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Abstract—In cognitive radio (CR) networks, secondary users
can cooperatively sense the spectrum to detect the presence of
primary users. In this paper, we propose a fully distributed and
scalable cooperative spectrum-sensing scheme based on recent
advances in consensus algorithms. In the proposed scheme, the
secondary users can maintain coordination based on only local
information exchange without a centralized common receiver.
Unlike most of the existing decision rules, such as the OR-rule or
the 1-out-of-N rule, we use the consensus of secondary users to
make the final decision. Simulation results show that the proposed
consensus scheme can have significant lower missing detection
probabilities and false alarm probabilities in CR networks. It is
also demonstrated that the proposed scheme not only has proven
sensitivity in detecting the primary user’s presence but also has
robustness in choosing a desirable decision threshold.

Index Terms—Cognitive radios (CRs), consensus, cooperative
spectrum sensing, random graphs.

I. INTRODUCTION

COGNITIVE radio (CR), which has been introduced in
[1], is an enabling technology that allows unlicensed

(secondary) users to operate in licensed spectrum bands. This
can help to overcome the lack of available spectrum in wireless
communications. Since CRs are considered to be lower priority
and are secondary users of the spectrum allocated to a primary
user, a fundamental requirement is to avoid the interference to
potential primary users in their vicinity [2]. In addition, primary
user networks have no requirement to change their infrastruc-
ture for spectrum sharing with CRs. Therefore, secondary
users should be able to independently detect the presence
of primary users through continuous spectrum sensing. Such
spectrum sensing can be conducted either noncooperatively
(individually), in which each secondary user conducts radio
detection and makes a decision by itself, or cooperatively, in
which a group of secondary users perform spectrum sensing by
collaboration.

Manuscript received November 7, 2008; revised April 16, 2009, June 19,
2009, and July 20, 2009. First published September 1, 2009; current version
published January 20, 2010. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada. The review of this
paper was coordinated by Dr. Y.-C. Liang.

Z. Li and F. R. Yu are with the Department of Systems and Computer
Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada (e-mail:
zlia@sce.carleton.ca; richard_yu@carleton.ca).

M. Huang is with the School of Mathematics and Statistics, Carleton
University, Ottawa, ON K1S 5B6, Canada (e-mail: mhuang@math.carleton.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2009.2031181

Cooperative spectrum sensing has recently been studied.
There are several advantages offered by cooperative spectrum
sensing over noncooperative spectrum sensing [3]–[12]. If a
secondary user is in the condition of deep shadowing and
fading, it is very difficult for a secondary user to distinguish
a white space from a deep shadowing effect. Therefore, a
noncooperative spectrum sensing algorithm may not work well
in this case, and a cooperative scheme can solve the problem
by sharing the spectrum-sensing information among secondary
users. Moreover, because of the hidden terminal problem, it
is very challenging for single-CR sensitivity to outperform the
primary user receiver by a large margin to detect the presence of
primary users. For this reason, if secondary users spread out in
the spatial distance and any one of them detects the presence
of primary users, then the whole group can gain benefit by
collaboration.

Ghasemi and Sousa [3] quantified the performance of spec-
trum sensing in fading environments and studied the effect of
cooperation. The simulation results in [3] indicate that sig-
nificant performance enhancements can be achieved through
cooperation. Ganesan and Li [4] studied the possibility of for-
warding the signal with higher SNR to the one on the boundary
of the decidability region of the primary user. The performance
is evaluated under correlated shadowing and user compromise
in [5]. When the exchange of observations from all secondary
users to the common receiver is not applicable, Peh and
Liang [6] showed that it is still worth doing through cooperation
with a certain number of users with relatively higher SNR.
Moreover, in [8], a linear-quadratic fusion strategy is designed
with the consideration of the correlation between the nodes. To
further reduce the computational complexity, Quan et al. [9]
proposed a heuristic approach to develop an optimal linear
framework during cooperation. Sensing–throughput tradeoff
is analyzed in [10] for both multiple minislots and multiple
secondary-user cooperative sensing.

Although some research activities have been conducted in
cooperative spectrum sensing, most of them use a common
receiver (fusion center) to perform data fusion for the final
decision, regardless of whether the primary user is present.
However, a common receiver may not be available in some
CR-based networks, such as mobile ad hoc networks. More-
over, as indicated in [5], gathering the entire received data in
one place may be very difficult under practical communication
constraints. In addition, Sun et al. [13] studied the reporting
channels between the cognitive users and the common receiver.
The results showed that there are limitations in the performance
of cooperation when the reporting channels to the common
receiver are under deep fading.
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In this paper, we present a spectrum-sensing consensus
scheme without using a common receiver. Our scheme is based
on recent advances in consensus algorithms [14]. An important
motivational background of this area is initially related to the
study of complex natural phenomena, including flocking of
birds, schooling of fish, swarming of honeybees, among others
[15]. A key feature of such models is that the population of
agents can maintain coordination based on local interactions
without the centralized information exchange. Recently, con-
sensus problems have also played a crucial role in spacial dis-
tributed control models [14], wireless sensor networks [16], and
multiagent coordination over noisy networks [17]. Concerning
our current spectrum-sensing models, the basic requirement is
for the secondary users to collectively determine the presence of
the primary user, which can be viewed as a typical multiagent-
coordination situation. We especially intend to develop consen-
sus approaches for efficient spectrum sensing. There are four
distinct features in the proposed scheme.

