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Stability of Kalman filtering with Markovian packet losses�
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Abstract

We consider Kalman filtering in a network with packet losses, and use a two state Markov chain to describe the normal operating condition of
packet delivery and transmission failure. Based on the sojourn time of each visit to the failure or successful packet reception state, we analyze
the behavior of the estimation error covariance matrix and introduce the notion of peak covariance, as an estimate of filtering deterioration
caused by packet losses, which describes the upper envelope of the sequence of error covariance matrices {Pt , t �1} for the case of an unstable
scalar model. We give sufficient conditions for the stability of the peak covariance process in the general vector case, and obtain a sufficient
and necessary condition for the scalar case. Finally, the relationship between two different types of stability notions is discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of state estimation is of great importance in
various applications ranging from tracking, detection and con-
trol, and in linear stochastic dynamical systems, Kalman filter-
ing (Kailath, Sayed, & Hassibi, 2000; Kalman, 1960) plays an
essential role. Recently there has been an increased research
attention for filtering in distributed systems where sensor mea-
surements and final signal processing take place in geograph-
ically separate locations and the usage of wireless or wireline
communication channels is essential for data communication.
In contrast to traditional filtering problems, an important fea-
ture in these networked systems is that the delivery of mea-
surements to the estimator is not always reliable and losses of
data may occur. This leads to estimation schemes which are
required to handle missing data.
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In this paper, we consider optimal filtering in a linear system
with random packet losses. When the observer has full infor-
mation about the loss of each packet, this leads to a modified
filtering structure switching between the conventional Kalman
filter when packets are received, and a deterministic predictor
when a packet loss occurs.

We focus on the n dimensional linear time-invariant system

xt+1 = Axt + wt, t �0,

where the initial state is x0 at t = 0. The sensor measurements
are obtained starting from t �1 in the form

y0
t = Cxt + vt , t �1,

where C ∈ Rm×n, and then y0
t is transmitted by a channel. Here

{wt, t �0} and {vt , t �1} are two mutually independent se-
quences of independent and identically distributed (i.i.d.) Gaus-
sian noises with covariance matrices Q and R > 0, respectively.
The two noise sequences are also independent of x0, which is
a Gaussian random vector with mean x̄0 = Ex0 and covari-
ance matrix Px0 . The underlying probability space is denoted
as (�, F, P) where F is the �-algebra of all events.

We consider a communication channel such that y0
t is exactly

retrieved or the packet containing y0
t is lost due to corrupted data
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or substantial delay. When the packet is successfully received,
one obtains the observation

yt = y0
t

and if there is a packet loss, by our convention, the observation
obtained by the receiver is

yt ≡ 0.

Under this assumption, the underlying communication link may
be looked at as an erasure channel at the packet level.

We use �t ∈ {0, 1} to indicate the arrival (with value 1) or loss
(with value 0) of packets. Here �t may be interpreted as resulting
from the physical operating condition of a network. Specifically,
the state 0 for �t may correspond to channel error or network
congestion which causes a straight packet loss or long delay
resulting in packet dropping at the receiver. For facilitating
the presentation, 0 and 1 shall be called the failure state and
normal state, respectively. To capture the temporal correlation
of the channel variation (e.g., in bursty error conditions), �t is
modelled by a two state Markov chain with the transition matrix

� =
[

1 − q q

p 1 − p

]
, (1)

where p and q, respectively, are called the failure rate and recov-
ery rate and p, q > 0. For instance, 1 −p denotes the probabil-
ity of the channel remaining at the normal state 1 after one step
if it starts with state 1. This is usually called the Gilbert–Elliott
channel model (Elliott, 1963; Gilbert, 1960). Obviously, a small
value (close to 0) for p and a large value (close to 1) for q mean
the channel is more reliable.

Based on the history Ft = �(yi, �i , i� t), which is the �-
algebra generated by the available information up to time t
(i.e., all events that can be generated by these random vari-
ables), one can write a set of filtering and prediction equa-
tions corresponding to the optimal estimate x̂t = E[xt |Ft ] and
x̂t+1|t = E[xt+1|Ft ], t �0, respectively, by the same method as
in Sinopoli et al. (2004) which dealt with the scenario of i.i.d.
packet losses. We use the convention F0 = {∅, �}. The details
for the recursion of x̂t and x̂t+1|t will not be repeated here. In
this paper we focus on the estimation error of x̂t+1|t with an
associated prediction error covariance matrix

Pt+1|t�E(xt+1 − x̂t+1|t )(xt+1 − x̂t+1|t )′.

