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Abstract—We study large population leader-follower stochastic
multi-agent systems where the agents have linear stochastic
dynamics and are coupled via their quadratic cost functions.
The cost of each leader is based on a trade-off between moving
toward a certain reference trajectory which is unknown to the
followers and staying near their own centroid. On the other hand,
followers react by tracking a convex combination of their own
centroid and the centroid of the leaders. We approach this large
population dynamic game problem by use of so-called Mean
Field (MF) linear-quadratic-Gaussian (LQG) stochastic control
theory. In this model, followers are adaptive in the sense that
they use a likelihood ratio estimator (on a sample population of
the leaders’ trajectories) to identify the member of a given finite
class of models which is generating the reference trajectory of
the leaders. Under appropriate conditions, it is shown that the
true reference trajectory model is identified by each follower in
finite time with probability one as the leaders’ population goes to
infinity. Furthermore, we show that the resulting sets of mean field
control laws for both leaders and adaptive followers possess an
almost sure -Nash equilibrium property for a system with pop-
ulation where goes to zero as goes to infinity. Numerical
experiments are presented illustrating the results.

Index Terms—Adaptive control, leader-follower collective
behavior, likelihood ratio based adaptation, mean field (MF)
stochastic control, Nash equilibria, stochastic optimal control.

I. INTRODUCTION

M ULTI-AGENT control and coordination problems arise
in fields such as mobile robotics [1], vehicle formations

[2], synchronization of coupled oscillators [3], flocking [4], and
micro-economics [5] among others. Consequently, there has re-
cently been a considerable amount of research devoted to the
theory of multi-agent systems.
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For complex systems with many agents, it is not feasible for
each individual agent to collect detailed state information on all
the other agents’ states in the way the single agent in a central-
ized control system does on all the components of its system’s
state. Therefore an important issue is the development of decen-
tralized solutions so that each individual agent may implement a
strategy based on its local information together with statistical
information on the population of agents. For large population
systems with mean field couplings, the Mean Field (MF) (or
Nash Certainty Equivalence (NCE)) framework has been devel-
oped as a decentralized methodology in stochastic noncooper-
ative dynamic games in a series of papers by Huang et al. (see
[6], [7] for the MF (NCE) linear-quadratic-Gaussian (MF LQG)
framework, and [8]–[10] for a general formulation of nonlinear
McKean-Vlasov type MF (NCE) stochastic control problems).
For this class of game problems a closely related approach has
been independently developed by Lasry and Lions [11] (see also
[12], [13]), while for models of many firm industry dynamics,
Weintraub et al. proposed the notion of oblivious equilibrium
by use of mean field approximations [14]. In [15], the MF LQG
framework is extended to systems of agents with long run av-
erage costs.
The central idea of the MF control methodology is to specify

a certain equilibrium relationship between the individual strate-
gies and the mass effect (i.e., the overall effect of the popula-
tion on a given agent) as the population size goes to infinity
[7]. Specifically, in the equilibrium: (i) the individual strategy
of each agent is a best response to the infinite population mass
effect in the sense of a so-called -Nash equilibrium, and (ii) the
set of strategies collectively replicates the mass effect, this being
a dynamical game theoretic fixed point property. The defining
property of the MF -Nash equilibrium requires
that for any given , there exists such that for any
population size , when any agent , ,
distinct from employs , then agent can benefit at most by
unilaterally deviating from his strategy , and this holds for all

.
The MF feedback strategies display the possibly counterintu-

itive nature of MF control which is that in the infinite population
limit, except for some statistical information on the parameter
distribution and the initial mean state distribution of the popu-
lation of agents, no observations of other agents’ states are nec-
essary to achieve Nash equilibrium behavior and this property
persists with negligible incremental cost for sufficiently large fi-
nite populations.
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Decision making and collective behavior often involve some
form of leader-follower behavior. This behavior is observed in
humans [16] and many other species in nature [17], [18], and is
studied in a variety of disciplines such as game theory [19], dis-
tributed networks [20], crowd flow dynamics [21] and biology
[17], among others. Such behavior in nature is often attributed
to the fact that there exist some individuals in the group which
have more information than others, for instance the location of
resources or migratory routes [17].
In this paper we study large population Leader-Follower

(L-F) stochastic multi-agent systems where the agents have
linear stochastic dynamics and are coupled via their quadratic
cost functions. The cost of each leader is based on a trade-off
between moving toward a certain reference trajectory which
is unknown to the followers and staying near their own cen-
troid. On the other hand, followers react by tracking a convex
combination of their own centroid and the centroid of the
leaders. Here, as in most practical leader-follower modeling of
multi-agent systems, the leaders ignore the followers, but the
followers’ behaviors are influenced by the leaders. The model
in this paper is a generalization of that in [15] to the case of
collective dynamics which include leaders, followers and an
unknown (to the followers) reference trajectory for the leaders.
We approach the large population L-F model of this paper

by use of MF LQG stochastic control theory. In this framework
the computation of the followers’ control laws requires knowl-
edge of the complete reference trajectory of the leaders which is
in general not known to the followers, hence a likelihood ratio
based adaptation scheme is proposed. The main contributions of
the paper are as follows: (i) A likelihood ratio based adaptation
algorithm (on a sample population of the leaders’ trajectories)
is employed by the adaptive followers to identify the member
of a given finite class of models which is generating the ref-
erence trajectory of the leaders. Under appropriate conditions,
it is shown that the true reference trajectory model is identi-
fied in finite time with probability one by each follower as the
leaders’ population goes to infinity. (ii) A demonstration that
the use of the resulting MF control laws yields a set of leaders
and adaptive followers’ control laws possessing an almost sure