1) It is a fully distributed and scalable scheme. Unlike
existing schemes, there is no need for a common receiver
to perform data fusion for the final decision. A secondary
user only needs to set up a neighborhood with users
having the desired channel characteristics, such as line-
of-sight (LOS) users or even probabilistic link failures.

2) Unlike most decision rules, such as the OR-rule or the
1-out-of-N rule, which were adopted in the existing
schemes, we use the consensus of secondary users to
make the final decision. Therefore, the proposed scheme
can leverage the detection results among users in severe
wireless fading networks.

3) The proposed spectrum-sensing scheme uses a consensus
algorithm to cope with two underlying network models,
i.e., one with fixed bidirectional graphs and one with
random graphs.

4) Since the CR paradigm imposes humanlike characteris-
tics (e.g., learning, adaptation, and cooperation) in wire-
less networks, the bio-inspired consensus algorithm used
in this paper can provide some insight into the design of
future CR networks.

Extensive simulation results illustrate the effectiveness of the
proposed scheme. It is shown that the proposed scheme can
have both lower missing detection probability and lower false
alarm probability, compared with existing schemes. In addition,
it is able to make better detection when secondary users undergo
worse fading (lower average SNR). Last, but not least, with the
help of this scheme, a fixed threshold is feasible, which can take
active effect in different fading channels.

Our consensus-based approach is different from those used
in distributed/decentralized detection problems [18]–[21]. In
a typical distributed detection problem [18]–[20], each sensor
individually forms its own discrete messages based on its local
measurement and then reports to a fusion center, and there is, in
general, no direct communication among the sensors. In certain
models [21], a sensor may indirectly obtain information about
other sensors, but this is achieved by feedback from a common
fusion center.

The rest of this paper is organized as follows: Section II
presents the spectrum-sensing models and underlying network
models, together with the formal definition of the spectrum-
sensing consensus scheme. In Section III, the consensus algo-
rithm is presented under the condition that the wireless links
among secondary users are all LOS links with duplex modes.
Section IV extends this consensus algorithm to take consider-
ation of occasionally disconnected links due to channel fading
and transmission errors. Some simulation results are given in
Section V. Finally, we conclude this study in Section VI.

II. SPECTRUM SENSING AND SECONDARY-USER

NETWORK MODELING

There are two stages in the proposed CR consensus scheme.
In the first stage, secondary users use a spectrum-sensing model
to make measurements about primary users at the beginning of
detection. We denote the local measurement of user i as Yi.
In the second stage, secondary users establish communication
links with their own neighbors to locally exchange information
among them and then calculate the obtained data to make a local
decision, regardless of whether primary users are around. The
aforementioned process in the second stage is iteratively done.
At the initial time instant k = 0, each user i sets xi(0) = Yi

as the initial value of the local state variable. Next, at time
k = 0, 1, 2, . . ., according to the real-time network topology
(or local wireless neighborhood), users mutually transmit and
receive their states and then use local computation rules to gen-
erate updated states xi(k + 1). Those iterations are repeatedly
done until all the individual states xi(k) converge toward a
common value x∗.

Before we introduce the detailed algorithms used in our
consensus scheme, the common spectrum-sensing model used
in the first stage and the network model used in the second stage
are to be presented, followed by the formal definition of the
spectrum-sensing consensus scheme.

A. Spectrum-Sensing Model

In the first stage, secondary users make measurements about
primary users at the beginning of each time slot. Three kinds of
methods are widely used for spectrum sensing [22]. A matched
filter is theoretically optimal, but it needs prior knowledge of
the primary system, which means higher complexity and cost in
developing adaptive sensing circuits for different primary wire-
less systems. Energy detection is suboptimal, but it is simple to
implement and does not have too much of a requirement on the
position of primary users. Cyclostationary feature detection can
detect the signals with very low SNR, but it still requires some
prior knowledge of the primary user [13].

In this paper, we consider the modeling scenario where prior
knowledge of the primary user is unknown. For implementation
simplicity, an energy-detection spectrum-sensing method [3] is
used. Fig. 1 shows the block diagram of an energy detector. The
input band pass filter selects the center frequency fs and the
bandwidth of interest W . This filter is followed by a squaring
device and, subsequently, an integrator over a period of T .
The output Y of the integrator is the received energy at the
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Fig. 1. Block diagram of an energy detector.

secondary user, and its distribution depends on whether the
primary user signal is present or not. The goal of spectrum
sensing is to decide between the following two hypotheses:

x(t) =
{

n(t), H0

h · s(t) + n(t), H1
(1)

where x(t) is the signal received by the secondary user, s(t) is
the primary user’s transmitted signal, n(t) is the additive white
Gaussian noise, and h is the amplitude gain of the channel. We
also denote the SNR as γ. The output of integrator in Fig. 1 is
Y , which serves as the decision statistic. Following the work of
[23], Y has the following form:

Y =
{

χ2
2TW , H0

χ2
2TW (2γ), H1

(2)

where χ2
2TW and χ2

2TW (2γ) denote random quantities with
central and noncentral chi-square distributions, respectively,
each with 2TW degrees of freedom and a noncentrality
parameter of 2γ for the latter distribution. For simplicity, we
assume that the time-bandwidth product TW is an integer
number, which is denoted by m.

