �� and � � ��� �� � ��� ��, respectively. Denote the state process
of this agent by �
����� to explicitly indicate the associated dynamic
and locality parameters, and denote its mean trajectory by �
����� �
��
�����, where � � �.

For �� � ���� ���, suppose that the sequence 
��� � � �� is con-
tained in a compact set � and has the limiting empirical distribution
� ���. Concerning notation, whenever � (or ��) is associated with the
distribution function � , we make the convention that � is naturally
identified as a vector in 	 with � � ������, and accordingly � is
interpreted as a subset of 	. For an agent associated with the locality
parameter � (to be called an �-agent), let its limiting weight allocation
to other agents at different locations �� � � be described by a prob-
ability distribution ������ (with all probability mass concentrated on
�) when� goes to infinity. At any given location, we assume indepen-
dence between the weight allocation to neighbors and the distribution
of their individual dynamic parameters, as shown by the following ap-
proximation for an agent with a locality parameter �� � � within a
large population:

�

���

����
� � ��� ���
 �� �

� �� 
�

�� ��������
������ (15)

for �  � and �  �. The product measure �� ������ ��� in (15)
indicates that in the limiting model the assignment of weights to dif-
ferent locations �� is independent of the distribution of the dynamic
parameter �. We will formalize related conditions in assumption (A4).

Denote the algebraic Riccati equation

�� � ��� ��� ��������� ��� (16)

Suppose that (16) has a positive definite solution �
 , where
� � �����. Define

�� � ���������
� �� � ���������
 � ��� (17)

(A2) ��� �: � � 	 � ��� �� satisfies: i) ����� is a probability
distribution function for each fixed � and

� ��
�����

�� � �; ii)

� ��
�����

�� is a measurable function of � for each Borel subset
� of �; iii) �� ��� converges to ����� weakly when ��� � �, where
� and ��� are in �.

(A3) For each � � ����� from the compact set �, the pair �����
is controllable and the pair ������ �� is observable. In addition, ��
defined by (17) is asymptotically stable for all � � ����� � �.

Under (A3), (16) has a unique positive definite solution �
 , and ��
is always asymptotically stable.

For the given �-agent, it is subject to the aggregate effect of other
agents described by

!��� �� �


���� ��

�
�� ����� ��������
��

which, subject to appropriate conditions, is an approximation of
�
��� �

���
� � �� for sufficiently large � .

For simplicity, we assume that each agent has zero initial mean. Now,
based on the individual and weighted mass interaction consistency rela-
tionship, we can derive the following new Nash Certainty Equivalence
(Mean Field) (NCE) equation system

�"
�� �
�"
��
��

� �� "
�� � �
��
���� "
�� ��� (18)

��
��
��

�����������
��
�� ���
���� "
�� (19)

!��� �� �


 ���� ��

�
 �� ����� ���������
��� (20)

����� � # �!��� �� � $� � (21)

The initial condition for (19) is �
����� � � due to the zero initial mean
assumption. We observe that when the distribution function ����� is
independent of �, (18)–(21) reduces to the NCE equation system with
standard mean field coupling without differentiation between neigh-
bors. This holds since in this case !��� �� and hence ����� are both
independent of � (see Acknowledgments).

In the construction of individual strategies, each agent needs to know
the distribution function � ��� and the family of distribution functions

������ � � ��, but it is not required to know specific information
on a particular neighbor, such as its dynamic parameter or its weight
allocation in the space �.

The system (18)–(21) is constructed such that an �-agent carries out
optimal tracking of the local mass effect�� which, in turn, depends on
locality related coupling as expressed in (20). Similar to the procedure
in [14], (19) is obtained by taking expectation of the closed-loop equa-
tion of the �-agent. A consistent solution to the NCE equation system
consists of a triple �"
������ �
������ !��� ���, where � � �, � � �
and � � �. Each entry in the pair �"
������ �
������ will be viewed
as a function from �� � � � to �, and !��� �� will be treated as a
function from � � � to �.

Define %��� � �� � 
&��� ���& � %�� �
��� �& � �������� �&��� ��� '��, where & is � dimensional.
Let �� and �� be defined by (17). For each fixed �, if !��� �� is

given as a bounded continuous function of �, we solve a unique bounded
solution "
����� from (18) to obtain

"
����� � � (�� �

�

�

(� ����) ��)

� � (�� �

�

�

(� �# �!��� )� � $� �)�
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Next

����� ��� �

�

�

�� ����������� ��� �

�
�

�

�� �� �����	 
 � � � �
�

�� ������
�	 �� ��� (22)

where �� is viewed as an operator acting on bounded continuous func-
tions of � � �		��. Finally

�������	 �� ��

��� � ��

������
�	 �� ��������

���� ����

For any � � �	�� � �
, �����	 �� and �� are defined in a similar
manner.