-Nash equilibrium property, where goes to zero as
the population size goes to infinity.
The implementation of the overall MF control laws for the

leaders and followers has the following form: (i) Each leader
enacts an MF control law which consists of the feedback of its
own local stochastic state and the precomputed leaders’ deter-
ministic mass effect. (ii) Each follower enacts an adaptive MF
control law which consists of the feedback of its own local sto-
chastic state and the estimation based mass effects of the leaders
and followers.
Previous presentations of the methodology considered in this

paper include [22], [23] which contained no proof details. In
[22] we first developed a non-adaptive but general model with
weighted couplings in the leaders and followers’ cost functions
(which depended on the locality parameters of the agents). [22]
also presents the main adaptation result of the uniform cost cou-
pling model in the case that the followers “only” track the cen-
troid of the leaders. Subsequently, in [23] the optimality prop-
erty of the (tracking like) adaptive followers’ MF control laws is

studied. In this paper we present a complete analysis of a more
general (and realistic) scenario where the followers are tracking
a convex combination of their own centroid and the centroid of
the leaders. Hence, we have an -Nash equilibrium property for
the adaptive followers’ MF control laws.
In the standard consensus literature the agents have little a

priori information but communicate over possibly time varying
graphs, then under connectivity assumptions (e.g., the union of
the interaction graphs for the system is connected frequently
enough as the system evolves) the agents reach consensus (see
[24], among many other papers). By contrast, the leader-fol-
lower agents in this paper possess a priori data on the overall
system; the leaders observe no one and the followers have lim-
ited observations on the leaders and a priori data on the possible
trajectory scenarios of the leaders. This permits the computation
by each follower agent of different tracking scenarios amongst
which it chooses one at each instant, depending upon the obser-
vations received. Therefore, the agents in the model considered
in this paper do not require communication except the limited
observations on the leaders by the followers.
It is to be noted that the formulation in this paper does not

include any collision avoidance or formation control between
the agents beyond the optimal tracking property since the states
do not necessarily correspond to positions in space. We further
note that if the states are given a spatial interpretation the in-
herently stochastic volatility of the dynamics prevents any state
from converging onto another state.
The organization of the paper is as follows. Section II is

dedicated to the problem formulation, terminology and some
applications of the model in multi-vehicle coordination control
and economics (finance). The MF LQG equation systems
of the L-F problem are derived and analyzed in Section III.
In Section IV we present the estimation procedure for the
followers. The stability analysis of the MF control laws and
the adaptive MF algorithm for the followers are presented in
Section V. The optimality properties of the MF control laws
for both the leaders and the adaptive followers are given in
Sections VI and VII presents sample numerical simulations of
the model. Concluding remarks are stated in Section VIII.

II. PROBLEM FORMULATION, TERMINOLOGY
AND SOME APPLICATIONS

The following notation will be used throughout the paper. We
use the integer valued subscript as the label for a certain agent
of the population and superscripts and for a leader and
follower agent, respectively. In addition, an overline denotes the
expected value of a random variable, i.e., .
denotes the 2-norm of vectors and denotes the infinity or
sup norm. for any appropriate dimension
vector and matrix . denotes the transpose of a vector
or matrix and denotes the trace of a square matrix .
Let be the family of all -dimensional continuous functions
on and .
Note that is a Banach space under the norm .
Let denote the countably infinite set of leaders, de-

notes the subset of cardinality , and
similarly for the set of countably infinite followers and the
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subset of cardinality . We as-
sume that .

A. Leaders Stochastic LQG Dynamic Game Model

The dynamics for the leaders are given by

(1)
where is the state, is the control input, and

denotes a set of independent (i.e., mu-
tually independent) -dimensional standard Wiener processes.
The matrices , and have compatible dimensions.
Let be defined as the dynamical parameter

associated with leader , , where we assume that
, for all , are in the compact set . The initial

states are assumed to be independent
and also independent of . In addition we
assume that .
The admissible control set for leader , , is given

by

,
. Intuitively, the admissible controls are the controls

that do not use any information about future increments of
the driving noise processes, which is essentially a causality
requirement in stochastic systems.
The cost function of the leaders is based on a trade-off

between moving towards a common reference trajectory and
keeping cohesion of the flock of leaders by also tracking their
centroid. We let

(2)

where is a scalar in , is a reference trajectory
known to all the leaders, and
is the centroid of the leaders. The objective of each individual
leader is to minimize its Long Run Average
(LRA) cost function given by

(3)

where the matrices and are symmetric positive semi-defi-
nite and symmetric positive definite, respectively, with compat-
ible dimensions, and .
To indicate the dependence of on , and the
leaders’ population size , we write it as .
Note that the leaders’ mean field cost coupling (2) is the same
as mean field couplings in the basic models considered in [7],
but with time-varying offset term . If then the leaders
become independent such that each leader is interested in opti-
mally tracking .

