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Abstract—This paper considers mobile to base station power
control for lognormal fading channels in wireless communica-
tion systems within a centralized information stochastic optimal
control framework. Under a bounded power rate of change
constraint, the stochastic control problem and its associated
Hamilton–Jacobi–Bellman (HJB) equation are analyzed by the
viscosity solution method; then the degenerate HJB equation is
perturbed to admit a classical solution and a suboptimal control
law is designed based on the perturbed HJB equation. When a
quadratic type cost is used without a bound constraint on the con-
trol, the value function is a classical solution to the degenerate HJB
equation and the feedback control is affine in the system power. In
addition, in this case we develop approximate, but highly scalable,
solutions to the HJB equation in terms of a local polynomial
expansion of the exact solution. When the channel parameters are
not known a priori, one can obtain on-line estimates of the param-
eters and get adaptive versions of the control laws. In numerical
experiments with both of the above cost functions, the following
phenomenon is observed: whenever the users have different initial
conditions, there is an initial convergence of the power levels to a
common level and then subsequent approximately equal behavior
which converges toward a stochastically varying optimum.

Index Terms—Dynamic programming, Hamilton–Jacobi–
Bellman (HJB) equations, lognormal fading channels, power
control, quality of service.

I. INTRODUCTION

POWER control in cellular telephone systems is important
at the user level in order to both minimize energy require-

ments and to guarantee constant or adaptable quality of ser-
vice (QoS) in the face of telephone mobility and fading chan-
nels. This is particularly crucial in code division multiple access
(CDMA) systems where individual users are identified not by a
particular frequency carrier and a particular frequency content,
but by a wideband signal associated with a given pseudorandom
number code. In such a context, the received signal of a given
user at the base station views all other incell user signals, as well
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as other cell signals arriving at the base station, as interference or
noise, because they both degrade the decoding process of iden-
tifying and extracting a given user’s signal. Thus, it becomes
crucial that individual mobiles emit power at a level which will
insure adequate signal-to-interference ratio (SIR) at the base sta-
tion. More specifically, excess levels of signalling from a given
mobile will act as interference on other mobile signals and con-
tribute to an accelerated depletion of cellular phone batteries.
Conversely, low levels of signalling will result in inadequate
QoS. In fact, tight power control is also indirectly related to the
ability of the CDMA base station to accommodate as many users
as possible while maintaining a required QoS [41].

There has been a rich literature on the topic of power control.
Previous attempts at capacity determination in CDMA systems
have been based on a “load balancing” view of the power con-
trol problem [41]. This reflects an essentially static or at best
quasi-static view of the power control problem which largely
ignores the dynamics of channel fading as well as user mobility.
In essence, in this formulation power control at successive
sampling time points is viewed as a pointwise optimization
problem with total statistical independence assumed between
the variables (control or signal) at distinct time points. For the
computation of various static optimal power levels, distributed
algorithms have been developed in [29], [42] with constant
channel gain. In a deterministic framework, [36], [37] present
an attempt at reintroducing dynamics into the analysis, at least
insofar as convergence analysis to the static pointwise optimum
is concerned. This is achieved by recognizing that power level
set points dictated by the base station to the mobile can only
increase or decrease by fixed amounts. In [1], power control is
considered for a CDMA system in which an SIR based utility
function is assigned to each user; this gives rise to a game the-
oretic formulation to power optimization. For spread spectrum
wireless networks, Hanly and Tse studied power control and
its relationship with system capacity [14]. In the stochastic
framework, attempts at recognizing the time correlated nature
of signals are made in [27], where blocking is defined, not as
an instantaneous reaching of a global interference level but
via the sojourn time of global interference above a given level
which, if sufficiently long, induces blocking. The resulting
analysis employs the theory of level crossings. In [24], the
authors proposed power control methods for Rayleigh fading
channels using outage probability specifications. Downlink
power control for fading channels is studied in [3] by a heavy
traffic limit where averaging methods are used. Recent work on
dynamic power control with stochastic channel variation can
be found in [5], [35], and [38], and power compensation for
lognormal shadowing effects is considered in [35] and [38].
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In contrast to those papers, the modeling and analysis of
power control strategies investigated here employ wireless
models which are time-varying and subject to fading. In partic-
ular, the dynamic model for power loss expressed in decibels
(dBs) is a linear stochastic differential equation whose prop-
erties model the long-term fading effects due to: 1) reflection
power loss, and 2) power loss due to long distance transmis-
sion of electromagnetic waves over large areas [6], [8]. This
gives rise to power loss trajectories which are log-normally
distributed. Lognormal power loss models are justified by
experimental data [30], [33].

Concerning wireless channel modeling, we note that radio
channels experience both large-scale fading (long-term effects)
and small-scale fading (short-term effects). Large-scale fading
is modeled by lognormal distributions and small-scale fading
can be modeled by Rayleigh or Rician distributions [33]. In
general, large-scale fading and small-scale fading are consid-
ered as superimposed and may be treated separately [25], [33],
[44]. In this paper, we only consider dynamic modeling of the
large-scale fading and its transmission power compensation.