In order to solve the NCE equation system (18)–(21), a key step is to
find a fixed point �� in a suitable function space for the operator �, i.e.

������	 �� � ����	 ��� (23)

Lemma 1 below is proven in Appendix.
Lemma 1: Under (A2)–(A3), � is a mapping from �	�� � �
 to

�	�� � �
.
Let �	�		�� denote the set of 
-valued bounded and continuous

functions on �		��. Define the linear operator � on �	�		��

������� � �

���

�

�

�� �����������

�
�

�

�� �������
��
��� ��� (24)

which can be shown to be a linear bounded operator from �	�		�� to
�	�		�� and where we recall that � � ��	�
. Note that � is obtained
from �� by dropping � in (22) and next averaging with respect to �.
Denote the norm of � by ���. We have ��� � � for � suitably small.
Below we use a scalar model to illustrate the estimation of ���.

Example C: Assume � � �, � � � � � � �, and � has uniform
distribution on �		 �
, where � � 	. It is straightforward to show that
(A3) is satisfied. Furthermore, by (24) we obtain

��
���

������� � ��
���

	����	 �������

�

���	����	� �� ���

� ���


�������

� ��
���

	����	
�

�

�

��� ����� � ���
��

����


�������

� ���������


��

������� ���


����� ����

� ��
���

	����	

� ��������� ��
���

	����	 �

When � in Example C increases, individual agents are likely to have
more unstable open loop dynamics. The interesting fact here is that a
large � actually helps to reduce the magnitude of ���. The reason is
that the more unstable open loop will force the agents to apply a large
control gain, resulting in a large stability margin for the closed-loop
dynamics.

Theorem 2: If (A2)–(A3) hold and ��� � �, there exists a unique
bounded solution �������	 ��������	 ������ to the NCE equation system
(18)–(21).

Proof: By Lemma 1, we see that� is an operator from�	��� �

to itself, and �	�� � �
 is a Banach space under the norm 	� 	 �
����� 	���	 ��	.

We take ��	 �� � �	�� � �
. By straightforward calculation, we
obtain the estimate

	��� � ���	 � ��� � 	�� � ��	�

It follows that � is a contraction. So there is a unique solution �� �
�	�� � �
 satisfying (23). Once the above �� is obtained, we may
obtain the other two entries in �������	 ��������	 ����	 ���. Uniqueness
of the solution can be easily verified by using uniqueness of the fixed
point to (23).

III. MEAN FIELD SOLUTION ANALYSIS

For the equilibrium analysis, we need the assumption:
(A4) The ��-parametrized joint empirical distribution function

���
� ��	 �� �



���

���
� � ��� ���� ��� (25)

satisfies the condition: for each bounded and continuous function
���	 ��

���
��

���	 ������
� ��	 ��� ���	 ����� ����� ��� �	

uniformly with respect to ��. In the indicator function of (25), each
inequality holds componentwise if it involves vectors.

The above condition implies that ���
� ��	 �� weakly converges to

the distribution function �� ���� ���; the reader is referred to [5] for
related notion on weak convergence.

Suppose that we have � agents with identical dynamic parameters
and the weight allocation is given by Example A. If  � �, we can
show that (A4) is satisfied and in this case �� �!� � � if ! � ��,
�� �!� � 	 if ! � ��, where �� is specified in (A2) and (A4). For
 � �		 ��, (A4) holds with �� being continuous.

A. Properties of the NCE Based Control Laws

Within the population of � agents, for any � � " � � , the "th
agent’s admissible control set �� consists of all feedback controls
#� adapted to the $-algebra $����
�	 
 � �	 � � % � �� (i.e.,
#���� is a function of ��	 �����	 � � � 	 �����) such that a unique
strong solution to the closed-loop system exists on �		��. Note
that the strategies in �� may use full state information. Denote
#�� � �#�	 � � � 	 #���	 #���	 � � � 	 #�. To indicate the dependence of
&� on #� and #��, we write it as &��#�	 #���.

Definition 3: A set of controls #� � �� , � � " � � , for �
players is called an '-Nash equilibrium with respect to the costs &� ,
� � " � � , where '  	, if for any %, � � % � � , we have

&��#�	 #��� � &� #��	 #�� � '

when any alternative #�� � �� is applied by the %th player.
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Theorem 4: Assume (A1)–(A4),������ � � for all �, and ��� � �,
where � is defined by (24). Then given any � � �, there exists�� such
that for all � � ��, the set of strategies

��� � �	��
�
� ��� �� 	 �� �� � � � � � � �

is an �-Nash equilibrium, where �� �� is given by (18)–(21) by taking
 � � and � � �� in ����.

