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Abstract This paper considers mean field games in a multi-agent Markov decision
process (MDP) framework. Each player has a continuum state and binary action,
and benefits from the improvement of the condition of the overall population. Based
on an infinite horizon discounted individual cost, we show existence of a stationary
equilibrium, and prove its uniqueness under a positive externality condition. We
further analyze comparative statics of the stationary equilibrium by quantitatively
determining the impact of the effort cost.

1 Introduction

Mean field game theory provides a powerful methodology for reducing complexity
in the analysis and design of strategies in large population dynamic games [25, 30,
37]. Following ideas in statistical physics, it takes a continuum approach to specify
the aggregate impact of many individually insignificant players and solves a special
stochastic optimal control problem from the point of view of a representative player.
By this methodology, one may construct a set of decentralized strategies for the
original large but finite population model and show its ε-Nash equilibrium property
[25, 26, 30]. A related solution notion in Markov decision models is the oblivious
equilibrium [55]. The readers are referred to [12, 16, 17, 18, 19] for an overview on
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mean field game theory and further references. For mean field type optimal control,
see [12, 56], but the analysis in these models only involves a single decision maker.

Dynamic games within an MDP setting originated from the work of Shapley and
are called stochastic games [21, 50]. Their mean field game extension has been stud-
ied in the literature; see e.g. [3, 13, 46, 55]. Continuous time mean field games with
finite state space can be found in [22, 35]. Our previous work [27, 28] studied a
class of mean field games in a multi-agent Markov decision process (MDP) frame-
work. The players in [27] have continuum state spaces and binary action spaces,
and have coupling through their costs. The state of each player is used to model its
risk (or unfitness) level, which has random increase if no active control is taken.
Naturally, the one-stage cost of a player is an increasing function of its own state
apart from coupling with others. The motivation of this modeling framework comes
from applications including network security investment games and flue vaccination
games [34, 38, 40]; when the one-stage cost is an increasing function of the pop-
ulation average state, it reflects positive externalities. Markov decision processes
with binary action spaces also arise in control of queues and machine replacement
problems [4, 10]. Binary choice models have formed a subject of significant inter-
est [8, 15, 48, 49, 54]. Our game model has connection with anonymous sequential
games [33], which combine stochastic game modeling with a continuum of players.
In anonymous sequential games one determines the equilibrium as a joint state-
action distribution of the population and leaves the individual strategies unspecified
[33, Sec. 4], although there is an interpretation of randomized actions for players
sharing a given state.

For both anonymous games and MDP based mean field games, stationary solu-
tions with discount have been studied in the literature [3, 33]. These works give more
focus on fixed point analysis to prove the existence of a stationary distribution. This
approach does not address ergodic behavior of individuals or the population while
assuming the population starts from the steady-state distribution at the initial time.
Thus, there is a need to examine whether the individuals collectively have the ability
to move into that distribution at all when they have a general initial distribution. Our
ergodic analysis based approach will provide justification of the stationary solution
regarding the population’s ability to settle down around the limiting distribution.

The previous work [27, 28] studied the finite horizon mean field game by show-
ing existence of a solution with threshold policies, and under an infinite horizon
discounted cost further proved there is at most one stationary equilibrium for which
existence was not established. A similar continuous time modeling is introduced in
[57], which addresses Poisson state jumps and impulse control. It should be noted
that except for linear-quadratic models [9, 26, 31, 39, 43], mean field games rarely
have closed-form solutions and often rely on heavy numerical computations. Within
this context, the consideration of structured solutions, such as threshold policies, is
of particular interest from the point of view of efficient computation and simple
implementation. Under such a policy, the individual states evolve as regenerative
processes [6, 51].

By exploiting stochastic monotonicity, this paper adopts more general state tran-
sition assumptions than in [27, 28] and continues the analysis on the stationary equa-
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tion system. The first contribution of the present paper is the proof of the existence
of a stationary equilibrium. Our analysis depends on checking the continuous de-
pendence of the limiting state distribution on the threshold parameter in the best
response. The existence and uniqueness analysis in this paper has appeared in a
preliminary form in the conference paper [29].

A key parameter in our game model is the effort cost. Intuitively, this parameter
is a disincentive indicator of an individual for taking active efforts, and in turn will
further impact the mean field forming the ambient environment of that agent. This
suggests that we can study a family of mean field games parametrized by the effort
costs and compare their solution behaviors. We address this in the setup of com-
parative statics, which have a long history in the economic literature [24, 42, 47]
and operations research [53] and provide the primary means to analyze the effect of
model parameter variations. For dynamic models, such as economic growth mod-
els, the analysis follows similar ideas and is sometimes called comparative dynamics
[5, 11, 45, 47] by comparing two dynamic equilibria. In control and optimization,
such studies are usually called sensitivity analysis [14, 20, 32]. For comparative
statics in large static games and mean field games, see [1, 2]. Our analysis is accom-
plished by performing perturbation analysis around the equilibrium of the mean
field game.

The paper is organized as follows. Section 2 introduces the mean field stochastic
game. The best response is analyzed in Section 3. Section 4 proves existence and
uniqueness of stationary equilibria. Comparative statics are analyzed in Section 5.
Section 6 concludes the paper.

2 The Markov Decision Process Model

2.1 Dynamics and Costs

The system consists of N players denoted by Ai, 1 ≤ i ≤ N. At time t ∈ Z+ =
{0,1,2, . . .}, the state of Ai is denoted by xi

t , and its action by ai
t . For simplicity, we

consider a population of homogeneous (or symmetric) players. Each player has state
space S = [0,1] and action space A = {a0,a1}. A value of S may be interpreted as
a risk or unfitness level. A player can either take inaction (as a0) or make an active
effort (as a1). For an interval I, let B(I) denote the Borel σ -algebra of I.

The state of each player evolves as a controlled Markov process, which is affected
only by its own action. For t ≥ 0 and x ∈ S, the state has a transition kernel specified
by

P(xi
t+1 ∈ B|xi

t = x,ai
t = a0) = Q0(B|x), (1)

P(xi
t+1 = 0|xi

t = x,ai
t = a1) = 1, (2)
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where Q0(·|x) is a stochastic kernel defined for B ∈ B(S) and Q0([x,1]|x) = 1. By
the structure of Q0, the state of the player deteriorates if no active control is taken.
The vector process (x1

t , . . .x
N
t ) constitutes a controlled Markov process in higher

dimension with its transition kernel defining a product measure on (B(S))N for
given (x1

t , · · · ,xN
t ,a

1
t , . . . ,a

N
t ).

Define the population average state x(N)
t = 1

N ∑N
i=1 xi

t . The one stage cost of Ai is

c(xi
t ,x

(N)
t ,ai

t) = R(xi
t ,x

(N)
t )+ γ1{ai

t=a1},

where γ > 0 and γ1{ai
t=a1} is the effort cost. The function R ≥ 0 is defined on S×S

and models the risk-related cost. Let ν i denote the strategy of Ai. We introduce the
infinite horizon discounted cost

Ji(x1
0, . . . ,x

N
0 ,ν

1, . . . ,νN) = E
∞

∑
t=0

β tc(xi
t ,x

(N)
t ,ai

t), 1 ≤ i ≤ N. (3)

The standard methodology of mean field games may be applied by approximating
{x(N)

t , t ≥ 0} by a deterministic sequence {zt , t ≥ 0} which depends on the initial
condition of the system. One may solve the limiting optimal control problem of
Ai and derive a dynamic programming equation for its value function denoted by
vi(t,x,(zk)

∞
k=0), whose dependence on t is due to the time-varying sequence {zt , t ≥

0}. Subsequently one derives another equation for the mean field {zt , t ≥ 0} by
averaging the individual states across the population. This approach, however, has
the drawback of heavy computational load.

2.2 Stationary Equilibrium

We are interested in a steady-state form of the solution of the mean field game
starting with {zt , t ≥ 0}. Such steady state equations provide information on the long
time behavior of the solution and are of interest in their own right. They may also
be used for approximation purposes to compute strategies efficiently. We introduce
the system

v(x) = min
[
β
∫ 1

0
v(y)Q0(dy|x)+R(x,z), βv(0)+R(x,z)+ γ

]
, (4)

z =
∫ 1

0
xµ(dx), (5)

where µ is a probability measure on S. We say (v,z,µ ,ai(·)) is a stationary equilib-
rium to (4)-(5) if i) the feedback policy ai(·), as a mapping from S to {a0,a1}, is the
best response with respect to z in (4), ii) given an initial distribution of xi

0, {xi
t , t ≥ 0}

under the policy ai has its distribution converging (under a total variation norm or
only weakly) to the stationary distribution (or called limiting distribution) µ .
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We may interpret v as the value function of an MDP with cost J̄i(xi
0,z,ν

i) =
E ∑∞

t=0 β tc(xi
t ,z,a

i
t). An alternative way to interpret (4)-(5) is that the initial state of

Ai has been sampled according to the “right” distribution µ , and that z is obtained
by averaging an infinite number of such initial values by the law of large numbers
[52]. A similar solution notion is adopted in [2, 3] but ergodicity is not part of their
solution specification.

