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Abstract

Suppose G is a real reductive algebraic group, θ is an automor-
phism of G, and ω is a quasicharacter of the group of real points
G(R). Under some additional assumptions, the theory of twisted en-
doscopy associates to this triple real reductive groups H. The Local
Langlands Correspondence partitions the admissible representations
of H(R) and G(R) into L-packets. We prove twisted character iden-
tities between L-packets of H(R) and G(R) comprised of essential
discrete series or limits of discrete series.
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1 Introduction

The Local Langlands Correspondence is a conjectural relationship between
two seemingly disparate realms. On the one hand, one has representations
of a connected reductive algebraic group G over a p-adic or real field. On
the other hand, one has data emanating from the absolute Galois group
of the field. The conjectured relationship between these objects presents a
mysterious and immense extension of local class field theory.

The theory of endoscopy emerges naturally from the Local Langlands
Correspondence. In order to gain a sense of why this is so, let us approach
the Local Langlands Correspondence over the field of real numbers, where
it is proven ([Lan89]), in the knowledge that we shall have to put up with
some imprecision. Under these circumstances, the “data emanating from the
absolute Galois group” are homomorphisms ϕ : WR → LG from the real Weil
group to the L-group of G. It is the Weil group here which binds ϕ to the
Galois group (§1 [Tat79]). By contrast, the L-group LG encodes information
about how the complex group G is related to one of its real quasisplit forms
(§3 [Bor79]).

To these homomorphisms correspond finite sets Πϕ of (equivalence classes
of) irreducible representations of G(R). These sets of representations, the
L-packets, may be identified with their sets of characters. We may visualize
the Local Langlands Correspondence as

ϕ
LLC←→ Πϕ.

Now, it may happen that the image of a homomorphism ϕ : WR → LG is
contained in a proper subgroup of LG, and further that this proper subgroup
is of the form LH for some (quasisplit) reductive algebraic group H. Let us
assume that this holds. Then, to begin with, it is right to regard H as an
endoscopic group of G. Moreover, one may define a “new” homomorphism
ϕH : WR → LH by simply renaming ϕ. The Local Langlands Correspon-
dence imbues this simple procedure with deep consequences. Indeed, the
homomorphism ϕH may itself correspond to an L-packet of representations
of H(R) as depicted by

ϕH ΠϕH
//LLCoo

ϕ
��

OO

oo
LLC

// Πϕ

��
?

OO
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The dotted arrow on the right indicates that one ought to expect a relation-
ship between the characters of ΠϕH and the characters of Πϕ. This relation-
ship should be some sort of character identity which arises from the inclusion
LH ↪→ LG relating ϕH to ϕ. What form could such a character identity take?

The answer to this question begins by thinking of the characters as (lo-
cally integrable) functions ([HC65b]). These functions are class functions,
so an identity between characters is possible once there is a correspondence
between the conjugacy classes of H(R) and G(R). The inclusion LH ↪→ LG
underlying our assumptions furnishes such a correspondence in three steps.
First, we assume that H is large enough for this inclusion to induce an iso-
morphism between a maximal torus of H and G. Second, this isomorphism
of tori produces a bijection between semisimple conjugacy classes of H and
G. This bijection of conjugacy classes takes place over the complex numbers.
The third step is to interpret this bijection over the real numbers, where
it reduces to a correspondence between finite sets of semisimple conjugacy
classes of H(R) and G(R). The real conjugacy classes in these finite sets dif-
fer up to conjugacy over the complex groups H or G. They are the so-called
stable classes and are the geometric analogues of the L-packets.

The correspondence between the stable classes provides a means of form-
ing identities between the L-packets. This becomes apparent with the requi-
site notation. Suppose that γ ∈ H(R) and δ ∈ G(R) are (regular) semisimple
elements, and that their stable classes correspond to one another as above.
Let Θπ denote the character of a (tempered) representation π in ΠϕH or Πϕ.
Thinking of the characters in the L-packets as functions, one might hope that∑

πH∈ΠϕH
ΘπH and

∑
π∈Πϕ

Θπ are well-defined functions on stable classes.

One might further hope that
∑

πH∈ΠϕH
ΘπH (γ) is equal to

∑
π∈Πϕ

Θπ(δ). In

actuality, this second hope proves to be too much. One must introduce con-
stants ∆(ϕH , π) called spectral transfer factors so that∑

πH∈ΠϕH

ΘπH (γ) =
∑
π∈Πϕ

∆(ϕH , π) Θπ(δ).

