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Abstract We study large population stochastic dynamic games where the so-called Nash certainty

equivalence based control laws are implemented by the individual players. We first show a martingale

property for the limiting control problem of a single agent and then perform averaging across the

population; this procedure leads to a constant value for the martingale which shows an invariance

property of the population behavior induced by the Nash strategies.

Key words Large population, martingale representation, Nash equilibrium, optimal control, stochastic

dynamic games.

1 Introduction

Noncooperative dynamic game theory has attracted a long lasting research interest for
decades. In such games, the states of the players (also to be called agents) are governed by
certain dynamics and each agent chooses its strategy in a process of interaction with other
players. The most basic formulation takes the form of two-person zero-sum games where the
dynamics are given by differential or difference equations, and the classical solution notion is
saddle strategies[1]. By extending to a general N -person situation, one can assign each player
with its own cost function and adopt Nash equilibrium strategies as a basic solution scheme.

In the setting of noncooperative dynamic games, when each agent has perfect state infor-
mation for all agents involved, a well-known approach is to study feedback Nash strategies and
employ dynamic programming to examine necessary conditions for the associated strategies and
individual costs[2]. In continuous time stochastic models, this procedure derives a set of coupled
Hamilton-Jacobi-Bellman (HJB) equations. In general, the complexity of this approach is high,
especially in the case of many players. Firstly, it is difficult to show existence and uniqueness
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of solutions to the coupled HJB equations, and secondly, the set of Nash equilibrium strate-
gies, if existing, involves high implementational complexity since each player needs the state
information of all other players.

On the other hand, in many social, economic and engineering scenarios[3−7], it is typical
to have a large number of agents performing decision-making, and a characteristic feature of
these systems is that each agent faces the average influence of the overall population while
receiving a negligible impact from any other specific agent. Motivated by these phenomena,
in our earlier work we formulated a class of stochastic dynamic games with many players and
weak coupling. For obtaining low complexity solutions, the so-called Nash certainty equivalence
(NCE) methodology has been developed in a series of works[5,8−11]. The key idea of this
methodology is to specify a certain consistency relationship between the individual strategies
and the mass effect (i.e., the overall effect of the population on a given agent) within the
population limit. By this approach, each decision-maker can ignore the fine details of the
behavior of all individual players by only focusing on the overall impact of the population.
This methodology avoids the generation of a large coupled HJB equation system with as many
equations as the population size. In the end, this procedure leads to decentralized strategies
for the individual players in the system of N players.

In this paper, we study the large population behavior by identifying an invariance property
in terms of the instantaneous cost, the value function and the empirical distribution function
of the states of all agents. In our asymptotic analysis, we let N → ∞. This essentially amounts
to considering a family of game problems with an increasing number of agents.

In the NCE methodology, each agent can be viewed as essentially solving a local optimal
control problem. And on the other hand, in the stochastic optimal control literature, it is well
known that under very mild conditions, the sum of the past cost calculated up to the current
time along the optimal state-control and the future optimal cost is given as a martingale[12,13].
Compared to the usual HJB equation characterization of the value function, this martingale
representation reveals sample path properties for the optimally controlled process.

Now, by extending the martingale results in optimal control to the population limit of the
dynamic game and averaging across the population to eliminate randomness, one obtains a
deterministic martingale and hence a constant value over time. This gives the so-called invari-
ance property. Subsequently, by interpreting the measure process, appearing in the closed-loop
McKean-Vlasov equation, as the limiting population state empirical distribution, we obtain an
invariance property associated with the controlled population behavior when the NCE strategies
are implemented by the agents.

The organization of the remaining part of the paper is as follows. In Section 2, we formulate
the large population dynamic game problem in the general nonlinear context. The NCE based
decentralized control synthesis is described in Section 3. In Section 4, we characterize the
martingale property in the population limit and establish the invariance property. The special
case of LQG systems is then analyzed in Section 5 for illustration. Section 6 concludes the
paper.

