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UNIQUENESS OF CONSTRAINED VISCOSITY SOLUTIONS IN
HYBRID CONTROL SYSTEMS∗

MINYI HUANG†

Abstract. We study constrained viscosity solutions with an unbounded growth for a class of
first order Hamilton–Jacobi–Bellman equations arising in hybrid control systems. To deal with the
boundary constraint and rapid growth of the solutions, we construct a particular set of test functions
and under very mild conditions establish a comparison theorem which gives the estimate of distance
between the subsolution and the supersolution. The comparison theorem implies uniqueness of the
constrained viscosity solution if its existence is ensured; and under some additional assumptions we
give an existence result by showing that the value function is a constrained viscosity solution. We
then apply the obtained uniqueness results to an optimal scheduling problem and finally to stochastic
manufacturing systems.
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1. Introduction. This paper is concerned with the analysis of a class of first
order Hamilton–Jacobi–Bellman (HJB) equations with discrete transitions and state
constraints. Such equations arise naturally in the optimal control of stochastic systems
with random structural changes in dynamics, which are modeled as Markovian jumps.
These systems involve both continuum and discrete components in their evolution and
are referred to as hybrid systems, and they have been investigated from a wide range
of backgrounds including production planning subject to random machine breakdown
and repair [20] and the control of fluid queueing models for communication networks
[19, 7, 17], among others [6, 9, 14, 24, 28]. Due to physical limitation, a typical
feature for many control models is that the system state is restricted to a certain set;
for instance, the level for buffers must be maintained nonnegative [20, 25]. To deal
with the resulting HJB equation, one needs to take into account both the discrete
transitions and the state space constraints and to adopt the notion of appropriately
defined constrained viscosity solutions first introduced in [22].

Specifically, Soner studied an optimal control problem and introduced first or-
der constrained viscosity solutions in [22], where the deterministic state trajectory
is restricted to a given subset of R

n, and in a companion work [23] along this line,
viscosity solutions were analyzed for controlled piecewise deterministic Markov pro-
cesses [6] defined on a subset of R, which leads to an integral HJB equation. Later on,
the result in [22] was generalized in [18] by identifying weaker sufficient conditions for
ensuring continuity of the value function and in [12] by an additional boundary char-
acterization of the subsolution via a so-called inward Hamiltonian reflecting boundary
constraints.
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Fig. 1. (a) A manufacturing system with n machines (Mi, 1 ≤ i ≤ n) and n− 1 buffers; (b) a
multihop communication network where the source S and destination D are connected by n buffers.

For HJB equations involving finite state Markov chains, viscosity solutions have
been studied in [20, 8, 26, 27]. In particular, the authors in [26, 27] considered
controlled random transitions but there were no state constraints.

Although viscosity solutions with state constraints are of importance and have
their primary motivation in optimal control, in many application problems, the ex-
isting results face limitation. Notably, in the sequence of work [22, 18, 12] consid-
ering first order HJB equations for deterministic systems, uniqueness is obtained for
uniformly continuous and bounded solutions. In [15] and [5], bounded continuous
solutions were analyzed on a bounded domain. Also, in a singular perturbation con-
trol problem with partial state constraints [1], uniqueness and existence theorems
were established with bounded continuous solutions. For illustrating the limitation of
those previous results, we consider the optimal control of a single buffer fluid model
with controlled input and output and, as a well-motivated practice, introduce a linear
holding cost for a positive buffer level (see section 6 for details). This readily leads
to unbounded value functions, and existing results for constrained viscosity solutions
are difficult to apply.

In this work we study uniqueness of constrained viscosity solutions for a class of
stochastic hybrid systems. We concentrate our attention to two concrete types of do-
mains for the state variable. The particular structure of the state space has adequate
generality and is frequently encountered in a wide range of application problems aris-
ing in manufacturing systems and communication networks [20, 25, 19] (see Figure 1
for illustration), though a generalization of the state space to other forms is possible.
In introducing our solution notion, we generalize the definition of constrained viscos-
ity solutions for standard HJB equations of deterministic models to a coupled HJB
equation system. Resulting from the state space constraints, this definition leads to
specifying the viscosity sub/supersolution in two different regions, respectively, i.e.,
characterizing the subsolution in a smaller region—the interior of the constrained state
space. Such a differentiation by two regions is important for developing a solution
framework for uniqueness analysis. We prove uniqueness of the solution within the
class of functions satisfying a polynomial growth and local Hölder continuity. In es-
tablishing the comparison result in this paper, a crucial step is to obtain suitable test
functions involved in the definition of constrained viscosity solutions. Towards this
end, we construct the auxiliary function Φ by first dominating the sub/supersolution
growth by an exponential function and then introducing a pair of perturbation pa-
rameters (τ, ε) [see (11)] such that the resulting maxima (w.r.t. x) can be tuned to
the interior of the state space to generate desired test functions for the subsolution.
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The proof of the comparison theorem depends on generalizing typical techniques for
deterministic systems [22, 2].

For proving existence results in the general model, a quite difficult step is to
show continuity of the value function. The key idea in our analysis is to truncate a
small time interval by the jump time of the Markov chain so that locally the system
dynamics act like a time-invariant model. This resulting feature enables us to use
a certain time-shifting technique to construct auxiliary admissible controls for cost
estimates. In particular, using a recursive estimation procedure, we obtain Hölder
continuity of the value function, and we mention that as a byproduct this method
can be used to strengthen some existing continuity results in the literature for state
constrained optimal control problems.

Our work differs from most existing analysis on constrained viscosity solutions for
deterministic systems in that we need to deal with a system of coupled equations and
the solution growth is rapid. Our solution notion for the coupled HJB equation system
and the uniqueness results provide a unified analytical basis for the optimal control
of this class of hybrid systems. In particular, our uniqueness results are applicable to
classical stochastic manufacturing models (see, e.g., [20]), where to our best knowledge
the existing work has not provided uniqueness results for the coupled HJB equations
when nonnegative buffer level constraints are imposed.

The organization of the paper is as follows. In section 2, we first describe the
optimal control problem for the hybrid system and introduce the notion of constrained
viscosity solutions. The comparison result and uniqueness theorem are stated in
section 3. The proof of the comparison theorem is technical and postponed to section
4. For the general hybrid system model, section 5 first shows Hölder continuity of
the value function under some technical conditions and proves that it is the unique
constrained viscosity solution. In section 6, we study an optimal data traffic scheduling
problem and prove the existence and uniqueness of constrained viscosity solutions by
applying the result in section 3. In section 7, we further apply the results in section
3 to a well-studied stochastic manufacturing system, which complements existence
theorems in the manufacturing literature [20]. Finally, a few concluding remarks are
presented in section 8.

2. The HJB equation and constrained viscosity solutions. Consider a
hybrid control system described by the following differential equation:

dX(t)

dt
= F (X(t), θ(t), u(t)), t ≥ 0,(1)

with initial condition X(0) ∈ Q̄. Here X and θ are called the state and mode variables,
respectively. The trajectory of X on [0,∞) is required to be in Q̄, which is a closed
subset of R

n with a nonempty interior Q. Moreover, θ is a continuous time Markov
chain with state space Θ = {1, 2, . . . ,m} and transition probability rate matrix Πθ =
(πij)m×m, which is also called the generator. It is assumed that, with probability one,
the trajectory of θ is right continuous with left limit. Given θ(t) = k, the control u(t)
takes values from a compact set Uk ⊂ R

d. Let Ft denote the σ-algebra generated by
the Markov chain θ up to time t, i.e., Ft = σ(θ(s), s ≤ t). Associated with X(0) = x
and θ(0) = k, the admissible control set is written as Ux,k consisting of all controls
u(·) satisfying u(t) ∈ Uθ(t) and adapted to Ft such that P{X(t) ∈ Q̄, ∀ t ≥ 0} = 1.
We make the convention that for all (x, k) ∈ Q̄ × Θ, Ux,k is nonempty and that the
state process X(t) associated with an admissible control is uniquely determined on
[0,∞) with exception on a null set of samples. Given initial condition (x, k) ∈ Q̄×Θ
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at t = 0, let the cost function be given by

v(x, k) = inf
u∈Ux,k

J(x, k, u)

�
= inf

u∈Ux,k

E
[ ∫ ∞

0

e−ρtL(X(t), θ(t), u(t))dt|X(0) = x, θ(0) = k
]
,(2)

where ρ > 0 is a discount factor and L is the cost integrand before discount.
To facilitate the subsequent analysis, we set some convention on notation. We

may alternatively denote X(t) as Xt with a real-valued subscript t ≥ 0, and the same
convention holds for u(t) and θ(t), etc. The letter u may stand for a value in Uk for
a certain k ∈ Θ or a control adapted to Ft; the specific interpretation should be clear
from the context. Throughout the paper, for a real-valued vector y, |y| denotes its
Euclidean norm.