The homomorphism ϕH appears with boldface text in ∆(ϕH , π) so as to
indicate that the spectral transfer factors depend on ϕH only up to conjugacy.

We now see how one might come to expect endoscopic character identities
from the Local Langlands Correspondence. The usual terminology for these
identities is spectral transfer. For real groups, the usual form and proof of
spectral transfer make a detour through what is called geometric transfer.
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To give an overview, we begin with [Lan79], in which Langlands defines
endoscopic groups H which are related to G through their geometry. This
relationship furnishes a correspondence between stable classes of γ ∈ H(R)
and δ ∈ G(R) as above. Geometric transfer is tantamount to a map f 7→ fH ,
from suitable functions on G(R) to functions on H(R), which satisfies an
identity between orbital integrals. This identity is of the form∑

γ′

Oγ′(fH) =
∑
δ′

∆(γ, δ′) Oδ′(f),

where the first and second sums are taken over representatives in the stable
classes of γ and δ respectively, O signifies the orbital integral, and the ∆(γ, δ′)
are constants called geometric transfer factors. An initial proof of geometric
transfer was given by Shelstad in [She82]. Afterwards, refinements were
made to the geometric transfer factors ([LS87]), making them canonical in a
manner we shall allude to later on. Shelstad has since provided a proof of
geometric transfer using these canonical transfer factors ([She08]).

Taking geometric transfer for granted, one may express spectral transfer
as an identity of the form∑

πH∈ΠϕH

ΘπH (fH) =
∑
π∈Πϕ

∆(ϕH , π) Θπ(f).(1)

Spectral transfer was first proved in [She82] for tempered L-packets. It was
then reproved in [She10] with canonical spectral transfer factors.

What we have described so far is sometimes referred to as the theory
of ordinary endoscopy for real groups. The word “ordinary” is present to
distinguish it from the theory of twisted endoscopy. To see how the theory
of twisted endoscopy comes into the picture, one must turn to the Arthur-
Selberg trace formula. In truth, the driving force behind the theory of en-
doscopy was, and continues to be, the stabilization of the trace formula. This
point is made in the foundational paper [Lan79] and is explained in the ex-
pository article [Art97]. More detail is given in §§27-30 [Art05], where it
is shown how certain classical groups appear in the proposed stable trace
formula for GL(N), when twisted by an outer automorphism. Without run-
ning too far afield, let us be content to presume that the theory of twisted
endoscopy is necessitated by the stabilization of the twisted trace formula.

The theory of twisted endoscopy generalizes the theory of ordinary en-
doscopy by introducing two additional objects to G. The first is an algebraic
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automorphism θ of G, and the second is a quasicharacter ω of G(R). The
definition of endoscopic groups and the conjecture of geometric transfer in
the twisted context was given in [KS99]. For real groups G(R), Renard has
given a proof of twisted geometric transfer when ω is trivial and θ is of finite
order ([Ren03]). Shelstad has recently given a proof of twisted geometric
transfer for real groups in general ([Shea]). Twisted geometric and spectral
transfer were proved by Shelstad and Bouaziz respectively in the case that
the real group has complex structure, the automorphism is that of complex
conjugation, and the quasicharacter is trivial ([She84], [Bou89]). The goal of
this work is to formulate and prove twisted spectral transfer for real groups.
More precisely, the goal is to formulate and prove a twisted analogue of (1)
for L-packets comprised essential discrete series (square-integrable) represen-
tations or essential limits of discrete series representations.

To appreciate the significance of twisted spectral transfer to Arthur’s sta-
bilization of the trace formula, we first refer the reader to §§1-2, 6 [Art08].
The spectral identities which appear in this reference are required for some
twisted groups in the forthcoming work [Art], which classifies automorphic
representations of special orthogonal and symplectic groups in terms of au-
tomorphic representations of the general linear group (see Theorem 2.2.3
[Art]). This classification exhibits the lofty principle of functoriality in the
Langlands program. Generally speaking, endoscopic character identities are
accessible examples of functoriality.

We continue by giving an outline the paper. The exact form of twisted
spectral transfer will appear in course. The true work begins with a presen-
tation of some of the foundational work of Kottwitz and Shelstad in twisted
endoscopy. The definition of an endoscopic group H of the triple (G, θ, ω)
is recollected together with a correspondence between conjugacy classes of
H and twisted conjugacy classes of G. As in the ordinary case, this corre-
spondence of twisted conjugacy classes may be adapted to elements of G(R).
The resulting concept is that of a norm of an element δ ∈ G(R), i.e. an ele-
ment γ ∈ H(R) whose stable conjugacy class corresponds the stable twisted
conjugacy class of δ. With this setup, a terse statement of twisted geometric
transfer is given and assumed to hold.