B. Followers Stochastic LQG Dynamic Game Model

Similarly, the dynamics for the followers are given by

(4)

where is the state, is the control input, and
denotes a set of independent -dimen-

sional standard Wiener processes independent of both
and . The matrices ,

and have compatible dimensions.
Let be defined as the dynamical parameter

associated with follower , , where we assume that
, , are in the compact set . The initial states

are assumed to be independent and
also independent of ,

, and . In addition we assume that
.

The admissible control set for follower ,
, is given by

.
The followers react by tracking a convex combination of their

own centroid and the centroid of the leaders. We let

(5)

where is a scalar in , is
the centroid of the followers, and is the centroid of the
leaders defined in (2). The LRA cost function for an individual
follower is given by

(6)

where ,
, is the population size of

the system, and and are defined in (3). To indicate the
dependence of on , , and the population
size of the system , we write it as .
We note that in this model: (i) the leaders are coupled to each

other through their cost functions and respond to each other and
their reference trajectory, and (ii) the followers attempt to track
the convex combination of both their own centroid and the cen-
troid of the leaders. These are captured in the two types of MF
equation systems in Section III.

C. Followers Observation Processes

We assume that all adaptive followers observe a random frac-
tion of the leaders’ trajectories with some added noise through
their individual observation processes. More precisely, we as-
sume each adaptive follower , , observes a
non-empty random subset of size
of the leaders’ trajectories through the process which

is described in terms of the stochastic differential equations

(7)

where and is
a set of independent standard Wiener processes independent of
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, ,
and . The set of constant matrices

has compatible dimensions.
The sets , , of cardinality are

chosen a priori with
(where denotes greatest integer less than or equal to ) for

, where and as the
number of followers and leaders respectively goes to infinity.
The sets , , are chosen independently, and
independent of all initial states and Wiener processes by uni-
formly distributed selections on the set of the leaders, . We
underline that the magnitude is chosen simply for defi-
nition of modeling and exposition; any other integer value func-
tion satisfying and ,
as , may be used for the theory in the paper.
We also assume that, as the prior information of the followers,

the reference trajectory of the leaders is parameterized by
where is a finite set and for any . This

is only for the followers, and is fully known by the leaders.

D. Applications

The leader-follower modeling of this paper is motivated by
many practical problems in which some agents in a group have
more information than the others.
A typical application is in multi-vehicle coordination control

(see [25]) where the aim is that the states (e.g., the velocities)
of all vehicles approach a reference signal (which could be an
exogenous signal or which could evolve according to a dynamic
model). In many realistic situations some vehicles (the leaders)
have complete access to the reference trajectory, and the other
vehicles (followers) do not have access to this trajectory and
need to estimate it. We can formulate this multi-agent model as
a leader-follower mean field LQG problem considered in this
paper where the followers need to identify the member of a
given finite class of models which is generating the reference
trajectory.
Another application of the model is leader-follower dy-

namic version of Keynes’ beauty contest games in economics
(finance). Keynes proposed beauty contest games where a
newspaper would print some photographs and people would
vote for the prettiest faces. Everyone who picked the most
popular face automatically entered a lottery to win a prize.
Keynes remarked that the stock market is similar to beauty
contest games where each investor would like to guess the other
investors’ guesses (see Example 1 in [26]). A similar approach
to MF stochastic control is considered in [26] to study large
population static aggregative games such as Keynes’ beauty
contest games. Now we formulate a leader-follower LQG
dynamic version of Keynes’ beauty contest games. Here we
consider a large population of players divided into two groups:
(i) the leaders as large well-informed players (e.g., institutional
investors in the stock market), and (ii) the followers (e.g., retail
investors in the stock market). The state of each player is its
publicly announced prediction of the prettiest face where
denotes the state of the -th leader and
denotes the state of the -th follower . The
leaders and followers have linear stochastic dynamics given
in (1) and (4) with different classes of parameters and
. The average prediction of the leaders and followers are

given by their centroids and
, respectively. Based on the

quadratic payoff functions considered in [26], we formulate

cost functions of the agents as follows. The leaders would
like to minimize their cost functions (3) based on a trade-off
between making guesses close to the exogenous private in-
formative signal (which is unknown to the followers) and
guessing close to their own average prediction . On
other hand, the followers would like to guess close to some
convex combination of their own average prediction
and the average prediction of the leaders (see (6)).
There are many other similar applications of the model con-

sidered in this paper in flocking [27], formation control [28],
dynamic industry models [14], and social opinion models with
a very large number of leaders (e.g., important members of a
party) and followers [29].

III. MEAN FIELD LINEAR-QUADRATIC-GAUSSIAN
(MF LQG) STOCHASTIC CONTROL THEORY

A. Preliminary LQG Optimal Control of a Single Agent

In this section first we consider a single agent with linear
stochastic dynamics

(8)

where is the state, is the control input,
denotes a -dimensional standard Wiener process, and is
given. The matrices , and have compatible dimensions.
The initial condition is independent of the process .
Denote the admissible control set

(see [15]). For ,
let the LRA cost function be given by

(9)

where is a known function, and are, respec-
tively, symmetric positive semi-definite and symmetric positive
definite matrices with compatible dimensions.
Theorem 3.1: (Special case of [15]) For the LQG optimal

control problem (8)–(9), assume (i) is stabilizable, (ii)
is detectable, and (iii) . Then we have:

(a) The algebraic Riccati equation
has a unique positive semi-defi-

nite solution .
(b) is asymptotically stable.
(c) The differential equation

has a unique solution in
:

(d) The optimal control law:
.