Proof: An outline of the proof is as follows. Given the strategies
of all other players, the coupling term in the cost of agent � is stochastic
but may be tightly approximated by a deterministic function. Then we
further estimate the performance gain of agent � if it switches to an-
other strategy, and the estimate may be facilitated by a standard optimal
tracking problem. Now, let 
���� be given by (18)–(21). Denote

	���
� ��� � �

�

	��

����
� �� 
�� �� ��� 	 � �

�
���
� ��� � �

�

	��

����
� �� 
�� �� ����

�

	��

����
� � �	��� �

We first write the individual cost (13) in the form

������ ���� � �

�

�

��
� �� �	���
� 	�

���
�

�

�

� �� �	���
� 	�

���
� 	 ��� 	�� ������

Suppose that all the � agents apply the controls ���, � � � � � .
Denote ���� � ����� � � � � ������ ������ � � � � ����. By the compactness of
 in (A3), we may find a constant � � � such that

���
�

���
�����

�

�

�

��
� ������ 	 ������ ����� � �

and ������� ����� � � , where ��� denotes the state process associated
with ���.

In the analysis below, we consider an alternative strategy �� for agent
� while all other agents’ strategies are given by ����. We may assume
that �� satisfies

�

�

�

��
� ����� �
���

�

� ����� �
��� ���� (26)

�

�

�

��
���� 	������� (27)

This restriction causes no loss of generality since, otherwise, �� will
generate a cost higher than ������� �����. Based on (26), (27) and the
observability of ������ ���, where the associated pair ���� 
�� is from
the compact set , we may further show that � �

�
��
�������� � ��

for some �� � � independent of � .
By using (A4), for each fixed � we can use the method in [14] to

further show

���
���

���
�
	���
� ����	� ��� � �� (28)

Subsequently, since ���� ���� ����	���
� ����	�	� ����� ��, by (A3)

and boundedness of 	� ���, we may combine (28) with the bounded
convergence theorem to show

���
���

�

�

�

��
� ���
�
	���
� ����	� ���

�

�� � �� (29)

Fig. 1. Trajectories of 200 players.

Then we use (A1)-iii) to establish the convergence relation

���
���

���
 ��

�

�

����� �
���
� ���

�

� � (30)

where �� is subject to the constraint (26), (27) and all other agents’
strategies are given by ����.

Finally, by use of (29), (30) and the approximation argument in [14]
we may show that

������ ����� � ������� ������ �� (31)

where �� satisfies (27) and � � �� � �, as� ��. By the choice of
� , we see that (31) is automatically true when �� does not satisfy (26),
(27). This completes the proof.

IV. NUMERICAL EXAMPLE

We give a numerical example to illustrate decentralized control using
locality dependent NCE feedback. We consider a population of � �
��� agents with dynamics given by (9). These agents are distributed
uniformly in an annulus of outer diameter � � � and inner diameter
� � �

	
���. To reduce the computational load, we adopt a variant of

(12) by taking a coupling term of the form �� �
	�� �

���
�	 �		��. Here

we use a normalized but slightly nonlinearly distorted weight alloca-
tion ����

�	 as specified below. Set ����� �  ���� , where  � � is a
coefficient, and let ���	 � ���	�!����� � ���!�	�

�. Next, we construct
the distortion term ���	 � �

��� , where ��	 is the distance between
agent � and agent ". Finally, we set#���

�	 � $���
�
�		�

�
�	�, where $� is a

normalizing factor such that �
	�� �

���
�	 � �. We take the parameters

% � ���, � � ���, � � �, � � �, & � ����, and ' � �. The initial
means of all ��’s are equal to 1.

The associated NCE equation system is numerically solved with a
time step size of 0.02. The decentralized control law is applied, and
Fig. 1 shows the individual trajectories on the time interval [0, 10]. It
is seen that for agents closer to the outer boundary of the annulus, the
controlled powers are higher in average.