Under Rayleigh fading, the gain h is random, and the result-
ing SNR γ would have an exponential distribution; therefore,
in this case, the distribution of the output energy depends on
the average SNR (γ). When the primary user is absent, Y is
still distributed according to χ2

2TW . When the primary user
is present, Y may be denoted as the sum of two independent
random variables [24], [25], i.e.,

Y = Yχ + Ye, H1 (3)

where the distribution of Yχ is χ2
2TW−2, and Ye has an expo-

nential distribution with parameter 2(γ + 1).
As a summary, after T seconds, each secondary user i detects

the energy and gets the measurement Yi ∈ R
+.

B. Network Model and Consensus Notions

In the second stage, secondary users establish communica-
tion links with their neighbors to locally exchange informa-
tion among them. In our scheme, the network formed by the
secondary users can be described by a standard graph model.
For simplicity, this can be represented by an undirected graph
(to be simply called a graph) G = (N , E) [26] consisting of a
set of nodes {i = 1, 2, . . . , n} and a set of edges E ⊂ N × N .
Denote each edge as an unordered pair (i, j). Thus, if two
secondary users are connected by an edge, it means that they
can mutually exchange information. A path in G consists of a
sequence of nodes i1, i2, . . . , il, l ≥ 2 such that (im, im+1) ∈ E
for all 1 ≤ m ≤ l − 1. The graph G is connected if any two
distinct nodes in G are connected by a path. For convenience

of exposition, we often refer to node i as secondary user i.
The two names, i.e., secondary user and node, will be used
interchangeably. The secondary user j (node j) is a neighbor
of user i (node i) if (j, i) ∈ E , where j �= i. Denote the neigh-
bors of node i as Ni = {j|(j, i) ∈ E} ⊂ N . The number of
elements in Ni is denoted by |Ni| and called the degree of
node i.

The Laplacian of the graph G is defined as L = (lij)n×n,
where

lij =

⎧⎨
⎩

|Ni|, if j = I
−1, if j ∈ Ni

0, otherwise.
(4)

The matrix L defined by (4) is positive semidefinite. Further-
more, if G is a connected undirected graph, then rank(G) =
n − 1 (see, e.g., [15]).

Since the cooperative spectrum-sensing problem is viewed
as a consensus problem where the users locally exchange
information regarding their individual detection outcomes be-
fore reaching an agreement, we give the formal mathematical
definition of consensus as follows:

For the n secondary users distributed according to the graph
model G, we assign them a set of state variables xi, i ∈ N .
Each xi will be called a consensus variable, and in the cooper-
ative spectrum-sensing context, it is essentially used by node i
for its estimate of the energy detection. By reaching consensus,
we mean that the individual states xi asymptotically converge
to a common value x∗, i.e.,

xi(k) → x∗ as k → ∞ (5)

for each i ∈ N , where k is the discrete time, k = 0, 1, 2, . . .,
and xi(k) is updated based on the previous states of node i and
its neighbors.

The special cases with x∗ = Ave(x) = (1/n)
∑n

i=1 xi(0),
x∗ = maxn

i=1 xi(0), and x∗ = minn
i=1 xi(0) are called average-

consensus, max-consensus, and min-consensus, respectively.
It is worth mentioning that the existing spectrum sensing
algorithm with the OR-rule can be viewed as a form of
max-consensus. This paper is intended to propose a cooper-
ative spectrum-sensing scheme in the framework of average-
consensus.

III. SPECTRUM SENSING WITH FIXED

NETWORK TOPOLOGIES

In this section, let us assume that the secondary users
have established duplex wireless connections with their desired
neighbors and that the connections remain working until the
consensus is reached. This kind of topology is called a fixed
graph. Based on this assumption, we are going to propose the
spectrum-sensing consensus algorithm.

A. Consensus Algorithm

We denote, for user i, its measurement Yi at time k = 0 by
xi(0) = Yi ∈ R

+. The state update of the consensus variable
for each secondary user occurs at discrete time k = 0, 1, 2, . . .,
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which is associated with a given sampling period. From k =
0, 1, 2, . . ., the iterative form of the consensus algorithm can be
stated as follows [15]:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

(xj(k) − xi(k)) (6)

where

0 < ε <
(
max

i
|Ni|

)−1 Δ= 1/Δ. (7)

The number Δ is called the maximum degree of the network.
This algorithm can be written in vector form

x(k + 1) = Px(k) (8)

where P = I − εL. Notice that the upper bound in (7) for ε
ensures that P is a stochastic matrix, and in fact, one can further
show that P is ergodic when G is connected.1 Since G is an
undirected graph, all row sums and column sums of L are equal
to zero. Hence, P is a doubly stochastic matrix (i.e., P is a
nonnegative matrix and all of its row sums and column sums
are equal to one).

We also point out that (8) uses only a particular construction
of the coefficient matrix for the consensus algorithm, which
is based on the graph Laplacian L. As long as each node has
prior knowledge of an upper bound of the maximum degree Δ
of the network, the iteration may be implemented, and there
is no necessity for neighboring nodes to exchange information
regarding the network structure. In addition, it is possible to
construct P in other forms. An alternative choice of P may be
based on the so-called Metropolis weights [16] by taking

p̃ij =

⎧⎨
⎩

1
1+max{di,dj} , if (j, i) ∈ E
1 −

∑
j∈Ni

p̃ij , if i = j
0, otherwise

where di = |Ni| is the degree of node i. If G is a connected
graph and we define P̃ = (p̃ij)n×n, then P̃ is an ergodic
doubly stochastic matrix. When P̃ is used in (8) in place of P ,
the state average will still be preserved as an invariant during
the iterations, and our convergence analysis here is still valid.
Notice that, when P̃ is used in the consensus algorithm, it is
only required that any two neighboring nodes report to each
other their degrees, and knowledge of the maximum degree of
the network is no longer needed.

