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Abstract— This paper studies the coordination and consensus
of networked agents in an uncertain environment. We consider a
group of agents on an undirected graph with fixed topology, but
differing from most existing work, each agent has only noisy
measurements of its neighbors’ states. Traditional consensus
algorithms in general cannot deal with such a scenario. For
consensus seeking, we introduce stochastic approximation type
algorithms with a decreasing step size. We present a stochastic
Lyaponuv analysis based upon the total mean potential asso-
ciated with the agents. Subsequently, the so-called direction
of invariance is introduced, which combined with the decay
property of the stochastic Lyapunov function leads to mean
square convergence of the consensus algorithm.

I. I NTRODUCTION

Consensus problems are of importance, and in recent
years have been a heavily researched area in the context
of coordination and control of spatially distributed multi-
agent systems, though they have a much longer history. The
accumulation of the enormous literature on this topic is, toa
large extent, due to its broad connection with a diverse range
of disciplines related to statistical decision, management sci-
ence, medical applications, computer science, biology [25],
[10], [4], [8], [24], distributed computing, ad hoc networks,
and multi-agent control systems [14], [1], [5], [7], [12], [13],
[15], [16], [17], [21]. A comprehensive survey on the recent
research on consensus problems can be found in [20].

For a typical formulation within the context of multi-
agent coordination, one has a group of agents with in-
dividual states, and the associated consensus algorithm is
to form an averaging rule [12], [2], [26], based upon the
local information of each agent, such that the iterates of
all individual states converge to a common value. Various
consensus algorithms have been developed to deal with prac-
tical scenarios such as asynchronous state update, dynamic
topologies or unreliable communication links (see the survey
[20]). In the literature, most existing algorithms assume
exact state exchange between the agents with only very
few exceptions; see, e.g., [19], [27]. A least mean square
optimization method was used in [27] to choose the constant
coefficients in the averaging rule so that the long term
consensus error is minimized. In a continuous time model,
deterministic disturbances were treated in [6] in the dynamics
of the consensus algorithm. Also, in the early work [3], [22],
[23] convergence of consensus problems was studied in a
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stochastic setting, but the exchange of random messages was
assumed to be error-free. In particular, Tsitsiklis, et. al., [23]
obtained consensus results in the context of a group of agents
minimizing their common cost function.

In practical applications, the information exchange be-
tween different agents may involve the usage of sensors,
quantization and wireless fading channels, which makes it
unlikely to have noise free data delivery. In such models with
noisy measurements, the traditional algorithms involvinga
constant (or non-vanishing) step size in general cannot ensure
convergence. Owing to this fact, in the companying paper
[11], a stochastic approximation type algorithm was proposed
and a stochastic double array analysis was developed for
proving convergence. The main assumption there is a certain
symmetry property for the underlying directed graph, which
facilitates matrix product estimates and leads to convergence
both in mean square and along almost all sample paths (i.e.,
with probability one).

In this paper, we consider a general network topology
with noises in inter-agent communication. Specifically, we
consider a group of agents in an undirected graph. We
develop a stochastic Lyapunov analysis, and convergence is
established for connected graphs. Our modelling is different
from [23] since in the asynchronous state updating rule of
the latter, the exogenous term, which may be interpreted as
the local noisy gradient information, is assigned with a small
controlled weight while the weights for the exact massages
received from other agents are separately selected to be above
a fixed level; such a particular structure enables the authors in
[23] to obtain consensus with a sufficiently small constant
step size, or with only an upper bound condition for the
deceasing rate of the step size sequence. In contrast, in our
model the data transmitted from other agents are corrupted
by noises (see Fig. 1), and consequently, in developing
the averaging scheme it is critical to maintain a trade-off
in attenuating the noise and ensuring a suitable stabilizing
capability to drive the individual states toward each other. To
achieve this objective, the step size can be decreased neither
too slowly, nor too quickly.

Compared to [11], this paper develops a different approach
by exploiting the algebraic properties of the graph Laplacian.
The convergence analysis is accomplished by the decay rate
estimate of the stochastic Lyapunov function and by the
construction of the so-called direction of invariance.