For any function ϕ : Θ → R, we define the map

[Πθϕ(·)](i) =
∑
j �=i

πij [ϕ(j) − ϕ(i)],(3)

where πii +
∑

j �=i πij = 0.
We assume for any given k ∈ Θ, both F (x, k, u) and L(x, k, u) are continuous in

(x, u) ∈ Q̄×Uk. A formal application of dynamic programming leads to the following
equation system:

ρv(x, k) = inf
u∈Uk

[
vTx (x, k)F (x, k, u) + [Πθv(x, ·)](k) + L(x, k, u)

]
,(4)

where (x, k) ∈ Q̄ × Θ and the superscript (·)T denotes the transpose of a vector or
matrix. Note that due to the action of the generator, (4) gives a system of m coupled
equations. For convenience of exposition, we simply refer to (4) as the HJB equation
for the underlying optimal control problem. Write

H̃(x, k, vx(x, k), v(x, ·), u) = vTx (x, k)F (x, k, u) + [Πθv(x, ·)](k) + L(x, k, u).

Then the HJB equation (4) may be written in the compact form:

ρv(x, k) = inf
u∈Uk

H̃(x, k, vx(x, k), v(x, ·), u)

�
= H(x, k, vx(x, k), v(x, ·)), (x, k) ∈ Q̄× Θ,(5)

where the dot entry in (5) indicates that for each fixed k, the term H depends on the
whole vector [v(x, 1), . . . , v(x,m)].

Definition 1. Let v(x, k), v(x, k), and v(x, k) be functions from Q̄ × Θ to R,
each being continuous in x for all k ∈ Θ.

(i) v(x, k) is a viscosity subsolution to (5) on Q × Θ if for any k0 ∈ Θ and any
function φ ∈ C1(Q̄), we have

(6) ρv(x0, k0) −H(x0, k0, φx(x0), v(x0, ·)) ≤ 0

at x0, whenever v(x, k0) − φ(x) attains a local maximum at x = x0 ∈ Q.
(ii) v(x, k) is a viscosity supersolution to (5) on Q̄ × Θ if for any k0 ∈ Θ and

φ ∈ C1(Q̄), we have

(7) ρv(x0, k0) −H(x0, k0, φx(x0), v(x0, ·)) ≥ 0

at x0, whenever v(x, k0) − φ(x) attains a local minimum at x = x0 ∈ Q̄.
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(iii) v(k, x) is called a constrained viscosity solution on Q̄× Θ to (5) if it is both
a viscosity subsolution on Q× Θ and a viscosity supersolution on Q̄× Θ.

In the definition of the viscosity supersolution, the minima x0 may lie on the
boundary of Q̄. The function φ involved in either (i) or (ii) in Definition 1 is called
the test function.

Denote by Cp(Q̄ × Θ) the set of functions g(x, k) from Q̄ × Θ to R, which are
continuous in x ∈ Q̄ for any given k ∈ Θ and have a polynomial growth rate, i.e.,
for any g ∈ Cp(Q̄ × Θ), one can find positive constants C and b, depending on that
particular function, such that |g(x, k)| ≤ C(1 + |x|b) for all (x, k) ∈ Q̄ × Θ. For
a1, a2 ∈ R, denote a1 ∨ a2 = max{a1, a2}, and a1 ∧ a2 = min{a1, a2}. Given γ ∈ (0, 1]
and g ∈ Cp(Q̄× Θ), define

Hol(g, γ,R)
�
= sup

k∈Θ
sup

|x|∨|x′|≤R

|g(k, x′) − g(k, x)|
|x′ − x|γ ,

where x, x′ ∈ Q̄ and 0 < R < ∞. The value Hol(g, γ,R) ≤ ∞ is called the local
Hölder constant for g associated with R > 0, where γ is the Hölder exponent. For
the case γ = 1, Hol(g, 1, R) reduces to the local Lipschitz constant and is denoted as
Lip(g,R).

Define Cloc
p,Hol(Q̄×Θ) as the class of functions g ∈ Cp(Q̄×Θ) satisfying local Hölder

continuity; i.e., there exists a Hölder exponent γ ∈ (0, 1] such that Hol(g, γ,R) < ∞
for all R > 0. Furthermore, we define Cloc

p,Lip(Q̄ × Θ) as the class of functions g ∈
Cp(Q̄×Θ) satisfying local Lipschitz continuity in x; i.e., Lip(g,R) < ∞ for all R > 0.

Obviously, Cloc
p,Lip(Q̄ × Θ) ⊂ Cloc

p,Hol(Q̄ × Θ). In addition, if g ∈ Cloc
p,Hol(Q̄ × Θ)

with Hölder exponent γ2 and 0 < γ1 < γ2 ≤ 1, g is also locally Hölder continuous
with exponent γ1.

In establishing our main results, we concentrate on two types of structures for Q̄.
Case (i). For state constraint in a subspace:

Q̄a
�
= [0,∞)n−1 × (−∞,∞),

where the integer n ≥ 2. The interior of the set is Qa = (0,∞)n−1 × (−∞,∞).
Case (ii). For state constraint in full space:

Q̄b
�
= [0,∞)n,

where n ≥ 1. The interior of the set is Qb = (0,∞)n.
Corresponding to Q̄a and Q̄b, the state variable x is restricted to the positive

orthant of R
n or its n − 1-dimensional subspace. Indeed, cases (i) and (ii) can cover

fairly general application models as shown in Figure 1, and they are also applicable
to systems with more complicated buffer interconnection; see, e.g., [21]. It is worth
noting that in the manufacturing fluid model given by Figure 1(a), the first n−1 entries
in x correspond to buffer levels and must be positive; the last entry xn, which denotes
the inventory level of the final product, however, can be negative and interpreted as
backlog. Although our technique developed in this paper may be extended to deal
with other forms of Q̄, we do not intend to treat the most general form.

3. The comparison theorem and uniqueness of solutions. The objective
of this section is to establish a comparison result which plays an important role in
proving uniqueness. Existence analysis will be presented for the general model in
section 5 and for more concrete models in sections 6 and 7.
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Let Li(x, k, u), i = 1, 2, be two functions with u ∈ Uk and (x, k) ∈ Q̄ × Θ.
Replacing L(x, k, u) by Li(x, k, u) in the original HJB equation (4), we write two new
equations:

ρv(x, k) = H1(x, k, vx(x, k), v(x, ·)),(8)

ρv(x, k) = H2(x, k, vx(x, k), v(x, ·)),(9)

where (x, k) ∈ Q̄× Θ and the construction for Hi, i = 1, 2, is obvious.

3.1. Main results. We make the following assumptions.
(A1) For any given k ∈ Θ, F (x, k, u) and Li(x, k, u), i = 1, 2, are continuous in

(x, u) ∈ Q̄× Uk.
(A1′) For any given k ∈ Θ, F (x, k, u) and L(x, k, u) are continuous in (x, u) ∈

Q̄× Uk.

(A2) Fmax
�
= sup(x,k)∈Q̄×Θ supu∈Uk

|F (x, k, u)| < ∞.
Under (A1) and (A1′), we have the following equicontinuity in x on compact sets.

Let ϕ stand for F , L, or Li. For a given compact subset BQ̄ of Q̄, when x, x′ ∈ BQ̄

and |x− x′| → 0, we have

|ϕ(x, k, u) − ϕ(x′, k, u)| → 0(10)

with a vanishing rate not depending on (k, u).
Theorem 2. Let Q̄ be either Q̄a or Q̄b, and suppose (A1)–(A2) hold. If v1,

v2 ∈ Cloc
p,Hol(Q̄ × Θ) are, respectively, a viscosity subsolution to (8) on Q × Θ and a

viscosity supersolution to (9) on Q̄× Θ, then the inequality holds:

sup
Q̄×Θ

[v1(x, k) − v2(x, k)] ≤ ρ−1 sup
Q̄×Θ

sup
Uk

[L1(x, k, u) − L2(x, k, u)].

Theorem 2 is the so-called comparison theorem, and it immediately implies the
following uniqueness theorem.

Theorem 3. Let Q̄ be either Q̄a or Q̄b, and suppose (A1′) and (A2) hold. If
v ∈ Cloc

p,Hol(Q̄ × Θ) is a constrained viscosity solution to (5), then it is unique in the

function class Cloc
p,Hol(Q̄× Θ).

3.2. Some preliminary lemmas. To prove Theorem 2, we need to establish a
sequence of preliminary results. The basic approach is to introduce a suitable compar-
ison function Φ for the construction of smooth test functions φ to generate the local
minima and maxima and then to apply the definition of viscosity sub/supersolutions.
A key technique will be developed such that the obtained maxima for v1 −φ, as spec-
ified during the proof of Theorem 2, do not occur at the boundary of Q̄, which is
crucial for subsequently applying the definition of viscosity subsolutions.

Let v1 and v2 be the viscosity sub/supersolution, respectively. For both Case
(i) Q̄ = Q̄a = [0,∞)n−1 × (−∞,∞) and Case (ii) Q̄ = Q̄b = [0,∞)n, we use the
same function Φ(x, y, k) constructed as follows. Denote 1n = (1, 1, . . . , 1)T , and for
v1, v2 ∈ Cloc

p,Hol(Q̄× Θ), let

Φ(x, y, k) = v1(x, k) − v2(y, k) −
∣∣∣∣x− y

ε
− τ1n

∣∣∣∣
2

(11)

−α[ζ(x) + ζ(y)], x, y ∈ Q̄,

where ζ(x) = exp(β
√
|x|2 + 1), with β = ρF−1

max, and ε, τ, α are all parameters chosen
within the interval (0, 1] throughout sections 3 and 4.
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The construction of Φ is based on the methods in [20, 22, 11, 5]; however, with
the simultaneous appearance of state constraints and rapid growth, it is necessary
to predominate v1 and v2 by the exponential term ζ(x) and subsequently insert the
small perturbation term τ1n, the magnitude of which can be adjusted independently.
This differs from the technique in [22, 5]. During the maximization of Φ, τ causes a
useful asymmetry between x and y in producing the increment of Φ. Such an effect
is further amplified by reducing ε provided that τ is fixed first, and this ensures that
x can be tuned to the interior of Q̄ leading to desired test functions.