We cite a theorem concerning the convergence property of
the consensus algorithm.

Theorem 1 (see, e.g., [15]): Consider a network of sec-
ondary users

xi(k + 1) = xi(k) + ui(k) (9)

with topology G applying the distributed consensus algo-
rithm (6), where ui(k) = ε

∑
j∈Ni

(xj(k) − xi(k)), 0 < ε <

1For some network topologies, it is possible to have an ergodic matrix P =
I − εL when ε = 1/Δ. For instance, if ε is taken as 1/Δ and, meanwhile, it
is ensured that P has at least one positive diagonal entry, then it can be shown
that P is an ergodic stochastic matrix.

1/Δ, and Δ is the maximum degree of the network. Let G
be a connected undirected graph. Then, two conditions are
observed.

1) A consensus is asymptotically reached for all initial
states.

2) P is doubly stochastic, and an average-consensus
is asymptotically reached with the limit x∗ =
(1/n)

∑n
i=1 xi(0) for the individual states. �

According to Theorem 1, if we choose ε such that 0 <
ε < 1/Δ, then an average consensus is ensured, and the final
common value x∗ = (1/n)

∑n
i=1 xi(0) will be the average of

the initial vector x(0) or, equivalently, the average of Y T =
{Y1, Y2, . . . , Yn}, which has been obtained during the energy-
detection stage.

Finally, by comparing the average consensus result x∗ with a
predefined threshold λ based on Fig. 1, every secondary user i
locally gets the final data fusion, i.e.,

Decision H =
{

1, x∗ > λ
0, otherwise.

(10)

B. Performance of the Consensus Algorithm

It is quite apparent that the convergence rate is yet another
interesting issue in evaluating the performance of the spectrum-
sensing consensus algorithm. This is due to the fact that sec-
ondary users must continuously detect the presence of primary
users and back up as soon as possible on recognizing such inci-
dent. From this point of view, the speed of reaching a consensus
is the key in the design of the network topology and the analy-
sis of the performance of a consensus algorithm for a given
spectrum-sensing network. For the connected undirected graph
G, the aforementioned algorithm can ensure exponential con-
vergence rate, where the error can be parameterized in the form
O(e−δt) with the exponent δ > 0. To have some bound estimate
for the parameter δ, we first recall that P = I − εL. Since L is
a positive semidefinite matrix, denote its n eigenvalues by

0 = λ1 < λ2 ≤ · · · ≤ λn. (11)

Here, λ2 > 0 since the undirected graph G is connected, which
ensures that the rank of L is equal to n − 1 [27]. The second
smallest eigenvalue λ2 of L is usually called the algebraic
connectivity of the undirected graph G. Then, the second
largest absolute value of the eigenvalues of P is determined
as α(ε) = max{|1 − ελ2|, |1 − ελn|}, which can be verified to
satisfy α(ε) < 1. By using standard results in nonnegative ma-
trix theory (see, e.g., [28]), we can obtain an upper bound for δ.
In fact, we can take δ as any value in the interval (0,− ln α(ε)).
We also remark that similar convergence rate estimates can be
carried out when general weight matrices in averaging are used.

Since P has a unit eigenvalue, we see that the difference
between the first two largest absolute values of the eigenvalues
of P is given as g(ε) = 1 − α(ε), which is customarily called
the spectral gap of P . In general, the greater the g(ε), the
greater the upper bound − ln α(ε) for the exponent δ and the
faster the convergence of the consensus algorithm. In practical
implementations, it is desirable to choose a suitable value for
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ε to increase the spectral gap g(ε), whereas P is ensured to be
ergodic.

IV. SPECTRUM SENSING WITH RANDOM

NETWORK CONNECTIVITY

In Section III, it has been assumed that any two neigh-
boring nodes can reliably exchange data at all times. Hence,
the network topology remains unchanged during the overall
time period of interest. This kind of network modeling may
not be accurate in certain situations. For example, fading of
wireless signals can cause packet errors, which will result in
wireless link failures for that period. Furthermore, even under
LOS channels, moving objects between neighboring nodes may
temporarily affect signal reception. For the aforementioned
reasons, in this section, we consider a more realistic internode
communication model with random link failures. Unlike the
previous model, which is based on fixed bidirectional graphs,
the new model is based on random graphs. Nevertheless, similar
to the previous fixed topology scenario, for the random-graph-
based modeling given here, we still consider bidirectional links
when two nodes can communicate.

A. Random Graph Modeling of the Network Topology

Before characterizing the random connectivity of the net-
work of all secondary users, let us first introduce a fixed
undirected graph G = (N , E), which describes the maximal set
of communication links when there is no link failure. Due to the
random link failures, at time k, the interuser communication is
described by a subgraph of G denoted by G(k) = (N , E(k)),
where E(k) ⊂ E ; the edge (j, i) ∈ E(k) if and only if nodes
j and i can communicate at time k, where (j, i) ∈ E . Thus,
the (undirected) graph G(k) is generated as the outcome of
random link failures. Note that an edge (j, i) never appears in
G(k) if it is not an edge of G. The neighbor set of node i is
Ni(k) = {j|(j, i) ∈ E(k)} at time k. The number of elements
in Ni(k) is denoted by |Ni(k)|. At time k ≥ 0, the adjacency
matrix of G(k) is defined as A(k) = (αji(k))1≤j,i≤|N |, where
αji(k) = 1 if (j, i) ∈ E(k) and αji(k) = 0 otherwise. It is clear
that the graph G(k) is completely characterized by the random
matrix A(k).

