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Abstract— This paper studies the coordination and consensus stochastic setting, but the exchange of random messages was
of networked agents in an uncertain environment. We consider a assumed to be error-free. In particular, Tsitsiklis, et.[28]
group of agents on an undirected graph with fixed topology, but - 4pained consensus results in the context of a group of agent
differing from most existing work, each agent has only noisy L . .
measurements of its neighbors’ states. Traditional consensus m|n|m|2|ng_ their comm_on cost functlon. .
algorithms in general cannot deal with such a scenario. For In practical applications, the information exchange be-
consensus seeking, we introduce stochastic approximation type tween different agents may involve the usage of sensors,
algorithms with a decreasing step size. We present a stochastic quantization and wireless fading channels, which makes it
Lyaponuv analysis based upon the total mean potential asso- yjikely to have noise free data delivery. In such model$wit
C|at_ed Wlth th_e agents. Subsequently, the so-qalled direction . ts. the traditi | algorith . Vi
of invariance is introduced, which combined with the decay noisy measurements, the tradiional algorithms nvoiveng
property of the stochastic Lyapunov function leads to mean Cconstant (or non-vanishing) step size in general cannafrens
square convergence of the consensus algorithm. convergence. Owing to this fact, in the companying paper
[11], a stochastic approximation type algorithm was pregos
. ] and a stochastic double array analysis was developed for
Consensus problems are of importance, and in recepfoying convergence. The main assumption there is a certain
years have been a heavily researched area in the cont&¥mmetry property for the underlying directed graph, which
of coordination and control of spatially distributeq multi t5cilitates matrix product estimates and leads to converge
agent systems, though they have a much longer history. Thgih in mean square and along almost all sample paths (i.e.,
accumulation of the enormous literature on this topic isa to \yitp probability one).
large extent, due to its broad connection with a diverseeang | this paper, we consider a general network topology
of disciplines related to statistical decision, managersel \yith noises in inter-agent communication. Specifically, we
ence, medical appli_cat_ions, compute_r science, biology, [25:0nsider a group of agents in an undirected graph. We
[10], [4], [8], [24], distributed computing, ad hoc netwstk geyelop a stochastic Lyapunov analysis, and convergence is
and multi-agent control systems [14], [1], [3], [7], [1233],  established for connected graphs. Our modelling is differe
[15], [16], [17], [21]. A comprehensive survey on the recentrom 23] since in the asynchronous state updating rule of
research on consensus problems can be found in [20].  he |atter, the exogenous term, which may be interpreted as
For a typical formulation within the context of multi- \q |5cal noisy gradient information, is assigned with alsma
agent coordination, one has a group of agents with insonirolled weight while the weights for the exact massages
dividual states, and the associated consensus algorithmigeiyed from other agents are separately selected to lve abo
to form an averaging rule [12], [2], [26], based upon the, fixed level; such a particular structure enables the asiinor

local information of each agent, such that the iterates b3 1o obtain consensus with a sufficiently small constant
all individual states converge to a common value. Varlou§tep size, or with only an upper bound condition for the

consensus algorithms have been developed to deal with pragsceasing rate of the step size sequence. In contrast, in our
tical scenarios such as asynchronous state update, dynagiqel the data transmitted from other agents are corrupted
topologies or u_nrellable communication links _(see the eyirv by noises (see Fig. 1), and consequently, in developing
[20]). In the literature, most existing algorithms assuMene averaging scheme it is critical to maintain a trade-off
exact state ex?hange between the agents with only Vepy aitenuating the noise and ensuring a suitable stahglizin
few exceptions; see, e.g., [19], [27]. A least mean squapapility to drive the individual states toward each atfier
optimization method was used in [27] to choose the constagtpeve this objective, the step size can be decreasedneith
coefficients in the averaging rule so that the long terrg,, slowly, nor too quickly.