Since both v1 and v2 have a polynomial growth rate, it is clear that there exists

(x̂, ŷ, k̂) ∈ Q̄× Q̄× Θ
�
= Γ such that

Φ(x̂, ŷ, k̂) = sup
(x,y,k)∈Γ

Φ(x, y, k),(12)

where the values of x̂, ŷ, and k̂ depend on ε, τ and α. However, for a given α ∈ (0, 1],
we may obtain a uniform bound for |x̂| and |ŷ| when the value of ε and τ varies on
(0, 1].

Lemma 4. Suppose Q̄ = Q̄a or Q̄b. Let v1, v2 ∈ Cloc
p,Hol(Q̄ × Θ) be given in (11)

and (x̂, ŷ, k̂) be obtained from (12). Then there exists a positive constant, depending
only on α and denoted as Cα, such that

|x̂| ∨ |ŷ| ≤ Cα.

Proof. It suffices to analyze for Q̄ = Q̄a. Since Φ(x̂, ŷ, k̂) ≥ Φ(0, 0, k̂), it follows
that

v1(x̂, k̂) − v2(ŷ, k̂) −
∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣
2

− α[ζ(x̂) + ζ(ŷ)]

≥ v1(0, k̂) − v2(0, k̂) − nτ2 − α[ζ(0) + ζ(0)],

which gives

α[ζ(x̂) + ζ(ŷ)] +

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣
2

≤ v1(x̂, k̂) − v1(0, k̂) − v2(ŷ, k̂) + v2(0, k̂) + nτ2 + α[ζ(0) + ζ(0)].

Without loss of generality, assume C0 > 0 and b0 > 0 have been found such that
|v1(x, k)| ∨ |v2(x, k)| ≤ C0(1 + |x|b0), for (x, k) ∈ Q̄× Θ. Since

α[ζ(x̂) + ζ(ŷ)] ≤ C0(4 + |x̂|b0 + |ŷ|b0) + n + [ζ(0) + ζ(0)],

there exists Cα > 0, depending on α but not on ε and τ , such that |x̂| ∨ |ŷ|
≤ Cα.

Notice that the selection of Cα implicitly depends on the associated parameters
C0 and b0. However, for convenience of presentation, in our analysis we simply say it
depends only on α, since v1 and v2 are assumed to be picked out from Cloc

p,Hol(Q̄×Θ)
and hence fixed.

Lemma 5. Suppose Q̄ = Q̄a or Q̄b and fix α ∈ (0, 1]. For (x̂, ŷ, k̂) given in (12),
the following properties hold: (i) supε∈(0,1] ε

−1|x̂− ŷ| = O(1), where the right-hand
side is independent of τ , and (ii) limε→0+ |x̂− ŷ| = 0 uniformly w.r.t. τ .
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Proof. It is adequate to consider Q̄ = Q̄a. Since 2Φ(x̂, ŷ, k̂) ≥ Φ(x̂, x̂, k̂) +

Φ(ŷ, ŷ, k̂), we get

2v1(x̂, k̂) − 2v2(ŷ, k̂) − 2

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣
2

− 2α[ζ(x̂) + ζ(ŷ)]

≥ v1(x̂, k̂) − v2(x̂, k̂) − nτ2 − 2αζ(x̂) + v1(ŷ, k̂) − v2(ŷ, k̂) − nτ2 − 2αζ(ŷ).

Suppose v1, v2 have exponent γ1, γ2 ∈ (0, 1], respectively, for local Hölder continuity.
Hence∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣
2

≤ 1

2
[v1(x̂, k̂) − v1(ŷ, k̂) + v2(x̂, k̂) − v2(ŷ, k̂)] + nτ2

≤ 1

2
[Hol(v1, γ1, Cα)|x̂− ŷ|γ1 + Hol(v2, γ2, Cα)|x̂− ŷ|γ2 ] + nτ2

≤ (1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2,(13)

since x̂ ∨ ŷ ≤ Cα by Lemma 4.
By use of the triangular inequality for norms, for τ ∈ (0, 1], we get∣∣∣∣ x̂− ŷ

ε

∣∣∣∣ ≤
∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣+ |τ1n|

≤
√

(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2 + nτ

≤
√

(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + n + n,

which implies assertion (i) and subsequently (ii). This completes the proof.
The proof of Lemmas 4 and 5 adopts the techniques in [11, 20] dealing with

unbounded viscosity solutions for first order HJB equations. The next lemma is
essential for deriving the comparison result in section 4.

Lemma 6. Let (x̂, ŷ, k̂) be given by (12) and x̂ = [x̂1, . . . , x̂n]T , ŷ = [ŷ1, . . . , ŷn]T .
For given τ, α ∈ (0, 1], if ε > 0 is sufficiently small, we have (i) x̂i > ŷi for 1 ≤ i ≤
n − 1, if Q̄ = Q̄a, or (ii) x̂i > ŷi for 1 ≤ i ≤ n, if Q̄ = Q̄b, which further implies
x̂ ∈ Q for both cases.

Proof. We give only the proof for assertion (i). The proof for assertion (ii) can
be handled similarly. The proof is quite technical, and we break it into three steps.

Step 1. Let α and τ be given with Q̄ = Q̄a. We assume assertion (i) is invalid,
and hence there exists a sequence εi ↓ 0, i ≥ 1, such that there is at least one (denoted
as the nith) coordinate component satisfying

x̂(i)
ni

− ŷ(i)
ni

≤ 0,(14)

where (x̂(i), ŷ(i), k̂(i)) is determined from (12) by taking ε = εi. Obviously, each ni is
picked out from the index set {1, 2, . . . , n− 1}.

If necessary, we may take a subsequence SJ
�
= {εij , j ≥ 1} such that both the

coordinate index ni and k̂(i) take constant values along SJ . In all of the following we
base the analysis on the subsequence SJ ; however, to simplify the notation we simply
represent SJ using the sequence {εi, i ≥ 1} and without loss of generality take ni ≡ 1

and k̂(i) = k̂.
Hence, we rewrite (14) as

x̂
(i)
1 − ŷ

(i)
1 ≤ 0, i ≥ 1.(15)
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By definition, we have

Φ(x̂(i), ŷ(i), k̂) = sup
Q̄×Q̄×Θ

Φ(x, y, k) ≥ Φ(x̂(i) + χδ, ŷ
(i), k̂)(16)

for any 0 < δ ≤ 1, where we denote the vector χδ = (δ, 0, . . . , 0)T . Since x̂(i) ∈ Q̄, it
is clear that x̂(i) + χδ ∈ Q̄.

Step 2. Now we show that (15) together with (16) leads to a contradiction. By
(16), we have

Φ(x̂(i), ŷ(i), k̂)

= v1(x̂
(i), k̂) − v2(ŷ

(i), k̂) −
∣∣∣∣ x̂(i) − ŷ(i)

εi
− τ1n

∣∣∣∣
2

− α[ζ(x̂(i)) + ζ(ŷ(i))]

≥ v1(x̂
(i) + χδ, k̂) − v2(ŷ

(i), k̂) −
∣∣∣∣ x̂(i) + χδ − ŷ(i)

εi
− τ1n

∣∣∣∣
2

− α[ζ(x̂(i) + χδ) + ζ(ŷ(i))],

which readily yields

Ti
�
=

∣∣∣∣∣ x̂
(i)
1 − ŷ

(i)
1

εi
− τ

∣∣∣∣∣
2

−
∣∣∣∣∣ x̂

(i)
1 + δ − ŷ

(i)
1

εi
− τ

∣∣∣∣∣
2

≤v1(x̂
(i), k̂) − v1(x̂

(i) + χδ, k̂) + αζ(x̂(i) + χδ) − αζ(x̂(i)).(17)

Obviously, for δ ∈ (0, 1] we have |x̂(i)| ∨ |x̂(i) +χδ| ≤ Cα + 1 by Lemma 4. Denote the
constant Dζ,α = sup|x|≤Cα+1 |ζ ′(x)|.

By (15) and then using the local Hölder and local Lipschitz continuity of v1 and
ζ, respectively, it is easy to check that

Ti = −δ2

ε2
i

+
2δ

εi

∣∣∣ |x̂(i)
1 − ŷ

(i)
1 |

εi
+ τ

∣∣∣ ≤ δγ1Hol(v1, γ1, Cα + 1) + δαDζ,α,

where γ1 ∈ (0, 1] is the Hölder exponent for v1, and therefore

2δτ

εi
≤ δ2

ε2
i

+ δγ1Hol(v1, γ1, Cα + 1) + δαDζ,α.(18)

Since (18) holds for all 0 < δ ≤ 1, for the case with subscript index i, we take

δ = ε
2

2−γ1
i to obtain

2τε
−γ1
2−γ1
i ≤ 1 + Hol(v1, γ1, Cα + 1) + ε

2(1−γ1)

2−γ1
i αDξ,α.(19)

Letting i → ∞, since τ > 0 is fixed, (19) leads to

Hol(v1, γ1, Cα + 1) ≥ ∞,

which is a contradiction since v1 ∈ Cloc
p,Hol(Q̄× Θ) with the exponent γ1.