II. T HE PROBLEM FORMULATION

We describe the multi-agent system in terms of the stan-
dard graph model in the literature. Consider a set ofn agents



distributed with a spatial structure which is represented by an
undirected graph (to be simply called a graph)G = (N ,E )
consisting of a set of nodesN = {1,2, · · · ,n} and a set of
edgesE ⊂ N ×N . We denote each edge as an unordered
pair (i, j) wherei 6= j, which implies there is no edge between
a node and itself. A path inG consists of a sequence of
nodes i1, i2, · · · , i l , l ≥ 2, such that(ik, ik+1) ∈ E for all
1 ≤ k ≤ l − 1. Two distinct nodesi and j are said to be
connected if there exists a path connecting them. The graph
G is connected if any two distinct nodes inG are connected.
For convenience of exposition, we often refer nodei as agent
Ai . The two names, agent and node, will be used alternatively.
The agentAk (resp., nodek) is a neighbor ofAi (resp., node
i) if (k, i) ∈ E where k 6= i. Denote the neighbors of node
i by Ni ⊂ N . Throughout this paper, the analysis is for
undirected graphs. We make the following assumption:

(A1) The graphG is connected.
In below we follow similar steps as in [11] by introducing

the measurement model, the stochastic algorithm and con-
vergence notions. But we note that the exposition below is
given in the context of undirected graphs.

A. The Measurement Model

For agentAi , we denote its state at timet by xi
t ∈R, where

t ∈ Z
+ = {0,1,2, · · ·}. For eachi ∈ N , agentAi receives

noisy measurements of the states of its neighbors. We denote
the resulting measurement by agentAi of agentAk’s state by

yik
t = xk

t +wik
t , t ∈ Z

+, k∈ Ni , (1)

where wik
t is the additive noise; see Fig. 1 for illustration.

The underlying probability space is denoted by(Ω,F ,P).
We shall callyik

t the observation of the state ofAk obtained
by Ai , and we assume eachAi knows its own statexi

t exactly.
There may be various interpretations for the additive noise; a
natural one is thatxi

t is corrupted by noise during inter-agent
communication [19]. We introduce the assumption:

(A2) The noises{wik
t , t ∈Z

+, i ∈N ,k∈Ni} are indepen-
dent with respect to the indicesi,k, t and also independent
of the initial statesxi

0, i ∈ N , and eachwik
t has zero mean

and varianceQi,k
t ≥ 0. In addition, supi∈N E|xi

0|2 < ∞ and
supt≥0,i∈N supk∈Ni

Qik
t < ∞.

Condition (A2) means that the noises are all independent
random variables with respect to both space (as indexed by
different nodes) and time.

B. The Stochastic Approximation Type Algorithm

The state of each agent is updated by:

xi
t+1 = (1−at)x

i
t +

at

|Ni | ∑
k∈Ni

yik
t , (2)

wherei ∈N , t ∈Z
+ andat ∈ [0,1]. This gives an averaging

rule in that the right hand side is a convex combination of the
agent’s state and its|Ni | observations, where we use|S| to
denote the cardinality of a setS. The objective for the multi-
agent consensus problem is to select the sequence{at , t ≥ 0}
so that the individual states of the agents will converge to a
common limit in a certain sense.
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Fig. 1. Measurement with noisewik
t .

To get some insight into the structure of the algorithm (2),
we rewrite it in the form

xi
t+1 = xi

t +at(m
i
t −xi

t), (3)

where

mi
t =

1
|Ni | ∑

k∈Ni

yik
t . (4)

Note that the structure of (3) is very similar to the recursion
used in classical stochastic approximation algorithms in that
mi

t − xi
t provides a correction term with the step sizeat .

Indeed, after introducing the so-called local potentialPi(t)
in Section III, mi

t − xi
t may be represented as the noisy

measurement of a scaled negative gradient ofPi(t) along
the directionxi

t . Since the additive noise is contained in
{mi

t , t ≥ 0}, each statexi
t will fluctuate randomly. These

fluctuations will not die off if the step sizeat is selected
as a constant, and this situation will be illustrated by the
simulations in Section V.