Let the probability measure µk be the distribution of R-valued random vari-
able Zk, k = 1,2. We say µ2 stochastically dominates µ1, and denote µ1 ≤st µ2,
if µ2((y,∞)) ≥ µ1((y,∞)) (or equivalently, P(Z2 > y) ≥ P(Z1 > y)) for all y. It is
well known [44] that µ1 ≤st µ2 if and only if∫

ψ(y)µ1(dy)≤
∫

ψ(y)µ2(dy) (6)

for all increasing function ψ (not necessarily strictly increasing) for which the two
integrals are finite. A stochastic kernel Q(B|x), 0 ≤ x ≤ 1, B ∈ B(S), is said to be
strictly stochastically increasing if φ(x) :=

∫
S ψ(y)Q(dy|x) is strictly increasing in

x ∈ S for any strictly increasing function ψ : [0,1]→R for which the integral is nec-
essarily finite. Q(·|x) is said to be weakly continuous if φ is continuous whenever
ψ is continuous.

Let {Yt , t ≥ 0} be a Markov process with state space [0,1], transition kernel
Q0(·|x) and initial state Y0 = 0. So each of its trajectories is monotonically in-
creasing. Define τθ

Q0
= inf{t|Yt ≥ θ} for θ ∈ (0,1). It is clear that τθ1

Q0
≤ τθ2

Q0
for

0 < θ1 < θ2 < 1.
The following assumptions are introduced.

(A1) {xi
0, i ≥ 1} are i.i.d. random variables taking values in S.

(A2) R(x,z) is a continuous function on S×S. For each fixed z, R(·,z) is strictly
increasing.

(A3) i) Q0(·|x) satisfies Q0([x,1]|x) = 1 for any x, and is strictly stochastically in-
creasing; ii) Q0(dy|x) is weakly continuous and has a positive probability density
q(y|x) for each fixed x < 1; iii) for any small 0 < δ < 1, infx Q0([1−δ ,1]|x)> 0.

(A4) R(x, ·) is increasing for each fixed x.
(A5) limθ↑1 Eτθ

Q0
= ∞.

(A3)-iii) will be used to ensure the uniform ergodicity of the controlled Markov
process. In fact, under (A3) we can show Eτθ

Q0
< ∞. The following condition is a

special case of (A3).

(A3′) There exists a random variable such that Q0(·|x) is equal to the law of
x+(x−1)ξ for some random variable ξ with probability density fξ (x)> 0, a.e.
x ∈ S.

When (A3′) holds, we can verify (A5) by analyzing the stopping time τξ =
inf{t|∏t

s=1 ξs ≤ 1− θ}, where {ξs,s ≥ 1} is a sequence of i.i.d. random variables
with probability density fξ . For existence analysis of the mean field game, (A5) will
be used to ensure continuity of the mean field when the threshold θ approaches 1.
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Proposition 1 The two conditions are equivalent:
i) µ1 ≤st µ2, and µ1 ̸= µ2;
ii)
∫
R ϕ(y)µ1(dy)<

∫
R ϕ(y)µ2(dy) for all strictly increasing function ϕ for which

both integrals are finite.

Proof. Assume i) holds. By [44, Theorem 1.2.16], we have

ϕ(Z1)≤st ϕ(Z2), (7)

and so Eϕ(Z1) ≤ Eϕ(Z2). Since µ1 ̸= µ2, there exists y0 such that P(Z1 > y0) ̸=
P(Z2 > y0). Take r such that ϕ(y0) = r. Then

P(ϕ(Z1)> r) ̸= P(ϕ(Z2)> r). (8)

If Eϕ(Z1) = Eϕ(Z2) were true, by (7) and [44, Theorem 1.2.9], ϕ(Z1) and ϕ(Z2)
would have the same distribution, which contradicts (8). We conclude Eϕ(Z1) <
Eϕ(Z2), which is equivalent to ii).

Next we show ii) implies i). Let ψ be any increasing function satisfying (6)
with two finite integrals. When ii) holds, we take ϕε = ψ + εy

1+|y| , ε > 0. Then∫
ϕε µ1(dy) <

∫
ϕε µ2(dy) holds for all ε > 0. Letting ε → 0, then (6) follows and

µ1 ≤st µ2. It is clear µ1 ̸= µ2. ⊓⊔

3 Best Response

For this section we assume (A1)-(A3). We take any fixed z ∈ [0,1] and consider (4)
as a separate equation, which is rewritten below:

v(x) = min
{

β
∫ 1

0
v(y)Q0(dy|x)+R(x,z), βv(0)+R(x,z)+ γ

}
. (9)

Here z is not required to satisfy (5). In relation to the mean field game, the resulting
optimal policy will be called the best response with respect to z. Denote G(x) =∫ 1

0 v(y)Q0(dy|x).

Lemma 1. i) Equation (9) has a unique solution v ∈C([0,1],R).
ii) v is strictly increasing.
iii) The optimal policy is determined as follows:

a) If βG(1)< βv(0)+ γ , ai(x)≡ a0.
b) If βG(1) = βv(0)+ γ , ai(1) = a1 and ai(x) = a0 for x < 1.
c) If βG(0)≥ βv(0)+ γ , ai(x)≡ a1.
d) If βG(0)< βv(0)+ γ < ρG(1), there exists a unique x∗ ∈ (0,1) and ai is a

threshold policy with parameter x∗, i.e., ai(x) = a1 if x ≥ x∗ and ai(x) = a0 if x < x∗.

Proof. Define the dynamic programming operator
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(L g)(x) = min
{

β
∫ 1

0
g(y)Q0(dy|x)+R(x,z), βg(0)+R(x,z)+ γ

}
, (10)

which is from C([0,1],R) to itself. The proving method in [27], [28, Lemma 6],
which assumed (A3′), can be extended to the present equation (9) in a straightfor-
ward manner.

In particular, for the proof of ii) and iii), we obtain progressively stronger prop-
erties of v and G. First, denoting g0 = 0 and gk+1 = L gk for k ≥ 0, we use a suc-
cessive approximation procedure to show that v is increasing, which implies that G
is continuous and increasing by weak continuity and monotonicity of Q0. Since R
is strictly increasing in x, by the right hand side of (9), we show that v is strictly
increasing, which implies the same property for G by strict monotonicity of Q0. ⊓⊔

For the optimal policy specified in part iii) of Lemma 1, we can formally denote
the threshold parameters for the corresponding cases: a) θ = 1+, b) θ = 1, c) θ =
0, and d) θ = x∗. Such a policy will be called a θ -threshold policy. We give the
condition for θ = 0 in the best response.

Lemma 2. For γ > 0 and v solving (9),

βG(0)≥ βv(0)+ γ (11)

holds if and only if

γ ≤ β
∫ 1

0
R(y,z)Q0(dy|0)−βR(0,z). (12)

Proof. We show necessity first. Suppose (11) holds. Note that G(x) is strictly in-
creasing on [0,1]. Equation (9) reduces to

v(x) = βv(0)+R(x,z)+ γ, (13)
βG(x)≥ βv(0)+ γ, ∀x. (14)

From (13), we uniquely solve

v(0) =
1

1−β
[R(0,z)+ γ], v(x) =

β
1−β

[R(0,z)+ γ]+R(x,z)+ γ, (15)

which combined with (14) implies (12).
We continue to show sufficiency. If γ > 0 satisfies (12), we use (15) to construct

v and verify (13) and (14). So v is the unique solution of (9) satisfying (11). ⊓⊔
The next lemma gives the condition for θ = 1+ in the best response.

Lemma 3. For γ > 0 and v solving (9), we have

βG(1)< βv(0)+ γ (16)

if and only if
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γ > β [Vβ (1)−Vβ (0)], (17)

where Vβ (x) ∈C([0,1],R) is the unique solution of

Vβ (x) = β
∫ 1

0
Vβ (y)Q0(dy|x)+R(x,z). (18)

Proof. By Banach’s fixed point theorem, we can show that (18) has a unique so-
lution. Next, by a successive approximation {V (k)

β ,k ≥ 0} with V (0)
β = 0 in the

fixed point equation, we can further show that Vβ is strictly increasing. Moreover,∫ 1
0 Vβ (y)Q0(dy|x) is increasing in x by monotonicity of Q0.