Concerning the statistical properties of link failures, we
assume that all links (each associated with an edge in the
graph G) independently fail with the same probability p ∈
(0, 1). For notational simplicity, we use the same parameter
p to model the failure probability. The generalization of the
modeling and analysis to link-dependent failure probabilities is
straightforward.

B. Algorithm With Random Graphs

For the random link failure-prone model, the two spectrum-
sensing stages introduced in Section II are still applicable. In
the first stage, each node performs the radio detection and com-
putes the measurements according to (1). During the second
stage, at time k, each node exchanges state information with
its neighbors and performs the corresponding computation to
generate its state update xi(k + 1). Let Δ be the maximum
degree of the graph G, and take ε ∈ (0, 1/Δ).

The state of user i ∈ N is updated by the rule

xi(k + 1) = xi(k) + ε
∑

j∈Ni(k)

[xj(k) − xi(k)] (12)

where ε is a predetermined constant step size. If Ni(k) = ∅
(empty set), (12) reduces to xi(k + 1) = xi(k).

Theorem 2: Under the independent link failure assump-
tion, the algorithm (12) ensures average consensus, i.e.,
limk→∞ xi(k) = (1/n)

∑n
j=1 xj(0) for all i ∈ N , with prob-

ability one. If, in addition, E|x(0)|2 < ∞ and x(0) is indepen-
dent of the sequence of adjacency matrices A(k), k = 0, 1, . . .,
then each xi(k) converges to (1/n)

∑n
j=1 xj(0) in mean square

with an exponential convergence rate.
Proof: We can write algorithm (12) in vector form

x(k + 1) = [I − εL(k)] x(k)

where L(k) is the Laplacian of the graph G(k). For a
vector z = (z1, . . . , zn)T , denote the Euclidean norm |z| =
(
∑n

i=1 z2
i )1/2. For any given sample point, we can show that

M(k) = I − εL(k) is a symmetric aperiodic stochastic matrix
so that it has all its eigenvalues within the interval (−1, 1] (see,
e.g., [28]); therefore, M(k) determines a paracontracting map
[16], [29] in the sense M(k)z �= z if and only if |M(k)z| <
|z|. For M(k), we denote its fixed-point subspace H(M(k)) =
{z ∈ R

n|M(k)z = z}.
By the assumption on the independent link failures, we see

that, with probability one, G(k) = G for an infinite number
of times k. Let Ω denote the underlying probability sample
space. Thus, after excluding a set A0 of zero probability, for
all ω ∈ Ω\A0, G(k) = G infinitely often, with the associated
Laplacian being L(k) = L. Hence, for each ω ∈ Ω\A0,
x(k) converges to a point in the space H(I − εL) = {z ∈
R

n|Lz = 0} when k → ∞. Furthermore, {z ∈ R
n|Lz =

0} = span{1n} since G is a connected undirected graph.
On the other hand, it is straightforward to check that

(1/n)
∑n

j=1 xj(k) remains as a constant since M(k) is a
doubly stochastic matrix (i.e., nonnegative matrix with all row
sums and column sums equal to one). Now it follows that each
xi(k) converges to (1/n)

∑n
j=1 xj(0) with probability one,

as k → ∞.
We continue to analyze mean square convergence. Since

E|x(0)|2 < ∞ and supi∈N ,k≥0 |xi(k)| ≤ maxi∈N |xi(0)| ≤
|x(0)|, by the probability-one convergence of xi(k), it follows
from dominated convergence results in probability theory that
xi(k) also converges to (1/n)

∑n
j=1 xj(0) in mean square.

Now, we proceed to give an estimation of the mean square
convergence rate within the random network model. De-
note Ave(x(0)) = (1/n)

∑n
j=1 xj(0). It is straightforward to

show that

x(k + 1) − Ave (x(0))1n

=
[
I − (1/n)1n1T

n

]
[I − εL(k)] [x(k) − Ave (x(0))1n]

≡ B(k) [x(k) − Ave (x(0)) 1n] .

In fact, for each ω ∈ Ω, by the eigenvalue distribution of the
matrices (1/n)1n1T

n and L(k), we can show that BT (k)B(k)
and, subsequently, that E[BT (k)B(k)] have n real eigenvalues
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on the interval [0, 1]. We use a contradiction argument to show
that the largest eigenvalue ρ of E[BT (k)B(k)] is less than one.
Suppose that ρ = 1 for E[BT (k)B(k)]; then, there exists a
real-valued vector x �= 0 such that

xT E
[
BT (k)B(k)

]
x = xT x. (13)

By the fact xT [BT (k)B(k)]x ≤ xT x, the equality (13)
leads to

xT
[
BT (k)B(k)

]
x = xT x (14)

with probability one. On the other hand, by the link failure
assumption, there exists a set A1 ⊂ Ω such that P (A1) > 0,
and for each ω ∈ A1, the associated matrix value B(k) = I −
εL. Without loss of generality, we can assume that A1 has been
chosen in such a manner that, for any ω ∈ A1, (14) also holds.