With the aim of getting a stable behavior for the agents,
a vanishing sequence{at , t ≥ 0} will be used below.

(A3) The sequence{at , t ≥ 0} satisfies i)at ∈ [0,1] and ii)
there existsT0 ≥ 1 such that

α
tγ ≤ at ≤

β
tγ (5)

for all t ≥ T0, whereγ ∈ (0.5,1] and 0< α ≤ β < ∞.
It is worth discussing the role ofT0 in (5). By starting from

a suitableT0 and requiring α
tγ ≤ at only for t ≥ T0, where

at ∈ [0,1], we may allow large values forα. This gives more
flexibility in choosing the step size sequence and otherwise
α greater than one would be excluded. For clarity, we
emphasize that in further analysis, the parametersT0,α,β ,γ
are treated as fixed constants associated with{at , t ≥ 0}.

Note that (A3) implies
∞

∑
t=0

at = ∞,
∞

∑
t=0

a2
t < ∞, (6)

which is a typical property for step size sequences used in
classical stochastic approximation theory. The vanishingrate
of the sequence is important for convergence analysis. We
can see that whenat → 0 in (2), the signalxk

t (contained in
yik

t ), as the state ofAk, is attenuated together with the noise.
Hence,at cannot decrease too fast since otherwise, the agents
may prematurely converge to different individual limits.



C. Consensus Notion in Stochastic Models

In a stochastic setting, the conventional definition of
consensus is no longer adequate. We introduce the following
definitions on the asymptotic behavior of the agents’ states.

Definition 1: (weak consensus) The agents are said to
reach weak consensus ifE|xi

t |2 < ∞, t ≥ 0, i ∈ N , and
limt→∞ E|xi

t −x j
t |2 = 0 for all distinct i, j ∈ N .

Definition 2: (mean square consensus) The agents are
said to reach mean square consensus ifE|xi

t |2 < ∞, t ≥ 0,
i ∈ N , and there exists a random variablex∗ such that
limt→∞ E|xi

t −x∗|2 = 0 for all i ∈ N .
Definition 3: (strong consensus) The agents are said to

reach strong consensus if there exists a random variablex∗

such that with probability one (w.p.1) limt→∞ xi
t = x∗ for all

i ∈ N .
It is obvious that mean square consensus implies weak

consensus. Note that in the above definitions for mean square
and strong consensus, the statesxi

t , i ∈N , must converge to
a common value. The limitx∗, as a random variable, may
depend on the initial states, noise terms and the consensus
algorithm itself. Strong consensus has been treated in [11].

D. The Generalization to Vector States

We give some discussions for the vector case where each
individual statexk

t ∈ R
d with dimensiond > 1. It is easy to

extend (1)-(2) to the vector case by taking a vector noise
term. For the vector version of these equations, we see
that each of thed components inxk

t is decoupled from the
otherd−1 components during the iteration. Hence we may
decompose the vector equation tod scalar equations. After
adapting assumption (A2) to the vector case, the consensus
result in the paper is easily generalized to the case of vector
individual states.

III. STOCHASTIC LYAPUNOV FUNCTIONS

In this section, we develop the stochastic Lyapunov anal-
ysis. For agentAi , we define its local potential as

Pi(t) =
1
2 ∑

j∈Ni

|xi
t −x j

t |2, t ≥ 0.

Accordingly, the total potential and total mean potential are
given by

PN (t) = ∑
i∈N

Pi(t), V(t) = E ∑
i∈N

Pi(t), t ≥ 0.

It is easy to show that the termmi
t − xi

t in (3) may be
decomposed into the form

mi
t −xi

t = − 1
|Ni |

∂Pi(t)

∂xi
t

+
1

|Ni | ∑
j∈Ni

wi j
t . (7)

This indicates the state of each agent is updated along
the descending direction of the local potential subject to
an additive noise, and justifies a stochastic approximation
interpretation of the algorithm (2).

