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Abstract
This paper studies asymptotic solvability of a linear quadratic mean field social opti-
mization problem with controlled diffusions and indefinite state and control weights.
Starting with an N -agent model, we employ a rescaling approach to derive a low-
dimensional Riccati ordinary differential equation system, which characterizes a
necessary and sufficient condition for asymptotic solvability. The decentralized control
obtained from the mean field limit ensures a bounded optimality loss in minimizing
the social cost having magnitude O(N ), which implies an O(1/N ) optimality loss
per agent. We further quantify the efficiency gain of the social optimum with respect
to the solution of the mean field game.

Keywords Optimal control · Mean field · Social optimization · Large-scale systems ·
Dynamic programming · Riccati equations

Mathematics Subject Classification 49N10 · 93A15 · 93E20

1 Introduction

In social optimization problems, multiple interacting agents have individual perfor-
mance objectives but cooperatively optimize for the goal of the whole group. For
instance, such scenarios arise in communication networks seeking network utility
maximization, where the total utility of the users is maximized [21,31,40]; the exten-
sion to the case of multi-period optimization can be found in [31,60]. Similarly, in
the economic literature social welfare functions have long been studied [45,47] as a
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key concept of welfare economics. A typical form that they take is the sum of the
individual utilities and is accordingly called a utilitarian social welfare function.

In this paper, we are concerned with mean field social optimization involving N
agents which have mean field coupling through their individual dynamics and costs
andminimize a social cost. Consider a system of N agents, denoted byAi , 1 ≤ i ≤ N .
The state process Xi (t) of Ai satisfies the following stochastic differential equation
(SDE)

dXi (t) = (AXi (t) + Bui (t) + GX (N )(t))dt + (B1ui (t) + D)dWi (t)

+ (B0u
(N )(t) + D0)dW0(t), (1)

where we have the state Xi (t) ∈ R
n , the control ui (t) ∈ R

n1 , the mean field state
X (N ):=(1/N )

∑N
i=1 Xi , and the control mean field u(N ):=(1/N )

∑N
i=1 ui . The initial

states {Xi (0) : 1 ≤ i ≤ N } are independentwithEXi (0) = xi (0) andE|Xi (0)|2 < ∞.
The individual noise processes {Wi : 1 ≤ i ≤ N } are 1-dimensional independent
standard Brownian motions, which are also independent of {Xi (0) : 1 ≤ i ≤ N }.
The common noise W0 is a 1-dimensional standard Brownian motion independent of
{Wi : 1 ≤ i ≤ N } and {Xi (0) : 1 ≤ i ≤ N }.

The individual cost of agent Ai , 1 ≤ i ≤ N , is given by

Ji (u1, . . . , uN ) = E

[ ∫ T

0

(
[Xi (t) − Γ X (N )(t)]2Q + [ui (t)]2R

)
dt

+ [Xi (T ) − Γ f X
(N )(T )]2Q f

]

,

where we denote the quadratic form [y]2M = yT My for a symmetric matrix M . The
social cost is defined as

J (N )
soc (u1, . . . , uN ):=

N∑

i=1

Ji (u1, . . . , uN ). (2)

The constant matrices A, B, B0 B1, D, D0, G, Γ , Q, R, Γ f and Q f above have
compatible dimensions, andQ, R andQ f are symmetricmatrices. Theweightmatrices
Q, R and Q f may be indefinite. Linear quadratic (LQ) stochastic optimal control with
indefinite controlweightswasfirst studied in [20],which shows that the optimal control
problem may still be well posed when the control enters the diffusion term. The more
general case with indefinite state and control weight matrices are treated in [53,65].
It is shown in [53] that the solvability of the stochastic optimal control problem is
equivalent to the solvability of a generalized differential Riccati-type equation. For
discrete-time LQ control problems with indefinite weight matrices, see [25,54].

The above social optimization model differs from mean field games in that the
agents in the latter are non-cooperative. For general theory and applications of mean
field games, the reader is referred to [7,11,12,15,17,28–30,36,42]. LQ mean field
games are a particularly attractive class of problems due to their explicit solutions
[5,9,37,39,46,55].
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There has been a growing literature related to mean field social optimization. An
LQ mean field social optimization problem has been considered in [38] with additive
noise and positive definite control weight and positive semi-definite state weight. That
work constructs the limiting decision problems for the individual agents by use of
the person-by-person (PbP) optimality principle where a selected agent takes non-
anticipative control perturbations. This method is applied to a nonlinear model in
[58]. The work [19] studies social optimization with indefinite state weight. Social
optima are analyzed in [61] for a mean field jump LQ model governed by a common
Markovian chain. An LQ social optimum model is studied in [56] for a large number
of weakly coupled agents choosing cooperatively between multiple destinations. A
nonlinear social optimization problem for an infinite horizon economy is analyzed in
[49], where necessary conditions of the social optimum are derived by using Gâteaux
derivatives and Lagrangian multipliers treatingmarket clearing equality constraints. A
discrete-time LQ social optimization problem involving a finite number of subsystems
withmean-field state coupling is analyzed in [3] to obtain optimal control laws for both
full observation and partial observation cases; this problem is called team-optimization
to emphasize decentralized information structures. Further analysis of the mean field
limit is developed in [4]. Static mean field teams with general costs are studied in [57]
under certain symmetry assumptions. It is shown that the solution obtained in the limit
problem has asymptotic optimality for the model with a finite number of agents. Mean
field optimal control and flocking behavior of many interacting agents can be found
in [1,27].

For a given N , the social optimum with the additive social cost may be viewed as a
particular way of achieving a Pareto efficient solution in the sense that no individual
can further improve for itself without causing at least another agent to get worse. But
Pareto optimality is a much weaker optimality notion and usually contains a set of
qualified solutions. The reader may consult [24] for characterization of Pareto efficient
solutions in cooperative differential games. Both mean field games and mean field
social optima are analyzed and compared in [13,43]. The bounds for their efficiency
difference are provided in [13] while [43] shows that the mean field equilibrium may
be interpreted as the solution of a modified social optimization problem. Performance
comparisons of the two solution approaches are presented in [63] for a static mean
field model arising in dense wireless networks.

1.1 Related Literature onMean Field Type Optimal Control

It is worthwhile to mention the related area of mean field type optimal control prob-
lems which involve the state process together with its mean [2] or its distribution (see
e.g. [8,41]). Moreover, the model involves only one decision maker, which immedi-
ately affects the distribution of the underlying state process. The optimal control is
characterized by a stochastic maximum principle under a convex control set in [2],
and this approach is extended to deal with more general dynamics and a possibly
non-convex control set [10], which derives the maximum principle containing a sec-
ond order adjoint equation. For LQ mean field type optimal control, [64] derives the
solution via a system of forward-backward stochastic differential equations (FBSDEs)
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and further decouples the FBSDEs by Riccati equations to obtain the optimal control
in an explicit form. For discrete-time mean field type control, the reader is referred to
[23,48].

Instead of just including mean terms in the model, the more general framework
considers optimal control of McKean–Vlasov dynamics, where both the system state
and its law appear in the dynamics and costs. The optimal control law has the interpre-
tation of a cooperative equilibrium in a large population model of N agents coupled
by the empirical distribution of their states [16], but the search for this cooperative
equilibrium is based on the restriction that all agents use the same local feedback con-
trol law ϕ(t, Xi ) to test optimality. The connection between large population social
optimal control and optimal control of McKean–Vlasov dynamics is further addressed
in [41] and [22]. It is shown in [41] that the social optimal control problems of a large
number of interacting state processesmay be connected with optimal control problems
of McKean–Vlasov type. Specifically, each relaxed optimal control of the McKean–
Vlasov model may be obtained as the limit of relaxed εN -optimal controls for the
N -agent social optimal control problems, where εN → 0 as N → ∞. Similar limit
theorems are obtained in [22] formore general systemdynamics togetherwith common
noise, where the state equation uses a conditional law of the state-control pair given
the common noise. The dynamic programming approach is applied to mean field type
optimal control in [8] to derive the so-called master equation. For McKean–Vlasov
optimal control problems with common noise, the dynamic programming principle is
established in [6,52] by taking the distribution of the state as an abstract state subject to
stochastic McKean–Vlasov dynamics. An application to LQ optimal control problems
is presented in [51] dealing with positive (semi-)definite weight matrices.

While there is a close connection between large population social optimal control
and McKean–Vlasov optimal control (or mean field type control in general) as ana-
lyzed in [22,41], the two classes of models have crucial differences. Firstly, the actual
mechanisms affecting the mean field are different in that a single agent in the social
optimization model has little impact on the mean field. Secondly, theMcKean–Vlasov
optimal control model typically assumes homogeneous agents while social optimiza-
tion allows heterogeneity; for instance, the LQmodel in [38] allows the agents to have
individual dynamic parameters varying from a continuum. Finally, the two classes of
problems interpret time consistency differently, and the social optimum may easily
attain time consistency due to the particular mechanism generating the mean field (this
point will be illustrated by examples in Sect. 5.4).

1.2 Our Approach

Our study of the model (1)–(2) deals with control-dependent noises and indefinite
control and state weight matrices. More importantly, here we take a new perspec-
tive by adopting a notion called asymptotic solvability. Roughly speaking, asymptotic
solvability, which is formally defined in Sect. 3, is the solvability of the social opti-
mization problem (1)–(2) as N → ∞. Some early analysis has been presented in the
conference paper [32]. The asymptotic solvability approach was initially developed
in LQ mean field games [34,35]; that approach attempts to answer such a question for
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the games: Does there exist an intrinsic low-dimensional object that governs the large
system’s solution generating a good asymptotic behavior when the population size
tends to infinity. The approach shares similarity with the convergence problem in the
direct approach of mean field games [14]. In [34,35], a necessary and sufficient condi-
tion for asymptotic solvability of N -player LQ mean field games is obtained through
analyzing a low-dimensional ordinary differential equation (ODE) system derived by
applying a rescaling method to the sequence of high-dimensional centralized solu-
tions. Asymptotic solvability of LQ mean field games with a major player is studied
in [44].

For the N -agent LQ optimal control problem (1)–(2) with indefinite weights, one in
principlemayuse aRiccati equation to determine feedbackoptimal control [59].Due to
the indefinite weights, the equation does not always have a solution, and determining
the existence of a solution becomes a highly nontrivial task, especially when N is
large. This poses a conceptual obstacle before we can even think of deriving a mean
field limit from a centralized solution and consider decentralized individual controls
with little optimality loss. In this case, our formulation of the asymptotic solvability
problem is particularly relevant for addressing this existence issue by coming up with
a simple criterion. Then our further analysis will show that some simpler limiting
objects (as two ODEs in a lower-dimensional space) encodes all essential information
for a well behaved system when N → ∞. Specifically, our starting point here is to
apply dynamic programming to derive the large-scale Riccati equation. This approach
has several advantages for the present model over the person-by-person optimality
argument in [38]. First, the Riccati equation-based approach, as long as its solvability
holds, ensures optimality from the beginning. In contrast, the PbP optimality-based
approach is much harder to apply due to the common noise. Second, the large Riccati
equation is particularly suitable for applying the rescaling technique as in [35]. The
LQ social optimization model in [18,38] involves positive semi-definite state weight
and positive definite control weight, and the players have only independent noises.

Next, we determine the closed-loop dynamics under the centralized optimal control
Uo and use the mean field limit to derive a set of decentralized individual controlsUd

for which each agent uses only its own state and the mean field limit state. While the
social optimum J (N )

soc (Uo) has magnitude O(N ), the decentralized control is shown to
achieve bounded optimality loss with respect to the social optimum as N → ∞, i.e.,
0 ≤ J (N )

soc (Ud) − J (N )
soc (Uo) = O(1), which is tighter than the upper bound O(

√
N )

for optimality loss obtained by the method in [38].
In [4] it is shown for a mean field team the mean field limit based policy can have an

overall optimality loss of O(1), but they consider a relatively simple linear model with
uncontrolled noise and do not face high nonlinearity of the Riccati equation. Their
model has positive definite weights, and asymptotic solvability automatically holds.

We also note that the limit theorems in [22,41] relate mean field social optimization
to control ofMcKean–Vlasov dynamics. Their nonlinearmodels havemuch generality
but the compactness based analysis needs restrictive conditions on the control caused
growth of the cost integrand. These conditions cannot cover our indefinite quadratic
cost.
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1.3 Contributions and Organization

We extend the asymptotic solvability notion, initially introduced for mean field games,
to social optimization. A key feature of our system is that the state and control weight
matrices may be indefinite.

Due to the highly nonlinear Riccati ODEs resulting from controlled diffusion terms,
the development of the rescaling technique is more challenging than in [34,35,44]. We
further obtain a tight upper bound of the optimality loss of the obtained decentralized
controls, and quantify the efficiency gain with respect to mean field game solutions.

The paper is organized as follows. In Sect. 2, we introduce the LQmean field social
optimization model and derive the large-scale Riccati equation for the optimal control.
Section 3 introduces the asymptotic solvability notion and presents a necessary and
sufficient condition for asymptotic solvability via a low-dimensional Riccati ODE
system. Section 4 gives the closed-loop state dynamics under the optimal control
and its mean field limit. Section 5 analyzes the associated decentralized control by
proving a bounded optimality gap result, and compares the performance with themean
field game solution. This section also compares mean field social optimization with
mean field type optimal control. Section 6 gives some numerical examples. Section 7
concludes the paper.