By noticing the fact that, for any z ∈ R
n

zT
[
BT (k)B(k)

]
z ≤ zT (I − εL)2z ≤ zT z (15)

we obtain from (14)

xT (I − εL)2x = xT x. (16)

Hence, (16) implies that x is the eigenvector of I − εL as-
sociated with the eigenvalue 1, which further implies that
x ∈ span{1n}. Denote x = c1n, where c is a constant. By
substituting x = c1n into the left-hand side of (14), we obtain
xT [BT (k)B(k)]x = 0 for each ω ∈ Ω, which contradicts with
(14) and the fact that x �= 0. Hence, we conclude that the largest
eigenvalue ρ of E[BT (k)B(k)] is in the interval [0, 1).

Finally, by elementary calculation, we obtain the conver-
gence rate estimate

E |x(k) − Ave (x(0))1n|2 ≤ ρkE |x(0) − Ave (x(0))1n|2 .
(17)

�
In fact, we have the simplified expression

BT (k)B(k) = [I − εL(k)]
[
I − (1/n)1n1T

n

]2
[I − εL(k)]

= [I − εL(k)]
[
I − (1/n)1n1T

n

]
[I − εL(k)]

= [I − εL(k)]2 − (1/n)1n1T
n

and therefore, ρ is also given as the largest eigenvalue of the
positive semidefinite matrix E[I − εL(k)]2 − (1/n)1n1T

n .

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first introduce the simulation setup. Then,
some simulation results are presented and discussed to show the
performance of the proposed scheme.

A. Simulation Setup

In the simulations, we assume that all secondary users are
experiencing independent identically distributed Rayleigh fad-
ing without spatial correlation. Each secondary user uses an
energy detector. We directly simulate the output Y of the energy
detector in our simulations. When the primary user is absent,
Y is a random quantity with chi-square distribution. When the

primary user is present, Y may be denoted as the sum of two
independent random variables [24], [25]. The parameters of Y
depend on the average SNR in the Rayleigh fading [see (2) and
(3)]. The simulations are done under three test conditions. In the
first condition, every user has the same average SNR(γ), which
is 10 dB. In the second condition, each user has a different
average SNR(γ) varying from 5 to 9 dB. In the third condition,
each user a has different average SNR(γ) varying from 5 to
15 dB. The relevant information of primary users, such as
the position, the moving direction, and the moving velocity, is
unknown to the secondary users.

We compare the performance of the proposed scheme with
that of an existing OR-rule cooperative-sensing scheme [7],
[11], [12], which is better than the AND-rule and MAJORITY-
rule in many cases of practical interest [7], [12]. In the OR-rule
cooperative-sensing scheme, each secondary user makes a local
spectrum-sensing decision, which is a binary variable: A “one”
denotes the presence of a primary user, and a “zero” denotes its
absence. Then, all of the local decisions are sent to a data col-
lector to sum up all local decision values. If the sum is greater
than or equal to one, a primary user is believed to be present.

In the first stage of spectrum sensing, after time synchro-
nization, every secondary user performs energy detection with
TW = 5 individually to get local measurement Yi at the se-
lected center frequency fs and the bandwidth of interest W . To
set up the initial energy vector X(0), we set xi(0) = Yi.

In the second stage, the existing method and the proposed
consensus algorithm (6) are conducted based on fixed graph
models, whereas the proposed consensus algorithm (12) is run
based on random graph models. For fixed graphs, the basic
requirement is to set up duplex wireless channels. In the simula-
tions, we consider a network topology with ten secondary users
that establish a graph G = {N , E}, as shown in Fig. 2(a). For
random graphs, we use the same set of nodes as in Fig. 2(b) but
replace solid lines with dotted lines, which have probabilities of
link failure of 40% [refer to Fig. 2(b)]. The links in those figures
stand for bidirectional wireless links. With regard to link-failure
probabilities, they mean both directions will fail to work in
case of link failure. We also consider a network topology with
50 nodes in the simulations, which is shown in Fig. 3. All of
the 50 nodes are randomly located. The links in the 50-node
network have probabilities of failure of 40%.

B. Convergence of the Consensus Algorithm

Fig. 4(a) and (b) shows the estimated primary user energy in
the network with a ten-node fixed graph. We can observe that,
although the initially sensed energy greatly varies due to their
different wireless channel conditions for different secondary
nodes, a consensus will be reached after several iterations.
The step sizes ε have effects on the convergence rate of the
consensus algorithm. According to (7) and (12), a value should
be selected for ε such that 0 < ε < Δ−1. Since the maximum
number of neighbors of a node in Fig. 2(a) and (b) is 5, Δ = 5.
Then, 0 < ε < 0.2.

Here, we provide some discussion about the choice of the pa-
rameter ε. First, given the network topology, we may construct
the associated Laplacian L as a 10 × 10 matrix. Because of
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Fig. 2. Network topology with ten nodes in the simulations. (a) Fixed graph.
(b) Random graph.

Fig. 3. Network topology with 50 nodes in the simulations.

space limitations, L is not displayed. The eigenvalues of L are
listed as follows:

0 0.3416 0.8400 1.4239 2.0000
2.0000 3.0000 3.1373 4.9411 6.3161.

On the interval (0, 0.2), the spectral gap g(ε) may be shown
to be

g(ε) = 1 − 0.3416ε (18)

which monotonically decreases on (0, 0.2). We note that, for
this specific network topology, when ε = 0.2, the resulting
matrix P = I − εL is ergodic. On the interval (0, 0.2], the
spectral gap is maximized at ε = 0.2.