We show necessity. Since G is strictly increasing, (16) implies that the right hand
side of (9) now reduces to the first term within the parentheses and that v = Vβ . So
(17) follows.

To show sufficiency, suppose (17) holds. We have

β
∫ 1

0
Vβ (y)Q0(dy|x)≤ βVβ (1)< βVβ (0)+ γ, ∀x.

Therefore, v :=Vβ gives the unique solution of (9) and βG(1)< βv(0)+ γ . ⊓⊔

Example 1. Let R(x,z) = x(c+z), where c > 0. Take Q0(·|x) as uniform distribution
on [x,1]. Then (18) reduces to

Vβ (x) =
β

1− x

∫ 1

x
Vβ (y)dy+R(x,z).

Define ϕ(x) =
∫ 1

x Vβ (y)dy, x ∈ [0,1]. Then ϕ ′(x) = − β
1−x ϕ(x)−R(x,z) holds and

we solve

ϕ(x) = (1− x)β
∫ 1

x

R(s,z)
(1− s)β ds,

where the right hand side converges to 0 as x → 1−. We further obtain

Vβ (x) = β (1− x)β−1
∫ 1

x

R(s,z)
(1− s)β ds+R(x,z)

for x ∈ [0,1), and the right hand side has the limit R(1,z)
1−β as x → 1−. This gives a

well defined Vβ ∈C([0,1],R). Therefore, Vβ (0) =
β (c+z)

(1−β )(2−β ) . Then (17) reduces to

γ > 2β (c+z)
2−β .
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4 Existence of Stationary Equilibria

Assume (A1)-(A5) for this section. Define the class P0 of probability measures
on S as follows: ν ∈ P0 if there exist a constant cν ≥ 0 and a Borel measurable
function g(x)≥ 0 defined on [0,1] such that

ν(B) =
∫

B
g(x)dx+ cν 1B(0),

where B ∈B(S) and 1B is the indicator function of B. When restricted to (0,1], ν is
absolutely continuous with respect to the Lebesgue measure µLeb.

Let X be a random variable with distribution ν ∈P0. Set xi
t =X . Define Y0 = xi

t+1
by applying ai

t ≡ a0. Further define Y1 = xi
t+1 by applying the r-threshold policy ai

t
with r ∈ (0,1).

Lemma 4. The distribution νi of Yi is in P0 for i = 0,1.

Proof. Let q(y|x) denote the density function of Q0(·|x) for x ∈ [0,1), where
q(y|x) = 0 for y < x. Denote

g0(y) =
∫

0≤x<y
q(y|x)ν(dx), y ∈ (0,1),

and
g1(y) =

∫
0≤x<y∧r

q(y|x)ν(dx), y ∈ (0,1).

Then it can be checked that

P(Y0 ∈ B) =
∫

B
g0(y)dy, P(Y1 ∈ B) =

∫
B

g1(y)dy+P(X ≥ r)1B(0).

This completes the lemma. ⊓⊔

In order to show that (4)-(5) has a solution, we define a mapping Γ : S → S by
the following rule. For z ∈ [0,1], we solve (4) to obtain a well defined threshold
θ(z) ∈ [0,1]∪{1+}, which in turn determines a limiting distribution µθ(z) of the
closed-loop state process xi

t by Lemma A.1. Define

Γ (z) =
∫ 1

0
xµθ(z)(dx).

If Γ has a fixed point, we obtain a solution to (4)-(5).
We analyze the case where the best response gives a strictly positive threshold.

Assume

γ > β max
z∈[0,1]

∫ 1

0
[R(y,z)−R(0,z)]Q0(dy|0). (19)
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Note that under a zero threshold policy, the behavior of the state process is sensitive
to a positive perturbation of the threshold. The above condition ensures that the zero
threshold will not occur, and this will ensure continuity of Γ to facilitate the fixed
point analysis.

Lemma 5. Assume (19). Then Γ (z) is continuous on [0,1].

Proof. Let z0 ∈ [0,1] be fixed, giving a corresponding threshold parameter θ0 when
(9) is solved using z0. We check continuity at z0 and consider 3 cases.

Case i) θ0 ∈ (0,1). Let π0 be the stationary distribution with the θ0-threshold
policy. Consider any fixed ε > 0. There exists ε1 such that for all θ ∈ (θ0 − ε1,θ0 +

ε1) ⊂ (0,1), |
∫ 1

0 xπ(dx)−
∫ 1

0 xπ0(dx)| < ε , where π is the stationary distribution
associated with θ . This follows since limθ→θ0 ∥π −π0∥TV = 0 by Lemma A.3. Now
by the continuous dependence of the solution of the dynamic programming equation
on z, we can select a sufficiently small δ > 0 such that for all |z−z0|< δ , z generates
a threshold parameter θ ∈ (θ0 − ε1,θ0 + ε1), which implies |Γ (z)−Γ (z0)| ≤ ε .

Case ii) z0 gives θ0 = 1. Then Γ (z0) = 1. Fix any ε > 0. Then we can show there
exists ε1 such that for all θ ∈ (1− ε1,1), the associated stationary distribution πθ
gives |Γ (z0)−

∫ 1
0 xπθ (dx)|< ε , where we use (A5) and the right hand side of (C.1)

to estimate a lower bound for
∫ 1

0 xπθ (dx). Now, there exists δ > 0 such that any z
satisfying |z− z0| < δ gives a threshold θ either in (1− ε1,1) or equal to 1 or 1+;
for each case, we have |Γ (z0)−

∫ 1
0 xπθ (dx)|< ε .

Case iii) z0 gives θ0 = 1+. Then there exists δ > 0 such that any z satisfying
|z− z0|< δ gives a threshold parameter θ = 1+. Then Γ (z) = Γ (z0) = 1. ⊓⊔

Theorem 1. Assume (19). There exists a stationary equilibrium to (4)-(5).

Proof. Since Γ is a continuous function from [0,1] to [0,1] by Lemma 5, the theo-
rem follows from Brouwer’s fixed point theorem. ⊓⊔

Let xi,θ
t and πθ denote the state process and its stationary distribution, respec-

tively, under a θ -threshold policy. Denote z(θ) =
∫ 1

0 xπθ (dx). We have the first
comparison theorem on monotonicity.

Lemma 6. z(θ1)≤ z(θ2) for 0 < θ1 < θ2 < 1.

Proof. By the ergodicity of {xi,θl
t , t ≥ 0} in Lemma A.2, we have the representation

z(θl) = limk→∞
1
k ∑k−1

t=0 xi,θl
t w.p.1. Lemma C.2 implies z(θ1)≤ z(θ2). ⊓⊔

To establish uniqueness, we consider R(x,z) = R1(x)R2(z), where R1 ≥ 0 and
R2 ≥ 0, and which satisfies (A1)-(A5). We further make the following assumption.

(A6) R2 > 0 is strictly increasing on S.

This assumption indicates positive externalities since an individual benefits from
the decrease of the population average state. This condition has a crucial role in the
uniqueness analysis.

Given the product form of R, now (9) takes the form:
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V (x) =min
[
β
∫ 1

0
V (y)Q0(dy|x)+R1(x)R2(z), βV (0)+R1(x)R2(z)+ γ

]
.

Consider 0 ≤ z2 < z1 ≤ 1 and

Vl(x) =min
[
β
∫ 1

0
Vl(y)Q0(dy|x)+R1(x)R2(zl), βVl(0)+R1(x)R2(zl)+ γ

]
.

(20)

Denote the optimal policy as a threshold policy with parameter θl in [0,1] or equal
to 1+, where we follow the interpretation in Section 3 if θl = 1+. We state the
second comparison theorem about the threshold parameters under different mean
field parameters zl .

Theorem 2. θ1 and θ2 in (20) are specified according to the following scenarios:
i) If θ1 = 0, then we have either θ2 ∈ [0,1] or θ2 = 1+.
ii) If θ1 ∈ (0,1), we have either a) θ2 ∈ (θ1,1), or b) θ2 = 1, or c) θ2 = 1+.
iii) If θ1 = 1, θ2 = 1+.
iv) If θ1 = 1+, θ2 = 1+.

Proof. Since R2(z1)> R2(z2)> 0, we divide both sides of (20) by R2(zl) and define
γl =

γ
R2(zl)

. Then 0 < γ1 < γ2. The dynamic programming equation reduces to (D.2).
Subsequently, the optimal policy is determined according to Lemma D.4. ⊓⊔

Corollary 1. Assume (A6) in addition to the assumptions in Theorem 1. Then the
system (4)-(5) has a unique stationary equilibrium.