1.4 Notation

We use I to denote an identity matrix of compatible dimensions, and sometimes write
Ik to indicate the k × k identity matrix. For a vector or matrix F , |F | denotes the
Euclidean norm of F . For any l × m matrix Z = (zi j )1≤i≤l,1≤ j≤m , we denote the
l1-norm ‖Z‖l1 := ∑

i, j |zi j |. Let Sn be the set of n × n real symmetric matrices. We
denote by 1k×l a k × l matrix with all entries equal to 1, by ⊗ the Kronecker product,
and by the column vectors {ek1, . . . , ekk } the canonical basis of Rk .

2 State Feedback for LQ Social Optimization

Define

X(t) =
⎡

⎢
⎣

X1(t)
...

XN (t)

⎤

⎥
⎦ ∈ R

Nn, U (t) =
⎡

⎢
⎣

u1(t)
...

uN (t)

⎤

⎥
⎦ ∈ R

Nn1 ,

A = diag[A, . . . , A] + 1N×N ⊗ G
N ∈ R

Nn×Nn,

B0 = 1N×1 ⊗ B0
N ∈ R

Nn×n1, D0 = 1N×1 ⊗ D0 ∈ R
Nn×1,

B̂k = eNk ⊗ B ∈ R
Nn×n1, Bk = eNk ⊗ B1 ∈ R

Nn×n1,

Dk = eNk ⊗ D ∈ R
Nn×1, 1 ≤ k ≤ N .
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We write (1) in a compact form:

dX(t) =
(
AX(t) +

N∑

i=1

B̂i ui (t)
)
dt +

N∑

i=1

(Bi ui (t) + Di )dWi

+
(
B0

N∑

i=1

ui (t) + D0

)
dW0. (3)

Define matrices:

Q1 = diag [Q, . . . , Q] ∈ R
Nn×Nn, Q2 = 1N×N ⊗ (QΓ /N ) ∈ R

Nn×Nn,

Q1 f = diag
[
Q f , . . . , Q f

] ∈ R
Nn×Nn, Q2 f = 1N×N ⊗ (QΓ

f /N ) ∈ R
Nn×Nn,

Q = Q1 + Q2, Q f = Q1 f + Q2 f , R = diag[R, . . . , R] ∈ R
Nn1×Nn1,

where

QΓ = Γ T QΓ − QΓ − Γ T Q, QΓ
f = Γ T

f Q f Γ f − Q f Γ f − Γ T
f Q f . (4)

The social cost (2) may be rewritten as

J (N )
soc (U ) =E

[ ∫ T

0
([X(t)]2Q + [U (t)]2R)dt + [X(T )]2Q f

]

. (5)

2.1 The Formal Derivation of the Riccati Equation

Denote the value function byV (t, x) corresponding to the initial condition X(t) = x =
(xT1 , . . . , xTN )T at time t . The Hamilton–Jacobi–Bellman (HJB) equation of V (t, x) is

− ∂V

∂t
= min

U∈RNn1

[
UT

(
R + M2

(∂2V

∂x2

))
U +

(∂T V

∂x
B̂ + M1

(∂2V

∂x2

))
U

]

+ ∂T V

∂x
Ax + xTQx + M0

(∂2V

∂x2

)
,

V (T , x) = xTQ f x, (6)

where we define the mappings

M0(Z) = 1

2

N∑

i=1

DT
i ZDi + 1

2
DT
0 ZD0, M1(Z) =

N∑

i=1

DT
i ZBiei + DT

0 ZB0̂I,

M2(Z) = 1

2

N∑

i=1

eTi B
T
i ZBiei + 1

2
ÎTBT

0 ZB0̂I, Z ∈ R
Nn×Nn,
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which are from R
Nn×Nn to R, R1×Nn1 , and R

Nn1×Nn1 , respectively, and

Î = 11×N ⊗ In1 = (
In1, . . . , In1

) ∈ R
n1×Nn1, B̂ = (B̂1, . . . , B̂N ) ∈ R

Nn×Nn1,

ei = (eNi ⊗ In1)
T = (

0, . . . , In1 , . . . , 0
) ∈ R

n1×Nn1, 1 ≤ i ≤ N .

The minimizer in (6) is

U = −1

2

(
R + M2

(∂2V

∂x2

))−1(∂T V

∂x
B̂ + M1

(∂2V

∂x2

))T
, (7)

provided that R + M2(
∂2V
∂x2 ) is positive-definite.

We substitute the minimizer (7) into (6) to obtain

−∂V

∂t
= − 1

4

(∂T V

∂x
B̂ + M1

(∂2V

∂x2

))(
R + M2

(∂2V

∂x2

))−1(∂T V

∂x
B̂ + M1

(∂2V

∂x2

))T

+ M0

(∂2V

∂x2

)
+ ∂T V

∂x
Ax + xTQx. (8)

Suppose V (t, x) takes the following form

V (t, x) = xTP(t)x + 2xTS(t) + r(t), (9)

where P is symmetric.
We substitute (9) into (8) to derive the ODE system of P(t), S(t), and r(t):

{
Ṗ(t) = PB̂ (R + 2M2(P))−1 B̂TP − PA − ATP − Q,

P(T ) = Q f , R + 2M2(P(t)) > 0, ∀t ∈ [0, T ], (10)

{
Ṡ(t) = PB̂(R + 2M2(P))−1(B̂TS + MT

1 (P)) − ATS,

S(T ) = 0,
(11)

⎧
⎪⎨

⎪⎩

ṙ(t) = (ST B̂ + M1(P))(R + 2M2(P))−1(B̂TS + MT
1 (P))

−2M0(P),

r(T ) = 0.

(12)

Remark 1 If P is a solution of the Riccati ODE (10) on [0, T ], it is the unique solution.
This holds since the vector field of the ODE has a local Lipschitz property along the
solution trajectory satisfying R + 2M2(P(t)) > 0.

Remark 2 If (10) has a (unique) solution on [0, T ], then after substituting P, (11)
becomes a linear ODE of S and has a unique solution on [0, T ]. We further uniquely
solve r on [0, T ].
The inverse matrix (R + 2M2(P))−1 involving P results in high nonlinearity of the
Riccati ODE (10). This is due to the control dependent noises in (1).
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In the above, the HJB equation is used to provide a formal derivation of the ODE
system of (P,S, r). The following theorem gives the optimal feedback control law
Uo(t) using the ODEs (10)–(11). We can show the optimality of Uo(t) by applying a
completion-of-squares technique to the cost.

Theorem 1 Suppose that (10) has a solution P on [0, T ]. Then we may uniquely solve
(11) and (12), and the social optimal control under the cost (5) is

Uo(t) = −(R + 2M2(P(t)))−1[B̂T (P(t)X(t) + S(t)) + MT
1 (P(t))]. (13)

The optimal cost with the initial condition (t, x) is given by (9).

Proof The theorem follows from [65, Theorem 6.6.1], [53, Corollary 3.2] and
Remark 2. 
�

3 Asymptotic Solvability

By Theorem 1, the Riccati ODE (10) plays a central role in the study of the social
optimization problem (1)–(2). For this reason we start by analyzing (10).

Definition 1 The social optimization problem (1)–(2) has asymptotic solvability (by
feedback control) if there exists N0 > 0 such that for all N ≥ N0, (10) has a solution
P on [0, T ] and

sup
N≥N0

sup
0≤t≤T

‖P(t)‖l1 /N < ∞, (14)

R + 2M2(P(t)) ≥ c0 I , ∀N ≥ N0, ∀t ∈ [0, T ], (15)

for some fixed constant c0 > 0.

We give a heuristic argument for making a correct guess of the factor 1/N required
in (14). Consider the case t = 0 with no noise. LetA1 be assigned the initial condition
X1(0) = cx0, where x0 ∈ R

n is a unit vector and c is a large constant. All other
agents take zero initial states. By checking the N individual costs, we have a rough
upper bound O(c2) for the optimal social cost, uniformly with respect to N . Recalling
(9), for large c, the optimal cost is XT (0)P(0)X(0) = c2xT0 P11(0)x0, where the
submatrix P11(0) is determined by the first n rows and the first n columns in P(0).
Hence, we expect to have ‖P11(0)‖l1 = O(1). The other N − 1 diagonal submatrices
inP(0) have the same bound by symmetry. The off-diagonal submatrices of dimension
n × n are expected to have much smaller norm due to weak coupling. This suggests
‖P(0)‖l1 = O(N ).

The test of asymptotic solvability by directly checking the sequence of P matrices
is unfeasible due to the high nonlinearity and increasing dimensions of (10). A central
question is whether we can determine asymptotic solvability by some simple criterion.
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3.1 Main Result

For Λ1 ∈ Sn and Λ2 ∈ Sn , define the mappings

R1(Λ1) = R + BT
1 Λ1B1, (16)

R2(Λ1,Λ2) = R + BT
1 Λ1B1 + BT

0 (Λ1 + Λ2)B0. (17)

Then R1 is from Sn to Sn , and R2 is from Sn × Sn to Sn .
Define the Sn-valued matrix functions

Ψ1(Λ1):=Λ1B(R1(Λ1))
−1BTΛ1 − Λ1A − ATΛ1 − Q, (18)

Ψ2(Λ1,Λ2):=(Λ1 + Λ2)B(R2(Λ1,Λ2))
−1BT (Λ1 + Λ2)

− Λ1B(R1(Λ1))
−1BTΛ1 − [Λ1G + Λ2(A + G)]

−
[
GTΛ1 + (AT + GT )Λ2

]
− QΓ , (19)

provided that each inverse matrix exists, where Λ1 ∈ Sn and Λ2 ∈ Sn . The matrix
QΓ is specified in (4).

Denote the following ODE system

{
Λ̇1(t) = Ψ1(Λ1(t)),

Λ1(T ) = Q f , R1(Λ1(t)) > 0, ∀t ∈ [0, T ], (20)

{
Λ̇2(t) = Ψ2(Λ1(t),Λ2(t)),

Λ2(T ) = QΓ
f , R2(Λ1(t),Λ2(t)) > 0, ∀t ∈ [0, T ]. (21)

If (20)–(21) has a solution on [0, T ], the solution is unique by similar reasoning
as in Remark 1, and both Λ1(t) and Λ2(t) are Sn-valued. The following theorem
characterizes asymptotic solvability of the social optimization problem (1)–(2) in
terms of the ODE system (20)–(21), which is a key result of this paper.

Theorem 2 The social optimization problem (1)–(2) has asymptotic solvability if and
only if the ODE system (20)–(21) has a solution (Λ1,Λ2) on [0, T ].

The rest of this subsection is devoted to proving Theorem 2.

Lemma 1 Suppose that (10) has a solution P on [0, T ]. Then P has the representation

P =

⎡

⎢
⎢
⎢
⎣

Π N
1 ΠN

2 · · · ΠN
2

ΠN
2 ΠN

1 · · · ΠN
2

...
...

. . .
...

ΠN
2 ΠN

2 · · · ΠN
1

⎤

⎥
⎥
⎥
⎦

, (22)

where both ΠN
1 (t) and ΠN

2 (t) are n × n symmetric matrix functions of t ∈ [0, T ].
Proof See Appendix A. 
�
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Lemma 2 Suppose that (10) has a solution P(t) on [0, T ]. Then (11) has a unique
solution S on [0, T ] with the representation

S(t) = (SNT (t), . . . , SNT (t))T ∈ R
Nn×1, SN (t) ∈ R

n×1. (23)

Proof See Appendix B. 
�

Intuitively, if we fix xi = x for all i , the value function V (t, x) is expected to be of
the order O(N ). On the other hand, (9) and (22) together give

V (t, x) = NxTΠN
1 (t)x + (N 2 − N )xTΠN

2 (t)x + 2NxT SN (t) + r(t) = O(N ).

This suggests we should have |ΠN
1 (t)| = O(1), |ΠN

2 (t)| = O(1/N ), and |SN (t)| =
O(1) for any given t ∈ [0, T ]. Based on the above heuristic reasoning on the order of
magnitude of |ΠN

1 | and |ΠN
2 |, we follow the rescaling method in [34,35,44] to define

ΛN
1 (t):=ΠN

1 (t), ΛN
2 (t):=NΠN

2 (t). (24)

Then in view of Lemma 1, R + 2M2(P) may be denoted in the form

R + 2M2(P) =

⎡

⎢
⎢
⎢
⎣

FN K N · · · K N

K N FN · · · K N

...
...

. . .
...

K N K N · · · FN

⎤

⎥
⎥
⎥
⎦

, (25)

where

K N (t) = (1/N )BT
0 [ΛN

1 (t) + (1 − 1/N )ΛN
2 (t)]B0,

FN (t) = K N (t) + R1(Λ
N
1 (t)).