Here, we select two values for ε, i.e., 0.1 and 0.19, in Fig. 4(a)
and (b), respectively. We can see that the algorithm converges
faster when ε = 0.19 than that when ε = 0.1, which is due to the
fact that ε = 0.19 corresponds to a larger spectral gap g(0.19).
After about five iterations in Fig. 4(b), the difference between
the nodes is less than 1 dB, which indicates that a consensus
has been achieved. Fig. 5 shows the estimated primary user
energy in the network with a random graph when ε = 0.19.

Fig. 4. Convergence of the network with a ten-node fixed graph. (a) Fixed
graph (ε = 0.1). (b) Fixed graph (ε = 0.19).

Fig. 5. Convergence of the network with a ten-node random graph (ε =
0.19).

Comparing Fig. 5 with Fig. 4(b), we can see that the algorithm
more slowly converges in the random graph case due to the
random link failure in the CR network. In Fig. 5, after about ten
iterations, the difference between the nodes is less than 1 dB,
which indicates that a consensus has been achieved.
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Fig. 6. Convergence of the network with a 50-node random graph (ε = 0.15).

Fig. 6 shows the convergence performance for the 50-node
network. ε = 0.15 is used. We can observe that the algorithm
more slowly converges in the 50-node network, compared
with the ten-node network, due to a larger number of nodes.
Nevertheless, after about 30 iterations, the difference between
the nodes is less than 1 dB, which indicates that a consensus
has been achieved.

C. Scenario One

We compare the performance of the proposed scheme with
that of an existing OR-rule cooperative sensing scheme [7],
[11], [12]. Before the comparison, let us briefly discuss the
relationship between Pm (probability of missing detection) =
1 - Pd (probability of detection) and Pf (probability of false
alarm). The fundamental tradeoff between Pm and Pf has
different implications in the context of spectrum sensing [3].
A high Pm will result in the missing detection of primary users
with high probability, which, in turn, increases the interference
to primary users. On the other hand, a high Pf will result in
low spectrum utilization since false alarms increase the number
of missed opportunities (white spaces). As expected, Pf is
independent of γ since, under H0, there is no primary signal.

Figs. 7 and 8 show Pf versus Pm. We can see that the
proposed algorithm has better performance than the existing
OR-rule cooperative sensing scheme. The numbers beside the
curves are the corresponding thresholds λ in decibels. In Fig. 7,
where each secondary user has the same average SNR of 10 dB,
if the threshold λ is in the range of 11.4–12 dB, both Pf and
Pm can simultaneously drop below the probability of 10−2 for
the proposed consensus algorithm in both fixed and random
graphs. In addition, the results are the same between the fixed
and random models. In comparison, to reach the same goal, the
existing OR-rule method must set λ to be about 14.8 dB, which
has far worse Pm (10−2 versus 10−3) with regard to the same
Pf level (10−2).

In condition two, secondary users undergo different average
SNRs varying from 5 to 9 dB. In condition three, secondary
users undergo different average SNRs varying from 5 to 15 dB.

Fig. 7. Missing detection probability Pm versus false alarm probability Pf .
(Each secondary user has the same average SNR, i.e., γ = 10 dB.)

Fig. 8. Missing detection probability Pm versus false alarm probability Pf .
(Each secondary user has different average SNRs varying from 5 to 9 dB.)

Similar results are demonstrated in Figs. 8 and 9 for conditions
two and three, respectively.

D. Scenario Two

Next, we examine the performance of detection probabilities
Pd to find out the sensitivity in detecting the primary user’s
presence. Fig. 10 shows Pd (detection probability = 1 − Pm)
versus the average SNR γ̄ of secondary users. Condition one
is used in this scenario, and the simulation is performed when
the average SNR varies from 5 to 10 dB for all the nodes.
The decision threshold λ is chosen to keep Pf = 10−1. Time-
bandwidth product TW is set to be 5, which is the same as
before. From Fig. 10, we see that the proposed scheme can
have a significant improvement in terms of the required average
SNR for detection. In particular, if the probability of detection
is expected to be kept above 0.99 (or Pm < 10−2), the existing
spectrum-sensing scheme requires γ̄ = 7.8 dB. This required
average SNR is higher than that in the proposed consensus
scheme, both of which are approximately 6.8 dB.
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Fig. 9. Missing detection probability Pm versus false alarm probability Pf .
(Each secondary user has different average SNRs varying from 5 to 15 dB.)

Fig. 10. Simulation results in scenario two. Detection probability Pd versus
average SNR γ̄ (Pf = 10−1, TW = 5).

E. Scenario Three

In reality, it is unlikely to adjust the threshold λ on demand
with regard to the different average SNRs. Rather, a fixed
threshold that can work in any γ̄ is much more desirable. We
can call it threshold robustness. Therefore, in this scenario,
we use condition one and intend to set a predefined threshold
λ by using (10) to achieve a certain goal. In fact, there are
three options when we choose such a goal to keep missing
detection probability Pm below a certain level, to keep false
alarm probability Pf around a certain level, or to keep both Pm

and Pf as low as possible.
We first try to keep Pm below 10−2 when all the ten users

undergo the same γ varying from 5 to 10 dB. Fig. 11(a) shows a
fixed λ that lets Pm be below 10−2 for the average SNR ranging
from 5 to 10 dB. As a result, the worst Pf decreases from 0.586
by using the existing method to 0.356 in both the random graph
and the fixed graph by using the proposed scheme.