Proof. The proof is similar to [27, 28], which assumed (A3′). ⊓⊔.

5 Comparative Statics

This section assumes (A1)-A(6). Consider the two solution systems
v̄(x) = min

[
β
∫ 1

0
v̄(y)Q0(dy|x)+R1(x)R2(z̄), β v̄(0)+R1(x)R2(z̄)+ γ̄

]
,

z̄ =
∫ 1

0
xµ̄(dx),

(21)

and
v(x) = min

[
β
∫ 1

0
v(y)Q0(dy|x)+R1(x)R2(z), βv(0)+R1(x)R2(z)+ γ

]
,

z =
∫ 1

0
xµ(dx).

(22)
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Suppose γ̄ satisfies (19). By Corollary 1, (21) has a unique solution denoted by
(v̄, z̄, µ̄ , θ̄), where θ̄ is the threshold parameter. We further assume θ̄ ∈ (0,1). Sup-
pose γ > γ̄ . Then we can uniquely solve (v,z,µ,θ). The next theorem presents a
result on monotone comparative statics [53].

Theorem 3. If γ > γ̄ , we have

θ > θ̄ , z > z̄, v > v̄.

Proof. We prove by contraction. Assume θ ≤ θ̄ . Then by Lemma 6, z ≤ z̄, and
therefore, γ

R2(z)
> γ̄

R2(z̄)
. By the method of proving Theorem 2, we would establish

θ > θ̄ , which contradicts the assumption θ ≤ θ̄ . We conclude θ > θ̄ . By Lemma 6
and Remark B.1, we have z > z̄. For (21), we use value iteration to approximate v̄
by an increasing sequence of functions v̄k with v̄0 = 0. Similarly, v is approximated
by vk with v0 = 0. By induction, we have vk ≥ v̄k for all k. This proves v ≥ v̄.

Next, we have βv(0)+R1(x)R2(z)+ γ > β v̄(0)+R1(x)R2(z̄)+ γ̄ on [0,1], and
β
∫ 1

0 v(y)Q0(dy|x)+R1(x)R2(z)> β
∫ 1

0 v̄(y)Q0(dy|x)+R1(x)R2(z̄) on (0,1]. By the
method in [27, Lemma 2], we have v > v̄ on (0,1]. Then

∫ 1
0 v(y)Q0(dy|0) >∫ 1

0 v̄(y)Q0(dy|0). This further implies v(0)> v̄(0). ⊓⊔

Remark 1. It is possible to have θ = 1+ in Theorem 3.

By a continuity argument, we can further show limγ→γ̄(|θ − θ̄ |+ |z − z̄|+
supx |v(x)− v̄(x)|) = 0. In the analysis below, we take γ = γ̄ + ε for some small
ε > 0. For this section, we further introduce the following assumption.

(A7) For γ > γ̄ , (v,z,θ) has the representation

v(x) = v̄(x)+ εw(x)+o(ε), 0 ≤ x ≤ 1, (23)
z = z̄+ εzγ +o(ε), (24)
θ = θ̄ + εθγ +o(ε), (25)

where v,z,θ are solved depending on the parameter γ and w is a function defined
on [0,1]. The derivatives zγ and θγ at γ̄ exist, and R2(z) is differentiable on [0,1].
For 0 ≤ x < 1, the probability density function q(y|x), y ∈ [x,1], for Q0(dy|x) is
continuous on {(x,y)|0 ≤ x ≤ y < 1}. Moreover, ∂q(y|x)

∂x exists and is continuous
in (x,y).

We aim to provide a characterization of w,zγ ,θγ .

Theorem 4. The function w satisfies

w(x) =

β
∫ 1

0
w(y)Q0(dy|x)+R1(x)R′

2(z̄)zγ , 0 ≤ x ≤ θ̄ ,

βw(0)+R1(x)R′
2(z̄)zγ +1, θ̄ < x ≤ 1.

(26)
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Proof. We have

v̄(x) = β
∫ 1

0
v̄(y)Q0(dy|x)+R1(x)R2(z̄), x ∈ [0, θ̄ ]

and

v(x) = β
∫ 1

0
v(y)Q0(dy|x)+R1(x)R2(z), x ∈ [0,θ ].

Note that θ > θ̄ . For any fixed x ∈ [0, θ̄ ], we have

v(x)− v̄(x) = β
∫ 1

0
(v(y)− v̄(y))Q0(dy|x)+R1(x)(R2(z)−R2(z̄)).

Then the equation of w(x) for x ∈ [0, θ̄ ] is derived. We similarly treat the case x ∈
(θ̄ ,1]. ⊓⊔

Remark 2. In general w has discontinuity at x = θ̄ , so that β
∫ 1

0 w(y)Q0(dy|θ̄) ̸=
βw(0)+1. We give some interpretation. Let the value function be written as v(x,γ)
to explicitly indicate γ . Let the rectangle [0,1]× [γa,γb] be a region of interest in
which (x,γ) varies so that the value function defines a continuous surface. Then
(θ ,γ) starts at (θ̄ , γ̄) and traces out the curve of an increasing function along which
the expression of the value function has a switch, and the value function surface
may be visualized as two pieces glued together along the curve in a non-smooth
way. The value of w amounts to finding on the surface the directional derivative in
the direction of γ; and therefore, discontinuity may occur at x = θ̄ .

To better understand the solution of (26), we consider the general equation

W (x) =

β
∫ 1

0
W (y)Q0(dy|x)+R1(x)R′

2(z0)c0, 0 ≤ x ≤ θ0,

βW (0)+R1(x)R′
2(z0)c0 +1, θ0 < x ≤ 1,

(27)

where c0, z0 ∈ [0,1] and θ0 ∈ (0,1) are arbitrarily chosen and fixed. Let B([0,1],R)
be the Banach space of bounded Borel measurable functions with norm ∥g∥ =
supx |g(x)|. By a contraction mapping, we can show (27) has a unique solution
W ∈ B([0,1],R).

We continue to characterize the sensitivity θγ of the threshold. Recall the partial
derivative ∂q(y|x)

∂x .

Lemma 7. We have

β
[∫ 1

θ̄
v̄(y)

∂q(y|θ̄)
∂x

dy− v̄(θ̄)q(θ̄ |θ̄)
]
θγ = 1+βw(0)−β

∫ 1

θ̄
w(y)Q0(dy|θ̄).

(28)

Proof. Write γ = γ̄ + ε . By the property of the threshold, we have
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β
∫ 1

θ̄
v̄(y)Q0(dy|θ̄) = β v̄(0)+ γ̄, β

∫ 1

θ
v(y)Q0(dy|θ) = βv(0)+ γ̄ + ε.

Note that θ > θ̄ . We check

∆ :=
∫ 1

θ
v(y)Q0(dy|θ)−

∫ 1

θ̄
v̄(y)Q0(dy|θ̄)

=
∫ 1

θ
v(y)Q0(dy|θ)−

∫ 1

θ
v̄(y)Q0(dy|θ̄)−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄)

=
∫ 1

θ
v(y)Q0(dy|θ)−

∫ 1

θ
v̄(y)Q0(dy|θ)

+
∫ 1

θ
v̄(y)Q0(dy|θ)−

∫ 1

θ
v̄(y)Q0(dy|θ̄)−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄)

=ε
∫ 1

θ
w(y)q(y|θ)dy+(θ − θ̄)

∫ 1

θ
v̄(y)[∂q(y|θ)/∂x]dy− (θ − θ̄)v̄(θ̄)q(θ̄ |θ̄)

+o(ε + |θ − θ̄ |)

=ε
∫ 1

θ̄
w(y)q(y|θ̄)dy+(θ − θ̄)

∫ 1

θ̄
v̄(y)[∂q(y|θ̄)/∂x]dy− (θ − θ̄)v̄(θ̄)q(θ̄ |θ̄)

+o(ε + |θ − θ̄ |).

Note that
β∆ = β [v(0)− v̄(0)]+ ε.

We derive

β
∫ 1

θ̄
w(y)Q0(dy|θ̄)+βθγ

∫ 1

θ̄
v̄(y)

∂q(y|θ̄)
∂x

dy−β v̄(θ̄)q(θ̄ |θ̄)θγ = βw(0)+1.