consensus error is minimized. In a cor?tmuo.us tlme.model, Compared to [11], this paper develops a different approach
deterministic d|sturban9es were trgated in [6] in the dyieam by exploiting the algebraic properties of the graph Laglaci

of the consensus algorithm. Also, in the early work [3], [22] The convergence analysis is accomplished by the decay rate
[23] convergence of consensus problems was studied iNg@timate of the stochastic Lyapunov function and by the
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distributed with a spatial structure which is representgdrb ﬂfff wik
undirected graph (to be simply called a gra@y- (.4, &) @ t
consisting of a set of nodeg” = {1,2,--- ,n} and a set of \®
edgesé C 4 x 4. We denote each edge as an unordered
pair (i, j) wherei # j, which implies there is no edge between T R \ yzk
a node and itself. A path i consists of a sequence of
nodesis,ip,---,ij, | > 2, such that(iy,ix1) € & for all s
1< k<I-1. Two distinct noded and j are said to be @
connected if there exists a path connecting them. The graph i
G is connected if any two distinct nodes @are connected.
For convenience of exposition, we often refer nods agent
A;. The two names, agent and node, will be used alternatively.
The agent’ (resp., node) is a neighbor oy (resp., node
i) i (k,i) € & wherek #i. Denote the neighbors of node 1o get some insight into the structure of the algorithm (2),
i by A C 4. Throughout this paper, the analysis is forye rewrite it in the form
undirected graphs. We make the following assumption: i i O

(A1) The graphG is connected. O X1 =X +a(m—x), 3)

In below we follow similar steps as in [11] by introducing where
the measurement model, the stochastic algorithm and con-

. 1 i
vergence notions. But we note that the exposition below is m = A kz % (4)

given in the context of undirected graphs. M
Note that the structure of (3) is very similar to the recunsio

A. The Measurement Model used in classical stochastic approximation algorithmdat t
For agent;, we denote its state at timeby X, € R, where m —x provides a correction term with the step siae
teZt ={0,1,2,---}. For eachi € .4/, agentA; receives Indeed, after introducing the so-called local potenBgt)
noisy measurements of the states of its neighbors. We dendate Section 1ll, m —x may be represented as the noisy
the resulting measurement by agénof agentA,’s state by measurement of a scaled negative gradienB¢f) along
- - the directionx. Since the additive noise is contained in
V=X, teZ ke, @ it >0 eX;ch state will fluctuate randomly. These
wherewk is the additive noise; see Fig. 1 for illustration.fluctuations will not die off if the step size; is selected
The underlying probability space is denoted (y,.#,P). as a constant, and this situation will be illustrated by the
We shall cally the observation of the state 8§ obtained Simulations in Section V. .
by Aj, and we assume eaéh knows its own state] exactly. With the aim of getting a stable behavior for the agents,
There may be various interpretations for the additive naise & vanishing sequencga;,t > 0} will be used below.
natural one is that} is corrupted by noise during inter-agent (A3) The sequencga,t > O} satisfies ia; < [0,1] and ii)
communication [19]. We introduce the assumption: there existslo > 1 such that
(A2) The noisegw,t € Z*,i € .4 k€ 4} are indepen- B 5
dent with respect to the indicask,t and also independent ty ®)
of the initial statesq, i € .4, and eachw{ has zero mean for all t > To, wherey € (0.5,1] and 0< a < 8 < w. O
and varianceQ* > 0. In addition, sup , E[x)|? <  and It is worth discussing the role d in (5). By starting from
SUR>0,c. s sup(e,%Q{k < 00, O a suitableTy and requiring% < @& only for t > Ty, where
Condition (A2) means that the noises are all independery; € [0,1], we may allow large values far. This gives more
random variables with respect to both space (as indexed Hgxibility in choosing the step size sequence and otherwise
different nodes) and time. a greater than one would be excluded. For clarity, we
emphasize that in further analysis, the parametgra, 3,y
are treated as fixed constants associated {aflt > 0}.

