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Individual and Mass Behaviour in Large Population Stochastic Wireless Power Control 
Problems: Centralized and Nash Equilibrium Solutions* 

Minyi Huangt, Peter E. Cainesj, and Roland P. Malhamt? 

AbsZruc&- We consider uplink power control for lognormal 
fading channels in the large population case. First, we examine 
the structure of the control law in a centralized stochastic opti- 
mal control setup. We analyze the effect of large populations 
on the indi\ idual control inputs. Next, we split the centralized 
cost to approach the problem in a game theoretic framework. 
In this context, we introduce an auxiliary LQG control system 
and analy ze the resulting E-Nash equilibrium for the control 
law; subsequently we generalize the methodology developed for 
the LQG problem to the vireless power control problem to get 
an approximation for the collective effect of all other users on 
a gi\ en user. The obtained state aggregation technique leads 
to highly localized control configurations in contrast to the full 
state based optimal control strategy. 

I. INTRODUCTION 

In wireless communication systems, power control plays a 
critical role in maintaining an adaptable Quality of Services 
(QoS) under fading channel conditions and, indeed, power 
control has recently attracted the research interest of many 
authors; see [l], 131, [14], [I71 and references therein. It 
is particularly important in CDMA (Code Division Multiple 
Access) systems in which all users shall the same wideband 
and act as a source of interference to each other. In a series of 
papers [7]-[ 121, power control for lognormal fading channels 
has been considered as a stochastic control problem, and 
the optimal control is analyzed by Hamilton-Jacobi-Bellman 
(HJB) equations. Approximation techniques and numerical 
methods for computing various suboptimal versions of the 
optimal control law have been developed in [SI, [I l l ,  [12]. 
However, for systems with large populations, there exists the 
basic limitation of computational complexity associated with 
this approach. Hence it is desirable to develop new techniques 
for obtaining simplified yet efficient control laws. 

Based on the work mentioned above, this paper makes 
an attempt to analyze the properties of systems operating in 
large population conditions. The system includes the lognor- 
mal fading channel and a rate based uplink power control 
model. Our interest is in investigating the feasibility of 
localized or decentralized control since this may potentially 
reduce implementational complexity of the control laws. 
As a first step, we examine the structure of the optimal 
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control law. The feedback control is affine in the system 
power with a random gain matrix which carries the channel 
information. Furthermore, the power adjustment rate for each 
mobile is determined by its own channel state, its own power 
level and an average effect of all other mobiles. Intuitively, 
when the population size is large, this average exhibits a 
statistically stable behaviour with respect to which the action 
of a specific mobile is negligible. Hence we develop power 
control methodologies which are less complex than these 
using the full system state. 

As an effective solution toward simplified power control, 
we may consider a reformulation of the control problem in 
two aspects. On one hand, we may consider control design 
by recasting the centralized cost measure into a set of indi- 
vidual user’s cost functions; this leads to the game theoretic 
approach. On the other hand, concerning information pattern 
of individual user’s control inputs, in contrast to the above 
centralized control structure we may develop decentralized 
control such that each user utilizes only its local information; 
this is possible since in the large population scenario (w.r.t 
the centralized cost or individual costs) the impact of all other 
users on a given user exhibits a deterministic feature in its 
evolution. We note that the above techniques concerning the 
cost type or control information may be combined together 
to get specific power control formulations. 

As a first step, in the control determination of a fixed 
individual user, we group the effect of all other users into a 
single term and consider its approximation. This is reasonable 
due to the special structure of the cost function reflecting 
the QoS measurement. By this means, we can capture the 
interaction between the behaviour of any single user and the 
statistical behaviour of the overall system. 

Before proceeding with the analysis for the power control 
problem, in Section IV we first introduce an auxiliary LQG 
control system and analyze the individual cost based E-Nash 
equilibrium properties for the control law. Subsequently we 
consider its generalization to the stochastic power control 
problem in Section V. The method developed for the LQG 
problem, combined with some reasonable hypotheses, en- 
ables us in the power control problem to get an approxima- 
tion for the collective effect of all the other individuals on any 
given individual mobile. The procedure has connections with 
the single user based control design in previous work [ l l ] ,  
[ 121, where we appropriately scaled the total interference 
generated by all the other mobiles and treated this scaled 
quantity as a slowly time-varying process. But in the present 
work, we attempt to capture the dynamics for the evolution 
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of the mass formed by the population of users. 
We emphasize that the above state aggregation technique 

for approximately optimal control (with respect to individual 
costs and the associated mass behaviour) leads to highly 
localized control configurations, in contrast to the full state 
based optimal control strategy. Specifically, the control of 
a particular individual mobile can be formulated in terms 
of its own channel dynamics, its own state, the aggregated 
system dynamics and the average of the interference the 
mobile receives from a mass or collective representing all 
other users. Finally, in Section VI we make general remarks 
comparing the centralized cost based optimal control with 
the individual cost based decentralized control. 