We write Pt+1|t = Pt+1. We use M ′ to denote the transpose
of a vector or matrix M. To characterize the prediction error
covariance, one can easily derive the following random Riccati
equation

Pt+1 = AP tA
′ + Q − �tAP tC

′(CP tC
′ + R)−1CP tA

′,
t �1. (2)

The initial condition in (2) is P1 =Var(x1)=AP x0A
′+Q. Note

that �t appears as a random coefficient in the recursion.
Under a Bernoulli i.i.d. packet loss modelling, the filtering

stability may be effectively studied by a modified algebraic
Riccati equation (MARE), which is obtained by replacing �t

in Eq. (2) by the packet arrival rate �. Subsequently, the analysis
amounts to identifying a critical value �c such that stability
holds if and only if the arrival rate is greater than �c (see Section
4 for additional discussion). This approach is generally termed
as being based on the uncertainty threshold principle (Sinopoli
et al., 2004). In contrast, when the channel model is given by
a Markov chain, such a conversion into a deterministic MARE
is no longer feasible, and since the channel is described by
several independent parameters, the usual threshold argument
is not applicable.

1.1. Background and related work

Filtering and estimation constitute an important aspect in
sensor network deployment for monitoring, detection or track-
ing (Chong & Kumar, 2003; Zhang, Moura, & Krogh, 2005;
Zhao, Shin, & Reich, 2002), as well as multi-vehicle coordi-
nation (Varaiya, 1993), since in reality sensors can only obtain
noisy information about a physical activity in its vicinity. And
for many linear stochastic models, a useful tool is the standard
Kalman filtering theory which has been widely used in various
estimation and control scenarios. Recently there is an increased
attention for its application in distributed networks while new
theoretical questions and implementation issues emerge. In
close relation to estimation in lossy sensor networks, there
also has been a long history of research on filtering with
missing signals at certain points of time, i.e., the output does
not necessarily contain the signal in question and it may be
only a noise component. Such models were referred to as
systems with uncertain observations; see (Hadidi & Schwartz,
1979; Jaffer & Gupta, 1971; Nahi, 1969; Tugnait, 1981). The
early work (Nahi, 1969) considered optimal state estimation
within the class of linear filters; by modelling the uncertainty
via a sequence of i.i.d. binary random variables indicating
the signal availability, the author derived a recursion similar
to the Kalman filter utilizing the statistics of the unobserved
binary uncertainty sequence (Nahi, 1969). The work (Hadidi
& Schwartz, 1979) gave conditions for obtaining recursive
filtering when the uncertainty sequence is not necessarily i.i.d.
Asymptotic stability of the MMSE filter was established in
Tugnait (1981) when the loss sequence is i.i.d. with known loss
probability; since in this case the estimation covariance is gov-
erned by a deterministic equation, one can obtain stability anal-
ysis by constructing an equivalent linear system without data
losses.

In the more recent research on network models, (Fletcher,
Rangan, & Goyal, 2004; Smith & Seiler, 2003) considered
state estimation with lossy measurements resulting from time-
varying channel conditions. In particular, Smith and Seiler
(2003) developed a suboptimal jump linear estimator for com-
plexity reduction in computing the corrector gain using finite
loss history where the loss process is modelled by a two state
Markov chain. The work (Fletcher et al., 2004) introduced a
more general multiple state Markov chain to model the loss and
nonloss channel states, and the asymptotic mean square estima-
tion error for suboptimal linear estimators is analyzed and op-
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timized by a linear matrix inequality (LMI) approach. Sinopoli
et al. (2004) investigated the filtering stability with i.i.d.
packet losses by identifying a threshold condition, and this
approach was extended to the two sensor situation in Liu and
Goldsmith (2004). In these results, the occurrence of packet
losses is known at the estimator and this leads to a random Ric-
cati equation involving the loss indicator sequence {�t , t �1},
which differs from the deterministic recursion for the covari-
ance function in Tugnait (1981). In networked systems, control
problems with packet losses have been examined in Gupta,
Spanos, Hassibi, and Murray (2005), Hadjicostis and Touri
(2002) and Ling and Lemmon (2003).

1.2. Contributions and organization

In this paper we consider filtering with a Markovian packet
loss model which captures the temporal correlation nature of
practical channels. Within this channel modelling, on one hand,
the averaging technique employed in Sinopoli et al. (2004) is
no longer applicable for stability analysis. On the other hand,
the filter exhibits an evident bi-modal structure along sample
paths while switching between Kalman filtering and open-loop
prediction. Traditional stability notions cannot adequately cap-
ture the sample path behavior of filtering. Motivated by this
situation, we develop a new framework for filtering stabil-
ity analysis, and our analytic techniques are closely related to
the on–off pattern of the channel. In Section 2, for specify-
ing the filter behavior, we introduce the notion of peak covari-
ance. In an unstable scalar model, along a sample path the peal
covariance (variance) gives the upper envelope of the actual
covariance process. For the general vector model, a sufficient
condition is given in Section 3 for peak covariance stability. In
Section 4 we examine the stability property for the scalar model,
and obtain a sufficient and necessary condition involving the
recovery rate of the channel. Section 5 presents some simula-
tion and computational examples, and Section 6 concludes the
paper.