Lemma 3 SupposeP has a solution on [0, T ]. Then given t ∈ [0, T ],λ is an eigenvalue
of R + 2M2(P) if and only if either det[λI − FN − (N − 1)K N ] = 0 or det[λI −
FN + K N ] = 0; moreover, for each t,

R1(Λ
N
1 (t)) > 0, (26)

R2(Λ
N
1 (t),ΛN

2 (t)) − (1/N )BT
0 ΛN

2 (t)B0 > 0. (27)

Proof The lemma follows from direct calculation of the characteristic polynomial
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det[λI − (R + 2M2(P))]

= det

⎡

⎢
⎢
⎢
⎣

λI − FN −K N · · · −K N

−K N λI − FN · · · −K N

...
...

. . .
...

−K N −K N · · · λI − FN

⎤

⎥
⎥
⎥
⎦

= det[λI − FN − (N − 1)K N ] · (det[λI − FN + K N ])N−1.

Note that both FN and K N are Sn-valued. The positive definiteness property in
(26)–(27) follows from R + 2M2(P) > 0 and FN −K N > 0, FN + (N − 1)K N

>0. 
�
Since R + 2M2(P) is symmetric, the inverse matrix (R + 2M2(P))−1 also takes

the following symmetric form

(R + 2M2(P))−1 =

⎡

⎢
⎢
⎢
⎣

HN EN · · · EN

ENT HN · · · EN

...
...

. . .
...

ENT ENT · · · HN

⎤

⎥
⎥
⎥
⎦

, (28)

where EN (t) and HN (t) are n1 × n1 submatrices.

Lemma 4 The submatrix EN in (28) satisfies EN (t) = ENT (t).

Proof See Appendix B. 
�
By (25) and (28), we get the relation

FN HN + (N − 1)K N EN = I ,

FN EN + K N HN + (N − 2)K N EN = 0,

which gives HN = EN + (R1(Λ
N
1 ))−1. We obtain

EN = (1/N ){[R2(Λ
N
1 ,ΛN

2 ) − (1/N )BT
0 ΛN

2 B0]−1 − (R1(Λ
N
1 ))−1}, (29)

HN = EN + (R1(Λ
N
1 ))−1, (30)

where each matrix inverse can be shown to exist by Lemma 3.
Our method below is to reduce the ODE of P(t) to some lower-order ODE system.

We introduce the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λ̇N
1 (t) = Ψ1(Λ

N
1 ) + g1(N ,ΛN

1 ,ΛN
2 ),

Λ̇N
2 (t) = Ψ2(Λ

N
1 ,ΛN

2 ) + g2(N ,ΛN
1 ,ΛN

2 ),

ΛN
1 (T ) = Q f + (1/N )QΓ

f , ΛN
2 (T ) = QΓ

f ,

R1(Λ1(t)) > 0, R2(Λ1(t),Λ2(t)) > 0,

R2(Λ
N
1 (t),ΛN

2 (t)) − (1/N )BT
0 ΛN

2 (t)B0 > 0, ∀t ∈ [0, T ],

(31)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1969–S2010 S1981

where g1 and g2 are defined as

g1(N ,ΛN
1 ,ΛN

2 )

:=ΛN
1 BEN BTΛN

1 + (1 − 1/N )(ΛN
2 BEN BTΛN

1 + ΛN
1 BEN BTΛN

2 )

+ (1/N − 1/N 2)ΛN
2 B[HN + (N − 2)EN ]BTΛN

2

− (1/N )[(ΛN
1 G + GTΛN

1 ) + (1 − 1/N )(ΛN
2 G + GTΛN

2 )] − QΓ /N ,

g2(N ,ΛN
1 ,ΛN

2 )

:=(ΛN
1 + ΛN

2 )B{NEN + (R1(Λ
N
1 ))−1 − (R2(Λ

N
1 ,ΛN

2 ))−1}BT (ΛN
1 + ΛN

2 )

− (2/N )ΛN
2 B(R1(Λ

N
1 ))−1BTΛN

2 + (1/N − 2)ΛN
2 BEN BTΛN

2

− ΛN
1 BEN BTΛN

2 − ΛN
2 BEN BTΛN

1 + (ΛN
2 G + GTΛN

2 )/N ,

where EN and HN are expressed as two functions of (ΛN
1 ,ΛN

2 ) ∈ Sn ×Sn according
to (29)–(30). How this system arises will be clear from our subsequent analysis. It is
essentially derived from (10) (which implies (26)–(27) ) after imposing the additional
condition R2(Λ

N
1 ,ΛN

2 ) > 0 as required by Ψ2 and g2.
For the first term in the expression of g2, we check

ξN (ΛN
1 ,ΛN

2 ):=NEN + (R1(Λ
N
1 ))−1 − (R2(Λ

N
1 ,ΛN

2 ))−1

=(1/N )(R2(Λ
N
1 , (1 − 1/N )ΛN

2 ))−1BT
0 ΛN

2 B0(R2(Λ
N
1 ,ΛN

2 ))−1.

(32)

And further recalling the factor 1/N in the expression of EN in (29), we may view g1
and g2 as two small perturbation terms in the system (31).

Remark 3 We have Ψ1 : Sn → Sn , and Ψ2, g1(N , ·, ·), g2(N , ·, ·) : Sn ×Sn → Sn .
The system (31) may stand alone without being immediately related to (22).

Remark 4 The third positive-definiteness condition in (31) is needed due to the corre-
sponding matrix inverse appearing in EN , g1 and g2.

The inverse matrix (R+2M2(P))−1 in the Riccati ODE (10) contains submatrices
EN and HN , which are highly nonlinear in (ΛN

1 ,ΛN
2 ) according to (29)–(30). Accord-

ingly, (31) is highly nonlinear. This feature distinguishes our model from [34,35,44].

Lemma 5 (i) Suppose (10) has a solution P on [0, T ], and let (ΛN
1 ,ΛN

2 ) be defined by
(22) and (24). Further assume R2(Λ

N
1 ,ΛN

2 ) > 0 for all t ∈ [0, T ]. Then (ΛN
1 ,ΛN

2 )

satisfies (31) on [0, T ].
(ii) Conversely, if (ΛN

1 ,ΛN
2 ) is a solution of (31) on [0, T ], then (10) has a (neces-

sarily unique) solution P on [0, T ], which is related to (ΛN
1 ,ΛN

2 ) by (22) and (24).

Proof (i) After determining (ΛN
1 ,ΛN

2 ) from P and (24), it follows from the last part
of Lemma 3 that the first and third inequality conditions in (31) are satisfied. By using
(10), we further derive the two ODEs in (31).
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(ii) Let P be defined by (22) and (24) using (ΛN
1 ,ΛN

2 ) solved from (31). By the
characteristic polynomial in the proof of Lemma 3,R+2M2(P) > 0 for all t ∈ [0, T ].
Using the expression of (R+ 2M2(P))−1, we may directly verify the ODE in (10). 
�
Lemma 6 Suppose the social optimization problem (1)–(2) has asymptotic solvability
with N ≥ N0 in (14), and let (ΛN

1 (t),ΛN
2 (t)) be defined using P satisfying (10), (22)

and (24). Then there exists N1 > N0 such that (ΛN
1 ,ΛN

2 ) satisfies (31) for all N ≥ N1
and we further have

sup
N≥N1,0≤t≤T

(|ΛN
1 (t)| + |ΛN

2 (t)|) < ∞, (33)

R1(Λ
N
1 (t)) ≥ c1 I , ∀N ≥ N1, (34)

R2(Λ
N
1 (t),ΛN

2 (t)) ≥ c1 I , ∀N ≥ N1, (35)

for all t ∈ [0, T ], where c1 > 0 is a fixed constant.

Proof Suppose (15) holds with the parameter c0. By the characteristic polynomial in
the proof of Lemma 3, we have

R1(Λ
N
1 (t)) ≥ c0 I , R2(Λ

N
1 (t),ΛN

2 (t)) − (1/N )BT
0 ΛN

2 B0 ≥ c0 I (36)

for all N ≥ N0. By (14) and the relation (22), we have

sup
N≥N0,0≤t≤T

(|ΛN
1 (t)| + |ΛN

2 (t)|) < ∞.

Hence there exists N1 ≥ N0 such that for all N ≥ N1, (34) and (35) hold with
c1 = c0/2 by (36). Obviously (33) holds. So for all N ≥ N1, (31) holds by Lemma 5
(i). 
�
Lemma 7 Suppose there exists N1 > 0 such that (31) has a solution (ΛN

1 ,ΛN
2 ) on

[0, T ] for all N ≥ N1, which further satisfies (33)–(35) for some constant c1 > 0.
Then the social optimization problem (1)–(2) has asymptotic solvability.

Proof First, after solving (31) to obtain (ΛN
1 ,ΛN

2 ) for N ≥ N1, let P be defined by
(22) and (24). Then (10) holds by Lemma 5 (ii).

By (33) and (35), there exists N2 > N1 such that we have

ζ :=R2(Λ
N
1 ,ΛN

2 ) − (1/N )BT
0 ΛN

2 B0 ≥ (c1/2)I

for all N ≥ N2, t ∈ [0, T ]. Now for N ≥ N2, by the proof of Lemma 3 all eigenvalues
of R + 2M2(P) are exactly the solutions of the two equations

det(λI − ζ ) = 0, [det(λI − R1(Λ
N
1 (t)))]N−1 = 0.

Hence R + 2M2(P) ≥ (c1/2)I . By (33), P satisfies (14) by taking N0 = N2. There-
fore, asymptotic solvability holds. 
�
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When there exists N1 > 0 such that for each N ≥ N1, (31) has a solution (ΛN
1 ,ΛN

2 )

on [0, T ] that satisfies (33)–(35), then by (29) and (32) we obtain

sup
0≤t≤T

|g1(N ,ΛN
1 ,ΛN

2 )| = O(1/N ), sup
0≤t≤T

|g2(N ,ΛN
1 ,ΛN

2 )| = O(1/N ).

The system (20)–(21) may be regarded as the limit of (31). Lemmas 5 and 6 relate
asymptotic solvability of the social optimization problem to the low-dimensional sys-
tem (31).

Proof of Theorem 2 (i)–Necessity. If the social optimization problem (1)–(2) has
asymptotic solvability, by Lemma 6, there exists N1 > 0 such that for each N ≥ N1,
(31) has a solution (ΛN

1 ,ΛN
2 ) on [0, T ] that satisfies (33)–(35) for some constant

c1 > 0. From the integral form

ΛN
1 (t) = ΛN

1 (T ) −
∫ T

t
[Ψ1(Λ

N
1 ) + g1(N ,ΛN

1 ,ΛN
2 )]dτ, (37)

ΛN
2 (t) = ΛN

2 (T ) −
∫ T

t
[Ψ2(Λ

N
1 ,ΛN

2 ) + g2(N ,ΛN
1 ,ΛN

2 )]dτ, (38)

we have that {(ΛN
1 (·),ΛN

2 (·))}N≥N1 are bounded and equicontinuous on [0, T ]. By
Arzelà-Ascoli theorem [66], there exists a subsequence {(ΛN j

1 (·),ΛN j
2 (·))} j≥1 that

converges to (Λ∗
1,Λ

∗
2) uniformly on [0, T ] as j → ∞. Then it follows from (37)–

(38) and (34)–(35) that

Λ∗
1(t) = Λ∗

1(T ) −
∫ T

t
Ψ1(Λ

∗
1)dτ, Λ∗

2(t) = Λ∗
2(T ) −

∫ T

t
Ψ2(Λ

∗
1,Λ

∗
2)dτ,

R1(Λ
∗
1(t)) ≥ c1 I , R2(Λ

∗
1(t),Λ

∗
2(t)) ≥ c1 I , ∀t ∈ [0, T ],

where Λ∗
1(T ) = Q f and Λ∗

2(T ) = QΓ
f . Thus (Λ∗

1,Λ
∗
2) solves the system (20)–(21).

(ii)–Sufficiency. Step 1. Suppose (20)–(21) has a solution (Λ1,Λ2) on [0, T ]. Then
there exists h0 > 0 such that for all t ∈ [0, T ], we have

R1(Λ1(t)) ≥ h0 I , R2(Λ1(t),Λ2(t)) ≥ h0 I .

We will check a neighborhood of the solution trajectory (Λ1,Λ2) on [0, T ]. Since
(Λ1,Λ2) is continuous on [0, T ], there exists δ0 > 0 such that for all (t, Z1, Z2) ∈
[0, T ] × Sn × Sn satisfying |Z1 − Λ1(t)| + |Z2 − Λ2(t)| < δ0, we have

R1(Z1) ≥ (h0/2)I , R2(Z1, Z2) ≥ (h0/2)I . (39)

Define

C:={(t, Z1, Z2) ∈ [0, T ] × Sn × Sn : |Z1 − Λ1(t)| + |Z2 − Λ2(t)| < δ0}.
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For the given δ0, there exists a sufficiently large Nδ0 such that N ≥ Nδ0 implies

R2(Z1, Z2) − (1/N )BT
0 Z2B0 ≥ (h0/4)I (40)

for all (t, Z1, Z2) ∈ C. By (39) and boundedness of C, there exist constants LΨ andCg

depending on C but not on N such that for all (t, Z1, Z2) ∈ C and all (t, Z ′
1, Z

′
2) ∈ C,

we have

|Ψ1(Z1) − Ψ1(Z
′
1)| + |Ψ2(Z1, Z2) − Ψ2(Z

′
1, Z

′
2)| ≤ LΨ (|Z1 − Z ′

1| + |Z2 − Z ′
2|),

and moreover, |g1(N , Z1, Z2)| + |g2(N , Z1, Z2)| ≤ Cg/N holds for all N ≥ Nδ0 in
view of (29), (32), (39) and (40).