Ly

Fig. 1. Measurement with noisgX.
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B. The Stochastic Approximation Type Algorithm

The state of each agent is updated by: Note that A3) implies
. . at ik [ e
I =(1- o I + yI ’ (2) — 2
X1 = ( )% A keZ//i i t;)at =, t;‘)at < oo, (6)

wherei € .4, t € Z" anda; € [0,1]. This gives an averaging which is a typical property for step size sequences used in
rule in that the right hand side is a convex combination of thelassical stochastic approximation theory. The vanishatg
agent’s state and its#{| observations, where we u$g to of the sequence is important for convergence analysis. We
denote the cardinality of a s&t The objective for the multi- can see that whea — 0 in (2), the signak‘ (contained in
agent consensus problem is to select the sequgmge> 0} y{"), as the state ofy, is attenuated together with the noise.
so that the individual states of the agents will converge to ldence,a; cannot decrease too fast since otherwise, the agents
common limit in a certain sense. may prematurely converge to different individual limits.



C. Consensus Notion in Stochastic Models useP , (t) as a stochastic Lyapunov function. We introduce
In a stochastic setting, the conventional definition off® graph Laplacian foB as a matrix = (&j)1<i j<n, Where

consensus is no longer adequate. We introduce the following d i j=i,
definitions on the asymptotic behavior of the agents’ states aj=4 -1 ifje, (8)
Definition 1: (weak consensus The agents are said to 0 otherwise

reach weak consensus Ex[> < », t >0, i € .4, and
lim¢_.. E[X —x|? = 0 for all distincti, j € ..
Definition 2: (mean square consensysThe agents are
said to reach mean square consensui|¥|? < o, t >0,
i € 4, and there exists a random variabté such that .
I|r$1t ElX —x"2=0 for alli € 4. rank of L is n—1 for the connected grap& and the null
Definition 3: (strong consensus The agents are said to space ofL is {cln,c € R} [9], [18].
reach strong consensus if there exists a random varidble A. Recursion of Stochastic Lyapunov Functions
such that with probability one (w.p.1) lim.x = x* for aII
ieN.

for which di = |.4{| is the degree (i.e., the number of
neighbors) of node. Recall that for a matrixM € R™",

its null space is the solution space of the linear equation
Mx =0 for xc R". We denote 4=[1,1,---,1]T € R". The

Denote byxt the state vector for the agents, i.e.x =

‘L’;‘z . We have the relation [9]:

It is obvious that mean square consensus |mpl|es we

consensus. Note that in the above definitions for mean square p () = 1 Z z X — xtJ 2 =x Lx, t>0.
and strong consensus, the states € .4, must converge to 2i& i&x

a common value. The limix*, as a random variable, may

depend on the initial states, noise terms and the consensus )

algorithm itself. Strong consensus has been treated in [11] X4 = (1—a)x + (a/|-#]) Z xt + (a/|M]) z '.
jeMm jeMm

D. The Generalization to Vector States 9)

By (2), we have the state updating rule:

We give somek disc(gjssions for the vector case where ea[jenote
individual statex{ € R® with dimensiond > 1. It is easy to . . .
extend (1)-(2) t(t) the vector case by taking a vector noise = (1/1A41) z "‘4 o W= [thv"' 7""?]T' (10)
term. For the vector version of these equations, we see JeM
that each of thel components irx{ is decoupled from the ~ We further introduce the matrik = (&j)1<i j<n Where
otherd — 1 components during the iteration. Hence we may v

; . 1 if j=i,
decompose the vector equationdcscalar equations. After A 1
adapting assumptiorA@) to the vector case, the consensus d =9 ¢ if j€ ‘/_’{’ (11)
result in the paper is easily generalized to the case of vecto 0 otherwise,

individual states. with d; = |.4{|, and we define the diagonal matrix , =
Diag(d; %,---,dy%). It is easy to verify that
I1l. STOCHASTICLYAPUNOV FUNCTIONS .
In this section, we develop the stochastic Lyapunov anal- L=DyL.
ysis. For agenty, we define its local potential as Lemma 4:Fort > 0, we have
R(t) :% S XX  t>o. Pyt+1)=Py(t)— ZatXtTLD/VLXtJFatZXtTLDA/LD/VLXt
jen 4—2at><t L — 2a,[xt LD_y LW +q Lwt, (12)
Accordingly, the total potential and total mean potenti@ a \where the sequence,t > 0} is generated by (1) and (2).
given by Proof: By (9), we get the vector equation
Py()= > R(t), V()=E 3 R({), t=0. i1 =X —alx+aw, t>0. (13)

eV eV
_ . Equation (13) leads to the recursion of the total potential:
It is easy to show that the ternmi — X in (3) may be

decomposed into the form Py(t+1) =x 1lx 1
1 ORM) , 1 ¢ i @) = [% — aD_yLx +ait] "L[x —aD_yLx + 2]
M ox A jg/i ‘e =X Lx — 2a LDy Lx + a2 LD LD s Lx