1.3. Terminology and notation

For characterizing filter stability and obtaining performance
estimates, we need to first introduce some terminologies. For
the reader’s reference, these terminologies and some prelim-
inary material are described below although they are easily
found in textbooks. A stopping time � (associated with the
Markov chain �t , t �1) is a measurable map from � to the set
{1, 2, . . . ,∞} such that for any k�1, {��k} ∈ �(�t , t �k),
which is the �-algebra generating by �(·) up to time k. In our
filtering context, the two sequences of stopping times intro-
duced during the analysis simply describe the random switch
time of the filter, or equivalently, the jump time of the Markov
chain �t . For a real n × n matrix M, the induced norm is
‖M‖ = sup|X|=1|MX| where |X| and |MX| denote the usual
Euclidean norm for vectors. For a symmetric matrix M, we in-
dicate it as positive semi-definite by M �0, and the relation
M1 �M2 for symmetric matrices means M1 − M2 �0.

2. Evolution of the covariance

In order to simplify the analysis, in the following we assume
the initial state for �t is �1=1. Note that this assumption imposes
no essential restriction and the other case with �1 = 0 may be
treated in the same manner. Based on Eq. (2), we write two
separate equations

Pt+1 = AP tA
′ + Q − AP tC

′(CP tC
′ + R)−1CP tA

′,
�t = 1 (3)

Pt+1 = AP tA
′ + Q, �t = 0 (4)

depending on the value of �t . The covariance process Pt , as
a random process, may be regarded as being governed by a
bi-modal hybrid system where the evolution of the continuum
component is driven by a two state Markov chain. Such a bi-
modal structure is especially useful and will be exploited in the
stability analysis.

To make the model nontrivial, throughout this paper we make
the following assumptions:

(H1) The failure and recovery rate p, q are both in (0, 1).
(H2) The system [A, C] is observable, i.e., the rank of the matrix

[C′, A′C′, . . . , (An−1)′C′] is n.

For the given initial condition �1=1, we introduce the following
stopping time:

�1 = inf{t : t > 1, �t = 0}.
We make the usual convention that the infimum of an empty
set is +∞. Thus �1 is the first time when a packet loss occurs.
Furthermore, we define

�1 = inf{t : t > �1, �t = 1}.
It is clear �1 is the first time the channel recovers from the
first failure. The above procedure is repeated to define two
sequences

�1, �2, �3, . . . ,

�1, �2, �3, . . . ,

which gives

�t =
{

0 if �i � t < �i < ∞, i�1,

1 if �i � t < �i+1 < ∞, i�1.
(5)

Obviously the following order relationship holds:

1 < �1 < �1 < · · · < �k < �k < �k+1 < · · · , (6)

whenever each of the entries is finite on the associated random
sample point 	 ∈ �.

Lemma 1. Under condition (H1), with probability one (w.p.1),
the two sequences {�i , i�1} and {�i , i�1} have finite values
for each of their entries.

Proof. The Markov chain {�t , t �1} is ergodic under (H1). It is
easy to check that P(�1 =∞)= 0. Hence, �1 < ∞ w.p.1. Since
��1+t , t �1, is still a Markov process (i.e., having strong Markov
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property (Freedman, 1983)), we may calculate the condition
probability P{�1=∞|�1 < ∞}=P{��1+t =0, t �1|�1 < ∞}=0.
Since �1 < ∞ w.p.1, we have �1 < ∞ w.p.1. By induction, we
see that for each finite i�1, �i < �i < ∞ w.p.1. Finally, after
excluding a null sample set, all �i , �i , i�1 have finite values
along each sample path. �

Lemma 1 forms the basis for the peak covariance notion to
be introduced later, which has a strictly increasing subscript
after relabelling a subsequence of {Pt , t �1}.

Define

�∗
i = �i − �i−1, i�1, (7)

�∗
i = �i − �i , i�1, (8)

where we adopt the convention �0 = 1. Here �∗
i and �∗

i denote
the sojourn times (i.e., the length of a continuous stay) at the
success state 1 and failure state 0, respectively.

Lemma 2. Under (H1), we have

(i) The random variables {�∗
i , i�1} are i.i.d., and �∗

i − 1 is
geometrically distributed with P(�∗

i − 1 = k)= (1 −p)kp,
k�0.

(ii) The random variables {�∗
i , i�1} are i.i.d., and �∗

i − 1 is
geometrically distributed with P(�∗

i − 1 = k)= (1 − q)kq,
k�0.

(iii) The random variables {�∗
i , �

∗
i , i�1} are independent of

each other.