2 The Stochastic Dynamic Game Model

In a population of N agents, consider the dynamics for an individual agent

dzi(t) =
( 1

N

) N∑
j=1

fai(zi(t), ui(t), zj(t))dt + σdwi(t), 1 ≤ i ≤ N, t ≥ 0, (1)

where {wi, 1 ≤ i ≤ N} denotes N independent standard scalar Wiener processes and ai ∈ R
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is a dynamic parameter indicating the type of agent i. The state variable zi and control ui

are each a scalar, and the initial states {zi(0), 1 ≤ i ≤ N} are mutually independent and also
independent of {wi, 1 ≤ i ≤ N}. In addition, E|zi(0)|2 < ∞. The diffusion coefficient σ > 0 is
a constant. The associated cost function is given as

Ji = E

∫ T

0

( 1
N

) N∑
j=1

g(zi(t), ui(t), zj(t))dt. (2)

These stochastic dynamic game models are well motivated by many practical decision scenarios
arising from social, economic and engineering models where each decision maker faces the
aggregate effect of all other players.

We note that the analysis in the paper may be easily generalized to deal with variants of
the set of costs in (2). For the system configuration z = (z1, z2, · · · , zN ), define the empirical
distribution εz = ( 1

N )
∑N

i=1 δzi where δ(·) is the Dirac measure. We introduce a set of costs in
the following form

J̃i = E

∫ T

0

g̃(zi(t), ui(t), εz(t))dt. (3)

where εz(t) = ( 1
N )

∑N
i=1 δzi(t). Here g̃(·, ·, ·) may be represented as a function from R×U ×R

N

such that under the permutation of all other entries in (z1, z2, · · · , zn) except zi, g remains the
same value when (zi, ui) is given. It can be checked that (3) includes the cost form in (2) as a
special case.

For simplicity of exposition, in this paper, the general formulation for the game problem
will be based upon the cost (2).

In the analysis, we use ui(·) to denote the control input on [0, T ], and ui(t) to denote its
value at time t. For each t ∈ [0, T ], ui(t) takes values from U , which is a closed subset of R.
Each ui(·) is adapted to the σ-algebra σ(zi(0), wi(s), s ≤ t, 1 ≤ i ≤ N).

We assume that the entries in the sequence {ai, i ≥ 1} take values from a finite set A �
{θ1, θ2, · · · , θK}. For the set of dynamic parameters {ai, 1 ≤ i ≤ N}, we denote the empirical
distribution function

FN ({θk}) =
( 1

N

) N∑
i=1

1(ai=θk).

In this setup, we assume the existence of a limit empirical distribution function F on A
for the sequence {FN , N ≥ 1} and denote this distribution as π = (π1, π2, · · · , πK), i.e.,
lim

N→∞
FN ({θk}) = F ({θk}) = πk for each θk ∈ A.

2.1 Interacting Particle Systems

In an interacting particle (IP) system, the state evolution of an individual particle is affected
by an empirical average of coupling terms involving all other particles. Mathematically, this
leads to a set of weakly coupled diffusions, each describing the motion of a single particle. We
introduce the following dynamics[14] in the form of N coupled stochastic differential equations
(SDE):

dxi(t) =
( 1

N

) N∑
k=1

b(xi(t), xk(t))dt + σdwi(t), 1 ≤ i ≤ N, t ≥ 0, (4)
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where b(·, ·) is a function from R
2 to R, N is the number of particles and all xi’s are assumed to

have i.i.d. initial conditions at t = 0. Here we assume xi is a scalar although the modelling is also
applicable to the case of vector particle states. The noises {wi, 1 ≤ i ≤ N} are N independent
Wiener processes independent of the initial conditions xi(0), 1 ≤ i ≤ N . Let εx = ( 1

N )
∑N

i=1 δxi

denote the empirical measure of the particle configuration x = (x1, x2, · · · , xN ). Then the drift
term in (4) may be expressed as a function of xi and εx.

For this class of particle models, one can achieve a remarkable economy of representation by
expressing the aggregate coupling term in terms of an expectation over a typical individual’s
probability distribution function which evolves with time. This is based upon the following
intuition: as the number of particles grows to infinity, the collective impact of all particles on
a given particle is averaged into a deterministic effect. And furthermore, there is a decoupling
effect such that a single particle’s statistical properties can effectively approximate the empirical
distribution produced by all particles; in other words, the large population may be viewed as
independent copies of a given agent with certain statistical properties. More specifically, as N
tends to infinity, the individual dynamics may be written in the limiting form:

dx(t) = b[x(t), µt]dt + σdw(t), t ≥ 0, (5)

which is the celebrated McKean-Vlasov (M-V) equation[15]. Here b[x, µt] =
∫

b(x, y)µt(dy) for
some probability distribution µt on R. The noise w(t) may be determined in different ways.
For instance, if one intends to approximate x1(t) in (4) by x(t), one may set w(t) = w1(t) as
the driving Brownian motion in (5) and x(0) = x1(0). Note that by introducing the density
function pt(x), associated with µt for x(t), one may recast (5) in the form of a Fokker-Planck
equation whose coefficients depend upon the density pt(x) itself.