Under assumption (A1), it is easy to show thatPN (t) = 0
if and only if x1

t = · · ·= xn
t . For convergence analysis, we will

usePN (t) as a stochastic Lyapunov function. We introduce
the graph Laplacian forG as a matrixL = (ai j )1≤i, j≤n, where

ai j =







di if j = i,
−1 if j ∈ Ni ,
0 otherwise,

(8)

for which di = |Ni | is the degree (i.e., the number of
neighbors) of nodei. Recall that for a matrixM ∈ R

n×n,
its null space is the solution space of the linear equation
Mx = 0 for x∈ R

n. We denote 1n = [1,1, · · · ,1]T ∈ R
n. The

rank of L is n−1 for the connected graphG and the null
space ofL is {c1n,c∈ R} [9], [18].

A. Recursion of Stochastic Lyapunov Functions

Denote byxt the state vector for then agents, i.e.,xt =
[x1

t , · · · ,xn
t ]

T . We have the relation [9]:

PN (t) =
1
2 ∑

i∈N

∑
j∈Ni

|xi
t −x j

t |2 = xT
t Lxt , t ≥ 0.

By (2), we have the state updating rule:

xi
t+1 = (1−at)x

i
t +(at/|Ni |) ∑

j∈Ni

x j
t +(at/|Ni |) ∑

j∈Ni

wi j
t .

(9)

Denote

w̃i
t = (1/|Ni |) ∑

j∈Ni

wi j
t , w̃t = [w̃1

t , · · · , w̃n
t ]

T . (10)

We further introduce the matrix̂L = (âi j )1≤i, j≤n where

âi j =







1 if j = i,
−d−1

i if j ∈ Ni ,
0 otherwise,

(11)

with di = |Ni |, and we define the diagonal matrixDN =
Diag(d−1

1 , · · · ,d−1
n ). It is easy to verify that

L̂ = DN L.

Lemma 4:For t ≥ 0, we have

PN (t +1) = PN (t)−2atx
T
t LDN Lxt +a2

t xT
t LDN LDN Lxt

+2atx
T
t Lw̃t −2a2

t xT
t LDN Lw̃t +a2

t w̃T
t Lw̃t , (12)

where the sequence{xt , t ≥ 0} is generated by (1) and (2).
Proof: By (9), we get the vector equation

xt+1 = xt −at L̂xt +atw̃t , t ≥ 0. (13)

Equation (13) leads to the recursion of the total potential:

PN (t +1) = xT
t+1Lxt+1

= [xt −atDN Lxt +atw̃t ]
TL[xt −atDN Lxt +atw̃t ]

= xT
t Lxt −2atx

T
t LDN Lxt +a2

t xT
t LDN LDN Lxt

+2atx
T
t Lw̃t −2a2

t xT
t LDN Lw̃t +a2

t w̃T
t Lw̃t ,

and the lemma follows.
We denote the null spaces of the nonnegative definite

matrices L, LDL, and LDN LDN L by N1, N2 and N3,
respectively.

Theorem 5:Under (A1), we have the assertions:



(i) The null spaces ofL, LDN L andLDN LDN L are given
by the same one dimensional space, i.e.,Ni = span{1n},
where i = 1,2,3,.

(ii) There exists positive constantsc1 > 0 andc2 > 0 such
that LDN L ≥ c1L andLDN LDN L ≤ c2L.

(iii) In addition, we assume (A2)-(A3) and letTc be such
that 1−2atc1 + a2

t c2 ≥ 0 for all t ≥ Tc. For the total mean
potential, we have

V(t +1) ≤ (1−2atc1 +a2
t c2)V(t)+O(a2

t )

wheret ≥Tc, and the algorithm (2) achieves weak consensus.
Proof: See Appendix.

IV. T HE DIRECTION OF INVARIANCE

Theorem 5 shows the difference between the states of
any two agents converges to zero in mean square, ast →
∞. However, this alone, does not guarantee that they will
converge to a common limit. The asymptotic vanishing of
the stochastic Lyapunov function only indicates that the state
vector xt will approach the subspace span{1n}. To obtain
consensus results, we need some additional estimation. The
strategy is to show that the oscillation of the sequence
{xt , t ≥ 0} along the direction 1n will gradually die off. This
is achieved by proving the existence of a vectorη which is
not orthogonal to 1n and such that the linear combination
ηTxt of the components inxt converges. For convenience,
η will be chosen to satisfy the additional requirement that
ηTxt+1 depends not on the whole ofxt but only onηTxt ; this
meansηTxt is a one-dimensional auto-regressive process,
and its study is easier than that of the original processxt .