Proof. For the proof of (i) and (ii), see Freedman (1983). The
property (iii) can be proven by direct computation for any given
finite dimensional distribution of (�∗

i , �
∗
i , i�1). Indeed, letting

ki, k̄i �1, and k = ∑
j � ikj + k̄j , we have

P(�∗
1 = k1, �

∗
1 = k̄1, . . . , �

∗
i = ki, �

∗
i = k̄i , �

∗
i+1 = ki+1)

= P(�∗
1 = k1, . . . , �

∗
i = ki, �

∗
i = k̄i ,

�k = 1, . . . , �k+ki+1−1 = 1, �k+ki+1
= 0)

= P(�∗
1 = k1, . . . , �

∗
i = ki, �

∗
i = k̄i , �k = 1)(1 − p)ki+1−1p

= P(�∗
1 = k1, . . . , �

∗
i = ki, �

∗
i = k̄i )(1 − p)ki+1−1p, (9)

where we have used the Markovian property for �t to get

P(�k+1 = 1, . . . , �k+ki+1−1 = 1, �k+ki+1
= 0|�∗

1 = k1, . . . , �
∗
i

= ki, �
∗
i = k̄i , �k = 1)

= P(�k+1 = 1, . . . , �k+ki+1−1 = 1, �k+ki+1
= 0|�k = 1).

Repeating the above calculation with (9), it is easy to verify
(iii). �

Now we define

�−
k = �k − 1. (10)

In fact, �−
k is the last time instant in a period of successive

packet losses. In other words, �−
k is the last time of visit of

�t , to the failure state 0 since �k . The time �−
k is useful for

analyzing the filtering performance in that it provides a basis

for estimating to what extent the covariance process may de-
teriorate resulting from successive packet losses. Immediately
from time �k , a new packet will arrive at the observer, and the
state prediction will start to improve. The period [�i , �

−
i ] and

[�i , �i+1 − 1] shall be called the loss cycle and normal cycle,
respectively.

Labelling a subsequence of the covariance process Pk by the
sequence of times �k , we denote

Mk = P�k
. (11)

Mk denotes the value of the covariance P�k |�−
k

computed by

(4) at t = �−
k . For an unstable scalar model, starting from

�k + 1, Pt monotonically increases to reach a maximum Mk

at time �k before turning downward; the sequence {Mk, k�1}
gives the upper envelope of the covariance sequence. For this
reason, we shall call Mk the peak covariance process. In the
multi-dimensional (vector) case, Pt does not necessarily change
monotonically before or after reaching Mk according to the
packet arrival or loss; to facilitate our presentation, however,
we shall still refer to Mk as the peak covariance process.

Definition 3. We say the sequence {Mk, k�1} is stable if
supk �1 E‖Mk‖ < ∞. Accordingly, we say the (filtering) sys-
tem satisfies peak covariance stability.

3. Sufficient condition for peak covariance stability

Let Sn denote the set of all n × n nonnegative definite real
matrices. Based on Kalman filtering, define the map

F(P ) = APA′ + Q − APC′(CPC′ + R)−1CPA′, (12)

where P ∈ Sn. By completion of squares it is easy to show that
for any P ∈ Sn, F(P )�F(0n×n)�Q and therefore F(P ) ∈
Sn. To analyze the map F, we need to introduce the following
definition.

Definition 4. For the observable linear system [A, C], the
observability index is the smallest integer Io such that
[C′, A′C′, . . . , (AIo−1)′C′] has rank n.

Under the observability assumption (H2), the integer Io spec-
ified in Definition 4 obviously exists. For a deterministic sys-
tem, Io specifies the minimum number of observations which
are required in order to reconstruct the initial condition of an
observable system.

We define

Sn
0 = {P : 0�P �AP̃A′ + Q, for some P̃ �0}, (13)

which is a convex subset of Sn.

Lemma 5. Letting F be the map defined by (12), there exists
a constant K > 0 such that

(i) for any P̄ ∈ Sn
0 , Fk(P̄ )�KI for all k�Io;

(ii) for any P̄ ∈ Sn, Fk+1(P̄ )�KI for all k�Io,

where I is the n × n identity matrix.



602 M. Huang, S. Dey / Automatica 43 (2007) 598–607

Proof. In the proof we use the same set of notation as in Section
1 to the case without packet losses, i.e., �t ≡ 1.

(i) We begin by considering the case P̄ = AP̃A′ + Q with
P̃ �0. By running a standard Kalman filter, we may interpret
Fk(P̄ ) as the optimal prediction error covariance matrix for
xk+1 resulting from k measurements (y1, . . . , yk) with the ini-
tial covariance P1=P1|0=P̄ (after the covariance of x0 is set as
P̃ ). By use of (y1, y2, . . . , yIo), we can construct a suboptimal
estimator satisfying the bound condition, which further ensures
that Fk(P̄ ), k�Io, is bounded by a fixed constant independent
of P̄ ∈ Sn

0 . In fact, we have

⎛
⎜⎜⎝

y1
y2
...

yIo

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

C

CA
...