Definition 1 A pair (x(t), µt), t ≥ 0, is said to be a consistent pair if x(t) is a solution to
the SDE (5) and µt is its distribution at time t, i.e., P (x(t) ≤ α) =

∫ α

−∞ µt(dy) for all α ∈ R

and t ≥ 0.
It is obvious that µ0 in Definition 1 is determined as the distribution of x(0).

2.2 Related Notation for the Large Population Game

Before further analysis for the game problem in a controlled McKean-Vlasov setting, we
introduce some notation. For a set of K probability distributions µo

t � (µ1
t , µ

2
t , · · · , µK

t ), where
each µk

t is defined for Borel subsets of R and 0 ≤ t ≤ T , we define

fa[x, u, µ1
t , · · · , µK

t ] =
K∑

i=1

πi

∫
R

fa(x, u, y)µi
t(dy),

and similarly,

g[x, u, µ1
t , · · · , µK

t ] =
K∑

i=1

πi

∫
R

g(x, u, y)µi
t(dy).

Here fa[x, u, µ1
t , · · · , µK

t ] and g[x, u, µ1
t , · · · , µK

t ] may be looked at as two functions from R×U×
[0, T ] to R. We denote fa[x, u, µo

t ] = fa[x, u, µ1
t , · · · , µK

t ] and g[x, u, µo
t ] = g[x, u, µ1

t , · · · , µK
t ].

3 The Nash Certainty Equivalence Based Strategies

The basic idea for circumventing the dimensionality difficulty to the game problem (1)–(2)
is as follows. Similar to the approximation of weakly coupled diffusions by the McKean-Vlasov
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equation, we use a set of K probability measures to approximate the effect of K classes of agents.
Next, the dynamics and cost of agent i can be approximated in terms of its own state, control
and the above K probability measures. Note that these measures are only assumed at this stage
and must still be determined. We complete the procedure by requiring that the individual local
optimal reactions will collectively produce the same set of probability measures in the closed-
loop system; this is essentially to extend the consistency relationship in the original McKean-
Vlasov equation to the optimal control situation. We call this scheme of control synthesis as
the NCE methodology.

Following [10], we introduce the NCE based equation system

dxi(t) = fai [xi(t), ûi(t, xi(t)), µo
t ]dt + σdwi(t), (6)

−∂vai(t, xi)
∂t

= min
ui∈U

{
fai [xi, ui, µ

o
t ]

∂vai(t, xi)
∂xi

+ g[xi, ui, µ
o
t ]

}
+

σ2

2
∂2vai(t, xi)

∂x2
i

, (7)

ûi(t, xi) � ϕai(t, xi)

= arg min
ui∈U

{
fai [xi, ui, µ

o
t ]

∂vai(t, xi)
∂xi

+ g[xi, ui, µ
o
t ]

}
, (8)

where 0 ≤ t ≤ T and we denote the distribution of xi(t) in (6) by µk
t when ai = θk. In

the above, vai(t, xi) is the value function for the associated optimal control problem in the
population limit.

An alternative method to characterize the closed-loop behavior is to express (6) in the form
of a Fokker-Planck equation.

∂pai(t, xi)
∂t

= −∂
{
fai [xi, ûi(t, xi), µo

t ]pai(t, xi)
}

∂xi
+

σ2

2
∂2pai(t, xi)

∂x2
i

, (9)

where pai(t, xi), 0 ≤ t ≤ T , denotes the density function for the processes xi(t). Note that
in (9), the density pai(t, xi) should generate the distribution µk

t (as a component in µo
t ) if

ai = θk ∈ A. The description by (9) avoids sample path dependent information.
To distinguish from the original game model, here we use a different variable xi in (6), but

the same driving noise wi and initial condition zi(0) are used in both (1) and (6). We note
that equation (6) is interpreted in the generalized McKean-Vlasov equation sense for multi-class
particles, and the control law ûi is a minimizer of the right hand side of (7). A solution to the
above McKean-Vlasov-HJB system consists of a triple (xi(t), vai (t, xi), ûi(t, xi)), where t ≥ 0,
representing the closed-loop solution, the value function and the feedback control law.