Motivated by current technology, we propose a (bounded)
rate based power control model for the power adjustment of
lognormal fading channels and then different performance func-
tions are introduced. The structure of each of the performance
functions is related to the system SIR requirements. We do not
make direct use of the SIR or other related quantities such as
the bit error rates (BERs) [9] or outage probabilities in the defi-
nition of the performance function; instead, we use a loss func-
tion integrated over time which depends upon the factors deter-
mining the SIRs and the power levels. By this means, we will
be able to avoid certain technical difficulties in the analysis and
computation of the control laws. Our current analysis of the op-
timal control law of each individual user involves centralized
information, i.e., the control input of each user depends on the
state variable of all the users. It is of significant interest to in-
vestigate the feasibility of decentralized control under fading
channels since this may substantially reduce the system com-
plexity for practical implementation of the control laws. Indeed,
our stochastic control framework can be combined with certain
approximation techniques to give relatively simple (partially de-
centralized) control laws for practical systems with many users;
see [22].

The paper is organized as follows. In Section II, we pro-
pose an optimal control formulation for CDMA power adjust-
ment which includes a fading channel model, a power control
model and a performance function which is intended to reflect
power minimization objectives under SIR constraints. In this
section, following [36], [37], and taking into account existing
wireless technology [32], we introduce a “rate based” power
set point bounded control input model. An important conse-
quence of the existence of a bound on the rate of change of
mobile power, is that successive uplink power adjustments can
no longer be considered as a sequence of independent point-
wise optimization problems (the currently prevailing telecom-
munications view). In Section III, for an isolated cell we an-
alyze the optimal stochastic control and introduce the associ-
ated degenerate HJB equation. The solution of the HJB equa-
tion is sought in a viscosity solution framework. Section IV is

devoted to the suboptimal approximation of the value function
by suboptimal classical solutions, and Section V contains nu-
merical solutions to the approximating HJB equation and sim-
ulations of the suboptimal control laws. In Section VI, we re-
move the bound constraint on the control input by introducing
a quadratic type cost function which leads to an analytic solu-
tion for the feedback control law. Based on this analytic solu-
tion, further approximations to the control law are considered.
These approximations are of particular interest from an engi-
neering point of view because they make computations of con-
trol laws feasible for large systems. Moreover, for systems with
a large number of users the linear quadratic approach in Sec-
tion VI is also useful in developing decentralized or partially
decentralized control laws by appropriately approximating the
total interference one user receives from all other users; this may
be addressed in the so-called individual versus mass framework
[21]. In the main part of the analysis in this paper, we have as-
sumed known channel dynamics. When the channel parameters
are unknown, one can employ the parameter estimation scheme
in Appendix C to get online estimates of the channel parameters
and construct adaptive versions of the control laws.

In Sections V and VI, in the numerical experiments in both
the bounded control and quadratic type cost function cases, the
following phenomenon is observed: whenever the users have
different initial conditions there is an initial convergence of the
power levels to a common level and then subsequent approx-
imately equal behavior which converges toward a pointwise
(stochastically varying) optimum. This phenomenon constitutes
a notable cooperative behavior of users when cooperation is
induced by the centralized optimal control formulation adopted
in this paper. Finally, the conclusion outlines future work.

II. OPTIMAL CONTROL FORMULATION

A. Channel Model

There has been an extensive literature on modeling of
radio propagation. Generally, radio channels experience both
small-scale fading (short-term effects, modeled by Rayleigh or
Rician distributions) and large-scale fading (long-term effects,
modeled by lognormal distributions), which result in random
fluctuations of received power for mobile users. In general, the
two different fading effects are understood as superimposed
and can be treated separately due to the different mechanisms
from which they are generated [25], [33]. Methods to mitigate
the impairments of large-scale fading and small-scale fading
are quite different. Indeed, small-scale (with a time scale of
milliseconds) fading is caused by multipath replicas of the
same signal which, in view of their respective phase shifts, can
interact either constructively, or destructively. It is a problem
which can be addressed via the so-called diversity techniques
(see [23] and [33]). Large-scale (with a time scale of hundreds
of milliseconds) fading is caused by shadowing effects due
to buildings and moving obstacles, such as trucks, partially
blocking or deflecting mobile or base station signals.

Practical power control algorithms can efficiently com-
pensate for large-scale fading but cannot effectively cope
with small-scale fading [15]; the more effective techniques to
combat small-scale fading include antenna arrays and coding,
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etc. [44]. For these reasons, in the subsequent analysis we
only deal with large-scale (lognormal) fading, and small-scale
fading will not be in the scope of our work. We note that in
certain environments the small-scale component may play an
increasingly important role for channel modeling.

For the discrete time scenario, based on Gudmundson’s ex-
perimental measurements, first order autoregressive (AR) inno-
vation models have been widely used for dynamic modeling
of large-scale fading (see, e.g., [13], [38], and [40]); in these
AR innovation models, large-scale fading is described in dB as
Gaussian Markov processes. In this paper we follow the sto-
chastic differential equation approach proposed by Charalam-
bous and Menemenlis [6] for the dynamic modeling of large-
scale fading. This is intended as a general setup for continuous
time modeling of the spatio-temporal correlation of large-scale
fading taking into account user mobility.