Fig. 11. Results in simulation scenario three (part one). (a) Missing detection
probability Pm and false alarm probability Pf versus average SNR γ with fixed
threshold λ to keep Pm below 10−2, when all the ten users undergo the same γ
varying from 5 to 10 dB. (b) Missing detection probability Pm and false alarm
probability Pf versus average SNR γ with fixed threshold λ to keep Pf below
10−1, when all the ten users undergo the same γ varying from 5 to 10 dB.

The second option is to let Pf always be about 10−1 when
all the ten users undergo γ varying from 5 to 10 dB. The result
is shown in Fig. 11(b), where Pf remains about 10−1. The
proposed consensus algorithm performs better in terms of Pm,
decreasing from 0.161 in the existing method to 0.0527 in the
proposed method.

In the third option, keep both Pm and Pf as low as pos-
sible. When determining a threshold, we refer to Fig. 12(a),
which shows the worst case when all the ten users suffer
γ = 5 dB. For the consensus scheme to have better missing
detection performance, the threshold chosen in the proposed
scheme should be lower than that in the OR-rule scheme. In
Fig. 12(a), we can see that, with the same missing detection
probability, the threshold in the proposed scheme is lower than
that in the OR-rule scheme. On the other hand, with this lower
threshold, a better false alarm probability can be achieved in the
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Fig. 12. Results in simulation scenario three (part two). (a) Missing detection
probability Pm and false alarm probability Pf versus threshold λ in decibels
with the same γ = 5 dB for all users. (b) Missing detection probability Pm

and false alarm probability Pf versus average SNR γ with fixed threshold λ to
keep both Pm and Pf below a certain level, when all the ten users undergo the
same γ varying from 5 to 10 dB.

proposed scheme. The reason is that, when there is no primary
user, the output of the energy detector Y of each secondary
user is a random quantity with central chi-square distribution
[see (2)]. Since Y greatly varies, it is easy for a secondary
user to have a false alarm in the OR-rule scheme. By contrast,
the consensus scheme does not use the raw data Y to make
decisions. Instead, it uses the consensus among the secondary
users to make decisions; thus, it can remove some randomness
in the raw data Y . Therefore, the consensus scheme can have
a better false alarm probability than the OR-rule scheme with
the same threshold. This can be shown in Fig. 12(a). From
Fig. 12(a), we can also observe that both missing detection and
false alarm probabilities are low when the threshold is about
11 dB for the consensus scheme and when the threshold is about
13.6 dB for the OR-rule scheme. In Fig. 12(a), if we compare
the performance of the consensus scheme with a threshold of
11 dB with that of the OR-rule scheme with a threshold of

13.6 dB, we can see that both missing detection and false alarm
probabilities in the consensus scheme are lower than those in
the OR-rule scheme. We choose λ = 11 dB for the proposed
consensus algorithm and λ = 13.6 dB for the existing method
to conduct our numerical studies. Fig. 12(b) shows the result of
such a fixed λ. It is seen that both Pm and Pf perform better
for the proposed algorithm than those of the existing method.
Pm and Pf drop to a relatively low level. This highlights
the overall advantage in the so-called threshold robustness for
the proposed consensus algorithm. That is, for a given λ, the
proposed consensus algorithm can output less Pm and Pf than
those of the existing method. The algorithm works well in both
the fixed and random graphs.

Another observation in scenario three is that when the av-
erage SNR rises, Pm drops for a given threshold λ, but Pf

remains more or less at the same level. This means that, for
a fixed λ, Pm is subject to a change in the average SNR. In
contrast, Pf is stable, because this parameter deals with the
condition of H0, where only the collective noises exists.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have presented a fully distributed and
scalable scheme for spectrum sensing based on recent advances
in consensus algorithms. Cooperative spectrum sensing is mod-
eled as a multiagent coordination problem. Secondary users
can maintain coordination based on only local information
exchange without a centralized receiver. Simulation results
have been presented to show the effectiveness of the proposed
consensus-based scheme. It has been shown that both missing
detection probability and false alarm probability can signifi-
cantly be reduced in the proposed scheme, compared with those
in the existing schemes.

In addition, as the real network topologies undergo random
changes and the primary user may randomly enter and leave
the network, a protocol is necessary to quickly decide when
the consensus is considered to be practically reached. If the
secondary users cannot efficiently form a decision in finite
steps, the energy measurements obtained at the beginning may
become obsolete. To address this finite time-detection issue, in
implementations, a certain toleration threshold may be used by
the users. A secondary user may stop the iteration if it finds that
the difference between the states of each neighbor and itself has
fallen below the threshold. The choice of threshold depends on
empirical studies. Our simulation indicates that the threshold
may be chosen to be around a fraction of 1 dB or close to 1 dB.

One limitation of the proposed scheme is that the choice of
the step size ε depends on the maximum number of neighbors of
a node in the network. In other words, each node needs to have
prior knowledge of an upper bound of the maximum degree
of the network. To solve this problem, an alternative approach
may be used, which is based on the so-called Metropolis
weights [16]. This approach does not need knowledge of the
maximum degree of the network. Future work is in progress
in this direction. We also want to simplify the data format
of detection statistics from each secondary user to save the
wireless bandwidth. In addition, as energy detection does not
work well for spread-spectrum signals, other approaches will
be studied to deal with such networks.
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