A detailed analysis is developed in [10] about the existence of a solution to the above
equation system. This amounts to a fixed point argument and identifying some gain conditions
for certain nonlinear operators. In this paper, we will focus on the large population behavior
subject to the optimal control laws of the individual agents which are assumed to exist.

4 The Martingale Property of the Population

4.1 The Optimal Control Problem

Before considering the game problem introduced above, as a preliminary step, we first give
a brief review of results on martingale representation in optimal stochastic control. Consider
the control problem for a single agent

dz(t) = f(z(t), u(t))dt + σdw(t), (10)
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where the initial condition z(0) is independent of the standard Wiener process w(t) and satisfies
E|z(0)|2 < ∞. The cost function is given as

J0 = E

∫ T

0

g(z(t), u(t))dt.

Here for simplicity, we restrict the analysis to a scalar state and control input, respectively,
x(t) and u(t). The control takes values from a closed subset U of R. A control u(·) is called
admissible if u(t) ∈ U and is adapted to the σ-algebra σ(z(0), w(s), s ≤ t). Assume f is
Lipschitz with respect to (z, u) and g ≥ 0 satisfies a polynomial growth condition with respect
to (z, u).

Denote the value function

v(t, y) = inf
u(·)

E

[ ∫ T

t

g(z(s), u(s))ds|z(t) = y

]
,

where t ∈ [0, T ]. In addition, we assume that there exists an optimal control law u∗(t, z) ∈
C([0, T ] × R) satisfying Lipschitz continuity in z, such that

v(t, y) = E

[∫ T

t

g(z(s), u∗(s, z(s)))ds|z(t) = y

]
.

The following lemma is easily proved by a method similar to that in [12]. After assuming the
existence of the optimal control law, the lemma essentially follows from the optimality principle.

Lemma 2 The process

ξt �
∫ t

0

g(z(s), u∗(s, z(s)))ds + v(t, z(t))

is a martingale, where t ∈ [0, T ] and z(t) is the closed-loop solution when the control law u∗ is
applied.

Note that, based upon our assumption on the function f and the optimal control law u∗,
the closed-loop system associated with (10) has a unique strong solution.

4.2 The Martingale Property and Its Limiting Form

Subsequently, we will extend the martingale property to the controlled McKean-Vlasov
equation. Before so doing, we need to make the existence and growth rate assumptions.

(A1) There exists a solution (xi(t), vai(t, xi), ûi(t, xi)) to the McKean-Vlasov-HJB system
(6)–(8).

(A2) The closed-loop drift coefficient fai(xi, ûi(t, xi)) is in C([0, T ]×R) and Lipschitz con-
tinuous in xi.

(A3) Under the control ûi, g[xi, ûi(t, xi), µo
t ] is in C([0, T ]×R) and has a polynomial growth

rate with respect to xi.
Theorem 3 Suppose (A1)–(A3) hold. Then the process∫ t

0

g[xi(s), ûi(s, xi(s)), µo
s]ds + vai(t, xi(t))

is a martingale.
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Proof For t ∈ [0, T ], let

ζt =
∫ t

0

g[xi(s), ûi(s, xi(s)), µo
s]ds + vai(t, xi(t)),

and let Ft denote the σ-algebra generated by (xi(s), s ≤ t). We have

E[ζt2 |Ft1 ] = E

[ ∫ t2

0

g[xi(s), ûi(s, xi(s)), µo
s]ds + vai(t2, xi(t2))|Ft1

]
= E

[
ζt1 +

∫ t2

t1

g[xi(s), ûi(s, xi(s)), µo
s]ds + vai(t2, xi(t2)) − vai(t1, xi(t1))|Ft1

]
.

On the other hand, with respect to the measure process µo
s, ûi may be interpreted as a usual

optimal control. Hence, by the optimality principle, we have

vai(t1, xi(t1)) = E

[ ∫ t2

t1

g[xi(s), ûi(s, xi(s)), µo
s]ds + vai(t2, xi(t2))|Ft1

]
.