Let , , denote the attenuation (expressed in
dBs and scaled to the natural logarithm basis) at the instant of
the power of the th mobile user of a network and let

denote the actual attenuation. Based on the work in [6],
we model the power attenuation dynamics by the so-called mean
reverting Ornstein–Ulenbeck process

(1)

where denotes the number of mobile users,
are independent standard Wiener processes, and ,

, are mutually independent Gaussian random vari-
ables which are also independent of the Wiener processes. In
(1), , , and , . The first term in
(1) implies a long-term adjustment of toward the long-term
mean , and is the speed of the adjustment. The constant

is interpreted as the average large-scale path loss [6]. In typ-
ical mobile communication scenarios, the change of the channel
attenuation is primarily due to the spatial variation of the log-
normal shadow fading component, and the effect of user-base
distance change is usually far less significant; see [38], [40], and
a simple numerical example for a macrocell in [16]. As a result,
the attenuation manifests itself as oscillations around a constant
level during the service session. For this reason, in the channel
modeling it is plausible to set as a fixed constant when user
mobility is taken into account.

In (1), the parameters , indicate the variation rate of the
channel gain, and are related to the user mobility level and the
volatility of the underlying lognormal shadowing effects. For
statistical characterization of shadowing effects, the interested
reader is referred to [33].

B. Rate-Based Power Control

Currently, the power control algorithms employed in the
mobile telephone domain use gradient type algorithms with
bounded step size [14], [32], [39]. This is motivated by the fact
that cautious algorithms are sought which behave adaptively
in a communications environment in which the actual position
of the mobile and its corresponding channel properties are
unknown and varying. A limited step size is also desirable
when mobile power levels are close to optimum.

We model the adaptive stepwise adjustments of the (sent)
power (i.e., that sent in practice by the th mobile) by the
so-called rate adjustment model [17], [18]

(2)

where the bounded input controls the size of increment
at the instant . Without loss of generality we set .
The adaptive nature of practical rate adjustment control laws is
replaced here by an optimal control calculation based on full
knowledge of channel parameters , , and , . In
the intended practical implementation of our solution these pa-
rameters would be replaced by online estimates; see Appendix C
for the parameter estimation algorithm. Write

We note that the rate adjustment model (2) is similar to the
discrete-time up/down power control scheme proposed in [35]
where the power at the next time instant is calculated from the
current power level and a bounded additive tuning term which
is optimized by a statistical linearization technique employing
the current power, the channel state and a target SIR.

C. Performance Function

Let be the constant system background noise intensity
which is assumed to be the same for all mobile users in a
network. Then, in terms of the power levels , ,
and the channel power attenuations , , the so-called
SIR for the th mobile is given by ,

. A standard communications QoS constraint is to
require that

(3)

where , , is a prescribed set of individual SIR’s.
The constraints (3) are equivalent to the linear constraints

, which, in turn, are equivalent to
and, hence, to

(4)

where , . It is easily verified
that there exists at least one positive power vector satisfying
(4) if and only if

(5)

A straightforward way to formulate the optimization problem
would be to seek control functions which yield the minimiza-
tion of the integrated power , subject to the
constraints (4), (5) at each instant , . First, how-
ever, consider the pointwise global minimization of the summed
power under the inequality constraints (4), (5) and the
constraints , . Taking the inequalities
in (4) as equalities and taking into account the constraint (5),



1696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 10, OCTOBER 2004

we get a positive power vector given by
, . It turns out that

is the unique positive vector minimizing under con-
straints (4), (5). Furthermore, it can be shown [37] that any non-
trivial local perturbation of to a vector which also satisfies
the constraints results in a strict increase of each component .
Hence, such a is a local (linear inequality constrained) min-
imum which is also a global (linear inequality constrained) min-
imum. In other words, provided (5) holds, the solution to

minimize (6)

subject to (4) is the unique solution to

(7)

Hence, it is well motivated to replace such a pointwise
constrained deterministic optimization problem with the
corresponding unconstrained deterministic penalty function
optimization problem

minimize

(8)

over , , where . However, because the
power vector is a part of the stochastic channel-power system
state with dynamics (1), (2) and full state , it is impossible
to instantaneously minimize (8) via at all times . Hence,
over the interval , we employ the following averaged inte-
grated loss function:

(9)

subject to (1) and (2), where . It is an extra property of the
loss function (9) corresponding to (6) and (7) that overshoots
near the optimum are penalized.

Clearly, in the cost function (9), the first term of the integrand
is related to the instantaneous SIR in an indirect way. We note
that if the SIR term in (3) were to be employed directly in the
cost function it would cause a potential zero division problem
and present more analytic difficulties, since in our current for-
mulation we do not add hard constraints to ensure positivity of
the powers.