In section 4 we begin by describing the Local Langlands Correspondence
for tempered representations of real groups. We then point out how the twist-
ing data (θ, ω) may be combined with individual representations and with
L-packets. Spectral transfer pertains to only those tempered representations
and L-packets which are preserved under twisting.
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In section 5 we restrict our attention to essentially square-integrable rep-
resentations and L-packets, which are preserved under twisting. We describe
how such a representation π may be recovered from a representation $1 of
Gder(R)0, the identity component of the real points of the derived subgroup
of G. As π is preserved under twisting, it has a twisted character (section
5.2). The twisted character of π may be recovered from a twisted character
of $1 as well (Lemma 5). Restriction to the subgroup Gder(R)0 has two
advantages. The first is that the restriction of the quasicharacter ω to this
subgroup is trivial. The second is that the theory of twisted representations
becomes a special case of the representation theory on the category of groups
given by Duflo and Bouaziz ([Duf82], [Bou87]). This category allows for dis-
connected Lie groups and the particular groups we work with are semidirect
products of Gder(R)0 by a cyclic group related to θ.

The leitmotif of our work is that the representation theory of connected
real reductive groups relates to ordinary spectral transfer in the same manner
that the representation theory of Duflo and Bouaziz relates to twisted spectral
transfer. We show how Duflo’s classification of discrete series representations
ties in with $1 and how Bouaziz’s character formula for discrete series ties
in with the twisted character of $1 (section 5.4). Section 5 closes with a
detailed description of the Weyl integration formula on a component of our
disconnected Lie group.

Twisted spectral transfer for essentially square-integrable representations
is the topic of section 6. The starting point is a fixed choice of endoscopic
data. We must endure the technical necessity of a z-extension H1 of the
fixed endoscopic group H. We assume that we have associated L-parameters
ϕH1and ϕ for H1 and G, which correspond to essentially square-integrable
packets ΠϕH1

and Πϕ under the Local Langlands Correspondence. The L-
packet Πϕ is assumed to be preserved under twisting, otherwise there is
nothing to say. Finally, we assume that there is a θ-elliptic element δ ∈ G(R)
which has a norm γ ∈ H(R). In essence, this final assumption ensures that
twisted elliptic tori in G(R) have something to do with elliptic tori in H(R).
If this is not the case, we show how spectral transfer degenerates to an identity
between zeros in section 6.5.

Working under the above assumptions, we parametrize the twisted con-
jugacy classes in G(R) appearing in the stable class of δ (Lemma 15). The
parametrizing set is a modification of the usual coset space of the Weyl group
modulo the real Weyl group in ordinary endoscopy (see (66)). A slightly dif-
ferent modification of this coset space parametrizes the representations in Πϕ
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which are preserved under twisting (Lemma 16). In particular, there exists
a representation in Πϕ which is preserved under twisting (Corollary 2).

With these parametrizing sets in hand, we undertake in section 6.3 a
comparison of characters for smooth functions f ∈ C∞c (G(R)θ) with small
elliptic support about δθ. In keeping with our leitmotif, these functions
are defined on the non-identity component G(R)θ in the semidirect product
G(R) o 〈θ〉. This comparison leads to an identity of the following shape∫

H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f).(2)

The terms ΘπH1
and Θπ,Uπ are the (twisted) characters of the representations

occurring in the packets. The terms ∆(ϕH1 , π) are the spectral transfer
factors. Initially, the spectral transfer factors are defined from the geometric
transfer factors relative to the fixed element δ ∈ G(R) (see (115)-(117)).
However, we show that the spectral transfer factors are independent of the
choice of δ in section 6.3.1. A priori, the definition of our spectral transfer
factors does depend on some data appearing in the geometric transfer factors.
More will be said about this later.

The extension of character identity (2) to arbitrary functions in C∞c (G(R)θ)
is the desired twisted spectral transfer theorem for essentially square-integrable
representations. The extension to C∞c (G(R)θ) is effected in section 6.4. We
prove that the distribution determined by (2) is an invariant eigendistribu-
tion when ω is trivial. One may then employ a twisted version of Harish-
Chandra’s uniqueness theorem (Theorem 15.1 [Ren97]) to extend from the
θ-elliptic set to all of G(R)θ (Proposition 4). The assumption that ω is trivial
is removed in Theorem 1, the first of two our main theorems.