Proof: See Theorem 3.1 in [15].

B. MF LQG Systems of Equations

Considering the L-F model (1)–(6) we need to solve a
set of tracking optimal control problems where the tracking
trajectories are and for
leaders and followers, respectively. However, these tracking
trajectories cannot be known a priori and so cannot be used for
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constructing the control laws. Therefore, we take an MF sto-
chastic control approach to approximate the coupling trajectory
terms by purely deterministic processes called mass behaviors
of leaders and followers.
In the MF methodology, each agent assumes that, in the large

population limit, its individual action has no impact on the mass
behavior. In turn, the impact of the mass on the agent is captured
in the limit via a posited deterministic but unknown trajectory
which through consistency requirements is then shown to satisfy
a fixed point equation system. Hence, each individual agent’s
control lawmay be viewed as a result of that agent having solved
an optimal tracking problem for which the resulting control law
is a combination of a local state feedback and a pre-computable
mass dependent open loop deterministic component.
For any leader or follower representative agent with dynam-

ical parameter (where for leaders and
for followers) let be the solution to the algebraic

Riccati equation

(10)

and let .
We have the following assumptions for the model under

consideration:
(A1) For each from the compact sets or
, we assume that the pair is stabilizable and the pair

is detectable.
Remark 3.1: Let Assumption (A1) hold. Then for any

, the algebraic Riccati (10) has a unique
positive semi-definite solution, is asymptotically stable and
there exist positive , such that for all
[30].
For the sequence of the leaders and followers’ dynamical pa-

rameters, and
, respectively, define the empirical distributions

where means the componentwise inequality for the two
vectors and , and if holds,
and otherwise. Similarly,
if holds, and otherwise.
(A2) There exist two probability distributions and

such that converges to and converges to
weakly, i.e., for any bounded and continuous function ,

where denotes the measure induced by the distribution func-
tions .
Remark 3.2: It is important to note that if the sequences

and are generated
by independent randomized observations on the distributions

and , respectively, then (A2) holds with probability one
by the Glivenko-Cantelli theorem [7].

By the probability distributions and we define

as the centroid of the leaders and followers, respectively,
in the infinite population limit. The functions and

are intended to respectively approximate and
, defined in (2) and (5), in the infinite population limit.

Denote by . Applying the MF LQG approach [7],
[15] to the leaders’ dynamic game model (1)–(3), we obtain
the leaders’ MF system of equations in the infinite leaders’
population limit

(11)

(12)

(13)

(14)

where , ,
and is given for .

The equation system (11)–(14) is similar to the MF LQG
equation system in [15] but with a time-varying reference tra-
jectory , and is constructed such that each leader carries
out optimal tracking of the leaders’ mass behavior .
More precisely, (i) (11) is the mass offset tracking equation, (ii)
(12) is obtained by taking expectations of the closed-loop dy-
namics of a leader with dynamical parameter while
the best response is ,
(iii) in (13) is the centroid of the leaders in the infi-
nite population limit, and (iv) in (14) is approximating

, defined in (2), in the infinite population limit.
Next, we obtain the followers’ MF system of equations asso-

ciated with the followers’ dynamic game model (4)–(6) in the
infinite population limit

(15)

(16)

(17)

(18)

(19)

where , ,
and is given for .

The equation system (15)–(19) is constructed such that
each follower carries out optimal tracking of the followers’
mass behavior . More precisely, (i) (15) is the mass
offset tracking equation, (ii) (16) is obtained by taking
expectations of the closed-loop dynamics of a follower
with dynamical parameter while the best response is
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, (iii) in (17)
is the centroid of the leaders, in the infinite population limit,
computed by the followers from the leaders’ MF equation
system (11)–(14), (iv) in (18) is the centroid of the
followers in the infinite population limit, and (v) in
(19) is approximating , defined in (5), in
the infinite population limit.
It is important to note that the followers’ MF system of equa-

tions is coupled to the leaders’ MF system of equations due to
appearance of leaders’ centroid in the mass behavior
of the followers . We make the following assumption:
(A3) We assume that for all possible reference trajectories
parameterized by :

(a) The leaders’ MF system of (11)–(14) has a unique
solution such that .

(b) The followers’ MF system of (15)–(19) (implicitly de-
pending upon the solution of (11)–(14)) has a unique
solution such that .

Generally, it seems difficult to verify this assumption. How-
ever, in Section III-C we provide sufficient conditions for the
existence and uniqueness of solutions to these MF equation sys-
tems by using a contractive mapping argument (see [7], [15]).