V. CONCLUSION

In this technical note we have generalized our previous Nash Cer-
tainty Equivalence methodology with uniform coupling to models with
locality interactions where the weight allocation in the cost coupling af-
fects the spatial spreading ability of interactions. It has been shown that
for reasonably slow decay rates on the interaction strength, a consis-
tency relationship between individual strategies and local deterministic
mass effects can still be specified, and this procedure leads to decen-
tralized �-Nash strategies for the individual players.
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APPENDIX

Proof of Lemma 1: Given � � ���� �
��, we have

������� ��� ��� �

�

�

�
� �����

��
��
�
�
�
�� �

�

�

�

�
� �

	 ����� 
� � �� �
��

By the boundedness of ���� �� and (A3), there exists � �� such that
�	
�	� �������� ������� � � , where � may be chosen to be dependent
on �� � � �	
�	� ����� ���, but independent of �. Subsequently

�	

�	�

�������� ���� �	

�	�

��� � ��

�����
�
��� ��� �� ��������

��

��

and hence �� is bounded. Now for a given �, we prove the continuity
of �� . We note the relation
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where ���� is a continuous function of �. Define
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Now to prove the continuity of �� , it suffices to show the continuity of
���� �� with respect to ��� ��. Letting ��� �� be fixed, we pick ���� ���
in a neighborhood of ��� ��. Then

������ �������� ��� � ������ ��������� ���

� ������ ������� ��� �

We have

������ ��������� ���

�

� �

�

�

�
�� �

��
��

�
�

�

�

�
� �����

����� 
��
�

� ��� ������ ���

�

� �

���� � ����� ������ ��� � ���� � �� (A1)

for some � � � depending only on �� � and �.

Denote ����� �� � �
����� �� ���� ���. We have

������ ������� ��� �

�

����
�
� ����� ����

�

�

����
�
� �������

�� �

For each fixed �, �	
� �����
�� ��� �� and by elementary estimates

we can show that ����
�� �� is a continuous function of ��. Hence from

the weak convergence of �� to �� when �� 	 �, it follows that:

��
� ��

������ ������� ��� � �� (A2)

Finally, the continuity of ���� �� follows from (A1) and (A2). The
lemma follows.
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Three-Dimensional Motion Coordination
in a Spatiotemporal Flowfield

Sonia Hernandez and Derek A. Paley, Member, IEEE

Abstract—Decentralized algorithms to stabilize 3-D formations of un-
manned vehicles in a flowfield that varies in space and time have appli-
cations in environmental monitoring in the atmosphere and ocean. In this
note, we provide a Lyapunov-based control design to steer a system of self-
propelled particles traveling in three dimensions at a constant speed rela-
tive to a spatiotemporal flowfield. We assume that the flow is known locally
to each particle and that it does not exceed the particle speed. Multiple par-
ticles can be steered to form 3-D parallel or helical formations in a flowfield.
Also presented are motion coordination results for a special case of the 3-D
model in which the particles travel in a circular formation on the surface
of a rotating sphere.

Index Terms—Cooperative systems, multiagent systems, nonlinear con-
trol systems.

I. INTRODUCTION

Decentralized algorithms to stabilize collective motion in a 3-D flow-
field that varies in space and time can be applied in many real-world
scenarios [1], [2]. Previous work on collective motion in a flowfield has
focused on a planar model of self-propelled particles [2]–[4], which is
sufficient for studying motion coordination in a two-dimensional oper-
ational domain. Most prior work on non-planar collective motion has
focused on flow-free models [5]–[7]. We provide a Lyapunov-based
control design to steer a system of self-propelled particles traveling in
three dimensions at a constant speed relative to a spatiotemporal flow-
field. We assume that the flow is known locally to each particle and
that it does not exceed the particle speed. Our model of 3-D motion
coordination is motivated by unmanned vehicles that operate in a 3-D
domain—such as underwater gliders [8] and long-endurance aircraft
[9]. Motivated by constant-altitude/-depth surveys over spatial scales
for which the curvature and/or rotation of Earth are relevant, we also
study a special case of the 3-D model in which particles are constrained
to the surface of a rotating sphere.

Our analysis extends [6] and [10], which describe decentralized
strategies to steer a 3-D system of self-propelled particles in a flow-free
environment. It also extends the 3-D analysis in [11], which includes a
spatially variable, time-invariant flowfield. To model a spatiotemporal
flowfield in three dimensions, we adapt the development of a planar
framework for collective motion in a time-varying flow [2]. The spher-
ical analysis extends [7], which introduced a flow-free spherical model.
Additional prior work appears in [12] and an extended presentation
of these results is available [13]. The study of motion coordination
in an unknown flowfield or with turn-rate limits is ongoing [14] and
outside the scope of this note, as is the study of flowfields that exceed
the particle speed.

The contribution of this note is the Lyapunov-based design of decen-
tralized control laws to stabilize moving formations of a 3-D, connected
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