This completes the proof. ⊓⊔

Lemma 8. Given the threshold θ̄ ∈ (0,1), the stationary distribution µ̄ has a prob-
ability density function (p.d.f.) p(x) on (0,1], and µ̄({0}) = π0, where (p,π0) is
determined by

π0 =
∫ 1

θ̄
p(x)dx, (29)

p(x) =


∫ x

0
q(x|y)p(y)dy+π0q(x|0), 0 ≤ x < θ̄ ,∫ θ̄

0
q(x|y)p(y)dy+π0q(x|0), θ̄ ≤ x ≤ 1.

(30)

Proof. Let δ0 be the dirac measure at x = 0. For any Borel subset B ⊂ [0,1], we have
µ̄(B) =

∫ 1
0 [Q0(B|y)1(y<θ̄)+δ0(B)1(y≥θ̄)]µ̄(dy). Then it can be checked that (p,π0)

satisfying the above equations determines the stationary distribution. Now we show
there exists a unique solution. Let π0 > 0 be a constant to be determined. Consider
the Volterra integral equation
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p(x) =
∫ x

0
q(x|y)p(y)dy+π0q(x|0), 0 ≤ x ≤ θ̄ , (31)

and we obtain a unique solution p in C([0, θ̄ ],R) (see e.g. [36, p.33]). In fact p is a
nonnegative function with

∫ θ̄
0 p(x)dx > 0. Subsequently, we further determine p ≥ 0

on [θ̄ ,1] by (30). The solution p on [0,1] depends linearly on π0 and so there exists
a unique π0 such that

∫ 1
0 p(x)dx+π0 = 1. After we uniquely solve p for (30), we

integrate both sides of this equation on [0,1] and obtain
∫ 1

0 p(x)dx =
∫ θ̄

0 p(x)dx+π0,
which implies that (29) is satisfied. ⊓⊔

5.1 Special Case

Now we suppose Q0(dy|x) has uniform distribution on [x,1] for all fixed 0 ≤ x < 1,
and R(x,z) = R1(x)R2(z) = x(c+ z), where R1(x) = x, R2(z) = c+ z and c > 0. In
this case, (A2)-(A6) are satisfied. For (21), we have

v̄(x) =


β

1− x

∫ 1

x
v̄(y)dy+R1(x)R2(z̄), 0 ≤ x ≤ θ̄ ,

β v̄(0)+R1(x)R2(z̄)+ γ̄, θ̄ ≤ x ≤ 1.
(32)

Denote φ(x) =
∫ 1

x v̄(y)dy. Then

φ̇(x) =− β
1− x

φ −R1(x)R2(z̄), 0 ≤ x ≤ θ̄ .

Taking the initial condition φ(0), we have

φ(x) = φ(0)(1− x)β − (1− x)β
∫ x

0

R1(τ)R2(z̄)
(1− τ)β dτ.

On [0, θ̄ ],

v̄(x) = (1− x)β−1v̄(0)−β (1− x)β−1
∫ x

0

R1(τ)R2(z̄)
(1− τ)β dτ +R1(x)R2(z̄)

= (1− x)β−1
[
v̄(0)− β (c+ z̄)

(1−β )(2−β )

]
+(c+ z̄)

[ β
(1−β )(2−β )

+
2x

2−β

]
.

By the continuity of v̄ and its form on [θ̄ ,1], we have

v̄(θ̄) = β v̄(0)+ θ̄(z̄+ c)+ γ̄. (33)

Hence,
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[(1− θ̄)β−1 −β ]v̄(0) =
β (c+ z̄)[(1− θ̄)β−1 −1]

(1−β )(2−β )
− β (c+ z̄)θ̄

2−β
+ γ̄. (34)

On the other hand, since v̄ is increasing and θ̄ is the threshold, we have

v̄(θ̄) = β
∫ 1

θ̄
[β v̄(0)+(c+ z)y+ γ̄]

1
1− θ̄

dy+(c+ z̄)θ̄

= β 2v̄(0)+β γ̄ +
β (c+ z̄)

2
+(

β
2
+1)(c+ z̄)θ̄ ,

which combined with (33) gives

β
2
(c+ z̄)(1+ θ̄) = (β v̄(0)+ γ̄)(1−β ). (35)

Given the special form of Q0(dy|x), (26) becomes

w(x) =


β

1− x

∫ 1

x
w(y)dy+R1(x)R′

2(z̄)zγ , 0 ≤ x ≤ θ̄ ,

βw(0)+R1(x)R′
2(z̄)zγ +1, θ̄ < x ≤ 1.

(36)

The computation of w now reduces to uniquely solving w(0). By the expression of
w on [0, θ̄ ], we have

w(θ̄) = β
∫ 1

θ̄
w(y)Q0(dy|θ̄)+R1(θ̄)R′

2(z̄)zγ

= β 2w(0)+β +R1(θ̄)R′
2(z̄)zγ +

βR′
2(z̄)zγ

1− θ̄

∫ 1

θ̄
R1(y)dy

= β 2w(0)+β + θ̄zγ +β zγ
1+ θ̄

2
. (37)

For x ∈ [0, θ̄ ], we further write

w(x) =
β

1− x

∫ 1

x
w(y)dy+R1(x)R′

2(z̄)zγ ,

and solve

w(x) = (1− x)β−1w(0)+ zγ x−β zγ

[ (1− x)β−1

(1−β )(2−β )
− 1

1−β
+

1− x
2−β

]
,

which further gives

w(θ̄) = (1− θ̄)β−1w(0)+ zγ θ̄ −β zγ

[ (1− θ̄)β−1

(1−β )(2−β )
− 1

1−β
+

1− θ̄
2−β

]
. (38)

By (37)–(38), we have
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[β−1(1− θ̄)β−1 −β ]w(0) = 1+ zγ

(1+ θ̄
2

+
(1− θ̄)β−1

(1−β )(2−β )
+

1− θ̄
2−β

− 1
1−β

)
.

(39)

Now from (30) we have

p(x) =


∫ x

0

1
1− y

p(y)dy+π0, 0 ≤ x < θ̄ ,∫ θ̄

0

1
1− y

p(y)dy+π0, θ̄ ≤ x ≤ 1,

which determines

p(x) =


π0

1− x
, 0 ≤ x < θ̄ ,

π0

1− θ̄
, θ̄ ≤ x ≤ 1,

where π0 =
1

2−ln(1−θ̄) . We determine the mean field

z̄ =
∫ θ̄

0
xp(x)dx+

∫ 1

θ̄
xp(x)dx = π0

(1− θ̄
2

− ln(1− θ̄)
)
. (40)

We further obtain dz
dγ at γ̄ as

zγ =
ln(1− θ̄)−3+ 4

1−θ̄
2[2− ln(1− θ̄)]2

θγ . (41)

We note that a perturbation analysis directly based on the general case (30) is more
complicated.

Now (28) reduces to[ β
1− θ̄

∫ 1

θ̄

v̄(y)
1− θ̄

dy− β v̄(θ̄)
1− θ̄

]
θγ = 1+βw(0)−β

∫ 1

θ̄

w(y)
1− θ̄

dy.

By the expression of v̄ in (32) and w in (36) at θ = θ̄ , we obtain

(1−β )v̄(θ̄)− θ̄(c+ z̄)
1− θ̄

θγ = 1+βw(0)−w(θ̄)+ θ̄zγ .

Recalling (33) and (37), we have

(1−β )[β v̄(0)+ γ̄ ]−β θ̄(z̄+ c)
1− θ̄

θγ −β (1−β )w(0)+
1+ θ̄

2
β zγ = 1−β . (42)

By combining (34), (35) and (40), we have
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Fig. 1 Value function v and perturbation function w

v̄(0) = [(1− θ̄)β−1 −β ]−1
[β (c+ z̄)[(1− θ̄)β−1 −1]

(1−β )(2−β )
− β (c+ z̄)θ̄

2−β
+ γ̄
]
, (43)

θ̄ =
2(1−β )(β v̄(0)+ γ̄)

β (c+ z̄)
−1, (44)

z̄ =
1

2− ln(1− θ̄)
(1− θ̄

2
− ln(1− θ̄)

)
. (45)

Next, combining (39), (41) and (42), we obtain

(1−β )[β v̄(0)+ γ̄ ]−β θ̄(z̄+ c)
1− θ̄

θγ −β (1−β )w(0)+
1+ θ̄

2
β zγ = 1−β , (46)

[β−1(1− θ̄)β−1 −β ]w(0) = 1+ zγ

(1+ θ̄
2

+
(1− θ̄)β−1

(1−β )(2−β )
+

1− θ̄
2−β

− 1
1−β

)
,

(47)

zγ =
ln(1− θ̄)−3+ 4

1−θ̄
2[2− ln(1− θ̄)]2

θγ . (48)

After (v̄(0), z̄, θ̄) has been determined from (43)-(45), the above gives a linear equa-
tion system with unknowns w(0), θγ and zγ .