C. Analysis of MF Systems of Equations for Leaders and
Followers

First, we consider the leaders’ MF system of (11)–(14). For
given , and hence , the unique solution of
the tracking offset (11) for a “generic” leader agent with dynam-
ical parameter is

(20)

Next, by solving (12) we have

(21)
which by substituting from (20) we get

(22)

where is an operator acting on bounded continuous func-
tions. This and (13) result in

where we note is independent of , . Now for
a given if the equation

(23)

has a unique solution , then it can be used in (20) and
(22) to compute the unique solution of the leaders’ MF system
of equations. In the following theorem we employ a contractive
mapping argument to provide sufficient conditions under which
(23) has a unique solution. We omit the proofs of the two fol-
lowing theorems which closely resemble that of Theorem 3.2 in
[15].
Theorem 3.2: Assume (A1) and (A2) hold. For a given
,
(a) defined in (23) is an operator from to .
(b) If

(24)
then (23) has the unique solution , and
so the leaders’ MF system of equations, (11)–(14),
has a unique solution which for a continuum of
agents consists of the parameterized quadruple

, .

Second, we consider the followers’ MF system of equations,
(15)–(19). For given , and hence , we
define the operator for a “generic” follower agent with dy-
namical parameter as

by using the solutions of (15) and (16) (similar to (22) for the
-th leader). This and (18) result in

where we note is independent of . Now for a
given (the solution of (23)) if the equation

(25)

has a unique solution , then it can be used in (15) and
(16) to compute the unique solution of the followers’MF system
of equations. In the following theorem we employ the contrac-
tive mapping argument to provide sufficient conditions under
which (25) has a unique solution.
Theorem 3.3: Assume (A1) and (A2) hold. For a given

,
(a) defined in (25) is an operator from to .
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(b) If

(26)
then (25) has the unique solution , and
so the followers’ MF system of equations, (15)–(19),
has a unique solution which for a continuum of
agents consists of the parameterized quadruple

.

Intuitively, (24) and (26) mean that and should be rea-
sonably close to 1, which means that the leaders should give
sufficient attention to the reference trajectory, and on the other
hand the followers should give sufficient attention to the group
of leaders, so that at the end a desirable mean field behavior
(fixed point) can set in.
Remark 3.3: It is important to note that the conditions (24)

and (26) do not depend on the reference trajectory of the leaders
.

IV. ESTIMATION PROCEDURE FOR THE

ADAPTIVE FOLLOWERS

The computation of the followers’ MF system of equations
(and hence followers’ control laws) requires knowledge of the
complete reference trajectory of the leaders which is in gen-
eral not known to the followers. In this section we construct an
adaptation procedure for a generic follower using a likelihood
ratio based estimator (on a sample population of the leaders’
trajectories) to identify the member generating the reference tra-
jectory from a given finite set of possible parameters each
identifying a single trajectory. Hence, followers are adaptive in
the sense that they use an estimator to identify . As stated
earlier, we assume that the reference trajectory is parame-
terized with from a finite set such that for every

.
Likelihood ratio based estimation is a well-known method

for generating estimates of an unknown stochastic model pa-
rameter (see, e.g., [31] and [32]). In this paper we use the gen-
eral result on the convergence of likelihood ratio estimators for
stochastic processes parameterized by a finite set of alternative
values which was established in [33] (see [31]).

A. The Likelihood Function

For a generic adaptive follower, we define the likelihood func-
tion (see [34], [35]) on (a subset of) the leaders’ trajectories by

(27)
where is the centroid of the leaders’
states when the defining parameter of is assumed to be

, and is the observation process of the generic fol-
lower (which observes a non-empty random subset of
cardinality of the leaders’ trajecto-
ries) as defined in (7).
Without loss of generality assume is the true param-

eter of the reference trajectory in the rest of the paper, that is

to say, the parameter of the leaders generating the data. There-
fore, the observation process of the generic follower is of the
form

(28)

where is a set of independent standard
Wiener processes.
We define the asymptotic (in population) likelihood function

of the generic adaptive follower to be the deterministic function

(29)
where such that is the deterministic
infinite population leaders’ centroid computed from the leaders’
MF system of (11)–(14) when the defining parameter of is
assumed to be .
Since (i) the processes , , in (27) are not com-

putable or observable for the adaptive followers, and (ii) the true
infinite population centroid of the leaders in (29) is not
known to the followers, we introduce the following hybrid like-
lihood function for a generic adaptive follower with observation
process

(30)
It is important to note that the hybrid likelihood function (30) is
computable for adaptive followers and includes: (i) the infinite
population centroid of the leaders which can be com-
puted by each adaptive follower from the leaders’ MF system
of (11)-(14) when the defining parameter of the reference tra-
jectory is assumed to be , and (ii) the observation
process which is given in (28) for a generic adaptive fol-
lower.
Proposition 4.1: Assume (A1)-(A3-(a)) hold. Then
(a) For each and

i.e., for each , and there exists a
random , , such that

for all .
(b) For each and ,

Proof: See Appendix.

B. The Likelihood Ratio

The likelihood ratio test provides the means for comparing
the likelihood of the observations under one hypothesis about
the unknown parameters of the model against the likelihood of
the observations under alternative hypotheses.
At each instant the set of the likelihood ratios is
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in which each ratio depends explicitly upon
the hypotheses and .
It is important to note that for any fixed in the process

is a positive martingale (with respect

to the filtration where is defined as the
-field ) [33], [34].
Therefore, for any fixed ,
converges to a limiting random variable by the Martingale Con-
vergence Theorem [36]. Hence, for any fixed , ,
, the process converges to a posi-

tive limiting random variable.