In a practical implementation, the power of each user should
remain positive. To meet such a requirement, we can choose ap-
propriate control models. For instance, one might choose the
control model , , with a positive
initial power vector. However, this and related setups may de-
viate significantly from the technology actually in use. Instead,
we use the rate based control model and the loss function in-
troduced previously. By choosing a small weighting coefficient

and increasing the upper bound for the control input,
we can guarantee that the optimally controlled power process

obtained in the stochastic optimal control framework takes a
negative value with only a small probability. For a better under-
standing of this point, we consider the ideal powers for mini-
mizing the integrand of (9). For a fixed time period, we assume
the attenuations to be constants and write

(10)
Setting , we write the integrand in (9) as

, where the coefficients
are determined from (10). The minimum of is attained

at , where

(11)

Thus, when the attenuations are fixed and , (11) gives
a positive vector . By straightforward calculation it can be fur-
ther shown that under the condition (5), the coefficient matrix
in (10) has an inverse with all positive entries and, therefore,
we can obtain a positive power vector from using (10). Al-
though cannot be realized instantaneously by a control input,
the optimal control will try to track . Whenever the power of
the system deviates from , a greater penalty results. In such a
manner the optimal control will try to steer the optimally con-
trolled power to be positive with a large probability.

Throughout this paper, we assume the following assumption
holds

H1) The positive constants , , in the cost func-
tion (9) satisfy the inequality (5), i.e.,

.

III. ANALYSIS OF THE OPTIMAL CONTROL

In the following, we analyze the optimal control problem in
terms of the state vector ; this facilitates the definition of
the value function since is defined on , while is only
defined on , . Further define

...
...

. . .
...

(12)

and set , . We write (1) and (2) in
the vector form

(13)

where is an standard Wiener process determined by
(1). In the analysis, we will denote the state variable either by

or by , or in a mixing form, when it is convenient. We
also rewrite the integrand in (9) in terms of as
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As is stated in Section II-A, the initial value of at is
independent of the Wiener process; we make the additional
assumption that is deterministic.

The admissible control set is specified as
adapted to and

. Define adapted to and
. If we endow with an inner product

, for , , then constitutes
a Hilbert space. By the previous inner product we have on

an induced norm , under which is a bounded,
closed and convex subset of . Finally, the cost associ-
ated with the system (13) and a control is specified to be

, where
is taken as the initial time of the system; further we

set the value function

and simply write as . Throughout this
paper, we use (or ) with an integer subscript
to denote the th entry in the vector (or ) respectively, and
or associated with a real valued subscript or (e.g.,

) to denote the value of the vector process at time or .
Theorem 3.1: There exists a unique such that

, where is the
initial state at time , and uniqueness holds in the
following sense: if is another control such that

, then only on a
set of times of Lebesgue measure zero, where is
the underlying probability sample space.

Proof: See Appendix A.
Proposition 3.2: The value function is continuous on

, and furthermore

(14)

where is a constant independent of .
Proof: The continuity of can be established by contin-

uous dependence of the cost on the initial condition of (13).
Inequality (14) is obtained by a direct estimate of the cost
function.

We see that in (13) the covariance matrix is not of full
rank. In general, under such a condition the corresponding sto-
chastic optimal control problem does not admit classical solu-
tions due to the degenerate nature of the arising HJB equations.
Thus we adopt viscosity solutions.

Definition 3.3: [43] is called a
viscosity subsolution to the HJB equation

(15)

if , and for any , when-
ever takes a local maximum at , we
have

(16)

at . is called a viscosity super-
solution to (15) if , and in (16) we have an opposite
inequality at , whenever takes a local minimum at

. is called a viscosity solution if it
is both a viscosity subsolution and a viscosity supersolution.

We introduce the function class such that each
satisfies

i) ;
ii) there exist , , such that

, where the con-
stants , , depend on each .

Theorem 3.4: [19], [45] The value function is a viscosity
solution to the HJB equation

(17)

Moreover, there exists a unique viscosity solution to the (17) in
the class .

IV. SUBOPTIMAL APPROXIMATION OF THE VALUE FUNCTION

A. Perturbation of the HJB Equation

As is pointed out in Section III, in general we cannot prove
the existence of a classical solution to the HJB equation (17)
due to the lack of uniform parabolicity. Now, we modify (17)
by adding a perturbing term and for-
mally carrying out the minimization to get

(18)

where we use to indicate the dependence on . We seek
a classical solution in the class .

i) .
ii) , where , , depend on

.
iii) .

We will prove the existence of a solution to (18) in by an
approximation approach. First we fix . For a positive
integer , we introduce such that
for , for , and . Write the
auxiliary equation

(19)

Theorem 4.1: Equation (18) has a unique solution in the
class for all .
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Proof: The existence of a classical solution can be proved
in a way similar to [10, Th. VI6.2], and it can be shown first that
(19) admits a classical solution in the class . Fix any

. We take . Then, for any ,
in (19) satisfies (18) for . , , are

uniformly bounded on , and for any ,
, by local estimates [10]

is uniformly bounded with respect to , where denotes the
norm. In the above we can take , and therefore

by the Hölder estimates [10], satisfies a uniform Hölder con-
dition on . We can further use the Hölder estimates to show that

, , , satisfy a uniform Hölder
condition on . Finally, we use the Arzela–Ascoli theorem [34]
to take a subsequence of
such that , , , converge uniformly to , ,

, on , respectively, as , where satisfies (18)
and is in the class . By the growth condition of , we can use
Itö’s formula to show that any satisfying (18) is the
value function to a related stochastic control system, and thus it
is a unique solution to (18) in .

Theorem 4.2: For , compact , if is the
solution to (18) in class , then uniformly on ,
as , where is the value function of (13).