Example 2. We take R1(x) = x and R2(z) = 0.5+ z, γ̄ = 0.5. We numerically solve
(43)-(45) to obtain v̄(0) = 3.497854, θ̄ = 0.485162, z̄ = 0.345854, and (46)-(48)
to obtain w(0) = 4.563055, θγ = 1.162861, zγ = 0.336380. The curves of v(x) and
w(x) are displayed in Fig. 1, where w has a discontinuity at x = θ̄ as discussed
in Remark 2. The positive value of θγ implies the threshold increases with γ , as
asserted in Theorem 3.
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6 Conclusion

This paper considers mean field games in a framework of binary Markov decision
processes (MDP) and establishes existence and uniqueness of stationary equilib-
ria. The resulting policy has a threshold structure. We further analyze comparative
statics to address the impact of parameter variations in the model.

For future research, there are some potentially interesting extensions. One may
consider a heterogenous population and study the emergence of free-riders who
care more about their own effort costs and have less incentive to contribute to the
common benefit of the population. Another modelling of a quite different nature
involves negative externalities where other players’ improvement brings more pres-
sure on the player in question. For instance, this arises in competitions for market
share. The modelling and analysis of the agent behavior will be of interest.

Appendix A: Preliminaries on Ergodicity

Assume (A3). The next two lemmas determine the limiting distribution of the state
process under threshold policies.

Lemma A.1. i) If θ = 0, then the distribution of xi
t remains to be the dirac measure

δ0 for all t ≥ 1, for any xi
0.

ii) If θ = 1 or θ = 1+, the distribution of xi
t converges to the dirac measure δ1

weakly.

Proof. Part i) is obvious and part ii) follows from (A3). ⊓⊔

Let xi,θ
t denote the state process generated by the θ -threshold policy with θ ∈

(0,1), and let Pt
θ (x, ·) be the distribution of xi,θ

t given xi,θ
0 = x.

Lemma A.2. For θ ∈ (0,1), {xi,θ
t , t ≥ 0} is uniformly ergodic with stationary prob-

ability distribution πθ , i.e.,

sup
x∈S

∥Pt
θ (x, ·)−πθ∥TV ≤ Krt , (A.1)

for some constants K > 0 and r ∈ (0,1), where ∥ ·∥TV is the total variation norm of
signed measures.

Proof. The proof is similar to that of the ergodicity theorem in [27], which assumed
(A3′). We use (A3)-iii) to estimate r. ⊓⊔

We take Cs = {0} as a small set and θ ∈ (0,1). The θ -threshold policy gives

P(xi,θ
2 = 0|xi,θ

0 = 0)≥
∫ 1

θ
q(y|0)dy =: ε0. (A.2)
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So for any Borel set B, P(xi,θ
2 ∈B|xi,θ

0 = 0)≥ ε0δ0(B), where δ0 is the dirac measure.
For θ ′ in a small neighborhood of θ , we can ensure that the θ ′-threshold policy gives

P(xi,θ ′

2 ∈ B|xi,θ ′

0 = 0)≥ ε0

2
δ0(B). (A.3)

Lemma A.3. Suppose θ ,θ ′ ∈ (0,1) for two threshold policies. Let the correspond-
ing stationary distributions of the state process by π and π ′. Then

lim
θ ′→θ

∥π ′−π∥TV = 0.

Proof. Fix θ ∈ (0,1). By (A.3) and [41], there exist a neighborhood I0 = (θ −
κ0,θ +κ0)⊂ (0,1) and two constants C, r ∈ (0,1) such that for all θ ′ ∈ I0,

∥Pt
θ (x, ·)−π∥TV ≤Crt , ∥Pt

θ ′(x, ·)−π ′∥TV ≤Crt , ∀x ∈ [0,1].

Subsequently,

∥π ′−π∥TV ≤ ∥Pt
θ ′(0, ·)−Pt

θ (0, ·)∥TV +2Crt .

For any given ε > 0, fix a large k0 such that 2Crk0 ≤ ε/2. We show for all θ ′ suffi-
ciently close to θ ,

∥Pk0
θ ′ (0, ·)−Pk0

θ (0, ·)∥TV ≤ ε/2.

Given two probability measures µt , µ ′
t , define the probability measures µt+1 and

µ ′
t+1,

µt+1(B) =
∫

S
Pθ (y,B)µt(dy), µ ′

t+1(B) =
∫

S
Pθ ′(y,B)µ ′

t (dy),

for Borel set B ⊂ [0,1]. Then

|µt+1(B)−µ ′
t+1(B)| ≤ |

∫
S

Pθ (y,B)µt(dy)−
∫

S
Pθ ′(y,B)µt(dy)|

+ |
∫

S
Pθ ′(y,B)µt(dy)−

∫
S

Pθ ′(y,B)µ ′
t (dy)|

=: D1 +D2.

We have

D2 =
∣∣∣∫

S
Pθ ′(y,B)µt(dy)−

∫
S

Pθ ′(y,B)µ ′
t (dy)

∣∣∣≤ 2∥µt −µ ′
t∥TV.

Denote θ = min{θ ,θ ′} and θ = max{θ ,θ ′}. Then

D1 =
∣∣∣−∫

[θ ,θ)
Q0(B|y)µt(dy)+1B(0)µt([θ ,θ))

∣∣∣≤ µt([θ ,θ)).

Setting µ0 = µ ′
0 = δ0, then µt = Pt

θ (0, ·), µ ′
t = Pt

θ ′(0, ·). Hence,
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|Pt+1
θ ′ (0,B)−Pt+1

θ (0,B)| ≤ 2∥Pt
θ ′(0, ·)−Pt

θ (0, ·)∥TV +Pt
θ (0, [θ ,θ)), (A.4)

which implies

∥Pt+1
θ ′ (0, ·)−Pt+1

θ (0, ·)∥TV ≤ 4∥Pt
θ ′(0, ·)−Pt

θ (0, ·)∥TV +2Pt
θ (0, [θ ,θ

′)). (A.5)

For µ0 = µ ′
0 = δ0, we have P1

θ (0, ·) = P1
θ ′(0, ·). It is clear from (A.5) and Lemma 4

that for each t ≥ 1,

lim
θ ′→θ

∥Pt
θ ′(0, ·)−Pt

θ (0, ·)∥TV = 0, lim
θ ′→θ

Pt
θ (0, [θ ,θ)) = 0.

Therefore, for the fixed k0, there exists δ > 0 such that for all θ ′ satisfying |θ ′−θ |<
δ , ∥Pk0

θ ′ (0, ·)−Pk0
θ (0, ·)∥TV < ε

2 and ∥π ′−π∥TV ≤ ε . The lemma follows. ⊓⊔

Appendix B: Cycle Average of A Regenerative Process

Let 0 < r < r′ < 1. Consider a Markov process {Yt , t ≥ 0} with state space [0,1]
and transition kernel QY (·|y) which satisfies QY ([y,1]|y) = 1 for any y ∈ [0,1] and is
stochastically increasing. Suppose Y0 ≡ y0 < r. Define the stopping times

τ = inf{t|Yt ≥ r}, τ ′ = inf{t|Yt ≥ r′}.

Lemma B.1. If Eτ < ∞, then E ∑τ
t=0 Yt < ∞ and

E ∑τ
t=0 Yt

1+Eτ
=

EY0 +EY1 +∑∞
k=1 E(Yk+11{Yk<r})

2+∑∞
k=1 P(Yk < r)

. (B.1)

Proof. Since 0≤Yt ≤ 1 w.p. 1, E ∑τ
t=0 Yt ≤ 1+Eτ . It is clear that {τ ≥ k}= {Yk−1 <

r} for k ≥ 1. We have

Eτ =
∞

∑
k=1

P(τ ≥ k) = 1+
∞

∑
k=1

P(Yk < r), (B.2)

and

E
τ

∑
t=0

Yt = E
∞

∑
k=1

(
k

∑
t=0

Yt

)
1{τ=k}

= EY0 +EY1 +
∞

∑
k=2

E(Yk1{τ≥k})

= EY0 +EY1 +
∞

∑
k=1

E(Yk+11{Yk<r}).

The lemma follows. ⊓⊔
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Lemma B.2. Assume Eτ ′ < ∞. We have

E ∑τ
t=0 Yt

1+Eτ
≤ E ∑τ ′

t=0 Yt

1+Eτ ′
. (B.3)

Proof. Eτ < ∞ since τ ≤ τ ′ w.p.1. For k ≥ 1, denote

pk = P(Yk < r), ηk = P(r ≤ Yk < r′),

mk = E(Yk+11{Yk<r}), ∆k = E(Yk+11{r≤Yk<r′}).