Definition 6: Let xt = [x1
t , · · · ,xn

t ]
T be generated by the

algorithm (2). Ifη = (η1, · · · ,ηn)
T is a real-valued vector of

unit length, i.e.,|η |2 = ∑n
i=1 η2

i = 1 and satisfies

ηTxt+1 = ηTxt +atηTw̃t , t ≥ 0, (14)

for any initial conditionxi
0, i ∈N and any step size sequence

at ∈ [0,1], where w̃t is given in (10), thenη is called a
direction of invariance associated with (2).

The directions of invariance associated with the consensus
algorithm (2) are easily characterized in terms of the degrees
of the nodes of the underlying graph.

Theorem 7:We have the assertions:
(i) There exists a real-valued vectorη = (η1, · · · ,ηn)

T of
unit length satisfyingηT L̂ = 0 whereL̂ is defined by (11).

(ii) If η is a unit length vector, thenη is a direction of
invariance associated with (2) if and only ifηT L̂ = 0.

(iii) Under (A1), the direction of invariance has the rep-
resentationη = c[d1, · · · ,dn]

T wherec = ±(∑n
i=1d2

i )1/2 and
the integerdi = |Ni | is the degree of nodei ∈ N .

Proof: It is easy to prove (i) sincêL does not have full
rank, andη is in fact the left eigenvector of̂L associated
with the eigenvalue 0.

We now show (ii). The conditionηT L̂ = 0 combined with
(13) implies

ηTxt+1 = ηTxt −atηT L̂xt +atηTw̃t

= ηTxt +atηTw̃t .

The sufficiency part of (ii) follows easily. Conversely, if the
unit length vectorη satisfies (14) for all initial statesxi

0
and the step sizeat as specified in Definition 6, then we
necessarily haveηT L̂ = 0. So the necessity part of (ii) holds.

We continue to prove (iii) under (A1). By (ii) and the
definition of L̂, η with |η |= 1 is a direction of invariance if
and only if ηTDN L = 0, which in turn, is equivalent to

LDN η = 0.

By (A1) and Theorem 5, we haveDN η = c1n wherec 6= 0
is a constant to be determined. This gives the row vector

η = c[d1, · · · ,dn]
T , c 6= 0, (15)

wherec is determined by the unit length condition ofη . The
direction of invariance is unique up to sign.

If η is a direction of invariance, then Theorem 7 shows
under (A1) that all elements ofη have the same sign.
Therefore,η is not orthogonal to 1n, and the requirement
stated at the beginning of this section is met. Geometrically,
the notion of the direction of invariance means under (2)
and zero noise conditions, the projection (i.e.,(ηTxt)η) of
xt ∈R

n along the directionη would remain a constant vector
regardless of the value ofat ∈ [0,1] used in the iterates.

A. Mean Square Consensus

Now we are in a position to establish mean square
consensus. We state the following lemma.

Lemma 8:Assume (A1)-(A3) hold, and {xt , t ≥ 0} is
given by (13). Letη0 = [d1, · · · ,dn]

T wheredi = |Ni |. Then
there exists a random variabley∗ such that limt→∞ E|η0xt −
y∗|2 = 0.

Proof: By Theorem 7,η0/|η0| is a direction of invari-
ance. Hence, we have

ηT
0 xt+1 = ηT

0 x0 +a0ηT
0 w̃0 + · · ·+atηT

0 w̃t . (16)

By (A2) and (A3), it follows that ηT
0 xt converges in mean

square, and the lemma follows.
The weak consensus result and the convergence ofηT

0 xt ,
combined together, ensures thatxt itself converges.

Theorem 9:Assume (A1)-(A3) hold. The algorithm (2)
achieves mean square consensus.