C. Main Estimation Theorem

We define the Likelihood Ratio Estimator (LRE) for a generic
adaptive follower , , with observation size as

(31)

where , is a pre-specific positive number
and is an infinite switching time sequence such that

, . is a parameter selector between
finite alternatives which is made at each instant. At each time
if has more than one member, a tie-breaking rule measur-
able with respect to the -field is employed.
We now enunciate the following verifiable identifiability

condition.
(A4) (Identifiability Condition) there exist a deterministic real

number , and deterministic time , , such
that

where for any fixed , is the deterministic infinite
population leaders’ centroid computed from (11)–(14), when
the defining parameter of is assumed to be .
Remark 4.1: This identifiability assumption implies that the

corresponding centroid of the leaders for any two distinct pa-
rameters of the set (which characterizes the reference trajec-
tory ) is distinguishable, after some finite deterministic time.
Lemma 4.1: Assume (A1)-(A3-(a)) and (A4) hold. Then

there exist a deterministic , , and a deterministic
time , , such that

Proof: For any fixed , , and , , by
(29) we have

But, by the Identifiability Condition (A4), there exist a deter-
ministic real number , and deterministic time ,

, such that for all

and setting yields the result with .

Lemma 4.2: Assume (A1)-(A3-(a)) and (A4) hold. Then
there exist a deterministic , , a deterministic time
, , and, with probability one, a random ,

, such that for all and

Proof: By Lemma 4.1 there exist a deterministic ,
, and a deterministic time , , such that for

any , , and

(32)

Now choose such that . Then at
each instant , , by Proposition 4.1 with

, there exists, with probability one,
, , where

such that for all
and

(33)

Hence, by (32) and (33), for all and we
have

Theorem 4.1: Assume (A1)-(A3-(a)) and (A4) hold. Then for
each generic adaptive follower , , there exist a
deterministic , , and, with probability one, a
random , , , such that for all

and .
Proof: By Lemma 4.2 for any adaptive follower ,
, there exist a deterministic , , a deterministic

time , , and a random ,
, such that for all , and

where

which implies that for all and ,
based on the definition of the LRE in (31).
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V. STABILITY ANALYSIS OF THE MEAN
FIELD CONTROL LAWS

Definition 5.1: In a large but finite population, the decentral-
ized MF control laws for the leaders and followers, respectively,
are as follows.
• Leaders’ MF Control Laws: The control strategy of each
generic leader , , with dynamical parameter

is defined as

(34)

where is the solution of (11) presented in (20).
• Followers’ MF Control Laws: The control strategy of each
generic adaptive follower , , with dynamical
parameter , and observation size
is defined as

(35)

where is the solution of (15), when the defining

parameter of the reference trajectory is assumed to be
defined in (31).

In the construction of individual strategies, (i) each leader
needs to know , , the leader’s population initial mean and
the distribution of the leaders’ dynamical parameters ,
where the term know denotes that the control law of the agent in
question may be an explicit function of the indicated informa-
tion; and (ii) each follower needs to know , , the population
initial means and the distributions of both leaders and followers’
dynamical parameters ( and ), but each adaptive fol-
lower does not know the reference trajectory of the leaders
and estimates it by likelihood estimation from a finite set of pre-
defined signals based upon its observation process. Note that it
is not required for any leader or follower agent to know specific
information (such as the dynamical parameter) of any other par-
ticular agent.

A. Follower’s Adaptive Mean Field Algorithm

The algorithm has the following two phases:
1) Estimation Phase: By observing a sample population of
the leaders each follower computes the set of likelihood
ratios (based on the hybrid likelihood functions defined in
(30)) at each instant for alternative values of its hypothesis
parameter . Each follower also computes control
laws by using the parameters in the finite set . Therefore,
each follower has a set of control strategies with respect to
alternative defining parameters of the reference trajectory

, and at any instant uses the maximum likelihood ratio
estimate (MLRE) without a guarantee that the MLRE has
taken the true parameter value.

2) Lock-on Phase: As the observation size of each adaptive
follower , , goes to infinity, its estimate
converges to the true parameter of the unknown reference
trajectory at a deterministic time (Theorem 4.1). In this
phase, the control law of each adaptive follower ,
, will necessarily be computed with the true parameter

of the reference trajectory for all time and any
sufficiently large random observation size.

Needless to say, an adaptive follower cannot deduce at which
population size the lock-on phase has commenced since this oc-
curs at some random size .

B. Stability Analysis

For the -th leader, , with dynamical parameter
, denote as the closed-loop

solution of its dynamics (1) while using the MF control law
as defined in (34). In an analogous way let

be the closed-loop solution of the -th adaptive follower’s dy-
namics, , (4) where its dynamical parameter is

and its adaptive control law is the MF
control law defined in (35).
Theorem 5.1: (Stability of the MF control laws in the sense

of time average)
(a) Assume (A1)-(A3-(a)) hold. Then

(36)
(b) Assume (A1)-(A4) hold. Then

(37)
Proof: See Appendix.

It is important to note that these stability results depend on the
boundedness of the infinite population centroids and

computed from the leaders and followers’ MF system
of equations, respectively.