Step 3. Combining Steps 1 and 2 above, we see that the initial assumption that (i)
is invalid does not hold. Hence assertion (i) is proven. Since ŷi ≥ 0 for 1 ≤ i ≤ n− 1,
it follows that x̂i > 0 for i ≤ n− 1, and consequently x̂ ∈ Q.

Notice that in order to derive the contradiction in Step 2 of the proof, it is neces-
sary to take τ as an independent variable such that its magnitude may be controlled
separately.
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4. Proof of Theorem 2. We give only the proof for Case (i) Q̄ = Q̄a, and Case

(ii) Q̄ = Q̄b can be treated without further difficulty. Let (x̂, ŷ, k̂) be obtained from
(12). For given τ and α, by Lemma 6 we can pick a sufficiently small ετ,α depending
on the pair (τ, α) such that for all 0 < ε ≤ ετ,α, its associated (x̂, ŷ) is in the set
Q× Q̄. In the following analysis we assume ε ≤ ετ,α is always satisfied. In particular,
x̂ is in the open set Q.

Let φ1(x) = v2(ŷ) + |x−ŷ
ε − τ1n|2 + α[ζ(x) + ζ(ŷ)] and φ2(y) = v1(x̂) − | x̂−y

ε −
τ1n|2 − α[ζ(x̂) + ζ(y)] be two test functions. Then on Q̄, v1(x) − φ1(x) attains its
maximum at x̂ ∈ Q, and v2(y)−φ2(y) attains its minimum at ŷ ∈ Q̄. Hence we apply
Definition 1 for viscosity sub/supersolutions to get

ρv1(x̂, k̂) − inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(x̂)

]T
F (x̂, k̂, u)(20)

+ Πθ[v1(x̂, ·)](k̂) + L1(x̂, k̂, u)

}
≤ 0,

ρv2(ŷ, k̂) − inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(ŷ)

]T
F (ŷ, k̂, u)(21)

+ Πθ[v2(ŷ, ·)](k̂) + L2(ŷ, k̂, u)

}
≥ 0.

The pair of inequalities (20) and (21) yields

ρv1(x̂, k̂) − ρv2(ŷ, k̂)

≤ inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(x̂)

]T
F (x̂, k̂, u)

+ Πθ[v1(x̂, ·)](k̂) + L1(x̂, k̂, u)

}

− inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
− αζ ′(ŷ)

]T
F (ŷ, k̂, u)

+ Πθ[v2(ŷ, ·)](k̂) + L2(ŷ, k̂, u)

}

≤ sup
u∈Uk̂

2

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣ · |F (x̂, k̂, u) − F (ŷ, k̂, u)|

+ sup
u∈Uk̂

α|FT (x̂, k̂, u)ζ ′(x̂) + FT (ŷ, k̂, u)ζ ′(ŷ)|

+ sup
u∈Uk̂

[L1(x̂, k̂, u) − L2(ŷ, k̂, u)] +
{

Πθ[v1(x̂, ·)](k̂) − Πθ[v2(ŷ, ·)](k̂)
}

�
= A1(ε, x̂, ŷ, k̂) + A2(x̂, ŷ, k̂) + A3(x̂, ŷ, k̂) + A4(x̂, ŷ, k̂).(22)

Let α and τ be fixed first. Now in (22) we take a sequence εi ↓ 0 with the

associated (x̂i, ŷi, k̂i) determined by (12). Here the subscript i ≥ 1 in x̂i is used to
label the sequence and should not be confused as the index of a coordinate component.
Since |x̂i| ∨ |ŷi| ≤ Cα for all i ≥ 1 by Lemma 4, there exists a subsequence denoted by
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Sx,y,k = {(x̂ij , ŷij , k̂ij ), j ≥ 1}, which converges to a limit (x∗, x∗, k∗) in view of the
fact that limεi→0+ |x̂i − ŷi| = 0 by Lemma 5. From (13) in the proof of Lemma 5, it
is seen that∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣ ≤ √
(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2,(23)

where the fixed parameter γi is the Hölder exponent of vi ∈ Cloc
p,Hol(Q̄× Θ), i = 1, 2.

We combine (23) with the uniform continuity of F (x, k, u) in x for |x| ≤ Cα (see (10))
to get

lim
j→∞

A1(εij , x̂ij , ŷij , k̂ij ) = 0.

Using the continuity of F , L1, and L2 with respect to x, it can be checked that both
A2(x̂, ŷ, k̂) and A3(x̂, ŷ, k̂) are continuous in the arguments (x̂, ŷ). Then we have

lim
j→∞

(A2 + A3)(x̂ij , ŷij , k̂ij ) = 2α sup
u∈Uk∗

|ζ ′(x∗)F (x∗, k∗, u)|

+ sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)].

Now it readily follows from (22) that

ρv1(x
∗, k∗) − ρv2(x

∗, k∗) ≤ 2α sup
u∈Uk∗

|ζ ′(x∗)F (x∗, k∗, u)|

+ sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)] + A4(x
∗, x∗, k∗).(24)

On the other hand, for any (x, x, k) ∈ Q̄ × Q̄ × Θ and the set of parameters

(εij , τ, α), we have Φ(x, x, k) ≤ Φ(x̂ij , ŷij , k̂ij ), i.e.,

v1(x, k) − v2(x, k) − nτ2 − 2αζ(x)

≤ v1(x̂ij , k̂ij ) − v2(ŷij , k̂ij ) −
∣∣∣∣ x̂ij − ŷij

εij
− τ1n

∣∣∣∣
2

− α(ζ(x̂ij ) + ζ(ŷij ))

≤ v1(x̂ij , k̂ij ) − v2(ŷij , k̂ij ) − α(ζ(x̂ij ) + ζ(ŷij )).(25)

Taking j → ∞ in (25) and invoking (24), we get

v1(x, k) − v2(x, k) ≤ v1(x
∗, k∗) − v2(x

∗, k∗) + nτ2 + 2αζ(x) − 2αζ(x∗)(26)

≤ 2αρ−1 sup
u∈Uk∗

|F (x∗, k∗, u)| · |ζ ′(x∗)|

+ ρ−1 sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)]

+ ρ−1A4(x
∗, x∗, k∗) + nτ2 + 2αζ(x) − 2αζ(x∗).(27)

By setting x = x∗ on both sides of (26), we have

v1(x
∗, k) − v2(x

∗, k) ≤ v1(x
∗, k∗) − v2(x

∗, k∗) + nτ2
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for all k ∈ Θ, which gives

A4(x
∗, x∗, k∗) =

∑
k �=k∗

πk∗k[v1(x
∗, k) − v1(x

∗, k∗)] −
∑
k �=k∗

πk∗k[v2(x
∗, k) − v2(x

∗, k∗)]

=
∑
k �=k∗

πk∗k

{
[v1(x

∗, k) − v2(x
∗, k)] − [v1(x

∗, k∗) − v2(x
∗, k∗)]

}

≤ nτ2
∑
k �=k∗

πk∗k = nτ2|πk∗k∗ |.

By use of the expression for ζ(x), it can be shown that

ρ−1 sup
k∈Θ

sup
u∈Uk

|F (x, k, u)| · |ζ ′(x)| ≤ ζ(x)

for all x ∈ R, and hence it follows from (27) that

v1(x, k) − v2(x, k) ≤ nτ2 + 2αζ(x) + ρ−1 sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)]

+ ρ−1nτ2|πk∗k∗ |
≤ nτ2 + 2αζ(x) + ρ−1 sup

Q̄×Θ

sup
u∈Uk

[L1(x, k, u) − L2(x, k, u)]

+ ρ−1nτ2 max
k

|πkk|.

Taking τ → 0+ and then α → 0+, we get

v1(x, k) − v2(x, k) ≤ ρ−1 sup
Q̄×Θ

sup
u∈Uk

[L1(x, k, u) − L2(x, k, u)],

which completes the proof.

5. The value function as a constrained viscosity solution. In this section
we give an existence result by showing that the value function v associated with (1)
and (2) gives a constrained viscosity solution. Under Definition 1, we first need to show
that v(x, k) is continuous in x, which is rather technical with the state constraints
involved. To this end, we need some restrictions on the control set and the cost
integrand in this general model. Here we take the state space to be Q̄b, and the case
for Q̄a can be treated analogously.

5.1. Hölder continuity of the value function and existence theorem. For
deterministic systems, there has been a fair amount of work on continuity of infinite
horizon value functions with state constraints, and usually only uniform continuity
is proven; see [2] and references therein. By assuming a sufficiently large discount
factor, Lipschitz continuity was obtained in [16, 12]. The proof in [12] made use
of the viscosity sub/supersolution properties after showing that the value function is
continuous and is the unique viscosity solution, and this method was extended to prove
Hölder regularity in a state constrained diffusion model [13]. Here we take a different
approach to obtain Hölder continuity by recursive upper bound estimates. Unlike
[12, 16], our method does not involve the HJB equation and there is no restriction on
the discount factor.