11. THE PROBLEM STATEMENT 

Let zi(t), 1 L: i L: n, denote the attenuation (expressed in 
dBs and scaled to the natural logarithm basis) at the instant t 
of the power of the i-th mobile of a network and let ai(t) = 

denote the actual power attenuation. Based on the work 
in [4], we model the power attenuation dynamics of n mobile 
users by 

dxi  = - ~ i ( ~ i  + bi)dt + oidwi,  t 1 0 ,  1 5 i 5 n, (2.1) 

where {wi,  1 5 i L: n} are n independent standard Wiener 
processes, and zi(O), 1 5 i 5 n, are mutually independent 
Gaussian random variables which are also independent of the 
Wiener processes. In (2.1) ai ,  bi, Pi > 0, 1 5 i 5 n. 

We model the step-wise adjustments [13] of the trans- 
mitted power pi  (i.e., the uplink power control for the i-th 
mobile) by the so-called rate adjustment model [7] 

dpi = uidt ,  1 5 i 5 n. (2.2) 

We write z = [XI,... ,zn]', p = bl,... ,pn]', U = 
[UI , . , 7 4 ' .  In a CDMA context, the signal-to-inteiference 
ratio (SIR) for the users-achieved after matched filtering 
is given by ri = e, 1 L: i 5 n, where 
denotes the received power at the based station for user 
i, ,&,i = ( s ; s ~ ) ~ ,  k # j ,  is the squared crosscorrelation 
between the (normalized) signature sequences Sk, si of users 
k,  i, respectively, and 7 is the constant background noise 
intensity. Denote the dimension (i.e., the spreading gain) of 
si by n,. Following [15], [16], [17], we consider the mobile 
system in the context of a large number of users and make 
the standard assumption that E = a > 0 as n -+ CO, 

i.e., the signature length n., increases in proportion to the 
user population, which is necessary to suppress the inter- 
user interference so as to accommodate an increasing number 
of users. Here (Y is called the number of users per degree 
of freedom. By appropriately choosing random signature 
sequences of length n,, one can have Pk3 i  x & = 0 
[15], [17]. For simplicity, here we take p k , i  = k for all 
1 I k # i I n. Moreover, we wish I'i to be staying around 

a target SIR level yi E (0,  l), i.e., 

Under the condition of lognormal fading we have F, = 
ex'pi ,  1 5 i _< n, where zi is described by (2.1). 

Following [8], [ll] and taking into account the SIR 
requirement (2.3), we introduce the following modified loss 
function: 

(2.4) 
I =  1 J U  

where N, = 3 E" exJpJ +q, p > 0 and R > 0 is a weight 
matrix. For simplicity we take R = Diag(r,)F=, > 0. In the 
above integrand the term U'RU is used to penalize abrupt 
change of powers since in practical systems power adjust- 
ment is exercised in a cautious manner. After subtracting the 
constant component from the integrand in (2.4) we get the 
cost function to be employed: 

J ( u )  = E L p  e-Pt[p'C(z)p+2DT(z)p+uTRu]dt, (2.5) 

where C(z), D ( z )  are n x n positive definite matrix, n x 1 
vector, respectively, which are determined from (2.4). Write 
I ( z , p ,  U )  = p 'C(z)p  + 2D'(z)p + u'Ru. 