Step 2. Consider (31) (see Remark 3). Since

lim
N→∞(|ΛN

1 (T ) − Λ1(T )| + |ΛN
2 (T ) − Λ2(T )|) = 0, (41)

there exists N1 ≥ Nδ0 such that for all N ≥ N1, we have

|ΛN
1 (T ) − Λ1(T )| + |ΛN

2 (T ) − Λ2(T )| < δ0/2,

R1(Λ
N
1 (T )) ≥ cI , R2(Λ

N
1 (T ),ΛN

2 (T )) ≥ cI ,

R2(Λ
N
1 (T ),ΛN

2 (T )) − (1/N )BT
0 ΛN

2 (T )B0 ≥ cI , (42)

where c > 0 is a constant. Then for each N ≥ N1, the solution (ΛN
1 ,ΛN

2 ) in (31)
exists on some interval [tN , T ], with 0 ≤ tN < T .

Step 3. Our plan is to show that there exists a sufficiently large N2 > N1 chosen in
Step 2 such that for all N ≥ N2, (31) has a solution on [0, T ].

By (41), we may fix a sufficiently large N̂ ≥ N1 such that N ≥ N̂ implies

(
|ΛN

1 (T ) − Λ1(T )| + |ΛN
2 (T ) − Λ2(T )| + CgT /N

)
exp(LΨ T ) ≤ δ0/2. (43)

Now it suffices to show that there exists a sufficiently large N2 ≥ N1 such that for all
N ≥ N2, we have

|ΛN
1 (t) − Λ1(t)| + |ΛN

2 (t) − Λ2(t)| < δ0, ∀t ∈ [0, T ], (44)

which then implies that (ΛN
1 ,ΛN

2 ) exists on [0, T ] by (39) and (40). Assume by
contradiction that given any l > N̂ there always exists some N∗ ≥ l such that
(t,ΛN∗

1 (t),ΛN∗
2 (t)) starting backward from the terminal time T exits C for the first

time at some t N
∗

0 ∈ [0, T ), i.e.,

[0, T ) � t N
∗

0 = sup{t ∈ [0, T ] : (t,ΛN∗
1 (t),ΛN∗

2 (t)) /∈ C}, (45)
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where t N
∗

0 may depend on N∗. Since

|ΛN∗
1 (t) − Λ1(t)| + |ΛN∗

2 (t) − Λ2(t)| ≤ δ0, ∀t ∈ [t N∗
0 , T ],

it follows that |ΛN∗
1 | and |ΛN∗

2 | are bounded on [t N∗
0 , T ]. On [t N∗

0 , T ], by Step 1 we
have

|Ψ1(Λ
N∗
1 (t)) − Ψ1(Λ1(t))| + |Ψ2(Λ

N∗
1 (t),ΛN∗

2 (t)) − Ψ2(Λ1(t),Λ2(t))|
≤ LΨ (|ΛN∗

1 (t) − Λ1(t)| + |ΛN∗
2 (t) − Λ2(t)|),

|g1(N∗,ΛN∗
1 (t),ΛN∗

2 (t))| + |g2(N∗,ΛN∗
1 (t),ΛN∗

2 (t)| ≤ Cg/N
∗

since N∗ ≥ Nδ0 .
It then follows that for any t ∈ [t N∗

0 , T ],

|ΛN∗
1 (t) − Λ1(t)| + |ΛN∗

2 (t) − Λ2(t)|
≤ |ΛN∗

1 (T ) − Λ1(T )| + |ΛN∗
2 (T ) − Λ2(T )|

+
∫ T

t
(|Ψ1(Λ

N∗
1 ) − Ψ1(Λ1)| + |Ψ2(Λ

N∗
1 ,ΛN∗

2 ) − Ψ2(Λ1,Λ2)|)dτ

+
∫ T

t
(|g1(N∗,ΛN∗

1 ,ΛN∗
2 )| + |g2(N∗,ΛN∗

1 ,ΛN∗
2 )|)dτ

≤ |ΛN∗
1 (T ) − Λ1(T )| + |ΛN∗

2 (T ) − Λ2(T )|

+
∫ T

t
LΨ (|ΛN∗

1 − Λ1| + |ΛN∗
2 − Λ2|)dτ +

∫ T

0

Cg

N∗ dτ.

By Grönwall’s lemma, we have that for all t ∈ [t N∗
0 , T ],

|ΛN∗
1 (t) − Λ1(t)| + |ΛN∗

2 (t) − Λ2(t)|
≤

(
|ΛN∗

1 (T ) − Λ1(T )| + |ΛN∗
2 (T ) − Λ2(T )| + CgT /N∗) exp(LΨ T ), (46)

which combined with (43) implies that

sup
t∈[t N∗

0 ,T ]
(|ΛN∗

1 (t) − Λ1(t)| + |ΛN∗
2 (t) − Λ2(t)|) ≤ δ0/2.

This contradicts the hypothesis in (45) that (t,ΛN∗
1 (t),ΛN∗

2 (t)) exits C at t N
∗

0 . Hence,
there exists N2 > N1 such that for all N ≥ N2, (44) holds so that (ΛN

1 ,ΛN
2 ) exists on

[0, T ]. In view of (39), we further obtain

R1(Λ
N
1 (t)) ≥ (h0/2)I , R2(Λ

N
1 (t),ΛN

2 (t)) ≥ (h0/2)I

for all N ≥ N2 and all t ∈ [0, T ]. Then by Lemma 7, the social optimization problem
has asymptotic solvability. 
�

123



S1986 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1969–S2010

Corollary 1 If (20)–(21) has a solution (Λ1,Λ2) on [0, T ], then there exists N1 > 0
such that for each N ≥ N1, (31) has a solution (ΛN

1 ,ΛN
2 ) on [0, T ] and moreover

supt∈[0,T ](|ΛN
1 (t) − Λ1(t)| + |ΛN

2 (t) − Λ2(t)|) = O(1/N ).

Proof By Theorem 2 and Lemma 6, if (20)–(21) has a solution (Λ1,Λ2) on [0, T ],
then there exists N1 > 0 such that for each N ≥ N1, (31) has a solution (ΛN

1 ,ΛN
2 )

on [0, T ] that satisfies (33)–(35). Then there exists a constant L1 > 0 such that for all
N ≥ N1 and for all t ∈ [0, T ], we have

|Ψ1(Λ
N
1 ) − Ψ1(Λ1)| ≤ L1|ΛN

1 − Λ1|,
|Ψ2(Λ

N
1 ,ΛN

2 ) − Ψ2(Λ1,Λ2)| ≤ L1|ΛN
1 − Λ1|,

|g1(N ,ΛN
1 ,ΛN

2 )| ≤ L1/N , |g2(N ,ΛN
1 ,ΛN

2 )| ≤ L1/N .

So combining (31) and (20)–(21), we obtain

|ΛN
1 (t) − Λ1(t)| ≤ |QΓ

f |/N +
∫ T

t
L1(|ΛN

1 (s) − Λ1(s)| + 1/N )ds,

|ΛN
2 (t) − Λ2(t)| ≤

∫ T

t
L1(|ΛN

1 (s) − Λ1(s)| + 1/N )ds

for all N ≥ N1, all t ∈ [0, T ]. By Grönwall’s lemma, the desired result follows. 
�
Let (ΛN

1 ,ΛN
2 ) be given by (31). We further introduce the following ODE system

{
ṠN (t) = ϕ1(Λ

N
1 ,ΛN

2 , SN ) + g01(N ,ΛN
1 ,ΛN

2 , SN ),

SN (T ) = 0,
(47)

{
ṙ N (t) = ϕ2(Λ

N
1 ,ΛN

2 , SN ) + g02(N ,ΛN
1 ,ΛN

2 , SN ),

r N (T ) = 0,
(48)

where

ϕ1(Λ
N
1 ,ΛN

2 , SN ):=(ΛN
1 + ΛN

2 )B(R2(Λ
N
1 ,ΛN

2 ))−1·
[BT SN + BT

1 ΛN
1 D + BT

0 (ΛN
1 + ΛN

2 )D0] − (A + G)T SN ,

ϕ2(Λ
N
1 ,ΛN

2 , SN ):=[SNT B + DTΛN
1 B1 + DT

0 (ΛN
1 + ΛN

2 )B0](R2(Λ
N
1 ,ΛN

2 ))−1·
[BT SN + BT

1 ΛN
1 D + BT

0 (ΛN
1 + ΛN

2 )D0]
− DTΛN

1 D − DT
0 (ΛN

1 + ΛN
2 )D0,

g01(N ,ΛN
1 ,ΛN

2 , SN ) :=[ΛN
1 + (1 − 1/N )ΛN

2 ]B[R2(Λ
N
1 ,ΛN

2 ) − (1/N )BT
0 ΛN

2 B0]−1·
{BT S + BT

1 ΛN
1 D + BT

0 [ΛN
1 + (1 − 1/N )ΛN

2 ]D0}
− (ΛN

1 + ΛN
2 )B(R2(Λ

N
1 ,ΛN

2 ))−1·
[BT S + BT

1 ΛN
1 D + BT

0 (ΛN
1 + ΛN

2 )D0],
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g02(N ,ΛN
1 ,ΛN

2 , SN ) :=[SNT B + DTΛN
1 B1 + DT

0 (ΛN
1 + (1 − 1/N )ΛN

2 )B0]·
[R2(Λ

N
1 ,ΛN

2 ) − (1/N )BT
0 ΛN

2 B0]−1·
[BT SN + BT

1 ΛN
1 D + BT

0 (ΛN
1 + (1 − 1/N )ΛN

2 )D0]
− [SNT B + DTΛN

1 B1 + DT
0 (ΛN

1 + ΛN
2 )B0](R2(Λ

N
1 ,ΛN

2 ))−1·
[BT SN + BT

1 ΛN
1 D + BT

0 (ΛN
1 + ΛN

2 )D0] + (1/N )DT
0 ΛN

2 D0.

The above ODEs are constructed by substituting (23) into (11) and writing r:=NrN

in (12).

Remark 5 If (20)–(21) has a solution (Λ1,Λ2) on [0, T ], then the following system

Ṡ =ϕ1(Λ1,Λ2, S), S(T ) = 0, (49)

ṙ =ϕ2(Λ1,Λ2, S), r(T ) = 0, (50)

admits a unique solution (S, r) on [0, T ].
Corollary 2 If (20)–(21) has a solution (Λ1,Λ2) on [0, T ], then there exists N1 > 0
such that for all N ≥ N1, (i) the system (47)–(48) admits a unique solution (SN , r N );
(ii) with (SN , r N ) determined in (i), S defined by (23) and r:=NrN give a solution to
(11)–(12); and (iii) supt∈[0,T ](|SN − S| + |r N − r |) = O(1/N ), where (S, r) is the
solution of (49)–(50).

Proof (i) If (20)–(21) has a solution, it follows from Corollary 1 that there exists
N1 > 0 such that for all N ≥ N1, (31) has a unique solution (ΛN

1 ,ΛN
2 ). Substituting

(ΛN
1 ,ΛN

2 ) into (47)–(48) gives a first order linear ODE system of (SN , r N ) that admits
a unique solution.

(ii) By substituting S and r defined as above into (11)–(12), we may directly verify
the ODE system (11)–(12).

(iii) The proof follows similar steps as in the proof of Corollary 1, and we omit the
details. 
�

3.2 Solvability of the Limiting ODE System

Determining the solvability of the ODE system (20)–(21) on [0, T ] is an interesting
problem. For this subsection, the analysis is restricted to the case Q ≥ 0, Q f ≥ 0
while the matrix R may be indefinite.

DefineΛ3:=Λ1 +Λ2. Adding up both sides of (20) and (21), we obtain the Riccati
ODE:

{
Λ̇3(t) = Ψ3(Λ1,Λ3), R + BT

1 Λ1(t)B1 + BT
0 Λ3(t)B0 > 0, ∀t ∈ [0, T ],

Λ3(T ) = Q3 f ,

(51)

where Ψ3 and Q3 f are defined as
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Ψ3(Λ1,Λ3) = Λ3B(R + BT
1 Λ1B1 + BT

0 Λ3B0)
−1BTΛ3

− Λ3(A + G) − (A + G)TΛ3 − Q3,

Q3 = (I − Γ )T Q(I − Γ ), Q3 f = (I − Γ f )
T Q f (I − Γ f ).

Since the transformation (Λ1,Λ2) → (Λ1,Λ3) is one-to-one, (20)–(21) has a unique
solution on [0, T ] if and only if the system consisting of (20) and (51) has a unique
solution on [0, T ].