VI. -NASH EQUILIBRIUM PROPERTY OF THE

MEAN FIELD BASED CONTROL LAWS

In a system of population size , let the admissible
control set of agent , , be

. Note that the strategies
in may use full state information (i.e., is a function of
both time and the system state at this time, ).
Denote . To indicate the
dependence of the -th agent’s cost function on , and
population size , we write it as .
Definition 6.1: Given , a set of controls ,

, for agents generates an -Nash equilibrium
with respect to the costs , , if for any ,

Let be the closed-loop solution of the -th leader’s
dynamics (1) with the MF control input defined in (34), and

be the infinite population centroid of the leaders (13),
we denote

(38)
The proof of the following theorem is similar to the one of

Theorem 6.1 in [15].
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Theorem 6.1: Assume (A1)-(A3-(a)) hold. Then the set of the
leaders’ MF control laws is an -Nash equilibrium,
i.e., for any , , we have

where .
For any adaptive follower , , let be the

MF control law when the defining parameter of the reference
trajectory is assumed to be the true parameter and let

and be the closed-loop solutions of dynamics

(4) with control input and , respectively (the

explicit form of is presented in (A25)). Let
, and
.

Lemma 6.1: Assume (A1)-(A4) hold. Then there exists a
random , , such that for and
observation sizes , , we have

for .
Proof: By Theorem 4.1 for each adaptive follower ,
, there exist a deterministic time and a random ,
, , such that for all

and . Let and
, then for and

observation sizes , , we have

(39)

But, by the long run average stability of theMF control laws (37)
there exists, with probability one, a real number , ,
and independent of such that

(40)

Next consider , then

by (39) and (40), which gives the result.
Denote

(41)

where is the closed-loop solution of the -th follower’s dy-

namics (4) with theMF control law (35), and is the infi-
nite population centroid of the followers (18) when the defining
parameter of the leaders reference trajectory is assumed to
be the true one, .
Lemma 6.2: Assume (A1)-(A4) hold. Then we have

.
Proof: We have

(42)

But, by Lemma 5.3 in [15] we have

(43)
In addition

So by the weak convergence of to [Assumption (A2)]
we have (see (33) in [15])

(44)

Hence, by (42)–(44) we get .
Theorem 6.2: Assume (A1)-(A4) hold. Then there exists a

random , , such that for and
observation sizes , , the set of the
followers’ MF control laws is an -Nash equilibrium, i.e.,
for any , , we have

(45)

where .
Proof: The second inequality in (45) is trivial. Here, we

shall prove the first inequality.
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For any adaptive follower , , by Lemma 6.1 there
exists a random , , such that for
and observation sizes we have

(46)
But,

(47)

where denotes the rest of the terms. We now show that
. We have

(48)

But,

(49)

where and are defined in (38) and (41), respectively.
By the Cauchy-Schwarz inequality we have

(50)

By the stability property of the MF control laws (36) there
exists a real number , , independent of both
and such that

Fig. 1. Four possible reference trajectories of the leaders (reference one is the
true reference trajectory) corresponding to parameters , , , in the set
, respectively, and the initial states of leaders and followers.

This and the Cauchy-Schwarz inequality result in

(51)

Hence, (49)–(51) imply that
.

But, by the construction of the MF system of equations for
the followers (15)–(19), is the optimal tracking control

with respect to and which collectively gen-
erate and . Therefore

(52)

where the last inequality follows from a similar argument as in
(47)–(51). Hence, (46) and (52) imply the first inequality in (45).

VII. NUMERICAL EXAMPLE

Consider a system of 50 agents with 20 leaders and 30 fol-
lowers. For simplicity and clarity of the simulation, we assume
that one follower, called the adaptive follower, needs to esti-
mate the true reference trajectory but this reference trajectory is
fully known to all other followers and all leaders. It is important
to note that the followers are estimating the true reference tra-
jectory independently. If all followers are adaptive the overall
computational load increases linearly with the population size of
the followers which is a manageable complexity. For the adap-
tive follower, the possible set of reference trajectories have the
general form , ,
where . We assume this set has
four parameters including the true parameter of the reference
trajectory which is reference one in Fig. 1. All the four possible
reference trajectories generated by each parameter of the set
and the initial states of all the leaders and followers are shown
in Fig. 1.
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Fig. 2. of likelihood ratios such that in each figure there is a fixed parameter of set in the numer-
ator of the ratio and the parameter in the denominator changes in the set (a) , (b) ,
(c) , (d) , .

The dynamics of leaders and followers are given in (1) and
(4), respectively, where the leaders and followers’ MF control
laws are given in (34) and (35). In this simulation we have
the following parameters: (i) In (1) and (4) matrices of the
leaders and followers are chosen randomly from a normal prob-
ability distribution around matrix
with identity covariance, while matrices of both leaders and
followers are identity matrices, and the noise intensity matrices
of both leaders and followers is ; (ii) In (3) and (6) let

and ; (iii) In (2) and (5) let ,
and the reference trajectory be reference one in Fig. 1; (iv)
In (28) let the observation size of the adaptive follower be 15,
and ; (v) In (31) let , step-size and the
adaptive follower observes a non-empty subset of the leaders’
trajectories of size 4.
It can be shown that this system satisfies the iden-

tifiability condition (A4). Fig. 2(a)–(d) correspond to
for , such that, for

instance, in Fig. 2(a) the parameter corresponding to
reference trajectory one is in the numerator and the plots in
this figure display for .
Based on the LRE defined in (31), Fig. 2(a)–(d) show that
for the adaptive follower for all since

(i.e., for all
, .