To facilitate further analysis, we set f,(z) = -u,(z, + 
b t ) ,  1 L: i L: n, H = Diag and zT = (zT,pT), $I' = 
(f',uT), G' = (H70nxn). We write (2.1) and (2.2) in the 
vector form 

d z  = $dt + Gdw,  t 2 0, (2.6) 

where w is an n x 1 standard Wiener process determined by 
(2.1). We will denote the state variable by ( z , p )  or z. Define 
the admissible control set U = { U ~ U  is adapted to ~(z,. s I 
t ) ,  and EJ;e-Ptlutl'dt < CO}. We assume that 
is a deterministic. We note that certain controls from U 
may result in an infinite cost due to the presence of the 
ex* process, 1 5 i I n. However the optimal control 
problem is well defined under the admissible control set 
U. Finally, the cost associated with (2.6) and a control U 

is J ( z . p , u )  = E[J;e-P'Z(rt,pt,ut)dtlzo =  PO = PI, 
where ( z , p )  is the initial state; further we set the value 
function v ( z ,p )  = infvEU J ( z , p ,  U ) .  

111. THE VALUE FUNCTION AND HJB EQUATION 

-;le 

Formally applying dynamic programming, we may write 
the HJB equation for the value function 2: as 

+ P'C(S)P + 2 D T ( Z ) P .  (3.1) 

Proposition 3.1: [8] The value function U is a classical 

(3.2) 

solution to (3.1) and can be written as 

v(z ,p)  = p T K ( z ) p  + 2pTS(z) + q(z) 
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where K ( x )  = I P ( x ) ,  S (x ) ,  q(x) are continuous in x,  and 
0 

In general, additional growth conditions as above are 
required in order to determine the value function by the HJB 
equation when there is no boundary condition (see e.g. [5]). 
Substituting (3.2) into (3.1) and comparing powers of p ,  we 
obtain the partial differential equation system 

are all of order 0(1 + cy=l e 2 r J ) .  

(3.5) 

where we shall refer to (3.3) as the Riccati equation. The 
optimal control law for the n users is given by 

[ t i l , . . .  ,un]' = - R - l [ l < ( ~ ) p + S ( x ) ] ,  (3.6) 

and for user i the control is 

It is seen from (3.7) that for user i, the control relies on 
its own current power level and a weighted sum of other 
users' powers. Since all the coefficients involved in this 
individual control law depend on the attenuations of all 
users, this optimal control law is highly centralized and 
hence unrealistic for a practical implementation for systems 
with large populations. However, the randomness associated 
with the second term in (3.7) should be small due to the 
scaling effect of KZJ(x ) ,  j # i, and the superposition of 
many small terms, and hence we may consider the average 
effect of the other users' powers on a given user. This 
further suggests we consider developing state aggregation 
techniques (to approximate the mass behavior) from the 
level of both performance measure and control determination 
for individual users. We note that in the centralized LQG 
control case, under symmetric dynamics for individuals a 
decomposition of each individual's control into an individual 
term involving its own state and a deterministic term for the 
mass may be explicitly obtained when the population size 
goes to infinity [6]. 

To simplify our analysis, we make the symmetry assump- 
tions: 

C1) All users have i i d .  dynamics, i.e., a,  = a, b, = b, 
U, = U ,  15 i 5 n; 
C2) All users have equal SIR requirements, i.e., y, = 7, 
1 2 i 5 n, and in addition, R = rIn. 

Before further analysis of the control for individual users 
in Section V, we examine in below liiiear systenis with a cost 
which can be regarded as the limiting version ofthe cost (2.5) 
by freezing the randont attenuation x as a constant. We will 

develop the basic idea for state aggregation via thls auxiliary 
linear model, and then generalize this method to the nonlinear 
power control problem of Sections 11-111 in Section V. 

Iv. DYNAMICALLY INDEPENDENT A N D  COST COUPLED 
LARGE POPULATION LQG SYSTEMS 

Suppose in a linear stochastic system, the state of each of 

dz, = ( U Z ,  + bu,)dt + odzu,, 1 5 i 5 n,  (4.1) 

where {w,, 1 5 i 5 n} denotes n independent standard 
scalar Wiener processes and b # 0. The initial state z,(O), 
1 5 i 5 n, is independent of the Wiener processes and 
Ez;(O) < CO. The n individuals interact with each other 
through a global cost function 

the n individuals or players is described by 

t 2 0,  

n 

J=J(u1,211:u2,212;... ;un,v,) = ~ J , ( U , , V , )  

2= 1 

and in particular we set in the cost-coupled case U, = 
-,($ E,",, zk +v). Notice that in this Section z, is described 
by the general dynamics (4.1). In order to avoid introducing 
too many new variables and parameters, we ask the reader 
to consider that the notation (a ,  b, a, uz, z,) in this Section is 
independent of Sections 11-III. As in the previous Sections, 
here we also assume p ,  r, y. a, 77 > 0. 