Theorem 7. Suppose Q̄ = Q̄b, and (A1′)–(A2) hold. In addition, we assume
that:

(i) each Uk, k ∈ Θ, is equal to the same compact set U ⊂ R
m;
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(ii) there exist positive constants Ki < ∞, i = 1, 2, 3, such that

|F (x, u, k) − F (y, u, k)| ≤ K1|x− y|, ∀ x, y ∈ R
n, u ∈ U, k ∈ Θ,

sup
x∈Rn,u∈U,k∈Θ

|F (x, u, k)| ≤ K2, sup
x∈Rn,u∈U,k∈Θ

|L(x, u, k)| ≤ K3;

(iii) there exist a continuous function h : ∂Q̄ → U and constant β1 > 0 such that

Fi(x, h(x), k) ≥ β1(28)

for x ∈ ∂Q̄, k ∈ Θ and each i ∈ {1, . . . , n}, where ∂Q̄ denotes the boundary
of Q̄, and Fi is the ith component of F .

Then for the value function v defined in (2), we have the assertions:
(a) v is bounded and Hölder continuous on Q̄ (w.r.t. x), and
(b) v is a unique constrained viscosity solution to (5) within the function class

Cloc
p,Hol(Q̄× Θ).

Remark. The proof of continuity relies on a modifying procedure, which consists
of taking the control u = h(x̂) for a short period when hitting x̂ ∈ ∂Q̄ and switching
back to a shifted version of the original control. Condition (i) ensures the admissibility
of the modified control.

Remark. Condition (iii) is based on the idea of controllability on boundary ini-
tially due to Soner [22]; also see, e.g., [2, Chapter 5]. It means the state trajectory
can be lifted inward at the boundary points and may be relaxed to other forms. For
illustration, consider the example Q̄ = [0,∞)× [0,∞) and fix r > 0. Then in addition
to (28) being restricted on x ∈ ∂Q̄∩ {x, |x| ≤ r}, we may relax (iii) by only requiring
F1(x, h(x), k) ≥ β1 if x = (0, x2), where x2 ≥ r, and a similar requirement for F2 in
the case x = (x1, 0), x1 > r.

Remark. We establish uniqueness in the class Cloc
p,Hol(Q̄ × Θ), although v is

bounded.
For the value function v and r > 0, define

ν(r) = sup{|v(x, k) − v(y, k)| : |x− y| < r, and x, y ∈ Q̄, k ∈ Θ}.(29)

Before proving Theorem 7, we give the following lemma on Hölder continuity. The
proof is based on recursive estimation by gradually approaching the origin with small
intervals for r. As an interesting byproduct for deterministic problems, Lemma 8
implies that the uniform continuity results in [22, 2] may be strengthened to Hölder
regularity.

Lemma 8. For ν : (0,∞) → R defined in (29), suppose v is bounded and there
exist constants C > 0, 0 < α < 1, and D > 1 such that

ν(r) ≤ Cr + αν(Dr)(30)

for all r > 0, and let ε0 be selected to satisfy either case (i) 0 < ε0 < −(lnα)/(lnD)
and ε0 ≤ 1 or case (ii) ε0 = −(lnα)/(lnD) provided that −(lnα)/(lnD) < 1. Then v
is Hölder continuous on Q̄ with exponent ε0, i.e.,

sup
k∈Θ,x �=y

|v(x, k) − v(y, k)|
|x− y|ε0 < ∞.

Proof. Note that for sufficiently small ε0 > 0, it always satisfies case (i). It
is obvious that ν(r) monotonically increases with r > 0 and is bounded since v is
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bounded. For the estimate below, it suffices to restrict r to the interval (0, 1]. We
denote Ψ(r) = ν(r)r−ε0 , and it follows from (30) that

Ψ(r) ≤ Cr1−ε0 + αDε0Ψ(Dr).(31)

We take the decomposition (0, 1] = ∪∞
i=0Ii, where Ii = (D−(i+1), D−i]. It is clear that

supr∈I0 Ψ(r) < ∞ since v is bounded. For r ∈ (D−(i+2), D−(i+1)] and i ≥ 0, we have

Dr ∈ (D−(i+1), D−i], which in conjunction with (31) gives

sup
r∈Ii

Ψ(r) ≤ CD−(1−ε0)i + αDε0 sup
r∈Ii−1

Ψ(r), i ≥ 1.(32)

By iterating (32), it follows that

sup
r∈Ik

Ψ(r) ≤ C

k−1∑
i=0

D−(1−ε0)(k−i)(αDε0)i + (αDε0)k sup
r∈I0

Ψ(r).(33)

Denote Sk = C
∑k−1

i=0 D−(1−ε0)(k−i)(αDε0)i. For case (i), we have αDε0 < 1 and
Sk ≤ C

∑∞
i=0(αD

ε0)i = C(1 − αDε0)−1. For case (ii), we have αDε0 = 1, 1 − ε0 > 0,

and therefore Sk = C
∑k−1

i=0 D−(1−ε0)(k−i) < C(D1−ε0 − 1)−1.
Combining cases (i) and (ii), we see that the right-hand side of (33) is bounded

by a constant independent of k. Hence we conclude that

sup
k∈Θ,0<|x−y|≤1

|v(x, k) − v(y, k)|
|x− y|ε0 ≤ sup

r∈(0,1]

Ψ(r) < ∞,

for ε0 determined by either case (i) or case (ii), which implies the Hölder continuity
of v.

Remark. If αD < 1 holds, (30) implies Lipschitz continuity of v since we may
take ε0 = 1 for case (i).

5.2. Proof of Theorem 7. We begin by proving assertion (a), which is broken
into two steps.

Step 1. Let (z, k) ∈ Q̄× Θ be the initial condition at t = 0 and τk the first jump
time of θ(t) starting from k ∈ Θ. If k is an absorbing state of θ(t), we simply have
τk ≡ ∞. We write Uz,k as Uz since all Uk = U . Following the same method as in
[22, 2], we first show that there exist a small t∗ > 0 and a constant C1 > 0 such that
for all (z, k) ∈ Q̄× Θ and u adapted to Ft = σ(θ(s), s ≤ t), there is ū ∈ Uz such that

|Jt∗∧τk(z, k, u) − Jt∗∧τk(z, k, ū)| ≤ C1 sup
0≤t≤t∗∧τk

d(X(t, z, k, u), Q̄),(34)

where Jt∗∧τk =
∫ t∗∧τk
0

e−ρtL(X,u, θ)(t)dt with the initial condition (z, k) at t = 0,
X(t, z, k, u) is the state at time t associated with the initial condition (z, k) and
control u, and d(X(t, z, k, u), Q̄) denotes the distance between the state and Q̄ on
that particular sample ω.

For proving (34), we need to determine two constants t∗, κ > 0 below. Be-
fore proceeding to do so, we set t0 = τz,k,u ∧ t∗, where we define τz,k,u = inf{0 ≤
t ≤ t∗, X(t, z, k, u) ∈ ∂Q̄}, if X(t, z, k, u) reaches ∂Q̄ before t∗, or τz,k,u = t∗, if
X(t, z, k, u) ∈ Q for all t ≤ t∗, and ε = sup0≤t≤t∗∧τk

d(X(t, z, k, u), Q̄). Let u be any
control adapted to Ft. We construct the new control

û(t) = u(t)1[0,t0) + h(X(t0))1[t0,t0+κε] + u(t− kε)1(t0+κε,∞),(35)
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which is adapted to Ft. Below we will show that X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk
after t∗ and κ are appropriately chosen; by repeating this construction procedure on
successive small intervals covering [0,∞), we obtain ū ∈ Uz and ū ≡ û on [0, t∗ ∧ τk].
Once this is done, the nonemptiness of Uz and supQ̄×U×Θ |L(x, u, k)| < ∞ implies

that v is bounded on Q̄× Θ.
By uniform continuity of F (w.r.t. x), there exists δ > 0 such that Fi(z, h(z0), k) ≥

β1/2 provided that |z − z0| ≤ δ and z0 ∈ ∂Q̄.
We first make the restriction t∗ < δ/(2K2). If d(z, ∂Q̄) ≥ δ/2, then t0 = t∗

and X(t, z, k, u) ∈ Q for t ≤ t∗. Now it suffices to consider the case t0 = τz,k,u <
t∗ < δ/(2K2). It can be checked that |X(t, z, k, û) −X(t0, z, k, u)| ≤ δ, and therefore
Fi(X(t, z, k, û), h(X(t0, z, k, u)), θt) ≥ β1/2, 1 ≤ i ≤ n, for t ≤ t∗. It is obvious that
X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ (t0 + κε) by the construction of û; for the case
t∗ ∧ τk ≤ (t0 + κε), we immediately have X(t, z, k, û) ∈ Q̄ for t ≤ t∗ ∧ τk.