Proof: By Theorem 5, we have weak consensus, i.e.,

lim
t→∞

E|xi
t −xk

t |2 = 0, ∀i,k∈ N . (17)

On the other hand, by Lemma 8, ast → ∞,

ηT
0 xt = [d1, · · · ,dn]

Txt (18)

= ηT
0 [x1

t −x1
t , · · · ,xn

t −x1
t ]

T +ηT
0 [x1

t , · · · ,x1
t ]

T

converges in mean square, which further combined with (17)
implies x1

t converges in mean square. By (17) again, we see
that the mean square consensus result follows.
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Fig. 2. The undirected graph with 4 nodes.

B. A Three Node Example

For illustration, we give a three node model withN =
{1,2,3}, whereN1 = {2}, N2 = {1,3} andN3 = {2}. For
this model, we have

P1(t) =
1
2
|x1

t −x2
t |2, P2(t) =

1
2
(|x2

t −x1
t |2 + |x2

t −x3
t |2),

P3(t) =
1
2
|x3

t −x2
t |2.

For illustrating the direction of invariance, we takeζt =
(1/

√
6)(x1

t +2x2
t +x3

t ) for t ≥ 0, and we can verify that

ζt+1 = ζt +atηT
0 w̃t

where w̃t is a sequence of independent vector noises and
η0 = (1/

√
6)[1,2,1]T is a direction of invariance. We see that

η0 is consistent with the expression (15) since the degrees
for the three nodes are, respectively, 1, 2 and 1.

V. NUMERICAL SIMULATIONS

In the numerical studies, we consider an undirected
graph with 4 nodesN = {1,2,3,4} and edgesE =
{(1,2),(2,3),(2,4)}; see Fig. 2. The initial condition for
the state vectorxt = [x1

t , · · · ,x4
t ]

T at t = 0 is [5,1,3,2]T , and
the variance of the i.i.d. Gaussian measurement noises is
σ2 = 0.01. The simulation of the standard averaging rule
with equal weights to an agent’s neighbors and itself is
given in Fig. 3; hence we havex1

t+1 = (x1
t + y12

t )/2 and
x2

t+1 = (x2
t + y21

t + y23
t + y24

t )/4, etc., wheret ≥ 0. It is seen
that the 4 state trajectories in Fig. 3 move toward each other
rather quickly at the beginning, but they maintain long term
fluctuations as the state iteration continues. The stochastic
algorithm (2) is used in Fig. 4 with the step size sequence
{at = (t +5)−0.85, t ≥ 0}. Fig. 4 shows the 4 trajectories all
merge into a constant level, and this is consistent with the
mean square consensus result obtained in this paper.

VI. CONCLUSIONS

We have developed a stochastic Lyapunov analysis for
consensus problems with noisy measurements. The conver-
gence result is obtained by use of the decay property of the
stochastic Lyapunov function and the direction of invariance.
For future work, it is of interest to consider stochastic algo-
rithms with network conditions such as dynamic topologies
and asynchronous state updates.
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Fig. 3. The 4 node example using the fixed step size.
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Fig. 4. The 4 node example using the decreasing step size.

APPENDIX: PROOF OFTHEOREM 5

Proof: (i) In the following we useA⇒ B as the abbre-
viation for “A implies B”, and A ⇔ B for “A is equivalent
to B”. First, it is a well known fact [9], [18] that when the
graph is connected,N1 = span{1n}.

SinceL is nonnegative definite, there exists a nonnegative
definite matrix, denoted asL1/2 such thatL = (L1/2)2. We
also writeD1/2

N
= Diag(d−1/2

1 , · · · ,d−1/2
n ) which givesDN =

(D1/2
N

)2. For x ∈ R
n, we haveLx = 0 ⇒ LDN Lx = 0 ⇒

LDN LDN Lx = 0. On the other hand, we have

LDN LDN Lx = 0⇒ xTLDN LDN Lx = 0

⇔ |L1/2DN Lx|2 = 0⇔ L1/2DN Lx = 0

⇒ LDN Lx = 0⇒ xTLDN Lx = 0

⇔ D1/2
N

Lx = 0⇔ Lx = 0.