A. Competitive Behaviour: State Aggregation and Tracking 
for LQG Systems 

We denote the mass driven version of the individual cost 
for the i-th player as J ,  ( U,, y ( k xi+, Zk + 77)). Furthermore, 

for large n, assume z r t  = y( C;+, Zk +Q) is approximated 
by a deterministic function z*(t) .  We construct the z* driven 
version of the individual cost for the i-th player 

A 

J2(uz, z* )  = E e-Pt{[zz - z* ( t ) j2  + ru:}ds, (4.3) 

We note that for large n, it is reasonable to use a single z* ( t )  
to approximate all z:,, 1 5 i 5 n. Let c b [ o l  m) be the set 
of bounded continuous functions on [0, m). 

Proposition 4.1: Assuming n > 0 and s E c b [ o ,  00) are 
determined by the following scalar equations 

Lm 

b2 
p n  = 2arI - -n2 + 1, (4.4) 

ds b2 
p s  = - d t  + as - -ns r - z* ( t ) ,  (4.5) 

where z* E C b [ O ,  CO), then ui = -j(rIzi + s) is the optimal 
0 

The proof can be done by an algebraic approach as in [2] 
control minimizing J ,  (ui, z*) .  

and the details are omitted here. We denote 
b2 

(4.6) 
b2 

P 1  = --a + -n, r p2 = p - a + --n. r 
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By well known results for Riccati equations, we have a - 
$I3 - f < 0 and hence p.3 > 0. In fact, s E Cb[O.oo) may 
be uniquely expressed as s ( t )  = -eOzt lt" e-flZTz*(7)d7.-+ -y, as t + 00 [6]. Unbounded solutions for s are 
excluded for our problem. 

With control U ,  given in Proposition 4.1, the closed loop 
for the i-th player is 

b2 
(4.7) 

Denoting Z i ( t )  = E z i ( t )  and taking expectation on both 
sides of (4.7) yields 5 = ( a  - 5 I I ) F i  - g s ,  where 
Fik=o = Ez i (0 ) .  We further define the population mean 
z = 1. Fi; then clearly F evolves according to the same n equation as zi ,  i.e., 

b2 dzi = ( a  - --IT)z& - -sdt + adwi. 

- 

dz b2 b2 
dt 
- = (U  - - I I ) F - -  -s, (4.8) 
i n  where Flt=o = Ez,(O). Here one naturally comes up 

with the important issue of relating the deteiministic process 
z* to the collective effect of the population. Since we wish 
to have z * ( t )  x zZi = y ( i  zk + 77)  for large n, it is 
reasonable to express z* in terms of the population mean F, 
i.e., 

Z*(t) = y ( f ( t )  + q) ,  t 2 0. (4.9) 

Combining (4.9, (4.8) and (4.9) together and setting the 
derivatives as zero, we write a.set of steady state equations 
as follows 

yz, - z& = -777, 
z k  - ( a  - ,II b2 - p)sW = 0, (4.10) { ( a  - ~ I I ) Z ,  - c s ,  = 0. 

Exanzple 4.2: For the system a = 1, b = 1, U = 
0.3, p = 0.5, y = 0.6, T = 0.1, 7 = 0.25, we get 

We make the following key assumptions for this Section: 
C3) 01 > 0, and & < 1, where M = 9, and PI,,& 
are determined by (4.6). 
C4) zi(O), 1 5 i I n, are mutually independent and 
supi Ez:(O) 5 C,  for C independent of n. 

It can be verified that C3) holds for Example 4.2. Under 
C3), (4.10) is a nonsingular linear equation and has a unique 
solution (F", z&, s"). 

Eliminating s in (4.8) by (4.5) and (4.9), we get the 
equation for the population mean 

ll= 0.4, (Zs , z j0 ,~ , )  = (0.333333,0.35, -0.1). 0 

Theorem 4.3: Under C3), the integral-differential equation 
(4.1 1) with any initial condition FO and the terminal condition 
limt-" F ( t )  = Z, admits a unique solution. CI 

We note that under C3), an explicit bounded solution for 
the set of equations (4.3, (4.8) and (4.9) may be obtained 
[61. 

B. Deceittralized LQG E-Nash Equilibria 

In the current context we give the definition of E-Nash 
equilibrium. 