Now it follows that E[ζt2 |Ft1 ] = ζt1 and this completes the proof.
Theorem 4 In addition to (A1)–(A3), we assume i.i.d. initial conditions {xi(0), 1 ≤ i ≤

N} with E|xi(0)|k < ∞ for any finite k > 0. Then the process

ΛN
t � 1

N

N∑
i=1

∫ t

0

g[xi(s), ûi(s, xi(s)), µo
s]ds +

1
N

N∑
i=1

vai(t, xi(t))

converges in L2 to a constant value c for all t ∈ [0, T ], as N → ∞.
Proof Theorem 3 implies

c =
∫ t

0

∫
R2

K∑
i,j=1

πiπjg(x, ϕθi(s, x), y)µj
s(dy)µi

s(dx)ds +
∫

R

K∑
i=1

πivθi(t, x)µi
t(dx), (11)

where c is determined by the initial condition of the population. Then the theorem follows by
standard estimates and the fact that {xi(·), i ≥ 1} are independent processes.

Define

ḡt =
∫

R2

∑
i,j

πiπjg(x, ϕθi(s, x), y)µj
s(dy)µi

s(dx), v̄t =
∫

R

N∑
i=1

πivθi(t, x)µi
t(dx),

where v̄t and ḡt are both deterministic functions on [0,∞). Then it follows that

dv̄t

dt
= −ḡt.

In the above, ḡt may be interpreted as the instantaneous average cost over the population limit
at time t and v̄t is the average future cost to go across the population. Notice that by the
closed-loop McKean-Vlasov equation, we may write a special Fokker-Planck equation provided
that there is a well defined density. This is purely based upon the dynamics of the given agent.
In contrast, (11) shows how the forward propagation of the distribution should preserve the
equality relation in terms of the instantaneous cost and the future cost to go based upon the
population averaging.
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5 The LQG System

In this section, we specialize the analysis to an LQG game. First, let the individual dynamics
be given as

dzi(t) = aizi(t)dt + bui(t)dt +
( α

N

) N∑
j=1

zj(t)dt + σdwi(t), (12)

and the cost for the ith agent is given as

Ji = E

∫ T

0

{
[zi(t) −

( γ

N

) N∑
j=1

(zj(t) + η)]2 + ru2
i (t)

}
dt. (13)

For simplicity, we assume the independent initial states zi(0) have zero mean. In the LQG
model, for the dynamic parameters we make the more general assumption that all ai ∈ A0

where A0 is a compact subset of R. The dynamic parameters have a limit empirical distribution,
still denoted by the function F (a).

Corresponding to the LQG game model (12)–(13), we first construct the auxiliary control
problem: ⎧⎨⎩

dzi(t) = aizi(t)dt + bui(t)dt + αz̄(t)dt + σdwi(t),

Ji = E

∫ T

0

{
[zi(t) − z∗(t)]2 + ru2

i (t)
}
dt,

(14)

where z̄, z∗ ∈ C[0, T ].
The above LQG tracking problem may be solved using a similar method as in [16]. Write

the Riccati differential equation

dΠi(t)
dt

+ 2aiΠi(t) − b2

r
Π 2

i (t) + 1 = 0, (15)

where the terminal condition is Πi(T ) = 0. Also write the equation

dsi(t)
dt

+
(

ai − b2

r
Πi(t)

)
si(t) + αΠi(t)z̄(t) − z∗(t) = 0, (16)

where the terminal condition is si(T ) = 0.
Finally, we introduce the equation

dqi(t)
dt

− b2

r
s2

i (t) + |z∗(t)|2 + 2αz̄(t)si(t) + σ2Πi(t) = 0, (17)

where qi(T ) = 0.
The optimal control law is given as

ui(t) = − b

r
(Πi(t)zi(t) + si(t)).

It can be verified that the resulting individual optimal cost is

vi(t, x) = Πi(t)x2 + 2si(t)x + qi(t),
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where the initial time-state pair is given as (t, x) with t ∈ [0, T ].
By use of the solution to the above auxiliary LQG tracking problem, the NCE scheme may

be expressed in a more explicit form in terms of the following equation system

dsa(t)
dt

+
(

a − b2

r
Πa(t)

)
sa(t) + αΠa(t)z̄(t) − z∗(t) = 0, (18)

dz̄a(t)
dt

=
(

a − b2

r
Πa(t)

)
z̄a(t) − b2

r
sa(t) + αz̄(t), (19)

z̄(t) =
∫

a∈A0
za(t)dF (a), (20)

z∗(t) = γ(z̄(t) + η). (21)

Compared to the original NCE equation system (6)–(8), here we only need the dynamics of the
mean process of the closed-loop for the individual agent in question, instead of the controlled
diffusion process or its Fokker-Planck equation. For convenience of presentation, we shall also
refer (18)–(21) as the NCE equation system without causing a conceptual problem.