Fig. 3. State trajectories of leaders (red), non-adaptive followers (blue), and
the adaptive follower (black) (a) 2-D and (b) 2-D in time.

In Fig. 3(a) and (b) the state trajectories of leaders, followers
and the adaptive follower are shown. Based on in (31) the
adaptive follower initially considers the wrong reference trajec-
tory signals until , reference 3 (generated by ) from time
zero to one, and then locks on the true reference trajectory (ref-
erence one generated by ) as shown in Fig. 3(a) and (b).

VIII. CONCLUSION

In this paper, we have developed a linear-quadratic-Gaussian
(LQG) dynamic game based model of collective dynamics
which include leaders, followers and an unknown (to the
followers) reference trajectory for the leaders. The Mean Field
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(MF) (or Nash Certainty Equivalence (NCE)) LQG (MF LQG)
equations characterizing the Nash equilibrium for infinite popu-
lation systems were derived, and under appropriate conditions,
they have a unique solution leading to decentralized control
laws. Furthermore, for large but finite population systems,
such controls were shown to correspond to so-called -Nash
equilibria.
The computation of the followers’ control laws requires

knowledge of the complete reference trajectory which is in
general not known to the followers but is estimated by a
likelihood ratio based adaptation scheme based on noisy ob-
servations by followers of a random sample of leaders. Under
appropriate identifiability conditions, it is established that
this identification scheme is able to select the exact reference
trajectory model within a finite class of candidates in a finite
deterministic time almost surely as the number of samples goes
to infinity. As a result, the estimation based adaptive mean
field control laws of the followers together with the mean field
control laws of the leaders give rise to a dynamic stochastic
Nash equilibrium for the overall leader-follower system.

APPENDIX

Proof of Proposition 4.1: Here, we shall prove part (a). Part
(b) follows directly from part (a)
The terms and : The observation process (28) of

a generic adaptive follower with the observation subset
of cardinality is given by

(A1)

where in which and
are respectively the state trajectory and its expected value of
the -th leader, , where the defining parameter of

is assumed to be . For each parameter , the
closed-loop solution of the -th leader’s dynamics,
, in (1) with dynamical parameter is

where is the solution of the leaders’ offset tracking (11)
given in (20) in which the defining parameter of is assumed
to be . Furthermore, the expected value of the corre-
sponding closed-loop solution of the -th leader, ,
as given in (21) is

Therefore, we have

. Hence, for any we may
write

(A2)

where is the deterministic infinite population leaders’
centroid computed from the leaders’ MF system of equations,
(11)–(14), when the defining parameter of is assumed to be

. In a similar way, we may write (A1) as

(A3)

where . The term

: By (A2) and (A3) we have

(A4)

where , , and

.
In the rest of the proof take fixed and . Let

where is the empirical distribution associated with
the leaders. By (A2) and similar to (33) in [15] we have

. Therefore,

(A5)
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as goes to infinity. Hence, (A5) and the Cauchy-Schwarz
inequality imply that

(A6)

Since for any , , there exists a real number
, independent of such that

(A7)

By (A5), (A7) and the Cauchy-Schwarz inequality we have both

(A8)

and

(A9)

where is a fixed real number independent of given in (A7).
Analysis of disturbance terms via SLLN: By the Strong Law

of Large Numbers (SLLN) [36] we have

(A10)

and

(A11)

since for any , . Similarly, we have

(A12)

(A13)

(A14)

Analysis of influence of initial conditions: Since for

(A15)

with the right hand side independent of , and where positive
and are given in Remark 3.1, Lebesgue dominated conver-

gence theorem [36] implies that

(A16)

where the last equality is obtained by (A10). Again, by the
Cauchy-Schwarz inequality we have

(A17)

by (A7) and (A16); and

(A18)

by (A5) and (A16). By the same argument as in proving The-
orem 5.1 in [15] (see (31) in [15]) we get

(A19)
Again by the Cauchy-Schwarz inequality we have

(A20)
by (A7) and (A19),

(A21)

by (A5) and (A19), and

(A22)

by (A16) and (A19).
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Conclusion of the asymptotic analysis. By (A6), (A8)–(A9),
(A11)–(A14), (A16)–(A18) and (A19)–(A22) we obtain

(A23)

from (A4) for any fixed and , , and in an
analogous way one can show that

(A24)

Finally, (A23) and (A24) imply that for any fixed , and
, , we have

Proof of Theorem 5.1: Part (a) is a special case of The-
orem 4.1 in [15]. Here, we broadly follow the same approach to
prove Part (b). For an adaptive follower , , with
dynamical parameter by application
of the adaptive MF control law (35) we have the closed-loop
solution

(A25)

where is the solution of the tracking offset (15) given
by

(A26)

Denote , ,
and then by Assumption (A3)
we have . Subsequently, from (A26), we get

, where pos-
itive and are given in Remark 3.1, and hence,

, where since is
compact. Therefore, we have (a.s.)

(A27)

and

(A28)
Since is asymptotically stable (Remark 3.1) we have

(A29)

By the same argument as in proving Theorem 4.1 in [15] we
get

(A30)

Thus, it follows from (A27)–(A30) that

(A31)

Since we
have

(A32)

where since is compact.
Since , , and are independent of and , by (A31)
and (A32) we obtain (37).
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