Proof: Suppose are mutually inde-
pendent standard Wiener processes. Write

(20)

Let denote -adapted controls satisfying ,
. It can be shown that the optimal cost of (13) does

not change when is replaced by . In fact, subject to the
admissible control set or we can prove that the value
function to the controlled system (13) is the viscosity solution
to the same associated HJB equation and the viscosity solution
is unique (see Theorem 3.4). Hence, in the following we always
take controls from . Furthermore, is the value
function to the stochastic control problem associated with (1)
and (20), i.e.,

For a fixed , we have
, and using Lebesgue’s dominated convergence theorem

[34], we obtain

as

and, therefore, as . It is easy to
verify that is uniformly bounded on for .
Furthermore, by taking two different initial conditions
and we can show that on , is equicontin-
uous with respect to . By the Arzela–Ascoli theorem,

uniformly on , as .

B. Interpretation of the Control Law

In the HJB equation (17), the value function is described by
the formal use of its first and second order derivatives, and the
equation is interpreted in a viscosity solution sense. The optimal
control is not specified as a function of time and the state vari-
able globally due to the nondifferentiable points of the value
function.

After the perturbation of HJB equation, the associated subop-
timal cost function is differentiable everywhere. Then, the sub-
optimal control law is constructed by the rule

(21)

which gives a bang–bang control. We note that the suboptimal
control law (21) resembles the up/down power control algo-
rithms in [35] where at each discrete time instant the power is
increased or decreased by a fixed amount and the increment is
determined by the current power, the observed random channel
gain and a target SIR. However, our method here differs from
[35] since the fading dynamics modeled by (1) are incorporated
into the calculation of the control law (21). In a discrete time
implementation, we assume the time axis is evenly sampled by
a period of . At time , , the th user
only needs to increase or decrease its power by in the case

or , respectively;
if , the increment for is set as 0. The
significance of the suboptimal control law is that it gives a very
simple scheme (i.e., increase or decrease the power by a fixed
amount or keep the same power level) for updating the power
of users by requiring limited information exchange between the
base station and the users (in the current technology, the base
station sends the power adjustment command to the users based
on its information on the operating status of each user), and thus
reduces implementational complexity.

On the other hand, it is seen that each user uses centralized
information, i.e., the current powers and attenuations of all the
users, to determine its own power adjustment. In general, to im-
plement the centralized control law requires more information
exchange between the base station and the individual users than
in the case of static channels [36], [37].

V. NUMERICAL IMPLEMENTATION OF THE SUBOPTIMAL

CONTROL LAW

From the analysis in Section IV, we can see that for a numer-
ical implementation, we only need to choose a small positive
constant and solve (18) and the suboptimal control is de-
termined in a feedback control form. We consider the case of
two users with i.i.d. dynamics

We take the time interval [0,1] and use a performance function
with
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A. Numerical Scheme

In order to compute the suboptimal control law, we need to
solve the approximation equation

(22)

This equation is solved by a standard difference scheme [2] in
a bounded region

. An additional boundary condition is added
such that , where .
Let , be the step sizes, and denote ,

where 1 is the th entry in the row. We
discretize (22) to get the difference equation

(23)

where

(24)
With the boundary condition and an initial approximate solu-
tion, we can determine the variables and (the control vari-
ables) by the rule (24), and update the numerical solution. The
iterations converge to the exact solution to the difference equa-
tion (23), as can be proved by the method in [26]. We remark
that there are general results concerning the convergence of this
type of difference scheme to the solution of the original partial
differential equation. The interested reader is referred to the lit-
erature (see, e.g., [11]).

For a comparison, we also construct the power updating
scheme for two users

(25)

where , .
In the cost for the simulation, , which

Fig. 1. Typical cell.

Fig. 2. Attenuation x , controlled power p , and static optimum q , � = 0:01.
Initial power: (a) p = [0:01; 0] and (b) p = [0:21;0:6] .

determines . The rule (25) is used to mimic
practical binary power control algorithms which are based on
SIR targeting without taking into account the channel dynamics;
see the discussion in [14].
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Fig. 3. (a) Attenuation x , controlled power p , static optimum q , � = 0,
p = [0:6; 0] . (b) Comparison between p and Q determined by (25).

B. Simulations

We consider the system with parameters , ,
, , and two cases for : 1) ; 2)

. In the difference scheme (23), the step size is 0.1 for ,
, , . To improve the approximation we can reduce

, and at the same time we should reduce to guarantee
convergence of iterations of the difference scheme. In the
simulation, the value function will be further interpolated to
get a step size of 0.05 which will help reduce overshoot
in the power adjustment. The control is determined by the
descent direction of the value function. If either increasing
or decreasing the power level does not cause an evident
decrease of the value function, we set the control to be 0.
Fig. 1 indicates the uplink power transmission from the users
to the base station [33]. Figs. 2 and 3 present the simulation
results for cases 1–2, respectively, and , are the pointwise
optimal powers (i.e., static optimum) obtained from (7). When
the cost function places a small emphasis upon power saving

the controlled power trajectories are seen to be close
to the pointwise optimal powers. Fig. 4 shows two surfaces of

Fig. 4. Approximate surfaces for the value function v(t; x ; x ; p ; p ) where
(x ; x ) = (�0:3;�0:3), � = 0, (a) t = 0, and (b) t = 0:9.

the value function at different times when the attenuations
are fixed. These surfaces clearly demonstrate the gradient
information of the value function with respect to powers.