If t∗ ∧ τk > (t0 + κε), we apply a similar method as in [2, pp. 272–274] to show
that X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk. Indeed, for t0 + κε ≤ t ≤ t∗ ∧ τk, we may
write

X̂
(i)
t ≥ X

(i)
t0 +

β1

2
κε +

∫ t

t0+κε

Fi(X̂s, ûs, θs)ds

= X
(i)
t0 +

β1

2
κε +

∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds

+

∫ t

t0+κε

Fi(X̂s, ûs, θs)ds−
∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds,(36)

where X̂t = X(t, z, k, û), Xt = X(t, z, k, u), and we use the superscript i in X̂t,
Xt to denote the ith component in the vector. Recalling the construction of û for
t0 + κε ≤ t ≤ t∗ ∧ τk, we have

X
(i)
t0 +

∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds = X
(i)
t0 +

∫ t−κε

t0

Fi(Xs, us, θs+κε)ds

= X
(i)
t0 +

∫ t−κε

t0

Fi(Xs, us, θs)ds

= X
(i)
t−κε ≥ −ε,(37)

where the inequality in (37) holds by the definition of ε. On the other hand, by the
Lipschitz continuity of Fi, we have∣∣∣∣

∫ t

t0+κε

Fi(X̂s, ûs, θs)ds−
∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds

∣∣∣∣
≤ K1

∫ t

t0+κε

|X̂s −Xs−κε|ds

≤ K1|X̂t0+κε −Xt0 |
∫ t

t0+κε

eK1(s−t0−κε)ds(38)

≤ |X̂t0+κε −Xt0 |(eK1(t−t0−κε) − 1) ≤ κεK2(e
K1(t−t0−κε) − 1),(39)

where (38) is obtained by estimating |X̂s −Xs−κε| via Gronwall inequality.
Hence for t0 + κε ≤ t ≤ t∗ ∧ τk, it follows from (36), (37), and (39) that

X̂
(i)
t ≥ β1

2
κε− ε− κεK2(e

K1(t−t0−κε) − 1).(40)
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We conclude that if we take t∗ = min{ 1
K1

ln( β1

4K2
+ 1), δ

3K2
} and κ = 4/β1, then

X̂t = X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk. This completes the construction of û and
subsequently that of ū ∈ Uz. The inequality (34) is obtained by use of the boundedness
of L and simple integral estimates as in [2].

Step 2. Now we proceed to prove continuity of the value function. Let t∗ be
determined as above and |z − y| < r, where z, y ∈ Q̄. For any δ1 > 0, by the
optimality principle we may find u ∈ Uz such that

E[Jt∗∧τk(z, k, u) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, z, k, u), θt∗∧τk)] ≤ v(z, k) + δ1.

Based on u we construct ū ∈ Uy by use of (35). By basic estimates similar to those
in [2, pp. 274–275] we can show |X(t∗ ∧ τk, z, k, u) − X(t∗ ∧ τk, y, k, ū)| ≤ C2r and
|Jt∗∧τk(z, k, u) − Jt∗∧τk(y, k, ū)| ≤ C3r for constants C2 > 1, C3 > 0. Subsequently,
we get

v(y, k) − v(z, k) ≤ E[Jt∗∧τk(y, k, ū) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, y, k, ū), θt∗∧τk)]

− E[Jt∗∧τk(z, k, u) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, z, k, u), θt∗∧τk)] + δ1.

By arbitrariness of δ1 > 0, it follows that ν(r) ≤ C3r + Ee−ρ(t∗∧τk)ν(C2r). If k is

an absorbing state, we have 0 < Ee−ρ(t∗∧τk) = e−ρt∗ �
= α1 < 1; otherwise, τk is

exponentially distributed with the density function λke
−λkt on [0,∞), where λk =

−πkk > 0, and we have Ee−ρ(t∗∧τk) = λk/(λk + ρ)+ρe−(λk+ρ)t∗/(λk +ρ) ≤ 1−ρ(1−
e−ρt∗)/(λ∗ + ρ)

�
= α2 < 1, where λ∗ = maxk∈Θ{|πkk|}. Hence we obtain

ν(r) ≤ C3r + αν(C2r),(41)

where α = max{α1, α2} < 1 and C2 > 1. This leads to Hölder continuity of v by
Lemma 8.

For proving assertion (b), the verification of the constrained viscosity solution
property is similar to the state unconstrained case, and we omit the details here.
Uniqueness of the constrained viscosity solution follows from Theorem 3.

Remark. For brevity, we only give a detailed proof of existence in Theorem 11
which deals with a composite mode variable, and the steps there can be adapted to
this theorem in a straightforward manner to verify the constrained viscosity solution
property of the value function.

Remark. For the estimation in section 5.2, it is necessary to apply truncation by
the jump time τk; otherwise the derivation for (37) and (38) is invalid. Also note that
F in the dynamics and the cost integrand L are restricted to be bounded. With a
more general growth condition in x for F and L, the corresponding ODE estimates
will be more challenging.

6. An optimal scheduling problem. As an application of the results in sec-
tion 3, we consider a fluid buffer control problem for data traffic relay arising in
communication networks; relevant background information can be found in the wire-
less application work [10] and references therein. Suppose a relay buffer is deployed
to connect a source and a destination; see Figure 2. The incoming and outgoing links
are described by two continuous time independent finite state Markov chains y(t)
and z(t), indicating a certain channel quality. Suppose that y(t) and z(t) have state
spaces Sy = {1, . . . ,m1}, Sz = {1, . . . ,m2} and transition probability rate matrices
Πy = (pij)m1×m1 ,Πz = (qij)m2×m2 , respectively.



348 MINYI HUANG

1 2

Packet loss

11 2
Destination DSource S

Buffer 

x
u uf uf

Fig. 2. The fluid buffer model.

Let X ≥ 0 denote the buffer level (number of data packets), and let ui, i = 1, 2,
be the transmission rate (packets per second) at the incoming and outgoing links,
respectively. Write the buffer level dynamics in the form:

dX(t)

dt
= [u1f1(y, u1) − u2f2(z, u2)](t)

�
= F (y, z, u)(t), t ≥ 0,(42)

subject to X ≥ 0. Here fi, i = 1, 2, is the success probability of transmission given the
link state y or z and rate ui, and u = [u1, u2]

T . Notice that the buffer level decrease
rate is only a fraction of u2 since a packet which fails to reach the destination is
not immediately deleted and will stay for retransmission. Furthermore, for limiting
interference, at a given time it is allowed to transmit at only one link, either the
incoming or the outgoing link [10].

We define the discounted utility function as

Jut(x, i, j, u) =(43)

E

[ ∫ ∞

0

e−ρt[F1(y, u1) + F2(z, u2) − λX](t)dt|X(0) = x, y(0) = i, z(0) = j

]
,

where ρ > 0, λ > 0, F1(y, u1)
�
= u1f1(y, u1), and F2(z, u1)

�
= u2f2(z, u2). The

term λX corresponds to a linear holding cost for the buffer level. The function
J0(y, u1, z, u2) = F1 + F2 is naturally interpreted as the instantaneous aggregate
utility of the buffer in successfully transporting infinitesimal traffic volume by one
hop—operating in either the receiving or the transmitting mode.

Let Ui = [Ri, R̄i], i = 1, 2, where 0 < Ri < R̄i < ∞. The control at a given time

is denoted as u = (u1, u2)
T ∈ U

�
= (U1 × {0}) ∪ ({0} × U2). Define the σ-algebra

Ft = σ(y(s), z(s), s ≤ t).
The objective for the optimal scheduling problem is to maximize Jut or, equiv-

alently, to minimize −Jut. Specializing the general formulation in section 2 to the
current setting, we denote the admissible control set Ux,i,j with the initial condition
(x, i, j) for (X(t), y(t), z(t)). Let v(x, i, j) denote the value function for minimiz-

ing J(x, i, j, u)
�
= −Jut(x, i, j, u), where x ∈ [0,∞), i ∈ Sy, and j ∈ Sz, and write

L(x, i, j, u) = −F1(i, u1)− F2(j, u2) + λx. The following assumption is used through-
out this section.

(A3) f1 (resp., f2) is a function mapping Sy × U1(resp., Sz × U2) → [0, 1] and is
continuous in u1 (resp., u2).

6.1. Existence and uniqueness of viscosity solutions. For a function ϕ(x, i, j)
continuous in x ∈ [0,∞), define the operator

[Πϕ(x, ·, ·)](i, j) =
∑
i′ �=i

pii′ [ϕ(x, i′, j) − ϕ(x, i, j)]

+
∑
j �=j′

qjj′ [ϕ(x, i, j′) − ϕ(x, i, j)],
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where Πy = (pij)m1×m1
and Πz = (qij)m2×m2

. For the value function v, we write the
HJB equation in the compact form:

ρv(x, i, j) = [Πv(x, ·, ·)](i, j) + inf
u∈U

[
vx(x, i, j)(F1(i, u1) − F2(j, u2)) + L(x, i, j, u)

]
= H(x, i, j, vx(x, i, j), v(x, ·, ·)).(44)

Notice that after introducing a new set of indices for the joint Markov chain
(y, z) with its associated transition probability rate matrix, (44) can be written in the
standard form in section 2. The details for such a conversion are omitted here. Before
proving that the value function v is a constrained viscosity solution to (44), we show
that v is continuous in x.