T \F 2T ~ 2T &

This indicates the state of each agent is updated along 280 LW — 28 LDy LW + 3w L,

the descending direction of the local potential subject tand the lemma follows. O

an additive noise, and justifies a stochastic approximation We denote the null spaces of the nonnegative definite

interpretation of the algorithm (2). matrices L, LDL, and LD LD 4L by N;, N2 and Ns,
Under assumptionAl), it is easy to show tha® 4 (t) =0 respectively.

if and only if X' = - -- = . For convergence analysis, we will Theorem 5:Under @1), we have the assertions:

- =



(1) The null spaces of, LD _yL andLD_,LD L are given The sufficiency part of (ii) follows easily. Conversely, et
by the same one dimensional space, iM.= spa{1l,}, unit length vectorn satisfies (14) for all initial states;

wherei =1,2,3.. and the step sizey as specified in Definition 6, then we
(i) There exists positive constants > 0 andc, >0 such necessarily havg "L = 0. So the necessity part of (i) holds.
thatLD 4L > c;L andLD_4LD 4L < coL. We continue to prove (iii) underAQl). By (ii) and the

(iii) In addition, we assumeA?2)-(A3) and letT. be such definition of [, n with |n| =1 is a direction of invariance if
that 1— 2a.c; +afc; > 0 for all t > Te. For the total mean and only ifnTD L = 0, which in turn, is equivalent to
potential, we have

V(t+1) < (1-2ac; +a2c)V(t) +0(ad)

wheret > T, and the algorithm (2) achieves weak consensu8Y (Al) and Theorem 5, we hav@ ) = cl, wherec # 0
Proof: See Appendix. o Is a constant to be determined. This gives the row vector

LD 41 = 0.

IV. THE DIRECTION OFINVARIANCE n=cldg,--,dn]" c#0, (15)

Theorem 5 shows the difference between the states of
any two agents converges to zero in mean squaré¢,-as Wherec is determined by the unit length condition pf The
. However, this alone, does not guarantee that they witlirection of invariance is unique up to sign. O
converge to a common limit. The asymptotic vanishing of If n is a direction of invariance, then Theorem 7 shows
the stochastic Lyapunov function only indicates that tlaest under A1) that all elements ofn have the same sign.
vector % will approach the subspace sgdn}. To obtain Therefore,n is not orthogonal to 4, and the requirement
consensus results, we need some additional estimation. Tétated at the beginning of this section is met. Geometyicall
strategy is to show that the oscillation of the sequencéie notion of the direction of invariance means under (2)
{x,t > 0} along the direction dwill gradually die off. This and zero noise conditions, the projection (i@, x)n) of
is achieved by proving the existence of a veajowhich is X € R" along the directiom would remain a constant vector
not orthogonal to 1 and such that the linear combinationregardless of the value @ € [0,1] used in the iterates.
nTx of the components i, converges. For convenience,
n_will be chosen to satisfy the additional requirement thah  Mean Square Consensus
nTx.1 depends not on the whole &f but only onnTx; this
meansnTx is a one-dimensional auto-regressive process, NOW we are in a position to establish mean square
and its study is easier than that of the original procgss ~ consensus. We state the following lemma.