By Lemma B.1,

E ∑τ
t=0 Yt

1+Eτ
=

EY0 +EY1 +∑∞
k=1 mk

2+∑∞
k=1 pk

,

E ∑τ ′
t=0 Yt

1+Eτ ′
=

EY0 +EY1 +∑∞
k=1(mk +∆k)

2+∑∞
k=1(pk +ηk)

.

So (B.3) is equivalent to

(EY0 +EY1 +
∞

∑
k=1

mk)(
∞

∑
k=1

ηk)≤ (
∞

∑
k=1

∆k)(2+
∞

∑
k=1

pk). (B.4)

By the stochastic monotonicity of QY , we have

E[Yk+11{Yk<r}|Yk] = 1{Yk<r}

∫ 1

0
yQY (dy|Yk)

≤ 1{Yk<r}

∫ 1

0
yQY (dy|r) =: cr1{Yk<r}.

Note that

cr =
∫

y≥r
yQY (dy|r)≥ r. (B.5)

Moreover,

E[Yk+11{r≤Yk<r′}|Yk] = 1{r≤Yk<r′}

∫ 1

0
yQY (dy|Yk)

≥ cr1{r≤Yk<r′}.

It follows that

mk = E[Yk+11{Yk<r}]≤ cr pk, ∆k = E[Yk+11{r≤Yk<r′}]≥ crηk. (B.6)

Since Y0 = y0 < r,

E[Y1|Y0] =
∫ 1

0
yQY (dy|Y0)≤ cr.
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Hence, E(Y0 +Y1)≤ r+ cr. By (B.6) and (B.5),

(EY0 +EY1 +
∞

∑
k=1

mk)(
∞

∑
k=1

ηk)− (
∞

∑
k=1

∆k)(2+
∞

∑
k=1

pk)

≤(r+ cr + cr

∞

∑
k=1

pk)(
∞

∑
k=1

ηk)− cr(
∞

∑
k=1

ηk)(2+
∞

∑
k=1

pk)

=(r− cr)
∞

∑
k=1

ηk ≤ 0,

which establishes (B.4). ⊓⊔

Remark B.1. If for each y∈ [0,1), QY (dx|y) has probability density function qY (x|y)>
0 for x ∈ (y,1), then cr > r and ηk > 0 for all k ≥ 1. In this case, a strict inequality
holds for (B.3). ⊓⊔

Appendix C

We assume (A3). Let {xi,θ
t , t ≥ 0} be the Markov chain generated by a θ -threshold

policy with 0 < θ < 1, where xi,θ
0 is given. By Lemma A.2, {xi,θ

t , t ≥ 0} is ergodic.
We next define an auxiliary Markov chain {Yt , t ≥ 0} with Y0 = 0 and the same
transition kernel as xi,θ

t . Denote St = ∑t
i=0 Yi for t ≥ 0. Define τ = inf{t|Yt ≥ θ}.

Lemma C.1. We have

lim
k→∞

1
k

k−1

∑
t=0

Yt =
ESτ

1+Eτ
w.p.1. (C.1)

Proof. By (A3), we can show Eτ < ∞. Since {Yt , t ≥ 0} has the same transition
probability kernel as {xi,θ

t , t ≥ 0}, it is ergodic, and therefore the left hand side of
(C.1) has a constant limit w.p.1. Define T0 = 0 and Tn as the time for {Yt , t ≥ 0} to
return to state 0 for the nth time. So T1 = τ +1. Define Bn = ∑Tn−1

t=Tn−1
Yt for n ≥ 1. We

observe that {Yt , t ≥ 0} is a regenerative process (see e.g. [6, 51] and [7, Theorem
4]) with regeneration times {Tn,n ≥ 1} and that {Bn,n ≥ 1} is a sequence of i.i.d.
random variables. Note that B1 = Sτ is the sum of τ +1 terms. By the strong law of
large numbers for regenerative processes [6, pp. 177], the lemma follows. ⊓⊔

Suppose 0 < θ < θ ′ < 1. Then there exist two constants Cθ ,Cθ ′ such that

lim
k→∞

1
k

k−1

∑
t=0

xi,θ
t =Cθ , lim

k→∞

1
k

k−1

∑
t=0

xi,θ ′
t =Cθ ′ , w.p.1.

Lemma C.2. We have Cθ ≤Cθ ′ .
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Proof. Due to the ergodicity of the Markov chain, Cθ (resp., Cθ ′ ) does not depend
on xi,θ

0 (resp., xi,θ ′

0 ). Therefore, limk→∞
1
k ∑k−1

t=0 Yt = Cθ w.p.1. The lemma follows
from Lemmas C.1 and B.2. ⊓⊔

Appendix D: An Auxiliary MDP

Assume (A3). This appendix introduces an auxiliary control problem to show the
effect of the effort cost on the threshold parameter of the optimal policy. The state
and control processes {(xi

t ,a
i
t), t ≥ 0} are specified by (1)-(2). The cost has the form

Jr
i = E

∞

∑
t=0

ρ t(R1(xi
t)+ r1{ai

t=a1}
)
, (D.1)

where R1 is continuous and strictly increasing on [0,1] and ρ ∈ (0,1), r ∈ (0,∞).
Let r take two different values 0 < γ1 < γ2 and write the corresponding dynamic
programming equation

vl(x) = min
{

ρ
∫ 1

0
vl(y)Q0(dy|x)+R1(x), ρvl(0)+R1(x)+ γl

}
, l = 1,2, x ∈ S.

(D.2)

By the method in proving Lemma 1, it can be shown that there exists a unique
solution vl ∈ C([0,1],R) and that the optimal policy ai,l(x) is a threshold policy. If
ρ
∫ 1

0 vl(y)Q0(dy|1)< ρvl(0)+γl , ai,l(x)≡ a0, and we follow the notation in Section
3 to denote the threshold θl = 1+. Otherwise, ai,l(x) is a θl-threshold policy with
θl ∈ [0,1], i.e., ai,l(x) = a1 if x ≥ θl , and ai,l(x) = a0 if x < θl .

Lemma D.1. If θ1 ∈ (0,1), θ2 ̸= θ1.

Proof. We prove by contradiction. Suppose for some θ ∈ (0,1),

θ1 = θ2 = θ . (D.3)

Under (D.3), the resulting optimal policy leads to the representation (see e.g. [23,
pp. 22])

vl(x) = E
∞

∑
t=0

ρ t
[
R1(xi

t)+ γl1{ai
t=a1}

]
, l = 1,2,

where {xi
t , t ≥ 0} is generated by the θ -threshold policy ai

t(x
i
t) and xi

0 = x. Denote
δ21 = γ2 − γ1.

For fixed x ≥ θ and xi
0 = x, denote the resulting optimal state and control pro-

cesses by {(x̂i
t , â

i
t), t ≥ 0}. Then âi

0 = a1 w.p.1., and

v2(x)− v1(x) = δ21 +δ21E
∞

∑
t=1

ρ t1{âi
t=a1}, x ≥ θ .
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Next consider xi
0 = 0 and denote the optimal state and control processes by

{(x̌i
t , ǎ

i
t), t ≥ 0}. Then

v2(0)− v1(0) = δ21E
∞

∑
t=0

ρ t1{ǎi
t=a1} =: ∆ .

It is clear that x̂i
1 = 0 w.p.1. By the optimality principle, {(x̂i

t , â
i
t), t ≥ 1} may be

interpreted as the optimal state and control processes of the MDP with initial state 0
at t = 1. Hence the two processes {(x̂i

t , â
i
t), t ≥ 1} and {(x̌i

t , ǎ
i
t), t ≥ 0}, where x̌i

0 = 0,
have the same finite dimensional distributions. In particular, âi

t+1 and ǎi
t have the

same distribution for t ≥ 0. Therefore,

E
∞

∑
t=1

ρ t−11{âi
t=a1} = E

∞

∑
t=0

ρ t1{ǎi
t=a1}.