We consider existence and uniqueness of the solution of (20) and (51). According
to [20, Theorem 4.6], under the condition Q ≥ 0 and Q f ≥ 0, the Riccati equation
(20) admits a solution on [0, T ] if and only if there exists a continuous Sn1 -valued
function K (t) > 0 for all t ∈ [0, T ] such that R + BT

1 Λ̃1B1 ≥ K , where Λ̃1 is the
unique solution of the standard Riccati ODE with K taken as a parameter:

{ ˙̃Λ1(t) = Λ̃1BK−1BT Λ̃1 − Λ̃1A − AT Λ̃1 − Q,

Λ̃1(T ) = Q f .
(52)

According to [62], (52) with positive definite K has a unique solution on [0, T ].
Once Λ1 is solved from (20), we continue to solve (51) as a Riccati ODE with the

time-varying coefficient R + BT
1 Λ1B1 to determine Λ3. By [20, Theorem 4.6], for

Q ≥ 0 and Q f ≥ 0, (51) admits a solution if and only if there exists a continuous
Sn1 -valued function K (t) > 0 for all t ∈ [0, T ] such that

R + BT
1 Λ1B1 + BT

0 Λ̃3B0 ≥ K ,

where Λ̃3 is the unique solution of the following standard Riccati ODE:

{ ˙̃Λ3(t) = Λ̃3BK−1BT Λ̃3 − Λ̃3(A + G) − (AT + GT )Λ̃3 − Q3,

Λ̃3(T ) = Q3 f .
(53)

3.3 Interpretation of the Limiting Riccati ODEs

We relate the Riccati equations (20)–(21) to optimal control problems in a low-
dimensional space. Consider a single-agent optimal control problem with state X1
that satisfies

dX1 = (AX1 + Bu1)dt + B1u1dW1, (54)

where X1(0) is given. The agent chooses the control u1 to minimize the cost

J1(u1) = E

[ ∫ T

0
([X1]2Q + [u1]2R)dt + [X1(T )]2Q f

]

.
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If (20) admits a solution Λ1, then the optimal control is

u1(t) = (R + BT
1 Λ1(t)B1)

−1BTΛ1(t)X1(t).

With Λ1 obtained by solving (20), we consider another single-agent optimal control
problem with state dynamics

dX2 = [(A + G)X2 + Bu2]dt + B0u2dW0, (55)

and the agent chooses u2 to minimize the cost

J2(u2) = E

[ ∫ T

0
([X2]2Q3

+ [u2]2R+BT
1 Λ1B1

)dt + [X2(T )]2Q3 f

]

.

If (51) admits a solution Λ3, then the optimal control u2 is given by

u2(t) = (R + BT
1 Λ1(t)B1 + BT

0 Λ3(t)B0)
−1BTΛ3(t)X2(t).

4 Closed-Loop Dynamics andMean Field Limit

We introduce the following assumptions:

Assumption 1 The ODE system (20)–(21) has a solution (Λ1,Λ2) on [0, T ].
Let {Xi (0), 1 ≤ i ≤ N } be the initial states of the N agents. Denote the covariance

matrix Σ i
0 := Cov(Xi (0), Xi (0)), 1 ≤ i ≤ N .

Assumption 2 The initial states {Xi (0), i ≥ 0} are independent. There exist a mean
μ0 ∈ R

n and a constant CΣ , both independent of N , such that EXi (0) = μ0 and
|Σ i

0| ≤ CΣ for all i .

If (31) has a solution (ΛN
1 ,ΛN

2 ) for a finite N , by Lemma 5 (ii), we determine P in
(13) by (22) with Π N

1 = ΛN
1 and ΠN

2 = ΛN
2 /N . Then we obtain the optimal control

Uo = (uT1 , . . . , uTN )T , where

ui = −ΘN Xi − ΘN
1 X (N ) − ΘN

2 , 1 ≤ i ≤ N , (56)

and

ΘN = (HN − EN )BT (ΛN
1 − ΛN

2 /N ),

ΘN
1 = NEN BTΛN

1 + (HN + (N − 2)EN )BTΛN
2 ,

ΘN
2 = (HN + (N − 1)EN )[BT SN + BT

1 ΛN
1 D + BT

0 (ΛN
1 + (1 − 1/N )ΛN

2 )D0].

The control Uo = (uT1 , . . . , uTN )T given by (56) is called centralized, as each agent
Ai needs the state information of other agents and also the population size N .

Denote the closed-loop dynamics of Xi and X (N ) by

123



S1990 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1969–S2010

dXi =[(A − BΘN )Xi + (G − BΘN
1 )X (N ) − BΘN

2 ]dt
+ [D − B1(Θ

N Xi + ΘN
1 X (N ) + ΘN

2 )]dWi

+ [D0 − B0((Θ
N + ΘN

1 )X (N ) + ΘN
2 )]dW0, 1 ≤ i ≤ N , (57)

dX (N ) =[(A + G − B(ΘN + ΘN
1 ))X (N ) − BΘN

2 ]dt

+ (1/N )

N∑

i=1

[D − B1(Θ
N Xi + ΘN

1 X (N ) + ΘN
2 )]dWi

+ [D0 − B0(Θ
N + ΘN

1 )X (N ) − B0Θ
N
2 ]dW0. (58)

Let (Λ1(t),Λ2(t)) be given by Assumption 1 and denote matrix-valued functions
on [0, T ]:

H = (R1(Λ1))
−1, H1 = (R2(Λ1,Λ2))

−1, Ê = H1 − H ,

Θ = HBTΛ1, Θ1 = Ê BT (Λ1 + Λ2) + HBTΛ2,

Θ2 = H1

[
BT S + BT

1 Λ1D + BT
0 (Λ1 + Λ2)D0

]
.

Denote the mean field limit of (58):

dX = [(A + G − B(Θ + Θ1))X − BΘ2]dt
+ [D0 − B0Θ2 − B0(Θ + Θ1)X ]dW0, (59)

with the initial condition X(0) = μ0 ∈ R
n . We proceed to check the approximation

error between X (N ) and X .

Lemma 8 Under Assumption 1, we have supt∈[0,T ](|ΘN −Θ|+ |ΘN
1 −Θ1|+ |ΘN

2 −
Θ2|) = O(1/N ).

Proof It follows from Corollary 1. 
�
Lemma 9 Under Assumptions 1 and 2, there exist C > 0 and N0 > 0 such that
supi≥N0,0≤t≤T E|Xi (t)|2 ≤ C, where Xi (t) is given by (57).

Proof By Assumption 2, we have supi≥1,0≤t≤T E|Xi (0)|2 ≤ C0 for some fixed con-
stant C0. Applying Itô’s formula to |Xi |2 gives

E|Xi (t)|2 = E|Xi (0)|2 + E

∫ t

0
2〈Xi , (A − BΘN )Xi + (G − BΘN

1 )X (N ) − BΘN
2 〉ds

+ E

∫ t

0
|D − B1(Θ

N Xi + ΘN
1 X (N ) + ΘN

2 )|2ds

+ E

∫ t

0
|D0 − B0((Θ

N + ΘN
1 )X (N ) + ΘN

2 )|2ds.
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By Lemma 8, (ΘN (t),ΘN
1 (t),ΘN

2 (t)) is uniformly bounded on [0, T ] for all large
N . So there exist N0 > 0 and constants C1, C2 and C3 such that N ≥ N0 implies

E|Xi (t)|2 ≤ E|Xi (0)|2 + C1 + C2

∫ t

0
E|Xi (s)|2ds + C3

∫ t

0
E|X (N )(s)|2ds

for all t ∈ [0, T ] and all 1 ≤ i ≤ N . Denote αN
t = max1≤k≤N E|Xk(t)|2. Note that

E|X (N )(t)|2 ≤ (1/N )
∑N

i=1 E|Xi (t)|2. It then follows that for any 1 ≤ i ≤ N ,

E|Xi (t)|2 ≤ max
1≤k≤N

E|Xk(0)|2 + C1 + C2

∫ t

0
αN
s ds + C3

∫ t

0
αN
s ds,

and therefore

αN
t ≤ C0 + C1 + (C2 + C3)

∫ t

0
αN
s ds.

Grönwall’s lemma implies that αN
t ≤ C for all t ∈ [0, T ] and all N ≥ N0, where the

constant C depends only on C0, C1, C2, C3 and T . 
�
Proposition 1 Under Assumptions 1 and 2, for (58)–(59) it holds that

sup
t∈[0,T ]

E|X (N )(t) − X(t)|2 = O(1/N ). (60)

Proof Taking the difference between (58) and (59) gives

d(X (N ) − X) =[(A + G − B(Θ + Θ1))(X
(N ) − X)

− B(ΘN + ΘN
1 − Θ − Θ1)X

(N ) − B(ΘN
2 − Θ2)]dt

− [B0(Θ + Θ1)(X
(N ) − X) + B0(Θ

N + ΘN
1 − Θ − Θ1)X

(N )

+ B0(Θ
N
2 − Θ2)]dW0

+ 1

N

N∑

i=1

[D − B1(Θ
N Xi + ΘN

1 X + ΘN
2 )]dWi . (61)

We apply Itô’s formula to |X (N ) − X |2 to get

E|X (N )(t) − X(t)|2

= E|X (N )(0) − X(0)|2 + 1

N 2

N∑

i=1

∫ t

0
E|D − B1(Θ

N Xi + ΘN
1 X + ΘN

2 )|2ds

+ 2
∫ t

0
E〈X (N ) − X , (A + G − B(Θ + Θ1))(X

(N ) − X)〉ds

+ 2
∫ t

0
E〈X (N ) − X ,−B(ΘN + ΘN

1 − Θ − Θ1)X
(N ) − B(ΘN

2 − Θ2)〉ds
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+
∫ t

0
E|B0(Θ + Θ1)(X

(N ) − X) + B0(Θ
N + ΘN

1 − Θ − Θ1)X
(N )

+ B0(Θ
N
2 − Θ2)|2ds.

By Cauchy-Schwarz inequality and Lemmas 8 and 9, it holds that for all sufficiently
large N ,

E|X (N )(t) − X(t)|2 ≤C

N
+ 1

N 2

N∑

i=1

∫ t

0
Cds

+ C
∫ t

0
E|X (N )(s) − X(s)|2 + |ΘN (s) − Θ(s)|2 +

2∑

k=1

|ΘN
k (s) − Θk(s)|2ds

≤C1

N
+ C

∫ t

0
E|X (N )(s) − X(s)|2ds.

The estimate (60) follows from Grönwall’s lemma. 
�
Below we give a closed-form expression of the individual cost underUo by assum-

ing that {Xi (0) : 1 ≤ i ≤ N } are independent random variables with equal mean and
covariance

EXi (0) = μ0, Cov(Xi (0), Xi (0)) = Σ0, ∀i ≥ 1. (62)

Then the individual cost of a single agent Ai is

Ji (U
o) =(1/N )EV (0, X(0))

=(1/N )E[XT (0)P(0)X(0) + ST (0)X(0) + r(0)]
=E[XT

1 (0)ΛN
1 (0)X1(0) + (1 − 1/N )XT

1 (0)ΛN
2 (0)X2(0)

+ 2SNT (0)X1(0) + r N (0)]
=Tr[ΛN

1 (0)Σ0] + μT
0 (ΛN

1 (0) + (1 − 1/N )ΛN
2 (0))μ0 + 2SNT (0)μ0 + r N (0).

(63)

5 Decentralized Control

It is desirable to find a decentralized control such that each agent only needs to know
its own state and some low-dimensional auxiliary state. Based on the mean field limit
dynamics (59), we consider a decentralized control law Ud = (ǔT1 , ..., ǔTN )T , where
the individual control law is

ǔi = −ΘXi − Θ1X − Θ2, 1 ≤ i ≤ N . (64)
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We may view ǔi as the mean field limit of (56). Note that without the common noise,
X(t) becomes a deterministic function and may be computed off-line.

For the decentralized control applied to the N -agentmodel, we have themain result.

Theorem 3 Under Assumptions 1 and 2, let Uo = (uT1 , . . . , uTN )T be the centralized
optimal control given by (56), and Ud = (ǔT1 , . . . , ǔTN )T the decentralized control

given by (64). Then 0 ≤ J (N )
soc (Ud) − J (N )

soc (Uo) = O(1).

Theorem 3 shows that if the decentralized control (64) is applied, the optimality gap
J (N )
soc (Ud) − J (N )

soc (Uo) is bounded, independent of the population size N . It is easy to
show J (N )

soc (Uo) = O(N ). This bounded optimality gap means an O(1/N ) optimality
loss per agent. To prove the theorem, we will find J (N )

soc (Ud) in an explicit form.

5.1 Social Cost Under Decentralized Control

Let (Λ1,Λ2) be a solution of (20)–(21) under Assumption 1.
The N -agent system (1) under the set of decentralized individual control laws (64)

has the following closed-loop dynamics

d X̌i =[(A − BΘ)X̌i + GX̌ (N ) − BΘ1X − BΘ2]dt
+ [D − B1(Θ X̌i + Θ1X + Θ2)]dWi

+ [D0 − B0(Θ X̌ (N ) + Θ1X + Θ2)]dW0, 1 ≤ i ≤ N , (65)

where X̌i (0) = Xi (0) and X satisfies (59).
Let X(0) = (XT

1 (0), . . . , XT
N (0))T . Note that given (X(0), X(0)), the processes

X1, . . . , XN , and X have been determined on [0, T ]. In order to evaluate J (N )
soc (Ud),

we consider a family of SDEs (59) and (65) by assigning different initial conditions.
We take the initial time t and assign the initial condition X(t) = x, X(t) = x̄ .