We give a sufficient condition to ensure the existence and uniqueness of a solution to the
above equation system. For a ∈ A0, let

Φa(t, s) = exp
{
−

∫ t

s

(
a − b2

r
Πa(τ)

)
dτ

}
.

Theorem 5 The sufficient condition for the existence of a unique solution to the equation
system (18)–(21) is

sup
t∈[0,T ]

b2

r

∫
a∈A0

∫ T

0

Φa(κ, t)
{∫ T

κ

Φa(κ, τ)[|α|Πa(τ) + |γ|]dτ + |α|
}

dκdF (a) < 1,

where F (a) is the empirical distribution of the dynamic parameter a ∈ A0.
The proof is given in the Appendix.
Now we end this section by computation with the concrete parameter set A0 = {θ1, · · · , θK}

where F ({θk}) = πk, 1 ≤ k ≤ K. In equations (15)–(17), when ai = θk, we denote the resulting
solutions, respectively, by Πθk

(t), sθk
(t) and qθk

(t). Then the invariance property translates
into the form

c =
K∑

k=1

πk

{∫ t

0

∫
R

[
(x − z∗(τ))2 +

b2

r
(Πθk

(τ)x + sθk
(τ))2

]
dF τ

θk
(x)dτ

+
∫

R

[x2Πθk
(t) + 2xsθk

(t)]dF t
θk

(x) + qθk
(t)

}
, (22)

where F τ
θk

(x) denotes the state distribution at time τ for an agent with dynamic parameter θk.
For the state distribution above, we assume the existence of a density function pt

θk
(x) with

suitable regularity; then by taking differentiation with respect to t on both sides of (22), we get

0 =
K∑

k=1

πk

{∫
R

[
(x − z∗(t))2 +

b2

r
(Πθk

(t)x + sθk
(τ))2

]
pt

θk
(x)dx

+
∫

R

∂[x2Πθk
(t) + 2xsθk

(t)]pt
θk

(x)
∂t

dx +
dqθk

(t)
dt

}
. (23)



INVARIANCE PRINCIPLE IN LARGE POPULATION GAMES 171

Due to the quadratic cost structure, the fundamental NCE scheme (18)–(21) gives little
information directly about the variance, or spread, of the population behavior, but (23) provides
such information by placing specific constraints on the propagation of the state distribution
when the control strategies are employed in the population limit.

6 Conclusion

In this paper, we consider large population stochastic dynamic games. By extending the
classical martingale representation results in optimal control to the large population conditions,
we have shown that one obtains an invariance property for the population behavior when the
mass is individually subject to NCE feedback control laws.

Appendix: Proof of Theorem 5

We prove the existence and uniqueness of a solution by a fixed point argument. By (18)
and (21), we write the equation

dsa(t)
dt

= −
(

a − b2

r
Πa(t)

)
sa(t) − αΠa(t)z̄(t) + γ(z̄(t) + η) = 0.

By the terminal condition sa(T ) = 0, the solution may be expressed as

sa(t) =
∫ T

t

Φa(t, τ)[αΠa(τ)z̄(τ) − γ(z̄(τ) + η)]dτ � Γ1(z̄)(t).

Next we have

z̄a(t) =
∫ t

0

Φa(κ, t)
{
− b2

r

∫ T

0

Φa(κ, τ)[αΠa(τ)z̄(τ) − γ(z̄(τ) + η)]dτ + αz̄(κ)
}

dκ.

We further define the operator

Γ (z̄)(t) �
∫
A0

∫ t

0

Φa(κ, t)
{
− b2

r

∫ T

0

Φa(κ, τ)[αΠa(τ)z̄(τ)−γ(z̄(τ)+η)]dτ +αz̄(κ)
}

dκdF (a).

It is easy to show that the above gives a well-defined operator Γ from C[0, T ] to C[0, T ].
Now, by the inequality condition, we see there exists a unique solution to the fixed point

equation

z̄(t) = Γ (z̄)(t). (24)

Subsequently, we may determine

sa(t) = Γ1(z̄)(t)

and z̄a(t) is determined in an obvious manner. It is easy to verify that (sa(t), z̄a(t), z̄(t))
thus determined satisfies the NCE equation system. On the other hand, in any solution
(s′a(t), z̄′a(t), z̄′(t)) to the equation system, the component z̄′(t) necessarily satisfies the fixed
point equation (24), and uniqueness of the solution follows easily.
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