Dejnition 4.4: A set of controls u k  E uk, 1 5 k 5 n, 
where Uk is a specified class of measurable functions of 
the state processes z1(.) ,  . . . , z,(.) such that the resulting o k  

is adapted to some subfiltration of the underlying Brownian 
motion, is called an E-Nash equilibrium with respect to the 
costs J k ( u k ,  o k ) ,  1 5 k 5 n, if there exists E 2 0 such that 
for each 1 5 i 5 n, 

when any alternative U: E U, is applied by the i-th player. 0 
In Definition 4.4, when E = 0, we retrieve the usual Nash 
Equilibrium. 

Let U! be the optimal tracking based control law for the 
k-th player, i.e., U! = -:(IIzk + s )  where s and z* are 
derived from (4.3, (4.8) and (4.9). We recall that the initial 
condition of Z is take as i Er==, E z k ( 0 ) .  Furthermore, let 

J 2 ( ~ 2 , ~ , ( + .  ,U,-l ,U:+l.*.  0 ,U:)) 

1 5 E  is e-"{ [&(U,) - y( --C;#zzk(~;) + 77)12 + mT}d t ,  

denote the mass driven version of the i-th individual cost 
where z ~ ( u ; )  = zk(u;(zk, z* ) ) ,  and in particular, 

0 J z ( & ~ z ( 4 , . -  9Uz-1, U!+l... ,U",) 

= Jz(u2,2',(U:,* * .  ,u:-_1,u:+1- . e L : ) ) l u , = u p .  

Denote ai = SUP, E[z,(O) - Ez,(0)I2, 00 2 0. 
Theorem 4.5: Under C3)-C4) we have 

(4.12) 

where U! is the optimal tracking based control law. 0 
Tlzeorent 4.6: Under C3)-C4) the set of controls U:, 1 5 

i 6 n, for the n players is an E-Nash equilibrium with 
respect to the mass driven version of the individual costs 
J i ( u i , y ( ; & z i ( u k )  + q ) ) , l  5 i 5 n, where E = 

O ( 9  + A). More specifically, for any i, we have 
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C. A Cost Gap between Centralized Optimal Control and 
Decentralized Control 

For the global cost J given by (4.2) with v, = 
y( A x&, zk + v), one can compute the optimal cost with 
centralized information (i.e., each U ,  depends on 21, . . . , zTL) 
by the standard algebraic Riccati equation approach. Here 
we assume ~ ~ ( 0 )  = 0, for 1 5 i 5 n. Denote 
v(0) = infJIz, 0 )  O,l<,Sn = ii~f(E:=~ Jz) lz , (o)=o.1lzln.  
Let FT1(0) = and F ( 0 )  = lim7z+mCn(0). C(0) may be 
interpreted as the optimal cost incurred by each individual in 
the large population limit. 

On the other hand, for (4.3) we denote 21,,d(0) = 
iiif,< J,(u,,z*), where z* is determined by ( 4 3 ,  (4.8) and 
(4.9) and we take initial condition ~ ~ ( 0 )  = 0. Then we have 

IE(0)  - U,,,d(O)l = 0(y2);  (4.13) 

see [6] for details. The cost gap is displayed in Fig. 1 below. 
The plot is obtained from a family of systems specified by: 
a = b = 1, o2 = 0.09, p = 0.5, r = 0.1, = 0.25 and 
7 E [O.O.G]. 

A .  

ttcoi = - 

. .  0 .L  

0.J 

Fig. 1 .  Top: individual tracking based cost vin,j(0); Middle: scaled global 
cost is(0); Bottom: the cost gap ls(0) - v ind(0) l .  

V. DECENTRALIZED LARGE POPULATION WIRELESS 
POWER CONTROL PROBLEMS 

We now approximate the wireless power control problem 
of Sections 2-3 in the large population case by a tracking 
problem together with an exogenous random process z as 
described by (2.1). In this Section we assume the assumptions 
C1) and C2) hold. We shall establish a large population 
E-Nash equilibrium result by extending the method in Section 
IV-B. The notation used in this Section is consistent with 
Sections 11-111, and some notation as well as E-Nash equilibria 
of Section IV will be extended to the power control context. 
First, we set the individual cost for the i-th mobile with 
respect to the mass as 

i.e., the i-th component in the centralized cost function in 
Section 11. We define the i-th individual cost with respect to 
a deterministic function z* E cb[o, CO) as 