Definition 6: Let x = [x!,---,x"|T be generated by the Lemma 8:Assume QA1)-(A3) hold, and {x,t > 0} is
algorithm (2). Ifn = (171, --- ,nn)7 is a real-valued vector of given by (13). Letno = [dy,---,dn]" whered =|.4. Then

unit length, i.e.|n|?> =", n? =1 and satisfies thezre exists a random variabjé such that limp_.. E|nox —
y'[*=0.
T T T
M X1 =N X+an W, t=0, (14) Proof: By Theorem 7,n0/|no| is a direction of invari-

for any initial conditionx,, i € .4 and any step size sequenceance. Hence, we have

a € [0,1], wherew; is given in (10), thenn is called a T T - T

direction of invariance associated with (2). O Mo X+1 = Mo Xo+@oMo Wo + - - +&I]g Wk- (16)
The directions of invariance associated with the consensus ) )

algorithm (2) are easily characterized in terms of the degre BY (A2) and A3), it follows that Mg % Converges in mean

of the nodes of the underlying graph. square, and the lemma follows. o
Theorem 7:We have the assertions: The weak consensus result and the convergenag! &f,

(i) There exists a real-valued vectgr= (ny,---,n,)T of ~combined together, ensures thaiitself converges.
unit length satisfying) "L = 0 whereL is defined by (11). ~ Theorem 9:Assume A1)-(A3) hold. The algorithm (2)
(i) If n is a unit length vector, then is a direction of achieves mean square consensus.

invariance associated with (2) if and onlynf L = 0. Proof. By Theorem 5, we have weak consensus, i.e.,
(iii) Under (Al), the direction of invariance has the rep- A

resentation = c[dy,--- ,dn]T wherec=+(3",d?)¥? and fim Ex — X[>=0,  Vike.s. 17

the integerd; = |.4{] is the degree of nodec ./".

Proof: It is easy to prove (i) sincé does not have full On the other hand, by Lemma 8, fas> oo,

rank, andn is in fact the left eigenvector of associated

with the eigenvalue 0. No % = [d,-+,dn] X (18)
Wg now show (ii). The conditiom T = 0 combined with - "Ig [th _ X{17 X — th}T + "Ig [X11» .. ,th]T

(13) implies

converges in mean square, which further combined with (17)
- T~ implies Xt converges in mean square. By (17) again, we see
=N"X+an W. that the mean square consensus result follows. O

N1 =n"x—an" Lx+an" W
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Fig. 2. The undirected graph with 4 nodes. LT 1
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B. A Three Node Example
) ) . ) Fig. 3. The 4 node example using the fixed step size.
For illustration, we give a three node model with" =

{1,2,3}, where.#1 = {2}, 45 ={1,3} and .43 = {2}. For

this model, we have . |

Pt) = 50 X2 Polt) = 5% R+ R P N ]

(1) = 56— %P < |

For illustrating the direction of invariance, we take—= Zj\ — **:

(1/v/6) ()¢ +2x¢ +x3) for t >0, and we can verify that vl ]
Gi1=CG+a ngwt o 500 1000 itelr%:fes 2000 2500 3000

wherew; is a sequence of independent vector noises and
No= (1/\/6)[1’ 2, 1]T is a direction of invariance. We see that Fig. 4. The 4 node example using the decreasing step size.
No is consistent with the expression (15) since the degrees
for the three nodes are, respectively, 1, 2 and 1.
APPENDIX: PROOF OFTHEOREM 5
V. NUMERICAL SIMULATIONS Proof: (i) In the following we useA = B as the abbre-
. . . ; viation for “A implies B", and A < B for “A is equivalent
In the numerical studies, we consider an undlrecte{j - .

. 0 B”. First, it is a well known fact [9], [18] that when the

graph with 4 nodes.# = {1,2,3,4} and edgesé& = ;
graph is connectedy; = spar{1,}.

1(1,2),(2,3),2.4)}; see Fig. 2. The initial condition for Sincel is nonnegative definite, there exists a nonnegative
the state vector = [x,---,x]" att=01is[5,1,3,2]", and definite matrix deﬁoted asl/2 such thatl. — (L1/2)2 Wge
the variance of the i.i.d. Gaussian measurement noises s 12 172 2 -= (L .