CAIo−1

⎞
⎟⎟⎠ x1 + WIo−1

� Jx1 + WIo−1,

where the random vector WIo−1 depends only on the noise
(w1, . . . , wIo−1, v1, . . . , vIo). Denote YIo = (y1, . . . , yIo)

′. For
state x1, we construct the estimate

x̌1 = (J ′J )−1J ′YIo (14)

and the suboptimal estimator for xIo+1 given YIo , as

x̌Io+1 = AIo(J ′J )−1J ′YIo . (15)

It is easy to show that E|xIo+1 − x̌Io+1|2 �L for a constant
L independent of x0 and x1. Hence, by optimality of Kalman
filtering, it follows that PIo+1 = FIo(P1)�KI with a fixed
constant K regardless of the value of P̄ =P1=E(x1−x1|0)(x1−
x1|0)′.

Now we consider the general case P̄ �AP̃A′ + Q for some
P̃ �0. Combing the monotone property (Anderson & Moore,
1979) of the map F (i.e., F(P1)�F(P2) if 0�P1 �P2) with
the result proved above, we see FIo(P̄ )�KI . Subsequently,
for k > Io, we have Fk(P̄ ) = FIo(F k−Io(P̄ ))�KI since
Fk−Io(P̄ ) ∈ Sn

0 , and this completes the proof of (i).
(ii) This part follows from (i) and the fact Fk+1(P̄ ) =

Fk(F (P̄ )) where 0�F(P̄ )�AP̄A′ + Q. �

Remark. The observability condition may be relaxed to de-
tectability, and one can identify an associated index Io such
that Lemma 5 holds. Then the subsequent analysis in this paper
can be extended to the detectable model in a straightforward
manner.

We introduce some positive constants. For 1� i�(Io−1)∨1,
let d

(0)
i and d

(1)
i satisfy the following inequality:

‖F i(P )‖�d
(1)
i ‖P ‖ + d

(0)
i , ∀P ∈ Sn

0 , (16)

where we use ‖ · ‖ to denote the induced norm for matrices.
By the fact F(P )�APA′ + Q, it is clear the pair (d

(0)
i , d

(1)
i )

always exists. For the case Io = 1, we may take d
(1)
1 = 0 and

d
(0)
1 > 0 by Lemma 5.

Theorem 6. The peak covariance process is stable if the fol-
lowing two conditions hold:

(i) |�A|2(1 − q) < 1,
(ii) pqd

(1)
1 [1 + ∑Io−1

i=1 d
(1)
i (1 − p)i]∑∞

j=1 ‖Aj‖2(1 −
q)j−1 < 1,

where �A is an eigenvalue of the largest magnitude for matrix
A.

The proof is given in Appendix. Here we give a brief dis-
cussion on condition (ii). Note that under condition (i), the in-
finite series in condition (ii) converges. Now let the pair A and
q be fixed such that (i) holds. Then it is easy to check that for
the given pair (A, q), if p is sufficiently small, condition (ii) is
always satisfied.

Condition (i) may be regarded as specifying the minimum
requirement for the recovery rate. Thus, based on the theorem,
we may roughly state an intuitive fact: any given q fulfilling
the minimum recovery rate requirement may be combined with
a sufficiently small failure rate p such that the peak covariance
stability holds.

Corollary 7. If C is invertible, condition (ii) in Theorem 6 van-
ishes and the peak covariance stability holds under condition
(i).

Proof. When C is invertible, we have Io = 1 and hence
‖F(P )‖�K for P ∈ Sn

0 , by Lemma 5. This means d
(1)
1 = 0 in

(16), and therefore condition (ii) in Theorem 6 vanishes. �

4. Stability of the scalar model

For the scalar case, condition (ii) in Theorem 6 vanishes
since in this case d

(1)
1 = 0. The reason is that for the scalar

Riccati equation, once there is an arrival of one packet at t,
the covariance Pt+1 becomes bounded by a fixed constant, no
matter what value it has at the previous step. Furthermore,
assuming Q > 0 to avoid triviality, we can show that condition
(i) in Theorem 6 is also necessary. This leads to a sufficient and
necessary condition in the following theorem. It is of interest
to note that this condition only depends on the recovery rate of
the Markov chain {�t , t �1}.

For the scalar case, we set the coefficients A and C in the
dynamics to their lower case form, i.e., we take A = a and
C = c �= 0. The term covariance is also appropriately replaced
by variance.

4.1. The sufficient and necessary condition for stability

Theorem 8. For the scalar model with Q > 0, the peak vari-
ance process is stable if and only if

a2(1 − q) < 1,

where q is the recovery rate.



M. Huang, S. Dey / Automatica 43 (2007) 598–607 603

Proof. Under the observability condition, condition (ii) in
Theorem 6 vanishes for the scalar model, and sufficiency of
condition (i) in Theorem 6 follows easily. Now we show that
condition (i) in Theorem 6 is necessary. Below it suffices to
establish necessity for the case |a| > 1; it is evident that

P�k
< P�k+1 < P�k+2 < · · · < P�k

,

P�k
> P�k+1 > P�k+2 > · · · > P�k+1 .