J,(u,, z * )  = E e-Pt{[ezzpz - z*(t)I2 + ruT}dt, (5.2) 

When the individual costs J ,  (U, ,  z * )  are employed, assuming 
sufficient smoothness of the optimal costs 

v( t ,  2,) = inf E [  

where t 2 0 ,  we can write the equation system 

lP 

r n e-PT{[ezc(T)pz - z*12 + T U : } ~ T ~ ~ , I ,  
21, 

with classical solutions such that I<(.,) = 0(1 + e2rq) and 
s(t ,  z,) = 0(1 + e=%) uniformly with respect to t E [O. CO). 

Then by an argument employing a verification theorem [5] 
one can show that the optimal control law for the z-th user 
minimizing J ,  ( U,, z * )  is 

(5.5) 
1 
r U2 = - - [ I - m ) p ,  + s ( t , d I ,  

and hence we have the optimal closed loop for p ,  as 

(5.6) 
1 
r dP, = - - [ K ( X , ) P ,  + s( t ,  z,)ldt. 

As in the pure LQG case analyzed in Section IV-A, here 
we also have the issue of determining the function z* which 
is to be tracked by individual players. With the original 
SIR based cost function in mind, we consider taking t* x 
y( Et+, exApk + r ] )  for large n. We recall that any pair of 
x,,zk, z # k ,  are independent of each other. To simplify 
our analysis further, we shall assume that each z, has 
initial condition z2It=0 such that z, is a stationary Gaussian 
process. We also assume that all mobile users have identical 
deterministic initial condition p ,  It=0. The extension to more 
general initial conditions for the attenuations and powers 
appears to be straightforward. Under the above assumptions, 
we take 

z*( t )  = y(EezlP, + 771, (5.7) 

where the right hand side only depends on time t and the 
initial power po after the feedback is determined by (5.5). 

Theorem 5.1: If there exists (I<(x,), s(z,), z * ( t ) )  satisfy- 
ing the equation system (5.3), (5.4), (5.6) and (5.7) such 
that Z* E cb[O,oo), K E C2(R), s E C112(R+ X R) 
and in addition, K(z , )  = O(1 + e2zs) ,  and s( t ,z , )  = 
O(l+e".), then the control law determined by (5.5) is a Nash 
equilibrium for the costs (5.2) and an E-Nash equilibrium 
for the costs (5.1) subject to full information for individual 

0 controls, where E = O( &). 
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VI. FURTHER WORK AND CONCLUSION 
To analyze solutions to the set of equations (5.3), (5.4), 

(5.6) and (5.7) one can in principle introduce a joint distribu- 
tion function F ( t , z i , p i )  for the process ( z i , p i )  and express 
z* ( t )  in the form of an integral. Here ( z i , p i )  is a Markov 
process and thus F ( t ,  x i , p i )  is governed by a Fokker-Planck 
equation. Hence the evolution of the above equation system 
is described in terms of time t and the infinite dimension state 
variable ( z i , p i ,  F ( t ,  -, e)), which we shall call the generalized 
state variable. Possible approximation methods to the above 
equation system would be of great interest. This will be 
considered in future work. 

In this paper we investigate stochastic power control 
subject to lognormal fading. Two different methods are 
considered: the global cost based centralized information 
control and the individual cost based decentralized control. 
In general, the global cost based approach emphasizes a 
certain coordination between individuals to achieve global 
optimality; for such large population systems the information 
used by a given individual exhibits a separation property 
in that its control law mainly depends upon (i) its own 
channel-power condition and (ii) a quantity measuring the 
nearly deterministic average effect of all the other users. 
It should be noted that in this centralized framework, each 
individual does not make an effort to optimize against this 
deterministic process, which distinguishes this case from the 
dynamic game theoretic scenario. 

On the other hand, by virtue of the scaling nature of the 
cost function, we may consider approximating and then split- 
ting the global cost function and thus obtain a decomposition 
into individual costs. This leads to a game theoretic frame- 
work. In such an individual cost based optimization setting, 
there is also a roughly deterministic process generated by the 
mass or collective. In contrast to the global cost case, each 
individual determines its control law by optimizing against 
the mass. Thus there is an intrinsic clash of interests between 
different users, but the individual and the mass can still reach 
stable behaviour under sDecific conditions. 
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