When at the initial time one mobile has a significantly dif-
ferent power level than the other, we see that an interesting
equalization phenomenon takes place as shown in Figs. 2(b)
and 3(a). Starting from the initial instant the controller will first
make the mobile with a high power level reduce power and the
other increase power; after a certain period however both mo-
biles will increase their power together. This phenomenon re-
veals a certain cooperative feature in the users’ power adjust-
ment. Suppose at the beginning user 1 has a high power and
thus a high SIR output for itself; by slowly decreasing its power
for a short period user 1 may still attain an acceptable SIR while
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effectively helping user 2 reach a desired SIR level in an acceler-
ated manner. This feature is due to i.i.d. channel dynamics and
the specific structure of the quadratic penalty function for the
power vector. When the two powers are very different, they are
necessarily far away from the minima of the quadratic form and
incur a large instantaneous penalty. Then, an efficient way for
the controller to work is to eliminate the large power difference
by pushing two powers toward each other and eventually bring
the two powers to steady levels.

We compare the trajectories of and in Fig. 3(b). It turns
out that during the equalizing phase the two corresponding con-
trol algorithms act in the same manner. This generates the fully
overlapped segment of the trajectories (for instance, “box” and
“circle”). However, an evident discrepancy is demonstrated be-
tween the two control laws (24) and (25) at the late stage. This
takes place because the channel dynamics are employed in the
calculation of the suboptimal control law and a prediction ability
for the channel state is incorporated into the controller. Hence,
the suboptimal control law (24) can react to the channel varia-
tion in a more clever manner than the rule (25).

VI. DISCOUNTED CASE

A. Discounted Cost Function and the HJB Equation

In this section, we impose no bound constraint on the control
input and introduce a penalty term for in the cost function.
We write

(26)
where and is a weight matrix. We penalize abrupt
change of powers via since practical power control is ex-
ercised in a cautious manner and there exist basic limits for
power adjustment rate. After subtracting the constant compo-
nent from the integrand in (26), we get the cost function to be
employed

(27)

where , are positive definite matrix, and
vector, respectively, which are determined from (26). Write

.
We take the admissible control set adapted to

and . As in Section III,
we can define the value function . We do not repeat those here
but will use the notation of Section III for which the interpreta-
tion should be clear. We note that certain controls from may
result in an infinite cost due to the presence of the process,

. However the optimal control problem is still well
defined under the admissible control set . We formally write
the HJB equation for the value function as

which gives

(28)

Proposition 6.1: The value function is a continuous func-
tion of and can be written as

(29)

where , and are continuous in , and are all of
order .

Proof: The continuity of can be proved by
continuous dependence of the cost on the ini-
tial condition of the system. Define

where and , are both positive integers; on the

control set
. By a

discrete-time LQ approach we solve as a quadratic
form in . On the other hand, sending , , in the
sequel, it can be shown that by an
approximation argument [16]. Consequently, by convergence
of we get the existence of , , and the
expression (29) for . The upper bound for , ,
is obtained by a direct estimate of the growth rate of .

Proposition 6.2: The value function is a classical solution
to the HJB equation (28), i.e., , , ,

, exist and are continuous in .
Sketch of Proof: By a vanishing viscosity technique [10],

[43] one can show that the value function is a generalized so-
lution to (28) in terms of weak derivatives with respect to .
By Proposition 6.1, we see that exists and is continuous.
Now, (28) can be looked at as a partial differential equation pa-
rametrized by . Then one can further show by use of smooth
test functions of the form with compact support that

is a generalized solution with respect to for each fixed . By
a comparison method [10] using different initial values for one
can show that for each fixed , and hence ,
all satisfies a local Lipschitz condition w.r.t. . So for each fixed

, the term
in (28) also satisfies a local Lipschitz condition w.r.t. . For a
fixed , (28) can be written in the form

(30)

Since (28) is uniformly elliptic and is locally Lipschitz con-
tinuous w.r.t. , the generalized solution (w.r.t. ) has contin-
uous first and second order derivatives with respect to [12].
Hence has all the classical derivatives appearing in the HJB
equation (28).
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B. PDEs for the Discounted Case and the Control Law

By Propositions 6.1 and 6.2, we have

This gives

Hence, we get the partial differential equation system

(31)

(32)

(33)

where we will refer to (31) as the Riccati equation of the system.
Note that in the case the channel degenerates to a static one, i.e.,

for all , (31) reduces to a usual algebraic Riccati
equation. Finally, the optimal control law is given by

(34)

where denotes the power vector. This gives the control law for
all users. The separation of variables and in (34) is useful,
and this feature may be employed to construct simple subop-
timal control laws as shown in Appendix B.