By use of the recursion with packet arrivals, it can be checked
that

Q�P�k
�Q + a2Rc−2.

This implies that for each loss cycle, the variance will evolve
from an initial condition P�k

which is both lower and upper
bounded by two strictly positive numbers.

On the other hand, we see that 
k =�∗
k −1=�k − �k −1 has

a geometric distribution with parameter 1 − q. The magnitude
of P�k

depends on the difference �k −�k , where �k is the initial
time. Using the lower bound for P�k

, it follows that

EP �k
�(a2Q + Q)P(
k = 0)

+ (a4Q + a2Q + Q)P(
k = 1)

+ · · · + (a2iQ + a2i−2Q + · · · + Q)

× P(
k = i − 1) + · · · , (17)

where we have

P(
k = l) = q(1 − q)l

for l�0. We can verify that the series on the right-hand side
of (17) converges if and only if a2(1 − q) < 1, This completes
the proof. �

Moreover, we have the following stability results in higher
order moments.

Corollary 9. For r �1, we have supk E|P�k
|r < ∞ if and only

if |a|2r (1 − q) < 1.

Proof. This corollary can be proven by following the same
method as in the proof of Theorem 8. �

It is clearly seen from Corollary 9 that for obtaining higher
order stability results, we need to put a more stringent condition
on the recovery rate for an unstable system (|a| > 1).

In the following we establish a stability result for the usual
variance process Pt . To simplify the estimates, we only ana-
lyze the symmetric case with p = q, in which the distribution
of the random variable �k − 2k + 1 is the convolution of 2k − 1
i.i.d. geometric distributions, and this substantially simplifies
the calculations. For the general case with p �= q, the calcula-
tion is much more involved.

Theorem 10. For the scalar model with p=q, if a2(1−q) < 1,
then the variance process has the usual stability property, i.e.,
supt �1 EP t < ∞.

Proof. For any given t > 1, we write

Pt =
∞∑
i=1

Pt1(�i<t ��i )
+

∞∑
i=0

Pt1(�i<t ��i+1)

�
∞∑
i=1

Pt1(�i<t ��i )
+

∞∑
i=0

(Q + a2Rc−2)1(�i<t ��i+1)

�
∞∑
i=1

Pt1(�i<t ��i )
+ (Q + a2Rc−2).

Let � = a2(1 − q) < 1. The case with � = 0 is trivial. In the
following estimate we only consider the case � > 0. We may
pick a large but fixed D > 0 such that

�k�EP t1(�k<t ��k)

�DE1(�k<t ��k)

+ DE[a2(t−�k)(1 − q)t−�k ]1(�k<t).

In order to show supt EP t < ∞, now it suffices to show
supt

∑∞
k=1 E�t−�k 1(�k � t) < ∞.

Recall that the distribution of �k −(2k−1) is the convolution
of (2k−1) i.i.d. geometric distributions with the same parameter
=1−q, and by use of the probability generating function (1−
)2k−1/(1 − z)2k−1 =∑∞

i=0 P{�k − (2k − 1)= i}zi , |z| < −1,
of �k − (2k − 1), it can be checked that

P(�k − (2k − 1) = i)

= (1 − )2k−1 (2k − 1) · · · (2k − 1 + i − 1)

i! i ,

where i�0.
By use of the distribution of �k , we have

∞∑
k=1

E�t−�k 1(�k � t)

=
∑

k �1,0� i � t−(2k−1)

�t−i−(2k−1)P(�k − (2k − 1) = i)

=
∑

k �1,0� i � t−(2k−1)

�t−i−(2k−1)(1 − )2k−1i

× (2k − 1) · · · (2k − 1 + i − 1)

i!
�

∑
k �1,0� i � t−k

�t−i−k(1 − )ki k · · · (k + i − 1)

i!

= �−1(1 − )
∑

k �0,0� i � t−k

�t−i−k(1 − )ki (k + i)!
k! × i!

= �−1(1 − )

t∑
l=0

∑
k+i=l

�t−i−k(1 − )ki (k + i)!
k! × i!

= �−1(1 − )

t∑
l=0

�t−l <
1 − 

�(1 − �)
= q

�(1 − �)
,

which completes the proof. �
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4.2. The relation between different stability notions

For showing the relationship between the peak covariance
stability with other existing stability results in the literature,
we specialize to the scalar model with i.i.d. packet losses. In
this case, the transition matrix of the channel given by (1)

reduces to
[

1−q
1−q

q
q

]
, with an associated packet loss probability

p = 1 − q. It is shown in Sinopoli et al. (2004, Theorem 2 &
Section IV) that for the scalar model with i.i.d. packet losses,
supt �1 E|Pt | < ∞ (we term this as the usual stability of Pt ) if
and only if the packet arrival rate � satisfies

� > �c = 1 − 1/a2. (18)

By translating into our notation for channel parameters, � is
equal to q, so that (18) is equivalent to

q > 1 − 1/a2. (19)

Recalling Theorem 8, (19) is also a necessary and sufficient
condition for the peak variance stability for the special case
of i.i.d. packet losses. Then we may immediately claim the
following relationship.