By extending (5) to different initial conditions, we define the social cost

V̌ (t, x, x̄) =
N∑

i=1

{

E

∫ T

t

[
[X̌i (s) − Γ X̌ (N )(s)]2Q + [ǔi (s)]2R

]
dt

+ E[X̌i (T ) − Γ f X̌
(N )(T )]2Q f

}

(66)

with initial condition (X(t), X(t)) = (x, x̄) under the decentralized control Ud(s) =
(ǔT1 (s), . . . , ǔTN (s))T , s ∈ [t, T ]. Recalling (64), below we write the state feedback
control Ud as

Ud(t, x, x̄) = (ǔT1 , . . . , ǔTN )T = −Θ̂x − Θ̂1 x̄ − Θ̂2,

Θ̂ = IN ⊗ Θ, Θ̂1 = 1N×1 ⊗ Θ1, Θ̂2 = 1N×1 ⊗ Θ2. (67)
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By the Feynman–Kac formula [50, Sec. 1.3, 3.5], the equation for V̌ (t, x, x̄) is given
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂ V̌
∂t = UdT (R + M2(

∂2 V̌
∂x2 ))Ud + ( ∂T V̌

∂x B̂ + M1(
∂2 V̌
∂x2 ))Ud

+ ∂T V̌
∂x Ax + ∂T V̌

∂ x̄ (Z1 x̄ − BΘ2) + xTQx + M0(
∂2 V̌
∂x2 )

+(1/2)(Z0 x̄ − B0Θ2 + D0)
T ∂2 V̌

∂ x̄2
(Z0 x̄ − B0Θ2 + D0)

+(B0̂IUd + D0)
T ∂2 V̌

∂x∂ x̄ (Z0 x̄ − B0Θ2 + D0),

V̌ (T , x, x̄) = xTQ f x,

(68)

where we denote

Z0 = −B0(Θ + Θ1), Z1 = A + G − B(Θ + Θ1).

Thus the right hand side of (66) is just a probabilistic representation of the solution of
(68) which will be determined below.

Suppose V̌ takes the following form

V̌ (t, x, x̄) =xT P̌1(t)x + x̄ T P̌2(t)x̄ + xT P̌12(t)x̄ + x̄ T P̌T
12(t)x

+ 2xT Š1(t) + 2x̄ T Š2(t) + ř(t). (69)

By substituting (69) into (68) and combining like terms, we obtain for P̌1, P̌12, P̌2,
Š1, Š2, and ř the ODEs:

⎧
⎪⎨

⎪⎩

− d
dt P̌1 = Θ̂T (R + M2(2P̌1))Θ̂ + P̌1(A − B̂Θ̂)

+(A − B̂Θ̂)T P̌1 + Q,

P̌1(T ) = Q f ,

(70)

⎧
⎪⎨

⎪⎩

− d
dt P̌12 = Θ̂T (R + M2(2P̌1))Θ̂1 − P̌1B̂Θ̂1 + (AT − Θ̂T B̂T )P̌12

+P̌12Z1 − Θ̂T ÎTBT
0 P̌12Z0,

P̌12(T ) = 0,

(71)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt P̌2 = Θ̂T

1 (R + M2(2P̌1))Θ̂1 − P̌T
12B̂Θ̂1 − Θ̂T

1 B̂
T P̌12

−ZT
0 P̌

T
12B0̂IΘ̂1 − Θ̂T

1 Î
TBT

0 P̌12Z0 + P̌2Z1 + ZT
1 P̌2

+ZT
0 P̌2Z0,

P̌2(T ) = 0,

(72)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt Š1 = Θ̂T (R + M2(2P̌1))Θ̂2 − Θ̂T (B̂T Š1 + MT

1 (P̌1))

+AT Š1 − P̌12BΘ2 − Θ̂T ÎTBT
0 P̌12(D0 − B0Θ2)

−P̌1B̂Θ̂2,

Š1(T ) = 0,

(73)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt Š2 = Θ̂T

1 (R + M2(2P̌1))Θ̂2 − Θ̂T
1 (B̂T Š1 + MT

1 (P̌1))

−P̌T
12B̂Θ̂2 − P̌2BΘ2 + ZT

1 Š2 + ZT
0 P̌2(D0 − B0Θ2)

+ZT
0 P̌

T
12(D0 − B0̂IΘ̂2) − Θ̂T

1 Î
TBT

0 P̌12(D − B0Θ2),

Š2(T ) = 0,

(74)

⎧
⎪⎨

⎪⎩

− d
dt ř = Θ̂T

2 (R + M2(2P̌1))Θ̂2 − 2(ŠT1 B̂ + M1(P̌1))Θ̂2 − 2ŠT2 BΘ2

+(D0 − B0Θ2)
T (P̌2 + 2̂IP̌12)(D0 − B0Θ2) + M0(2P̌1),

ř(T ) = 0.

(75)

The above is a system of six linear ODEs and has a unique solution on [0, T ]. By the
following Lemmas 10 and 11, we further obtain the low-dimensional ODE systems
corresponding to the high-dimensional systems (70) and (71). The proof of Lemma 10
is similar to that of Lemma 1, and the proofs of Lemmas 11 and 12 are similar to that
of Lemma 2; we omit the details here.

Lemma 10 For (70), the solution P̌1 on [0, T ] has the representation

P̌1 =

⎡

⎢
⎢
⎢
⎣

Π̌N
1 Π̌ N

2 · · · Π̌ N
2

Π̌ N
2 Π̌ N

1 · · · Π̌ N
2

...
...

. . .
...

Π̌ N
2 Π̌ N

2 · · · Π̌ N
1

⎤

⎥
⎥
⎥
⎦

, Π̌ N
1 (t), Π̌ N

2 (t) ∈ Sn . (76)

Lemma 11 The matrix P̌12(t) ∈ R
Nn×n takes the form

P̌12(t) = (Π̌ NT
12 (t), . . . , Π̌ NT

12 (t))T , Π̌ N
12(t) ∈ R

n×n . (77)

Lemma 12 The matrix Š1(t) ∈ R
Nn×1 takes the form

Š1(t) = (ŠNT
1 (t), . . . , ŠNT

1 (t))T , ŠN1 (t) ∈ R
n×1. (78)

Following the rescaling method in Sect. 3.1, we define

Λ̌N
1 = Π̌ N

1 , Λ̌N
2 = NΠ̌N

2 , Λ̌N
12 = Π̌ N

12, Λ̌N
22 = P̌2/N , ŠN2 = Š2/N , ř N = ř/N .

We give some intuition behind the scaling used to define Λ̌N
22. Take x = 0 and a large

|x̄ | > 0 at t = 0; the resulting control input will generate processes {Xi , 1 ≤ i ≤ N }
each containing a constituent component of roughly themagnitude of x̄ . Then the social
cost will contain a component of magnitude O(N |x̄ |2). This suggests P̌2 increases
nearly linearly with N . We substitute (76), (77) and (78) into (70), (71) and (73), with
Π̌ N

1 = Λ̌N
1 , Π̌

N
2 = Λ̌N

2 /N , Π̌ N
12 = Λ̌N

12. We further rewrite (72), (74) and (75) using
the new variables. After the change of variables, we derive

⎧
⎪⎨

⎪⎩

− d
dt Λ̌

N
1 = ΘTR1(Λ̌

N
1 )Θ + Λ̌N

1 (A − BΘ)

+(A − BΘ)T Λ̌N
1 + Q + ǧ1(N , Λ̌N

1 , Λ̌N
2 ),

Λ̌N
1 (T ) = Q f + QΓ

f /N ,

(79)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt Λ̌

N
2 = ΘT BT

0 (Λ̌N
1 + Λ̌N

2 )B0Θ + Λ̌N
1 G + GT Λ̌N

1

+Λ̌N
2 (A + G − BΘ) + (A + G − BΘ)T Λ̌N

2

+QΓ + ǧ2(N , Λ̌N
2 ),

Λ̌N
2 (T ) = QΓ

f ,

(80)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt Λ̌

N
12 = ΘTR2(Λ̌

N
1 , Λ̌N

2 )Θ1 + ΘT BT
0 Λ̌N

12B0(Θ + Θ1)

−(Λ̌N
1 + Λ̌N

2 )BΘ1 + [A + G − BΘ]T Λ̌N
12

+Λ̌N
12[A + G − B(Θ1 + Θ)] + ǧ12(N , Λ̌N

2 ),

Λ̌N
12(T ) = 0,

(81)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d
dt Λ̌

N
22 = ΘT

1 R2(Λ̌
N
1 , Λ̌N

2 )Θ1 − Λ̌NT
12 BΘ1 − ΘT

1 BT Λ̌N
12

+Λ̌N
22Z1 + ZT

1 Λ̌N
22 − ZT

0 Λ̌NT
12 B0Θ1 − ΘT

1 BT
0 Λ̌N

12Z0

+ZT
0 Λ̌N

22Z0 + ǧ22(N , Λ̌N
2 ),

Λ̌N
22(T ) = 0,

(82)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− d
dt Š

N
1 = ΘTR2(Λ̌

N
1 , Λ̌N

2 )Θ2 − (Λ̌N
1 + Λ̌N

2 + Λ̌N
12)BΘ2

−ΘT [BT ŠN1 + BT
1 Λ̌N

1 D + BT
0 (Λ̌N

1 + Λ̌N
2 )D0]

−ΘT BT
0 Λ̌N

12(D0 − B0Θ2) + (AT + GT )ŠN1
+ǧ01(N , Λ̌N

2 ),

ŠN1 (T ) = 0,

(83)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− d
dt Š

N
2 = ΘT

1 R2(Λ̌
N
1 , Λ̌N

2 )Θ2 + ZT
1 Š

N
2

−ΘT
1 [BT ŠN1 + BT

1 Λ̌N
1 D + BT

0 (Λ̌N
1 + Λ̌N

2 )D0]
+(ZT

0 Λ̌N
22 + ZT

0 Λ̌NT
12 − ΘT

1 BT
0 Λ̌N

12)(D0 − B0Θ2)

−(Λ̌NT
12 + Λ̌N

22)BΘ2 + ǧ02(N , Λ̌N
2 ),

ŠN2 (T ) = 0,

(84)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d
dt ř

N = ΘT
2 R2(Λ̌

N
1 , Λ̌N

2 )Θ2 + DT Λ̌N
1 D + DT

0 (Λ̌N
1 + Λ̌N

2 )D0

−[(ŠNT
1 + ŠNT

2 )B + DT Λ̌N
1 B1 + DT

0 (Λ̌N
1 + Λ̌N

2 )B0]Θ2

−ΘT
2 [BT (ŠN1 + ŠN2 ) + BT

1 Λ̌N
1 D + BT

0 (Λ̌N
1 + Λ̌N

2 )D0]
+(D0 − B0Θ2)

T (Λ̌N
22 + Λ̌N

12 + Λ̌NT
12 )(D0 − B0Θ2)

+ǧ03(N , Λ̌N
2 ),

ř N (T ) = 0,

(85)

with

ǧ1(N , Λ̌N
1 , Λ̌N

2 ) = (1/N )
{
ΘT BT

0 [Λ̌N
1 + (1 − 1/N )Λ̌N

2 ]B0Θ

+ [Λ̌N
1 + (1 − 1/N )Λ̌N

2 ]G + GT [Λ̌N
1 + (1 − 1/N )Λ̌N

2 ] + QΓ
}
,

ǧ2(N , Λ̌N
2 ) = −(ΘT BT

0 Λ̌N
2 B0Θ + Λ̌N

2 G + GT Λ̌N
2 )/N ,

ǧ12(N , Λ̌N
2 ) = (−ΘT BT

0 Λ̌N
2 B0Θ1 + Λ̌N

2 BΘ1)/N ,

ǧ22(N , Λ̌N
2 ) = −ΘT

1 BT
0 Λ̌N

2 B0Θ1/N ,
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ǧ01(N , Λ̌N
2 ) = [ΘT BT

0 Λ̌N
2 (D0 − B0Θ2) + Λ̌N

2 BΘ2]/N ,

ǧ02(N , Λ̌N
2 ) = [−ΘT

1 BT
0 Λ̌N

2 B0Θ2 + ΘT
1 BT

0 Λ̌N
2 D0]/N ,

ǧ03(N , Λ̌N
2 ) = [−ΘT

2 BT
0 Λ̌N

2 B0Θ2 + 2DT
0 Λ̌N

2 B0Θ2 − DT
0 Λ̌N

2 D0]/N .

Remark 6 Given (Λ1,Λ2) on [0, T ], the system (79)–(85) is a linear ODE system and
has a unique solution on [0, T ] for each N ≥ 1.

Remark 7 Let ψN stand for any of the functions Λ̌N
1 , Λ̌

N
2 , Λ̌

N
12, Λ̌

N
22, Š

N
1 , ŠN2 and ř N .

Due to the bounded coefficients in the ODE system, supN≥1, 0≤t≤T |ψN | ≤ C for
some fixed constant C .

Remark 8 Let hN stand for any of the functions ǧ1, ǧ2, ǧ12, ǧ22, ǧ01, ǧ02 and ǧ03. Then
supt∈[0,T ] |hN (t)| = O(1/N ).