Lemma 9. Let 0 ≤ x̂ < x < ∞ be given and (y(0), z(0)) = (i, j) ∈ Sy × Sz be
fixed. For any u ∈ Ux,i,j, there exists û ∈ Ux̂,i,j such that

(i) supt≥0 |X̂(t) −X(t)| ≤ |x̂− x|, and
(ii) with probability one, we have

∣∣∣ ∫ t

0

{
[F1(y, û1) − F1(y, u1)] + [F2(z, u2) − F2(z, û2)]

}
(s)ds

∣∣∣ ≤ 2|x̂− x|

for all t > 0, where X(t) and X̂(t) are, respectively, the solution associated with the
control u, û and the initial condition x, x̂.

Proof. For u ∈ Ux,i,j , let X(t, x̂, u) denote the state at time t with the initial
condition x̂ ≥ 0 and control u. Let τ1 = inf{t ≥ 0|X(t, x̂, u) = 0} and τ1 = ∞ on
{X(t, x̂, u) > 0, ∀ t ≥ 0}. Denote δ = |x − x̂|/(R̄1 + R̄2). We construct the control
u(1) as follows:

u(1)(t) =

⎧⎨
⎩

u(t) for t < τ1,
[R̄1, 0]T for t ∈ [τ1, τ1 + δ),
u(t) for t ≥ τ1 + δ.

(45)

Suppose τk and u(k), k ≥ 1, have been constructed. Define τk+1 = inf{t ≥ τk +
δ|X(t, x̂, u(k)) = 0} on {τk < ∞}, τk+1 = ∞ on {τk = ∞} ∪ {τk < ∞, and
X(t, x̂, u(k)) > 0, ∀ t ≥ τk + δ}; define u(k+1) by setting (u, τ1) as (u(k), τk+1) on
the right-hand side of (45). This procedure may be terminated if the stopping time
τk at a certain stage k equals ∞ with probability one. Let û(t) = u(k)(t) for t ≤ τk+1,
and it can be shown that this gives a well-defined control on [0,∞) and û ∈ Ux̂,i,j .

In (46) below, X(t) and X̂(t) are associated with u and û, respectively. By the
construction of û, it is easy to check that X̂(t) −X(t) ≥ −|x̂− x| for all t ≥ 0. Now
we show that for all t ≥ 0, X̂(t) −X(t) ≤ |x̂ − x|, which obviously holds for t ≤ τ1.
Suppose t ∈ [τk, τk+1). Since 0 = X̂(τk) ≤ X(τk), we have

X̂(t) −X(t) = X̂(τk) +

∫ t

τk

(F̂1 − F̂2)(s)ds−X(τk) −
∫ t

τk

(F1 − F2)(s)ds

≤
∫ t∧(τk+δ)

τk

(F̂1 − F̂2)(s)ds−
∫ t∧(τk+δ)

τk

(F1 − F2)(s)ds

=

∫ t∧(τk+δ)

τk

(F̂1 − F1)(s)ds +

∫ t∧(τk+δ)

τk

(F2 − F̂2)(s)ds

≤ R̄1δ + R̄2δ = |x̂− x|,(46)
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where we denote F1 = F1(y, u1), F̂1 = F1(y, û1), F2 = F2(z, u2), etc. Hence
supt≥0 |X̂(t) −X(t)| ≤ |x̂− x|, and (i) follows. On the other hand, we have

X̂(t) −X(t) = x̂− x +

∫ t

0

[(F̂1 − F1) + (F2 − F̂2)](s)ds.(47)

By use of (47) and (i) we get

sup
t≥0

∣∣∣ ∫ t

0

[(F̂1 − F1) + (F2 − F̂2)](s)ds
∣∣∣ ≤ sup

t≥0
|X̂(t) −X(t)| + |x̂− x| ≤ 2|x̂− x|,

and (ii) follows.
Lemma 10. The value function v(x, i, j) is Lipschitz continuous with respect to

x ∈ [0,∞).
Proof. Take 0 ≤ x̂ < x. We need to estimate |v(x̂, i, j)− v(x, i, j)|. For any ε > 0,

there exists uε ∈ Ux,i,j such that v(x, i, j) ≤ J(x, i, j, uε) ≤ v(x, i, j) + ε. Based on
uε, we construct ûε ∈ Ux̂,i,j satisfying (i) and (ii) in Lemma 9. Using the same set of

notation as in (46) and noticing F̂1 − F1 ≥ 0, F2 − F̂2 ≥ 0, we have∣∣∣∣
∫ ∞

0

e−ρt(F̂1 + F̂2)dt−
∫ ∞

0

e−ρt(F1 + F2)dt

∣∣∣∣
=

∣∣∣∣
∫ ∞

0

e−ρt(F̂1 − F1)dt +

∫ ∞

0

e−ρt(F̂2 − F2)dt

∣∣∣∣
≤

∣∣∣∣
∫ ∞

0

e−ρt(F̂1 − F1)dt +

∫ ∞

0

e−ρt(F2 − F̂2)dt

∣∣∣∣
≤

∣∣∣∣
∫ ∞

0

[(F̂1 − F1) + (F2 − F̂2)]dt

∣∣∣∣ ≤ 2|x̂− x|,(48)

where the last inequality follows from Lemma 9(ii).
By (48) and Lemma 9(i), we can check that

|J(x̂, i, j, ûε) − J(x, i, j, uε)| ≤ 2|x̂− x| + E

∫ ∞

0

e−ρtλ|X̂(t) −X(t)|dt

≤ (2 + λ/ρ)|x̂− x|.

Hence v(x̂, i, j) ≤ v(x, i, j) + ε + (2 + λ/ρ)|x̂ − x|. On the other hand, suppose ûε

has been found such that J(x̂, i, j, ûε) ≤ v(x̂, i, j) + ε; then obviously ûε ∈ Ux,i,j , and
we can verify that J(x, i, j, ûε) ≤ J(x̂, i, j, ûε) + (λ/ρ)|x̂ − x| and hence v(x, i, j) ≤
v(x̂, i, j) + ε + (λ/ρ)|x̂− x|.

Thus |v(x̂, i, j)− v(x, i, j)| ≤ (2 + λ/ρ)|x̂− x|+ ε. Since ε > 0 is arbitrary, we get
|v(x̂, i, j) − v(x, i, j)| ≤ (2 + λ/ρ)|x̂− x|, and the lemma follows.

Theorem 11. The value function v : [0,∞)×Sy×Sz → R is a unique constrained
viscosity solution to (44) in the function class Cloc

p,Lip([0,∞) × Sy × Sz).
Proof. See the appendix.

7. Application to stochastic manufacturing systems. In this section we
consider production rate control involving n machines in a tandem queue with n− 1
buffers between neighboring machines. The associated optimal control problem has
been well studied in the stochastic manufacturing literature; see [20, 21]. Let the
system model be given as

dX(t)

dt
= (Au + Bz)(t), t ≥ 0,(49)
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where X ∈ R
n, u ∈ R

n
+, and z ∈ R+, and

A =

⎡
⎢⎢⎢⎣

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
0 0 0 · · · 1

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
...
0
−1

⎤
⎥⎥⎥⎦ .

Here all upper subdiagonal entries in A are −1. The state space for X is Q̄
�
=

[0,∞)n−1 × (−∞,∞). Notice that the last component in X is the inventory level
of the final product, which may be negative and accordingly interpreted as backlog.
The first n− 1 entries in X denote the buffer levels and hence are nonnegative. The
variable z denotes a finite state Markov chain describing the random demanding rate.
The cost function to be minimized is of the form

J(x, k, z, u) = E

[ ∫ ∞

0

e−ρtL(X(t), u(t))dt|X(0) = x, k(0) = k, z(0) = z

]
,

where (x, k, z) is the initial condition. Here k(t) ∈ R
n is vector Markov process with

discrete values describing the machine capacity. Let the state space and generator
for (k, z) be denoted by C × D and Π, respectively. For the initial condition (x, k, z),
the admissible control set Ux,k,z consists of controls such that (i) u(t) is adapted to
Ft = σ(k(s), z(s), s ≤ t), (ii) 0 ≤ u(t) ≤ k(t) (holding entrywise), and (iii) X(t) ∈ Q̄
at all times t ≥ 0. We also assume

|L(x, u) − L(x′, u′)| ≤ C(1 + |x|d + |x′|d)(|x− x′| + |u− u′|),

where d > 0 is a constant. For a given mode k(t) = k = (k1, . . . , kn) ∈ C, let the
machine capacity region be denoted by Uk = {u = (u1, . . . , un)T |0 ≤ ui ≤ ki, i =
1, . . . , n}. Let v(x, k, z) be the value function associated with the cost J(x, k, z, u)
and the admissible control set Ux,k,z. The interested reader is referred to [20, Chapter
4] for a detailed account of this class of problems.

We write the HJB equation

ρv(x, k, z) = inf
u∈Uk

[
vx(x, k, z)(Au + Bz) + [Πv(x, ·, ·)](k, z) + L(x, u)

]
,(50)

where (x, k, z) ∈ Q̄× C ×D and Πv(x, ·, ·) is determined in an obvious manner. Set

H̃(x, k, z, vx(x, k, z), v(x, ·, ·), u) = vx(x, k, z)(Au + Bz) + [Πv(x, ·, ·)](k, z) + L(x, u).