Corollary 11. For the scalar model with i.i.d. packet losses,
the peak variance stability is equivalent to the usual stability
(i.e., supt �1 E|Pt | < ∞).

For the scalar model with i.i.d. packet losses, it is of interest
to note that the peak variance stability is seemingly stronger
than the usual stability as the former characterizes a certain
boundedness property along the upper envelope of the variance
trajectories, but actually it is not, as stated in Corollary 11.

For the vector case when Pt is a matrix, the relation between
the two stability notions as discussed above is much more com-
plicated as the stability condition is not just reduced to the in-
equality (19). In addition, in the general vector case there is
no obvious method for calculating the critical arrival rate �c,
except one can show its existence.

5. Numerical examples

We first consider a scalar system with parameters [A, C]�
[a, c] = [1.4, 1], Q = R = 1 and P1 = P1|0 = 1.

For this model, in order to guarantee stability, the minimum
recovery rate is qc=1−1/a2=0.489796. Fig. 1 shows a typical
sample path with the parameter q = 0.6 > qc, which ensures
stability of the peak variance process. The horizontal axis in
the figure is the discrete time. Along that sample path, we have
�1 = 3, �1 = 6, �2 = 23, �2 = 25, etc. In Fig. 1-top, the curve
displays the change of the variance along that sample path,
and Fig. 1-bottom, shows the associated channel state jumping
between 0 and 1. A high peak value for the variance is observed
near t = 60, and this is due to the multiple successive packet
losses.

Fig. 2 shows a sample path with q = 0.32 < qc. Since in this
case the recovery rate is low, the variance process has more
chances to reach a high level.
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Fig. 1. The variance Pt and channel state �t , q = 0.6.
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Fig. 2. The variance Pt and channel state �t , q = 0.32.

We continue to examine a vector example. Let the system be
specified by

A =
[

1.3 0.3
0 1.2

]
, C = [1, 1].

The covariance of wt is Q = I ∈ R2×2, and the variance of vt

is R = 1. We have ‖F(P )‖�‖AA′‖ · ‖P ‖. It is easily checked
that the observability index is Io = 2 and we may take

d
(1)
1 = 2.00813, (20)

since AA′ has two eigenvalues �1=1.211879 and �2=2.008121.
By condition (i) in Theorem 6, the recovery rate must satisfy
q > 1 − |�A|−2 = 0.408285. From now on we take q = 0.65.
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Fig. 3. P11(t), P12(t) and channel state �t , q = 0.65 for the vector case.

By numerical calculation, we have
∑∞

j=1 ‖Aj‖2(1 − q)j−1 ≈
6.433363. Then if p < 0.04, condition (ii) holds. Fig. 3 shows
a sample path for this model with parameters p = 0.03 and
q = 0.65; P11(t) and P12(t) are two entries in the 2 × 2
covariance matrix Pt , and the channel state is displayed be-
tween t = 1000 and t = 1200. For the associated channel with
(p, q) = (0.03, 0.65), the stationary distribution of the failure
state is P(�t = 0) = 0.044118. Thus the long term packet loss
rate is about 4.41%.

Unlike the scalar case, we only have a sufficient condition
for stability of the filter, and condition (ii) in Theorem 6 speci-
fying the region for (p, q) may be conservative. However, this
criterion is still of usefulness since it covers some practical
models with packet loss rate as high as several percents.

6. Conclusion and further discussion

In this paper we consider the problem of optimal linear filter-
ing with packet losses modelled by a two-state Markov chain.
The behavior of the error covariance process is examined under
a certain stability notion and a sufficient condition is derived for
ensuring stability. In the scalar case we obtain a sufficient and
necessary condition for stability, and the relationship between
different types of stability notions is also illustrated. For future
work, it is of interest to develop filtering performance analy-
sis by relating the filtering covariance process to the channel
statistics.

Moreover, it is potentially useful to develop LMI analysis
within our framework. For any suboptimal estimator with its
associated covariance sequence {P̃k, k�1}, it is easy to show
the relation P�k

� P̃�k
, for all k�1. This property may provide

an alternative approach for determining the region of (p, q)

for which one may construct a suboptimal estimator such that
the resulting {P̃�k

, k�1} is stable, which in turn implies peak
covariance stability. This will be addressed in depth in future
research.
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Appendix: Proof of Theorem 6

To analyze stability, we calculate the expectation of
‖P�k+1+1‖ conditioned on P�k+1 = P �0. We have the
relation:

E[‖P�k+1+1‖ |P�k+1 = P ]

=
∞∑

j=1

∞∑
i=1

E[‖P�k+1+1‖

× 1{�k+1−�k=i,�k+1−�k+1=j}|P�k+1 = P ]