5.2 Upper Bound of Optimality Gap

Under Assumption 1 on (Λ1,Λ2), for all sufficiently large N we can solve for
(ΛN

1 ,ΛN
2 , SN , r N ) according to Theorem2 andCorollaries 1 and 2. For every such N ,

we solve the system (79)–(85) for a unique solution (Λ̌N
1 , Λ̌N

2 , Λ̌N
12, Λ̌

N
22, Š

N
1 , ŠN2 , ř N ).

The following lemmas estimate some difference terms relating the low-dimensional
functions (ΛN

1 ,ΛN
2 , SN , r N ) to (Λ̌N

1 , Λ̌N
2 , Λ̌N

12, Λ̌
N
22, Š

N
1 , ŠN2 , ř N ), which will be

used to estimate the optimality loss |J (N )
soc (Uo)−J (N )

soc (Ud)| of the decentralized control
Ud .

Lemma 13 supt∈[0,T ] |Λ̌N
1 − ΛN

1 | = O(1/N ).

Proof By Corollary 1, supt∈[0,T ] |ΛN
1 (t) − Λ1(t)| = O(1/N ), so it suffices to show

that supt∈[0,T ] |Λ̌N
1 (t) − Λ1(t)| = O(1/N ). Taking the difference of (20) and (79)

gives

⎧
⎪⎨

⎪⎩

d
dt (Λ̌

N
1 − Λ1) = −ΘT BT

1 (Λ̌N
1 − Λ1)B1Θ − (Λ̌N

1 − Λ1)(A − BΘ)

−(A − BΘ)T (Λ̌N
1 − Λ1) − ǧ1(N , Λ̌N

1 , Λ̌N
2 ),

Λ̌N
1 (T ) − Λ1(T ) = QΓ

f /N .

Then it follows that for all t ∈ [0, T ],

|Λ̌N
1 (t) − Λ1(t)| ≤

∫ T

t
{(|ΘT BT

1 |2 + 2|A − BΘ|)|Λ̌N
1 − Λ1| + |ǧ1(N , Λ̌N

1 , Λ̌N
2 )|}ds

+ |QΓ
f |/N .

ByRemark8, supt |ǧ1(N , Λ̌N
1 , Λ̌N

2 )| = O(1/N ). The lemma follows fromGrönwall’s
lemma. 
�
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Lemma 14 supt∈[0,T ] |ΛN
1 + ΛN

2 − (Λ̌N
1 + Λ̌N

2 + Λ̌N
12 + Λ̌NT

12 + Λ̌N
22)| = O(1/N ).

Proof DefineΔN
12 := Λ1+Λ2−Λ̌N

1 −Λ̌N
2 −Λ̌N

12−Λ̌NT
12 −Λ̌N

22. Since supt∈[0,T ](|ΛN
1 −

Λ1|+|ΛN
2 −Λ2|) = O(1/N ) byCorollary 1, it suffices to show that supt∈[0,T ] |ΔN

12| =
O(1/N ). We combine (79)–(82) and (21) to get the ODE

d

dt
ΔN

12 = (Θ + Θ1)
T [BT

1 (Λ̌N
1 − Λ1)B1 − BT

0 ΔN
12B0](Θ + Θ1)

− ΔN
12[A + G − B(Θ + Θ1)] − [A + G − B(Θ + Θ1)]TΔN

12

+ ǧ1 + ǧ2 + ǧ12 + ǧT12 + ǧ22,

ΔN
12(T ) = −QΓ

f /N .

Since supt∈[0,T ] |Λ̌N
1 −Λ1| = O(1/N ) by the proof of Lemma 13 and supt |ǧ1+ ǧ2+

ǧ12 + ǧT12 + ǧ22| = O(1/N ) by Remark 8, the desired result follows from Grönwall’s
lemma, in the same manner as in the proof of Lemma 13. 
�
Lemma 15 supt∈[0,T ] |SN − ŠN1 − ŠN2 | = O(1/N ).

Proof By Corollary 2, it suffices to show that supt∈[0,T ] |S − ŠN1 − ŠN2 | = O(1/N ).
Combining (73), (74) and (49) gives

d

dt
(S − ŠN1 − ŠN2 ) = − [A + G − B(Θ + Θ1)]T (S − ŠN1 − ŠN2 )

+ (Θ + Θ1)
T BT

1 (Λ1 − Λ̌N
1 )(D − B1Θ2)

+ (Θ + Θ1)
T BT

0 ΔN
12(D0 − B0Θ2) + ΔN

12BΘ2

+ ǧ01(N , Λ̌N
2 ) + ǧ02(N , Λ̌N

2 ),

where S(T )− ŠN1 (T )− ŠN2 (T ) = 0.With the estimates ofΛ1−Λ̌N
1 andΔN

12 obtained
in the proofs of Lemmas 13 and 14, respectively, and supt |ǧ0k(N , Λ̌N

2 )| = O(1/N ),
k = 1, 2 in Remark 8, the desired result follows from Grönwall’s lemma. 
�
Lemma 16 supt∈[0,T ] |r N − ř N | = O(1/N ).

Proof By Corollary 2, it suffices to show that supt∈[0,T ] |r − ř N | = O(1/N ), where
r is the unique solution of (50). Combining (50) and (85) gives

d

dt
(r − ř N ) = ΘT

2 [BT
1 (Λ̌N

1 − Λ1)B1 − BT
0 ΔN

12B0]Θ2

+ [(ST − ŠNT
1 − ŠNT

2 )B + DT (Λ1 − Λ̌N
1 )B1 + DT

0 ΔN
12B0]Θ2

+ ΘT
2 [BT (S − ŠN1 − ŠN2 ) + BT

1 (Λ1 − Λ̌N
1 )D + BT

0 ΔN
12D0]

+ DT (Λ̌N
1 − Λ1)D − DT

0 ΔN
12D0 + ǧ03(N , Λ̌N

2 ),

r(T ) − ř N (T ) = 0.
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With the estimates of Λ1 − Λ̌N
1 , ΔN

12 and S − ŠN1 − ŠN2 obtained in the proofs of
Lemmas 13, 14 and 15, and supt |ǧ03(N , Λ̌N

2 )| = O(1/N ), we obtain the desired
result. 
�
Proof of Theorem 3 We have

J (N )
soc (Ud) − J (N )

soc (Uo)

= E[V̌ (0, X(0), X(0)) − V (0, X(0))]
= E[XT (0)(P̌1(0) − P(0))X(0) + 2XT (0)P̌12(0)X(0) + X

T
(0)P̌2(0)X(0)]

+ 2E[XT (0)Š1(0) + X
T
(0)Š2(0) − XT (0)S(0)] + ř(0) − r(0). (86)

The linear term on the right hand side of (86) may be written as

2E[XT (0)Š1(0) + X
T
(0)Š2(0) − XT (0)S(0)]

= 2
N∑

i=1

E[XT
i (0)ŠN1 (0) + X

T
(0)ŠN2 (0) − XT

i (0)SN (0)]

= 2NμT
0 (ŠN1 (0) + ŠN2 (0) − SN (0)). (87)

The quadratic term on the right hand side of (86) may be written as

E[XT (0)(P̌1(0) − P(0))X(0) + 2XT (0)P̌12(0)X(0) + X
T
(0)P̌2(0)X(0)]

=
N∑

i=1

E[XT
i (0)(Λ̌N

1 (0) − ΛN
1 (0))Xi (0)] +

N∑

i �= j=1

1

N
E[XT

i (0)(Λ̌N
2 (0) − ΛN

2 (0))X j (0)]

+
N∑

i=1

E[XT
i (0)Λ̌N

12(0)X(0)] +
N∑

i=1

E[XT
(0)Λ̌NT

12 (0)Xi (0)] + NE[XT
(0)Λ̌N

22(0)X(0)]

=
N∑

i=1

Tr[(Λ̌N
1 (0) − ΛN

1 (0))Σ i
0]+

+ NμT
0 [Λ̌N

1 (0) + Λ̌N
2 (0) + Λ̌N

12(0) + Λ̌NT
12 (0) + Λ̌N

22(0) − ΛN
1 (0) − ΛN

2 (0)]μ0

− μT
0 [Λ̌N

2 (0) − ΛN
2 (0)]μ0

=:ζ N
0 .

Substituting (87) and ζ N
0 into (86) gives

J (N )
soc (Ud) − J (N )

soc (Uo) = ζ N
0 + 2NμT

0 (ŠN1 (0) + ŠN2 (0) − SN (0)) + ř(0) − r(0).

By Lemma 13 and Assumption 2, | ∑N
i=1 Tr[(Λ̌N

1 (0) − ΛN
1 (0))Σ i

0]| = O(1). By
Corollary 1 andRemark7, |Λ̌N

2 (0)−ΛN
2 (0)| = O(1). The twoupper bounds combined

with Lemma 14 imply that |ζ N
0 | = O(1). Recalling Lemmas 15 and 16, it follows
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that |J (N )
soc (Ud) − J (N )

soc (Uo)| = O(1). Furthermore, the optimality of Uo implies that
J (N )
soc (Ud) − J (N )

soc (Uo) ≥ 0, and thus the desired result follows. 
�

5.3 Performance Comparison with theMean Field Game

The agents in the social optimization problem are cooperative with a common objec-
tive. A different solution notion is to solve a mean field game where each agent
optimizers for its own interest; this has been developed in a companion paper [33].
This subsection compares the two solutions by demonstrating the efficiency gain of
social optimization with respect to the mean field game.

Let Uo = (uT1 , . . . , uTN )T denote the social optimal control and Ug =
(ugT1 , . . . , ugTN )T the set of Nash equilibrium strategies. For simplicity, we consider
the model with D = D0 = 0 in (1). For the comparison, we further assume the mean
and covariance matrix of the initial states {Xi (0) : 1 ≤ i ≤ N } satisfy (62).

When all agents take the social optimal control Uo, based on (63), the asymptotic
per agent cost is defined as

J̄i,soc:= lim
N→∞(1/N )EV (0, X(0))

= E[XT
1 (0)Λ1(0)X1(0) + XT

1 (0)Λ2(0)X2(0)]
= Tr[Λ1(0)Σ0] + μT

0 [Λ1(0) + Λ2(0)]μ0. (88)

When Ud instead of Uo is applied, by Theorem 3, the per agent cost also tends to
J̄i,soc as N → ∞.

When all agents take the set of Nash equilibrium strategies Ug , let V g
i denote the

value function of agent Ai . The asymptotic per agent cost is defined as

J̄i,mfg:= lim
N→∞EV g

i (0, X(0))

=E

[
XT
1 (0)Λg

1(0)X1(0) + XT
1 (0)(Λg

2(0) + Λ
gT
2 (0) + Λ

g
4(0))X2(0)

]

=Tr[Λg
1(0)Σ0] + μT

0 [Λg
1(0) + Λ

g
2(0) + Λ

gT
2 (0) + Λ

g
4(0)]μ0. (89)

TheODEs of (Λg
1,Λ

g
2,Λ

g
3,Λ

g
4) are given inAppendixC.WehaveΛ1 = Λ

g
1 on [0, T ],

since Λ1 and Λ
g
1 satisfy the same Riccati ODE with the same terminal condition. The

per agent cost for the decentralized ε-Nash equilibrium strategies (see [34]) has the
same limit J̄i,mfg as N → ∞. By (88) and (89), we calculate

J̄i,mfg − J̄i,soc = μT
0 [Λg

1(0) + Λ
g
2(0) + Λ

gT
2 (0) + Λ

g
4(0) − Λ3(0)]μ0.

Since (1/N )EV (0, X(0)) ≤ EV g
i (0, X(0)) for each N , we have J̄i,mfg − J̄i,soc ≥ 0.
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5.4 Comparison with Mean Field Type Control

We describe an application of mean field type optimal control to mean-variance port-
folio selection. The state process is given by

dX(t) = [ρX(t) + (α − ρ)u(t)]dt + σu(t)dW (t),

where X(0) = x0 > 0. For simplicity, we consider one bond and one stock with
constant parameters. In the above, X(t) is the wealth; u(t) is the amount allocated
to the stock; ρ is the interest rate of the bond; α > ρ is the appreciation rate of the
stock; and σ > 0 is the volatility of the stock. The above state equation has an obvious
generalization by considering time-dependent parameters and more than one stock.
The cost is

J (u) = γ

2
Var(X(T )) − EX(T )

= E

(γ

2
X2(T ) − X(T )

)
− γ

2
(EX(T ))2, γ > 0. (90)

The mean-variance portfolio selection problem has been solved for a more general
case of multiple stocks [67], [65, Chap. 6]. The method there is to solve a family of
problems by dynamic programming. Alternatively, [2] uses the stochastic maximum
principle to derive the solution as follows. Denote

(ρ − α)2At − (2ρAt + Ȧt )σ
2 = 0,

ρCt + Ċt = 0,

where AT = γ and CT = 1. Then

At = γ e(2ρ−λ)(T−t), Ct = eρ(T−t),

where λ = (ρ − α)2/σ 2. The optimal control law is

û(t) = α − ρ

σ 2 [Ct A
−1
t − (X(t) − EX(t))]. (91)

After solving EX(t) from a linear ODE, one obtains

û(t) = α − ρ

σ 2

[

x0e
ρt + 1

γ
eλT−ρ(T−t) − X(t)

]

. (92)

For the social optimization problem we consider the scalar model which has the
state equations

dXi (t) = [AXi (t) + Bui (t)]dt + B1ui (t)dWi (t), 1 ≤ i ≤ N ,

:= [ρXi (t) + (α − ρ)ui (t)]dt + σui (t)dWi (t)
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and individual costs

Ji = γ

2
E|Xi (T ) − X (N )(T )|2 − EXi (T ), 1 ≤ i ≤ N . (93)

The social cost is J (N )
soc = ∑N

i=1 Ji . Suppose all agents have identical initial state x0.
The mean-variance portfolio selection problem in [26] is solved by means of solving
the LQ social optimization problem and passing to an infinite population. Below we
will tailor the results in previous sections to this particular model.