C. Simulations Based on the Discounted Cost Function

As in the bounded control case, we use a similar scheme to
compute the value function approximately and the control law is
determined by a quadratic type minimization based calculation.
In the simulation, the system dynamics are the same as in Sec-
tion V. In the quadratic type cost function, the discount factor

, the weight matrix , and ,
as in Section V. The time step size is 0.05. In Fig. 5, , , ,

, 2 denote the attenuation, controlled power, control, re-
spectively, and is generated by the rule (25) in which we take

, .
Similar to the bounded control case, the controlled powers

also demonstrate a mutual convergence toward each other; how-

Fig. 5. (a) Attenuation x , controlled power p , and Q . (b) Control u .

ever, after both powers settle down in a small neighborhood of
a stable level, at each step only a minor effort is required for
each mobile to adjust its power, which differs from the sub-
optimal bang–bang power control. The control activity is also
much lower than the case for .

D. Local Approximation of the Solution

In this section, we address the important issue of the com-
putability of solutions to the equations in Section VI-B. An anal-
ysis of local expansions of solutions around a steady state mean

of the attenuation is useful in the small noise case because the
attenuation trajectory will be expected to spend a dispro-
portionate amount of time in a small neighborhood of .

For simplicity, we consider the symmetric case, i.e., all the
users have i.i.d. dynamics with , , and

, in the cost. We use to
denote the solution of the Riccati equation (31) and write

(35)



HUANG et al.: UPLINK POWER ADJUSTMENT IN WIRELESS COMMUNICATION SYSTEMS 1703

where and ,

. It is worth mentioning that for the
symmetric case, in the local polynomial expansion of
by (35) the number of distinct entries in the three coefficient
matrices does not exceed 15 as the dimension of the system
increases. This can be demonstrated by employing certain
symmetry properties of the matrix [16], [22].

We write the Riccati equation(31) in terms of its components
to obtain

(36)

Now, we write the system of approximating equations (up to
second order)

(37)

where , are the th diagonal entry and

the th row of the matrix , respectively, and

is the th entry of . Notice that in writing (37) only
the first three terms in (35) are formally substituted into (36)
and the higher order terms are neglected. When the higher
order terms are taken into account, additional terms of the
order and will appear in (39) and

(40), respectively, where and denote the third- and
fourth-order mixing partial derivatives of at . Here,
in order to avoid an infinitely coupled equation system we
neglect these additional terms but maintain sufficiently close
approximation to the exact solution since we are considering
the small noise case. However, we write an exact equation
corresponding to the zero-order term since it has more weight
in the suboptimal control law when the state stays in a small
neighborhood of . By grouping terms with zero power of

in (37), we obtain the equation system

(38)

or, equivalently, in the matrix form

which takes the form of a perturbed algebraic Riccati equation.
By (37), we also have

which gives

(39)

Finally, by inspecting the second-order terms in (37) we get

(40)

It would be of interest to investigate the procedure to solve
the equation system (38)–(40) numerically, which is an impor-
tant step toward implementing the suboptimal control law in a
simple and efficient manner. In Appendix B, a simple yet infor-
mative example of a single user is given to illustrate the interac-
tion between the individual equations in the above system, and
numerical methods can be devised to solve the equations of the
example iteratively. However, we note that the analysis for the
single user system carries special significance. In a system with
many users, under reasonable conditions the (suitably scaled)
interference which a given user receives (due to all other users
and the background noise) can be approximated by a determin-
istic quantity (see also the analysis for SIR in large systems
using the notion of effective interference in [9]); and, subse-
quently, any particular mobile user may be singled out for anal-
ysis. It turns out that the single user based control design can
be effectively applied to systems with many users; see [22]. The
single user based dynamic power control is also justified in [5]
by a small variance assumption on the total received power at
the based station.

VII. CONCLUSION

This paper initiates a stochastic control approach for uplink
cellular power adjustment in the presence of lognormal fading
communication channels for which a bounded rate power
adjustment model is proposed. The existence of such a bound
is implicit in current implementations [32] and it highlights the
need to account for channel dynamics in developing optimal
controls. Different cost functions have been introduced here
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which reflect the SIR requirements at the user level. In this
framework, the control input involves information which is
centralized through the base station. Numerical solutions in
this paper to the two different formulations of the optimal
control problem (with i.i.d. channel dynamics) reveal an initial
equalization phase of the users’ powers followed by motion
toward a time varying optimal value. In addition, the paper
presents an approximate, scalable solution to one of the optimal
control problems. Furthermore, we have shown that adaptive
control laws can be developed based upon online estimates of
the channel parameters. The important issues of implementing
the proposed control schemes in the case of large randomly
varying network populations and the decentralization of the
associated control laws will be investigated in future work (see,
e.g., [20]).

APPENDIX A

Proof of Theorem 3.1

The existence of the optimal control can be established by a
typical approximation argument and the details are omitted here
(see, e.g., [43]).

Uniqueness: Assume there is such that
, and denote the power corre-

sponding to by . Since for each fixed , by Assumption
H1) it can be verified that is strictly positive
definite and, therefore, is strictly convex with respect
to , we have

(A.1)

and a strict inequality holds on the set .
Suppose , i.e., has a strictly positive
measure; then the control yields

by integrating and taking expectation on both sides of (A.1),
which is a contradiction, and, therefore

(A.2)

Since with probability 1 the trajectories of are continuous, by
(A.2) we have on with probability 1. By (2)
we have , for all , so that
with probability 1, a.e. on or, equivalently

So that only on a set of times of
Lebesgue measure zero. This proves uniqueness.