=
∞∑

j=1

∞∑
i=1

‖F [AjF i−1(P )(A′)j

+ Aj−1Q(A′)j−1 + · · · + AQA′ + Q]‖
× (1 − p)i−1p(1 − q)j−1q

= �(P ). (21)

Since P�k+1 = F(�k) ∈ Sn
0 , we have the estimate:

�(P )�
∞∑

j=1

∞∑
i=1

d
(1)
1 ‖AjF i−1(P )(A′)j + Aj−1Q(A′)j−1

+ · · · + AQA′ + Q‖ × (1 − p)i−1p(1 − q)j−1q + d
(0)
1

�
∞∑

j=1

∞∑
i=1

d
(1)
1 ‖Aj−1Q(A′)j−1 + · · · + AQA′ + Q‖

× (1 − p)i−1p(1 − q)j−1q +
∞∑

j=1

∞∑
i=Io+1

d
(1)
1 ‖AjF i−1(P )(A′)j‖ × (1 − p)i−1p(1 − q)j−1q

+
∞∑

j=1

Io∑
i=1

d
(1)
1 ‖AjF i−1(P )(A′)j‖

× (1 − p)i−1p(1 − q)j−1q

+ d
(0)
1 ��1 + �2 + �3 + d

(0)
1 . (22)

We have

�1 =
∞∑

j=1

d
(1)
1

∥∥∥∥∥∥
j−1∑
k=0

AkQA′k
∥∥∥∥∥∥ (1 − q)j−1q

�
∞∑

j=1

d
(1)
1

j−1∑
k=0

‖Ak‖2 · ‖Q‖(1 − q)j−1q

=
∞∑

k=0

∞∑
j=k+1

d
(1)
1 ‖Ak‖2 · ‖Q‖(1 − q)j−1q

= d
(1)
1 ‖Q‖

∞∑
k=0

‖Ak‖2(1 − q)k < ∞, (23)
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where the series converges since |�A|2(1 − q) < 1, and

�2 �Kd
(1)
1

∞∑
j=1

‖Aj‖2(1 − q)j−1q ×
∞∑

i=Io+1

(1 − p)i−1p

= Kd
(1)
1 q(1 − p)Io

∞∑
j=1

‖Aj‖2(1 − q)j−1 < ∞, (24)

where the constant K is determined in Lemma 5. And finally
we have

�3 �
∞∑

j=1

d
(1)
1 ‖Aj‖2p(1 − q)j−1q

×
[
‖P ‖ +

Io−1∑
i=1

(d
(1)
i ‖P ‖ + d

(0)
i )(1 − p)i

]

=
{[

1 +
Io−1∑
i=1

d
(1)
i (1 − p)i

]
‖P ‖ +

Io−1∑
i=1

d
(0)
i (1 − p)i

}

× pqd
(1)
1

∞∑
j=1

‖Aj‖2(1 − q)j−1. (25)

Combining the estimates in (22)–(25), we have

�(P ) = E[‖P�k+1+1‖ |P�k+1 = P ]�‖P ‖ + C0,

where the constant C0 > 0 is independent of k and

 = pqd
(1)
1

[
1 +

Io−1∑
i=1

d
(1)
i (1 − p)i

] ∞∑
j=1

‖Aj‖2(1 − q)j−1 < 1

and this further implies

�(P�k+1) = E[‖P�k+1+1‖ |P�k+1]�‖P�k+1‖ + C0

which leads to

E‖P�k+1+1‖�E‖P�k+1‖ + C0. (26)

It immediately follows that lim supk E‖P�k+1‖ < ∞.
By a similar technique as in (21), we estimate E‖P�k+1

‖
starting with P�k+1. First, we have

E[‖P�k+1
‖|P�k+1, �k]

=
∞∑

j=1

∞∑
i=1

E[‖P�k+1
‖1(�k+1−�k=i,�k+1−�k+1=j)|P�k+1, �k]

=
∞∑

j=1

∞∑
i=1

‖AjF i−1(P�k+1)(A
′)j + Aj−1Q(A′)j−1

+ · · · + AQA′ + Q‖(1 − p)i−1p(1 − q)j−1q

=
∞∑

j=1

∞∑
i=1

‖AjF i−1(P�k+1)(A
′)j‖

× (1 − p)i−1p(1 − q)j−1q + O(1) (27)

=
∞∑
i=1

‖F i−1(P�k+1)‖(1 − p)i−1p + O(1) (28)

=
Io∑

i=1

‖F i−1(P�k+1)‖(1 − p)i−1p + O(1) (29)

�L1‖P�k+1‖ + L2, (30)

for constant L1, L2 > 0. In the above we obtained (27)–(28)
by condition (i), (29) by Lemma 5 since P�k+1 ∈ Sn

0 , and (30)
by (16). Then it readily follows that supk �1E‖P�k+1

‖ < ∞
and we obtain the stability of the peak covariance process
{P�k

, k�1}. �
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