D.,/V = Dlag(dl y T 7dn ) which g|VeSDJV =

02 = 0.01. The simulation of the standard averaging ru@lsozwnte
with equal weights to an agent’s neighbors and itself i€D_; )% For x € R", we havelx = 0= LD yLx=0=
given in F|g 3' hence we havql+l — (th +yt12)/2 and LD/VLD/VLX: 0. On the other hand, we have
X1 = O€+HYE+HYEP+)EY)/4, ete, wherd > 0. Itisseen | 1 1y 0o \TLD /LD ,Lx=0
that the 4 state trajectories in Fig. 3 move toward each other
rather quickly at the beginning, but they maintain long term & |LY2D 4 Lx? =0« LY?D 4 Lx=0
fluctuations as the state iteration continues. The stoichast = LD yLx=0=x"LD 4yLx=0
algorithm (2) is used in Fig. 4 with the step size sequence 1/2
{a = (t+5)798 t > 0}. Fig. 4 shows the 4 trajectories all & Dflx=0& Lx=0
merge into a constant level, and this is consistent with thgence, it immediately follows that
mean square consensus result obtained in this paper.

Lx=0< LD yLx=0« LD 4LD 4Lx=0,

VI. CoNCLUSIONS and assertion (i) follows. It is evident that the rank forleac

We have developed a stochastic Lyapunov analysis féf the matriced, LD L andLD_,LD 4L is equal ton—1.
consensus problems with noisy measurements. The conver{ii) We begin by proving the first part. Let
gence result is obtained by use of the decay property of the
stochastic Lyapunov function and the direction of invagian 0=A1, 0<AasAg<--<An, (19)
For future work, it is of interest to consider stochasticoalg and
rithms with network conditions such as dynamic topologies A A~ oA
and asynchronous state updates. 0=2A1, 0<A<Az3< -

IN
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respectively, denote the eigenvalueslofand LD ,L. Let
&= (01, --,0n) and ® = (5[1,;- ,0n) be two orthogonal [1]
matrices (i.e.®'® =1, and®'® =) such that

Ld = dDiag(A1,--,An), LD yLd=®Diag(As, -, An). 2]
In view of A = ;\1 =0, we getLa; =LD_yLé&; =0. By (i),
we necessarily have either = @7 or a; = —a;. In fact, we 3]
may takea; = a1 = +(1//n) - 1. CopsequeAntIy, it is easy [4]
to show that spajuy, - ,an} = spaf{az,---,an}, which is
the orthogonal complement of spdR} in R". [5]
Take anyx € R". We may writex =3[ ;yi0; and x =
Zin=19i aiv where y= (yla T »yn) and yA: (yla e 7)7I"I) are 6
uniquely determined and satisfy? ,y2 = 51,92 = |x|2. [
Recalling that we have takem; = G1 # O, it necessar- [7]
ily follows that y; = y1 since otherwise,(y1 — V1)a1 €
spafaz,---,an} with y; —¥1 # 0, which is impossible. (8]
Hence we get
n n
SF-55 @
For x e R", sinceA; = 5\1 =0, we have the estimate (10]
- - n . -~ n [11]
X'LD yLx=y"®"LD ,Ldy= %Aiyﬁ > Ao ;y,z
i= i=
On the other hand, we have [12]
n n
T A
XIX< A S V=20 § V2, [13]
where the equality follows from (20). Hence [14]
XTLD_y Lx > AoA; X' Lx, [15]
and the first part of (i) is proved by taking = 5\2/\,;1 > 0.
We denote the eigenvalues bb LD L by (16]
By a similar argument, we can show that for ang R",
XTLD_y LDy Lx < And; IXTLx (18]
which implies the second part wity = 5\n)\2*1 > 0. [19]
(iii) The inequality follows by taking expectation on both
sides of (12) and using (ii). Consequently, we select T [20]
to ensure 1 2ci& +c2q2 <1l-c& forallt > T, and find
a fixed constan€ > 0 such that
[21]

V(t+1) < (1-cia)V(t) +Cg, (21)
for all t > T.. By lengthy but elementary product estimateg22]
under A3), we get lim_.V(t) =0. Then it follows that

e, ke A (22) 28

lim E|x —x*>=0,
By connectivity of the graph, for any pair of nodeandk,
we can find a path fromto k. Then by repeatedly applying
(22) to all pairs of neighboring nodes along that path, wé&>
can show that [26]

[24]

lim E|x — x> =0,

t—oo

which implies weak consensus.

Vike A, (23) [27]

O
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