To adapt to the costs (93), we slightlymodify the individual costs in (2) by replacing
the terminal cost with the new one

E

{
[Xi (T ) − Γ f X

(N )(T )]2Q f
+ 2KT Xi (T )

}
,

where K ∈ R
n . Accordingly, we take S(T ) = [KT , . . . , KT ]T in (11), SN (T ) = K

in (47), and S(T ) = K in (49).
Matching the notation in (1)–(2), we have Q = 0, Γ = 0, R = 0, Q f = γ /2, and

Γ f = 1. We further set K = −1/2. By (20) we have

Λ̇1 = Λ1B(B1Λ1B1)
−1BΛ1 − 2AΛ1

= (α − ρ)2

σ 2 Λ1 − 2ρΛ1,

where Λ1(T ) = γ /2. Next by (51), Λ3 = Λ1 + Λ2 satisfies

Λ̇3 = (α − ρ)2

σ 2 Λ−1
1 Λ2

3 − 2ρΛ3,

where Λ3(T ) = 0. Hence Λ3 = 0 and Λ2 = −Λ1. Now (49) reduces to

Ṡ = −ρS,

where S(T ) = −1/2.
We check (64) and determine

Θ = α − ρ

σ 2 , Θ1 = −Θ, Θ2 = α − ρ

σ 2 SΛ−1
1 .

The decentralized individual control is

ǔi = α − ρ

σ 2 [−SΛ−1
1 − (Xi (t) − X(t))], 1 ≤ i ≤ N , (94)

where X(t) = EXi (t). Clearly −S(t)Λ−1
1 (t) = Ct A

−1
t for all t ∈ [0, T ].

The two control laws (91) and (94) have the same form except for different interpre-
tations of the mean term. It is known that û in (91) is not time consistent [2]. Given the
value of X(t0) at t0 > 0, the portfolio optimization problem re-solved on [t0, T ] will
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Fig. 1 Solvability of (Λ1, Λ2) on [0, T ] with T = 2. Left panel: Example 1 with R > 0. Middle panel:
Example 2 with R < 0. Right panel: Example 3

generate a different strategy. However, for the mean field social optimization problem,
the set of controls is time consistent. We may think of an infinite population. Then
given the available states Xi (t0), i ≥ 1, the optimization problem on [t0, T ]will use X
as the restriction of {X(t), 0 ≤ t ≤ T } on [t0, T ]. The re-solved control is still given
by (94).

6 Numerical Examples

This section presents numerical examples to illustrate asymptotic solvability of social
optimization problems and examine performance of the associated control laws. The
ODE systems are solved using MATLAB ODE solver ode45.

6.1 Asymptotic Solvability

We consider three examples for (1)–(2).

Example 1 The parameter values are A = 1, B = 1, B0 = B1 = 0.2, D0 = D = 0,
G = 2, Q = 4, Q f = 2, R = 1, Γ = 0.1, Γ f = 0.1, and T = 2. Since R > 0,
(Λ1,Λ2) has a global solution on [0, T ], implying that the social optimization problem
has asymptotic solvability on [0, T ]. The solution of (Λ1,Λ2) is shown in Fig. 1 (left
panel).

Example 2 The parameter values are A = −4, B = 1, B0 = −2, B1 = 4, D0 = D =
0, G = 1, Q = Q f = 1, R = −1, Γ = 4, Γ f = 2, and T = 2. Fig. 1 (middle
panel) shows that (Λ1,Λ2) has a global solution on [0, T ], suggesting that the social
optimization problem has asymptotic solvability on [0, T ].
Example 3 The parameter values are A = 30, B = 1, B0 = B1 = 0.2, D0 = D = 0,
G = 2, Q = −30, Q f = 3, R = 1.5, Γ = 0.1, Γ f = 0.1, and T = 2. Fig. 1 (right
panel) shows that (Λ1,Λ2) does not have a global solution on [0, T ]. Thus the social
optimization problem does not have asymptotic solvability.
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Fig. 2 Left panel: The difference Λ̌N
1 + Λ̌N

2 + Λ̌N
12 + Λ̌NT

12 + Λ̌N
22 − (ΛN

1 + ΛN
2 ) evaluated at t = 0 for

N ≥ 1. Right panel: The difference J (N )
soc (Ud ) − J (N )

soc (Uo) for N ≥ 1

6.2 Performance

To numerically compare J (N )
soc (Uo) and J (N )

soc (Ud), we need to solve the system (31) for
(ΛN

1 ,ΛN
2 ) associated with the centralized control Uo and next the system (79)–(82)

for (Λ̌N
1 , Λ̌N

2 , Λ̌N
12, Λ̌

N
22) associated with the decentralized controlU

d . By Theorem 2,
if the Riccati ODE system consisting of (20) and (51) has a solution on [0, T ], then (31)
has a solution on [0, T ] for all sufficiently large N , and so does the system (79)–(82).

Recall the necessary and sufficient condition in Sect. 3.2 for the solvability of (20)
and (51). We will take Q, Q f ≥ 0, and R > 0, under which (20) and (51) have a
unique solution on [0, T ] [65, Theorem 6.7.2]. With the same parameter values as
in Example 1, we numerically solve the systems (31), (20)–(21), and (79)–(82). The
initial conditions are given as Xi (0) = 1 for all i ≥ 1, and X(0) = 1.

Fig. 2 (left panel) shows that the difference (Λ̌N
12 = Λ̌NT

12 for the scalar case)

[Λ̌N
1 (0) + Λ̌N

2 (0) + Λ̌N
12(0) + Λ̌NT

12 (0) + Λ̌N
22(0)] − [ΛN

1 (0) + ΛN
2 (0)]

approaches 0 as N → ∞, as asserted by Lemma 14. Fig. 2 (right panel) shows that
the difference J (N )

soc (Ud) − J (N )
soc (Uo) remains bounded as N increases.

6.3 Comparison Between the Social Optimum and theMean Field Equilibrium

We use the model in Example 1 to compare the per agent costs J̄i,soc and J̄i,mfg for
social optimization and themean field game, respectively. The initial states Xi (0) have
mean μ0 and variance Σ0.

Fig. 3 compares Λ
g
1 +Λ

g
2 +Λ

gT
2 +Λ

g
4 and Λ3 on [0, T ] (Λg

2 = Λ
gT
2 for the scalar

case). Note that Λ3 = Λ1 + Λ2 on [0, T ]. Since

J̄i,mfg − J̄i,soc = (Λ
g
1(0) + Λ

g
2(0) + Λ

gT
2 (0) + Λ

g
4(0) − Λ3(0))μ

2
0,

Fig. 3 confirms that the per agent cost of the social optimal control is lower than that
of the mean field equilibrium strategy.
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7 Conclusion

This paper studies asymptotic solvability for LQ mean field social optimization prob-
lems with indefinite state and control weight matrices. The analysis involves highly
nonlinear large-scale Riccati ODEs due to controlled diffusions.We derive a necessary
and sufficient condition for asymptotic solvability. We obtain a set of decentralized
individual control laws, and further show that its optimality loss is bounded. We fur-
ther check the efficiency gain of the social optimal control with respect to the mean
field game.

Acknowledgements Funding was provided by Natural Sciences and Engineering Research Council of
Canada.

A Proof of Lemma 1

Proof Write the Nn × Nn identity matrix INn as INn = diag[In, In, ..., In]. Let Ji j
denote the matrix obtained by exchanging the i th and j th rows of the submatrices in
INn . It is easy to check that Ji j = J ji and Ji j = J Ti j = J−1

i j for all i, j .
Denote P = (Pi j )1≤i, j≤N , where each Pi j is an n × n matrix. We choose arbitrary

i �= j , and denote J Ti j PJi j = P†
(i j). In this proof we write P

†
(i j) as P

† for simplicity of

notation. We multiply both sides of (10) from the left by J Ti j and next from the right
by Ji j to get

Ṗ†(t) = P†B̂
(
R + 2M2(P†)

)−1
B̂TP† − P†A − ATP† − Q,

where we use the following facts with Ψ = A, B̂, R, or Q,
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J Ti j (Bkek)Ji j =

⎧
⎪⎨

⎪⎩

Bkek if k �= i, j,

B je j if k = i,

Biei if k = j,

and J Ti j Ψ Ji j = Ψ .

Thus P† also satisfies (10). It then follows that J Ti j PJi j = P for any i �= j , and the
matrix P = (Pi j )1≤i, j≤N satisfies that

Pii = Pj j , Pi j = Pji , Pik = Pjk, Pki = Pkj , ∀k �= i, j .

This implies that the diagonal submatrices {Pii , 1 ≤ i ≤ N } are equal and all the
off-diagonal submatrices {Pi j , 1 ≤ i �= j ≤ N } are equal. Since P is symmetric, now
Pi j = PT

ji = Pji for all i �= j . We denote Pii = ΠN
1 for all 1 ≤ i ≤ N , and

Pi j = ΠN
2 for all 1 ≤ i �= j ≤ N . Then (22) follows. 
�

B Proof of Lemmas 2 and 4

Proof of Lemma 2 Existence and uniqueness holds since (11) is a linear ODE. The
remaining proof is similar to that of Lemma 1. We multiply both sides of the ODE
(11) from the left by Ji j as in the proof of Lemma 1 so that

Ji j Ṡ(t) = PB̂(R + 2M2(P))−1(B̂T Ji jS + MT
1 (P)) − AT Ji jS.

Since Ji jS and S satisfy the same ODE, for arbitrary i �= j , we conclude that S takes
the form (23). 
�

Proof of Lemma 4 Let Ji j be thematrix as defined in the proof ofLemma1.Multiplying
both sides of the identity

I = (R + 2M2(P))(R + 2M2(P))−1

from the left by J Ti j and next from the right by Ji j , for 1 ≤ i �= j ≤ N , we obtain

I = J Ti j (R + 2M2(P))(R + 2M2(P))−1 Ji j

= J Ti j (R + 2M2(P))Ji j J
T
i j (R + 2M2(P))−1 Ji j .

Since J Ti j (R+2M2(P))Ji j = R+2M2(P), it follows that J Ti j (R+2M2(P))−1 Ji j =
(R + 2M2(P))−1, and thus ENT = EN . 
�
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C Mean Field Game ODEs

The ODEs of (Λg
1,Λ

g
2,Λ

g
3,Λ

g
4) corresponding to the mean field game in Sect. 5.3 are

given as follows:

{
Λ̇

g
1 = Ψ1(Λ

g
1),

Λ
g
1(T ) = Q f , R1(Λ

g
1(t)) > 0, ∀t ∈ [0, T ],

⎧
⎪⎨

⎪⎩

Λ̇
g
2 = Λ

g
2BH

gBTΛ
g
2 + Λ

g
2BH

gBTΛ
g
1 + Λ

g
1BH

gBTΛ
g
2

−Λ
g
1G − Λ

g
2(A + G) − ATΛ

g
2 + QΓ ,

Λ
g
2(T ) = −Q f Γ f ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λ̇
g
3 = Λ

g
3BH

gBTΛ
g
1 + Λ

g
1BH

gBTΛ
g
3 + Λ

g
4BH

gBTΛ
g
2

+Λ
gT
2 BHgBT (Λ

g
2 + Λ

g
4) − Λ

g
1BH

gBT
1 Λ

g
3B1HgBTΛ

g
1

−(Λ
g
1 + Λ

gT
2 )BHgBT

0 (Λ
g
1 + Λ

g
2 + Λ

gT
2 + Λ

g
4)B0HgBT (Λ

g
1 + Λ

g
2)

−Λ
g
3 A − (Λ

gT
2 + Λ

gT
4 )G − ATΛ

g
3 − GT (Λ

g
2 + Λ

g
4) − Γ T QΓ ,

Λ
g
3(T ) = Γ T

f Q f Γ f ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Λ̇
g
4 = Λ

g
4BH

gBT (Λ
g
1 + Λ

g
2) + Λ

g
1BH

gBTΛ
g
4 + Λ

gT
2 BHgBT (Λ

g
2 + Λ

g
4)

−(Λ
g
1 + Λ

gT
2 )BHgBT

0 (Λ
g
1 + Λ

g
2 + Λ

gT
2 + Λ

g
4)B0HgBT (Λ

g
1 + Λ

g
2)

−(Λ
gT
2 + Λ

g
4)G − Λ

g
4 A − GT (Λ

g
2 + Λ

g
4) − ATΛ

g
4 − Γ T QΓ ,

Λ
g
4(T ) = Γ T

f Q f Γ f ,

where we use the notation Hg = (R1(Λ
g
1))

−1.
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