Hence, it immediately follows that

Lx = 0⇔ LDN Lx = 0⇔ LDN LDN Lx = 0,

and assertion (i) follows. It is evident that the rank for each
of the matricesL, LDN L andLDN LDN L is equal ton−1.

(ii) We begin by proving the first part. Let

0 = λ1, 0 < λ2 ≤ λ3 ≤ ·· · ≤ λn, (19)

and

0 = λ̂1, 0 < λ̂2 ≤ λ̂3 ≤ ·· · ≤ λ̂n,



respectively, denote the eigenvalues ofL and LDN L. Let
Φ = (α1, · · · ,αn) and Φ̂ = (α̂1, · · · , α̂n) be two orthogonal
matrices (i.e.,ΦTΦ = I , andΦ̂TΦ̂ = I) such that

LΦ = ΦDiag(λ1, · · · ,λn), LDN LΦ̂ = Φ̂Diag(λ̂1, · · · , λ̂n).

In view of λ1 = λ̂1 = 0, we getLα1 = LDN Lα̂1 = 0. By (i),
we necessarily have eitherα1 = α̂1 or α1 =−α̂1. In fact, we
may takeα1 = α̂1 = ±(1/

√
n) ·1n. Consequently, it is easy

to show that span{α2, · · · ,αn} = span{α̂2, · · · , α̂n}, which is
the orthogonal complement of span{1n} in R

n.
Take anyx ∈ R

n. We may writex = ∑n
i=1yiαi and x =

∑n
i=1 ŷiα̂i , where y = (y1, · · · ,yn) and ŷ = (ŷ1, · · · , ŷn) are

uniquely determined and satisfy∑n
i=1y2

i = ∑n
i=1 ŷ2

i = ‖x‖2.
Recalling that we have takenα1 = α̂1 6= 0, it necessar-
ily follows that y1 = ŷ1 since otherwise,(y1 − ŷ1)α1 ∈
span{α2, · · · ,αn} with y1 − ŷ1 6= 0, which is impossible.
Hence we get

n

∑
i=2

y2
i =

n

∑
i=2

ŷ2
i . (20)

For x∈ R
n, sinceλ1 = λ̂1 = 0, we have the estimate

xTLDN Lx = ŷTΦ̂TLDN LΦ̂ŷ =
n

∑
i=2

λ̂i ŷ
2
i ≥ λ̂2

n

∑
i=2

ŷ2
i .

On the other hand, we have

xTLx≤ λn

n

∑
i=2

y2
i = λn

n

∑
i=2

ŷ2
i ,

where the equality follows from (20). Hence

xTLDN Lx≥ λ̂2λ−1
n xTLx,

and the first part of (ii) is proved by takingc1 = λ̂2λ−1
n > 0.

We denote the eigenvalues ofLDN LDN L by

0 = λ̃1, 0 < λ̃2 ≤ λ̃3 ≤ ·· · ≤ λ̃n.

By a similar argument, we can show that for anyx∈ R
n,

xTLDN LDN Lx≤ λ̃nλ−1
2 xTLx

which implies the second part withc2 = λ̃nλ−1
2 > 0.

(iii) The inequality follows by taking expectation on both
sides of (12) and using (ii). Consequently, we selectT̂c ≥ Tc

to ensure 1−2c1at +c2a2
t ≤ 1−c1at for all t ≥ T̂c, and find

a fixed constantC > 0 such that

V(t +1) ≤ (1−c1at)V(t)+Ca2
t , (21)

for all t ≥ T̂c. By lengthy but elementary product estimates
under (A3), we get limt→∞V(t) = 0. Then it follows that

lim
t→∞

E|xi
t −xk

t |2 = 0, i ∈ N , k∈ Ni . (22)

By connectivity of the graph, for any pair of nodesi andk,
we can find a path fromi to k. Then by repeatedly applying
(22) to all pairs of neighboring nodes along that path, we
can show that

lim
t→∞

E|xi
t −xk

t |2 = 0, ∀i,k∈ N , (23)

which implies weak consensus.
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