APPENDIX B
ANALYSIS OF A SINGLE USER SYSTEM

For illustrating the solution of the algebraic equation system
in Section VI-D, we consider the simple example of . This
corresponds to the case of a single mobile user in service under
the effect of a fading channel and the background noise. In this
case, we have , ,

, and (38)–(40) reduce to

(B.1)

(B.2)

(B.3)

where , and take their values at . In the following, we
seek a solution for the small noise case satisfying .

Proposition B.1: There exists such that for any

the equation system (B.1)–(B.3) has a solution ( , ,

) satisfying .
Proof: Rewriting (B.1)–(B.3) yields

(B.4)

(B.5)

(B.6)

We now introduce four constants

and a convex compact subset of
and . Set

. Then, for any , the square root in
(B.4) is always no less than for . We define
the continuous map on such that

(B.7)

It is readily verified that and, therefore, by

Brouwer’s fixed point theorem has a fixed point ( , ,
). From (B.4), it follows that . Thus we have proved

that the system (B.1)–(B.3) has a solution ( , , ) and
.

We can further establish a contractive property for the map
under certain conditions by examining the Jacobian of

, and then the unique solution can be found



HUANG et al.: UPLINK POWER ADJUSTMENT IN WIRELESS COMMUNICATION SYSTEMS 1705

by successive iterations of . We proceed to consider the local
approximation of in Section VI-B. Write

Similar to the treatment for , from (32), we obtain a system
of algebraic equations

where .
Example 1: For , , , , ,

, , and , we have

Example 2: For , , , , ,
, , and , we have

Remark: For , define
. By examining the upper bounds for on

, , , where is defined by (B.7), we can
show that in Examples 1–2, the map is a contraction on
under .

The suboptimal control law for the single user is determined
by substituting the local polynomial approximation of and

into the feedback control given in Section VI-B, i.e.,

(B.8)

By retaining only the constant terms in (B.8), we get the zero-
order approximation of the optimal control law as

, for which the steady state power is
. On the other hand, we determine the nominal

power level by setting . Define the
relative error between and by .
For Examples 1 and 2, a comparison is listed in Table I.

Fig. 6 demonstrates the dynamic behavior of the system in
Example 1 under the suboptimal control law (B.8).

The single-user-based analysis can be useful when applied
to systems with large populations. In that case a particular
user views other user interference as background noise. This
leads to a partially decentralized and effective power control
scheme [16].

TABLE I
COMPARISON BETWEEN p AND p

Fig. 6. Single user controller with initial power p = 0.

APPENDIX C
ADAPTATION WITH UNKNOWN CHANNEL PARAMETERS

We rewrite the lognormal fading channel model of Sec-
tion II-A as follows:

(C.1)

In this model, the channel variation is characterized by the pa-
rameters , , . For practical implementa-
tions, , , may not be known a priori, but can be mea-
sured, for instance, with the aid of pilot signals [31]. In CDMA
systems, the power of users is updated with a period close to 1
millisecond (for instance, by 800 Hz [39]) while the time scale
of lognormal fading is much larger. Hence, the channel may be
regarded as varying at a very slow rate. In such a case, one ex-
pects to have estimation of the channel state with high accuracy.
In the following analysis, we will assume perfect knowledge on
the channel state .

Consider an estimation algorithm for and via the mea-
surement of . For the th mobile, the parameters are estimated
by the least squares algorithm where , denote the es-
timate of , at , respectively. Define

(C.2)

(C.3)

(C.4)
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where the initial conditions are given by , ,
, respectively. The algorithm (C.3)–(C.4) may be regarded

as a modified Kalman filtering algorithm for constant param-
eters with random observations; a discrete time version of this
algorithm was first proposed in [28]. The resulting estimates are
strongly consistent as stated by the following proposition.

Proposition C.1: The estimates and converge to
the true parameters with probability one as , i.e.,

(C.5)

(C.6)

with initial conditions , , .
Proof: Since , , it follows that is an

ergodic diffusion process satisfying

and (C.5) follows. Write , and
. It is easy to verify that

(C.7)

(C.8)

By (C.8), it follows that

(C.9)

Since
a.s. by ergodicity of , and

a.s., it follows that

(C.10)
By (C.7) and (C.8), we obtain

(C.11)

Applying the technique in [4], from (C.11) we get

(C.12)

where . From (C.12), it follows that

which yields

Since , a.s., as , it follows that

(C.13)

By (C.10), (C.12), and (C.13), we get , a.s.,
and (C.6) follows.

In the following, we employ a discrete time prediction error
term to construct the empirical variance. We first take a sampling
step to discretize (C.1) as

(C.14)
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Setting and
, (C.14) can be written in the form

It is easy to verify that
. Denote ,

and

(C.15)

It is straightforward to show that (C.15) can be written in a re-
cursive form.

Proposition C.2: For , , defined by (C.15), we
have

(C.16)

where is determined by (C.1).
Proof: For notational brevity, in the proof we write

, , , , , as , , , ,
, , respectively. Setting and

, we have

(C.17)

Since , a.s., as , and
a.s., it follows that

(C.18)

On the other hand, we have ,
a.s. for any (see, e.g., [7]) and,

therefore

(C.19)

By (C.17)–(C.19), it follows that

which completes the proof.
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