Then (50) may be written in the compact form:

ρv(x, k, z) = inf
u∈Uk

H̃(x, k, z, vx(x, k, z), v(x, ·, ·), u)

�
= H(x, k, z, vx(x, k, z), v(x, ·, ·)), (x, k, z) ∈ Q̄× C ×D.(51)

Now we apply the results in section 3 and characterize the value function as the
unique constrained viscosity solution to (51).

Theorem 12. The value function v : Q̄ × C × D → R is the unique constrained
viscosity solution to the HJB equation (51) in the function class Cloc

p,Lip(Q̄× C ×D).
Proof. The continuity and growth estimates have been given in [20, Chapter

4]. The viscosity sub/supersolution properties for v under Definition 1 can be verified
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by a similar method as in proving Theorem 11, and uniqueness follows from
Theorem 3.

It is worthwhile to note that within our solution notion, for x on the boundary
of Q̄, the right-hand side of (50) is calculated by minimizing over Uk, and the state
space constraint is not explicitly involved, which differs from [20, pp. 65–71] in dealing
with state constraints. The key reason here is that the viscosity subsolution property
is specified only on Q, and by use of this slightly weaker specification, we can still
establish uniqueness on Q̄ owing to the continuity of the solution.

8. Concluding remarks. In this paper we study optimal control of a class of
stochastic hybrid systems with state space constraints. The notion of constrained
viscosity solutions is introduced. We establish a comparison theorem for the subso-
lution and supersolution, and under some mild conditions for the general model, the
value function is characterized as the unique constrained viscosity solution to the HJB
equation. The uniqueness result obtained in the general setting is further applied to
a communication buffer model and a standard manufacturing system.

For future research, it is of interest to generalize the state constrained viscosity
solution analysis to systems with switch cost. To gain some motivation, we consider
the fluid communication buffer model in section 6. Intuitively, a high buffer level will
produce a high holding cost, and on the other hand, a very low buffer level limits the
controller in choosing a more beneficial action. Hence, with a certain combination of
values for the buffer level x and mode variable (y, z), the control may switch rapidly
between positive u1 and positive u2 in order to attain or approximate the optimal
cost. This leads to the so-called chattering effect, which is undesirable in practical
applications. We note that this kind of chattering may also occur in manufacturing
systems where the machine’s operation switches between the production of multiple
products [20]. It is of interest to develop numerical methods to identify the critical
buffer levels where chattering may occur. Furthermore, for chattering avoidance,
an effective means is to introduce a switch cost, and then one needs to deal with
quasi-variational inequalities [3, 4] instead of a usual HJB equation. A detailed study
of optimization and numerical computation of these hybrid systems with both state
space constraints and switch cost will be reported in future work.

Appendix. Proof of Theorem 11.
It is obvious that v ∈ Cloc

p,Lip([0,∞) × Sy × Sz). It suffices to show that v
is a constrained viscosity solution, and uniqueness follows from Theorem 3 since
Cloc

p,Lip([0,∞) × Sy × Sz) ⊂ Cloc
p,Hol([0,∞) × Sy × Sz).

We give the proof by carrying out elementary estimates. Denote Q̄ = [0,∞) and
Q = (0,∞). After suitably labeling, we may denote the joint process (y(t), z(t)) by
an equivalent integer-valued Markov chain θ(t) with state space P = {1, 2, . . . ,m}
containing m = m1 ×m2 entries, and let the associated generator for θ(s) be Πθ =
(πij)m×m. All of our estimates below may easily translate into a form in terms of the
process (y, z), and we omit the details. First, we show v is a subsolution on Q × P.
The functions v(x, k), L(x, k, u), and F (k, u), k ≥ 1 (instead of v(x, i, j), etc.), are
used in an obvious manner. For any given k0 ∈ P, suppose v(x, k0) − φ(x) attains a
local maximum at x0 ∈ Q in a neighborhood Nx0

⊂ Q, where φ ∈ C1(Q̄). Without
loss of generality, we assume v(x0, k0) = φ(x0), since otherwise φ(x) may be replaced
by φ(x)−φ(x0)+v(x0, k0). It is easy to check that v(x, k0) ≤ v(x0, k0)−φ(x0)+φ(x)
for all x ∈ Nx0

.
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For a given initial state x0 ∈ Q and any ū ∈ U , there exist a sufficiently small
interval [0, δ] and an admissible control ũ defined on [0,∞) such that ũ(t) ≡ ū on
[0, δ] and x(t) ∈ Nx0 for all 0 < t ≤ δ. For the given x0, δ > 0 may be selected
independently of the control. Let τ be the first jump time of θ(t) with initial state
k0 ∈ P. If k0 is nonabsorbing, τ has an exponential probability density function
|πk0k0

|eπk0k0
t, t ≥ 0. The estimates below are applicable to both nonabsorbing and

absorbing k0. By the dynamic programming principle, for h ∈ (0, δ), we have

φ(x0) = v(x0, k0) ≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(X(h), θ(h))

≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(X(h), θ(h))1(h<τ)

+ Ee−ρhv(X(h), θ(h))1(h≥τ)

≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(x0, k0)1(h<τ)

+ Ee−ρh[φ(X(h)) − φ(x0)]1(h<τ) + Ee−ρhv(X(h), θ(h))1(h≥τ)

�
= I1 + I2 + I3 + I4.(A.1)

It is easy to obtain the estimates

I1 = L(x0, k0, ū)h + o(h),

I2 = [1 − ρh + o(h)]v(x0, k0)e
πk0k0

h

= v(x0, k0) − ρv(x0, k0)h + v(x0, k0)πk0k0
h + o(h),

I3 = Ee−ρh[φ(X(h)) − φ(x0)] − Ee−ρh[φ(X(h)) − φ(x0)]1(h≥τ)

= φx(x0)F (k0, ū)h + o(h) + O
((

E|φ(X(h)) − φ(x0)|2 · E|1(h≥τ)|2
) 1

2

)
= φx(x0)F (k0, ū)h + o(h),

I4 = Ee−ρhv(x0, θ(h))1(h≥τ) + Ee−ρh[v(X(h), θ(h)) − v(x0, θ(h))]1(h≥τ)

= Ee−ρhv(x0, θ(h))1(h≥τ)

+ O
((

E|v(X(h), θ(h)) − v(x0, θ(h))|2 · E|1(h≥τ)|2
) 1

2

)
= Ee−ρhv(x0, θ(h))1(h≥τ) + o(h)(A.2)

= h
∑
k �=k0

πk0kv(x0, k) + o(h),

where (A.2) is obtained by the continuity of v with respect to x. Recalling v(x0, k0) =
φ(x0), we get

0 ≤ I1 + I2 + I3 + I4 − φ(x0)

= L(x0, k0, ū)h− ρv(x0, k0)h + v(x0, k0)hπk0k0

+ φx(x0)F (k0, ū)h + h
∑
k �=k0

πk0kv(x0, k) + o(h)

= −ρv(x0, k0)h + φx(x0)F (k0, ū)h + h
∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)]

+ L(x0, k0, ū)h + o(h)
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since πk0k0
+
∑

k �=k0
πk0,k = 0. Letting h → 0, we get the desired inequality for the

viscosity subsolution since ū is arbitrary.
Now we show v is also a viscosity supersolution. Suppose there exists a neighbor-

hood Nx0 such that v(x, k0) − φ(x) attains a local minimum at x0 ∈ Nx0 ∩ Q̄ for a
given k0 ∈ P; for any given ε > 0, we can find a sequence of admissible controls u(i),
i ≥ 1, such that

v(x0, k0) +
ε

i
≥ E

∫ 1
i

0

e−ρsL(X, θ, u(i))(s)ds + Ee−
ρ
i v(X( 1

i ), θ(
1
i ))

�
= I1 + I2 + I3 + I4,(A.3)

where we express the right-hand side by use of the same set of notation Ii, 1 ≤ i ≤ 4,
as in (A.1) with ũ replaced by u(i). Now we give the estimates as follows:

I1 + I3 = E

∫ 1
i

0

e−ρsL(x0, k0, u
(i))(s)ds + Ee−

ρ
i [φ(X( 1

i )) − φ(x0)] + o

(
1

i

)

= E

∫ 1
i

0

L(x0, k0, u
(i))(s)ds + E[φ(X( 1

i )) − φ(x0)] + o

(
1

i

)

= E

∫ 1
i

0

[L(x0, k0, u
(i)) + φx(X)F (k0, u

(i))](s)ds + o

(
1

i

)

= E

∫ 1
i

0

[L(x0, k0, u
(i)) + φx(x0)F (k0, u

(i))](s)ds + o

(
1

i

)

≥ 1

i
inf
u∈U

[L(x0, k0, u
(i)) + φx(x0)F (k0, u

(i))] + o

(
1

i

)
,(A.4)

I2 + I4 = v(x0, k0) −
ρ

i
v(x0, k0) +

1

i

∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)] + o

(
1

i

)
,(A.5)

where the higher order term o( 1
i ) is derived via basic estimates using the dynamics

of X(t) and the Markov chain θ(t) and holds uniformly with respect to ε. Taking
i → ∞, it follows from (A.3)–(A.5) that

ρv(x0, k0) + ε ≥ inf
u∈U

{
φx(x0)F (k0, ū) +

∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)] + L(x0, k0, ū)
}
.

Since ε > 0 is arbitrary, it follows that v is a viscosity supersolution on Q̄× P.
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