It follows that

v2(x)− v1(x) = δ21 +ρ∆ , ∀x ≥ θ . (D.4)

Combining (D.2) and (D.3) gives

ρ
∫ 1

0
vl(y)Q0(dy|θ) = ρvl(0)+ γl , l = 1,2,

which implies

ρ
∫ 1

0
[v2(x)− v1(x)]Q0(dx|θ) = δ21 +ρ∆ . (D.5)

By Q0([0,θ)|θ) = 0 and (D.4), (D.5) further yields ρ(δ21+ρ∆) = δ21+ρ∆ , which
is impossible since 0 < ρ < 1 and δ21 + ρ∆ > 0. Therefore, (D.3) does not hold.
This completes the proof. ⊓⊔

For the MDP with cost (D.1), we continue to analyze the dynamic programming
equation

vr(x) = min
[
ρ
∫ 1

0
vr(y)Q0(dy|x)+R1(x), ρvr(0)+R1(x)+ r

]
. (D.6)

For each fixed r ∈ (0,∞), we obtain the optimal policy as a threshold policy with
threshold parameter θ(r). By evaluating the cost (D.1) associated with the two poli-
cies ai

t(x
i
t)≡ a0 and ai

t(x
i
t)≡ a1, respectively, we have the prior estimate

vr(x)≤ min
{

R1(1)
1−ρ

, R1(x)+
r+ρR1(0)

1−ρ

}
. (D.7)

On the other hand, let {xi
t , t ≥ 0} with xi

0 = x be generated by any fixed Markov
policy. Then
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E
∞

∑
t=0

ρ t(R1(xi
t)+ r1{ai

t=a1})≥ R1(x)+
∞

∑
t=1

ρ tR1(0),

which implies

vr(x)≥ R1(x)+
ρR1(0)
1−ρ

. (D.8)

If r > ρR1(1)
1−ρ , it follows from (D.7) that

ρ
∫ 1

0
vr(y)Q0(dy|x)< ρvr(0)+ r, ∀x, (D.9)

i.e., θ(r) = 1+.

Lemma D.2. There exists δ > 0 such that for all 0 < r < δ ,

ρ
∫ 1

0
vr(y)Q0(dy|x)> ρvr(0)+ r, ∀x, (D.10)

and so θ(r) = 0.

Proof. By (D.8),

ρ
∫ 1

0
vr(y)Q0(dy|x)≥ ρ

∫ 1

0
R1(y)Q0(dy|x)+ ρ2R1(0)

1−ρ

≥ ρ
∫ 1

0
R1(y)Q0(dy|0)+ ρ2R1(0)

1−ρ
,

and (D.7) gives

ρvr(0)+ r ≤ ρR1(0)
1−ρ

+
r

1−ρ
.

Since R1(x) is strictly increasing,

CR1 :=
∫ 1

0
R1(y)Q0(dy|0)−R1(0)> 0.

And we have

ρ
∫ 1

0
vr(y)Q0(dy|x)− (ρvr(0)+ r)≥ ρCR1 −

r
1−ρ

.

It suffices to take δ = ρ(1−ρ)CR1 . ⊓⊔
Define the nonempty sets

Ra0 = {r > 0|(D.9) hods}, Ra1 = {r > 0|(D.10) holds}.

Remark D.1. We have (ρR1(1)
1−ρ ,∞)⊂ Ra0 and (0,δ )⊂ Ra1 .
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Lemma D.3. Let (r,vr) be the parameter and the associated solution in (D.6).
i) If r > 0 satisfies

ρ
∫ 1

0
vr(y)Q0(dy|x)≤ ρvr(0)+ r, ∀x, (D.11)

then any r′ > r is in Ra0 .
ii) If r > 0 satisfies

ρ
∫ 1

0
vr(y)Q0(dy|x)≥ ρvr(0)+ r, ∀x, (D.12)

then any r′ ∈ (0,r) is in Ra1 .

Proof. i) For r′ > r, vr′ is uniquely solved from (D.6) with r′ in place of r. We can
use (D.11) to verify

vr(x) = min
[

ρ
∫ 1

0
vr(y)Q0(dy|x)+R1(x), ρvr(0)+R1(x)+ r′

]
.

Hence vr′ = vr for all x ∈ [0,1]. It follows that ρ
∫ 1

0 vr′(y)Q0(dy|x)< ρvr′(0)+ r′ for
all x. Hence r′ ∈ Ra0 .

ii) By (D.6) and (D.12), vr(0) =
R1(0)+r

1−ρ , and subsequently,

vr(x) = ρvr(0)+R1(x)+ r =
ρR1(0)+ r

1−ρ
+R1(x).

By substituting vr(0) and vr(x) into (D.12), we obtain

ρR1(0)+ r ≤ ρ
∫ 1

0
R1(y)Q0(dy|x), ∀x. (D.13)

Now for 0 < r′ < r, we construct vr′(x), as a candidate solution to (D.6) with r
replaced by r′, to satisfy

vr′(0) = ρvr′(0)+R1(0)+ r′, vr′(x) = ρvr′(0)+R1(x)+ r′, (D.14)

which gives

vr′(x) =
ρR1(0)+ r′

1−ρ
+R1(x). (D.15)

We show that vr′(x) in (D.15) satisfies

ρvr′(0)+ r′ < ρ
∫ 1

0
vr′(y)Q0(dy|x), ∀x, (D.16)
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which is equivalent to ρR1(0) + r′ < ρ
∫ 1

0 R1(y)Q0(dy|x) for all x, which in turn
follows from (D.13). By (D.14) and (D.16), vr′ indeed satisfies (D.6) with r replaced
by r′. So r′ ∈ Ra1 . ⊓⊔

Further define
r = supRa1 , r = infRa0 .

Lemma D.4. i) r satisfies ρ
∫ 1

0 vr(y)Q0(dy|0) = ρvr(0)+ r, and θ(r) = 0.
ii) r satisfies ρ

∫ 1
0 vr(y)Q0(dy|1) = ρvr(1) = ρvr(0)+ r, and θ(r) = 1.

iii) We have 0 < r < r < ∞.
iv) The threshold θ(r) as a function of r ∈ (0,∞) is continuous and strictly in-

creasing on [r,r].

Proof. i)-ii) By Lemmas D.2 and D.3, we have 0 < r ≤ ∞ and 0 ≤ r < ∞. Assume
r = ∞; then Ra1 = (0,∞) giving Ra0 = /0, a contradiction. So 0 < r < ∞. For δ > 0
in Lemma D.2, we have (0,δ ) ⊂ Ra1 . Therefore, 0 < r̄ < ∞. Note that vr depends
on the parameter r continuously, i.e., lim|r′−r|→0 supx |vr′(x)− vr(x)|= 0. Hence

ρ
∫ 1

0
vr(y)Q0(dy|0)≥ ρvr(0)+ r.

Now assume

ρ
∫ 1

0
vr(y)Q0(dy|0)> ρvr(0)+ r. (D.17)

Then there exists a sufficiently small ε > 0 such that (D.17) still holds when (r+
ε,vr+ε) replaces (r,vr); since g(x) =

∫ 1
0 vr+ε(y)Q0(dy|x) is increasing in x, then

r+ε ∈ Ra1 , which is impossible. Hence (D.17) does not hold, and this proves i). ii)
can be shown in a similar manner.

To show iii), assume

0 < r < r < ∞. (D.18)

Then, recalling Remark D.1, there exist r′ ∈ Ra0 and r′′ ∈ Ra1 such that

0 < r < r′ < r′′ < r < ∞.

By Lemma D.3-i), r′′ ∈ Ra0 , and then r′′ ∈ Ra0 ∩Ra1 = /0, which is impossible.
Therefore, (D.18) does not hold and we conclude 0 < r ≤ r < ∞. We further assume
r = r. Then i)-ii) would imply

∫ 1
0 vr(y)Q0(dy|0) = vr(1), which is impossible since

vr is strictly increasing on [0,1] and (A3) holds. This proves iii).
iv) By the definition of r and r, it can be shown using (D.6) that θ(r) ∈ (0,1) for

r ∈ (r,r). By the continuous dependence of the function vr(·) on r and the method of
proving [27, Lemma 10], we can show the continuity of θ(r) on (0,1), and further
show limr→r+ θ(r) = 0 and limr→r− θ(r) = 1. So θ(r) is continuous on [r,r]. If θ(r)
were not strictly increasing on [r,r], there would exist r < r1 < r2 < r such that

θ(r1)≥ θ(r2). (D.19)
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If θ(r1) > θ(r2) in (D.19), by the continuity of θ(r), θ(r) = 0, θ(r) = 1, and the
intermediate value theorem we may find r′ ∈ (r,r1) such that θ(r′1) = θ(r2). Next,
we replace r1 by r′1. Thus if θ(r) is not strictly increasing, we may find r1 < r2 from
(r,r) such that θ(r1) = θ(r2) ∈ (0,1), which is a contradiction to Lemma D.1. This
proves iv). ⊓⊔

Remark D.2. By Lemmas D.3 and D.4, Ra1 = (0,r) and Ra0 = (r,∞).
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