In section 7 we move from essentially square-integrable representations
to essential limits of discrete series representations of G(R). The latter are
defined in section 7.1 in terms of the notions of coherent continuation or
Zuckerman tensoring. Spectral transfer for essential limits of discrete series
is first proved when G is quasisplit (section 7.2). This is done by attaching
the essential limits of discrete series to essentially square-integrable repre-
sentations of a proper Levi subgroup of G, applying spectral transfer to the
latter representations, and then using a twisted version of coherent continu-
ation ([Duc02]) to recover spectral transfer on the level of limits of discrete
series (Theorem 2). When G is not quasisplit the above procedure may be
imitated for relevant Levi subgroups of G. Otherwise, spectral transfer is not
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defined. This is discussed in section 7.3, where the possibility of no norms is
also considered.

Specialists in endoscopy will realize that the approach we have described
is, in the main, the approach of Shelstad in [She82] and [She10]. Nonetheless,
the technical obstacles created by twisting are considerable. Notable obsta-
cles appear in the description of twisted transfer factors (section 6.2), the
local elliptic comparison (section 6.3), and the theory of eigendistributions
(in section 6.4). We have also given a detailed account of Shelstad’s method
for finding a Levi subgroup attached to limits of discrete series (§4.3 [She82])
in section 7.2.

Let us list three anticipated improvements of our spectral transfer theo-
rems. We have worked under the assumptions of [KS99], with one exception.
The bijection of stable (twisted) conjugacy classes mentioned earlier need not
behave well under the action of the Galois group of C/R. This leads to a ver-
sion of geometric transfer involving some twisting on the endoscopic groups
(see §§5.4-5.5 [KS99]). We exclude this possibility by making an assumption
on the map of conjugacy classes in section 3.3. Presumably, with some more
effort, this assumption could be removed from the spectral transfer theorems.

Another spot for improvement is in the definition of the twisted spectral
transfer factors. We have defined the spectral transfer factors by making
a local comparison about an elliptic element δ ∈ G(R) and taking what
was left over. Moreover, we have done this after fixing data (χ- and a-
data) used in the definition of the geometric transfer factors. A much more
satisfying approach is given in recent work by Shelstad ([Sheb]), where the
spectral transfer factors are defined without reference to particular elements
in G(R) or particular choices of data for the geometric transfer factors. A
cleaner version of twisted spectral transfer ought to be given in terms of these
canonical spectral transfer factors.

Lastly, in the case of ordinary spectral transfer, the passage from es-
sentially square-integrable or limits of discrete series representations to ir-
reducible tempered representations involves a simple descent argument to a
Levi subgroup of G (see §15 [She10])). In the case that the parabolic sub-
group containing this Levi subgroup is preserved under θ one may imitate the
descent argument (see §7.1 [Bou87]) to obtain the desired spectral transfer
(see §11 [Sheb]). However, there are explicit examples in which the parabolic
subgroups are not preserved by θ. The spectral transfer for such examples
requires new methods. We expect they are near at hand.

The author wishes to thank Diana Shelstad for her patience in explain-
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ing aspects of ordinary endoscopy and for her generosity in making her
work on twisted endoscopy available in a timely fashion. He also wishes
to thank the Fields Institute for the Mathematical Sciences and the Institut
de Mathémathiques de Luminy for their hospitality during the preparation
of this work.

2 Notation

The set of integers, real numbers and complex numbers are denoted by Z, R
and C respectively.

In this section G is a real Lie group which acts upon a non-empty set J .
For a subset J1 ⊂ J we set

NG(J1) = {g ∈ G : g · j ∈ J1 for all j ∈ J1},

ZG(J1) = {g ∈ G : g · j = j for all j ∈ J1}.

and Ω(G, J1) equal to the quotient group NG(J1)/ZG(J1).
For an automorphism θ of G we set 〈θ〉 equal to the group of automor-

phism generated by θ. There is a corresponding semidirect product Go 〈θ〉.
When elements of G are written side-by-side with elements in 〈θ〉 we consider
them to belong to this semidirect product.

The inner automorphism of an element δ ∈ G is defined by

Int(δ)(x) = δxδ−1, x ∈ G.

It shall be convenient to denote the fixed-point set of Int(δ) ◦ θ by Gδθ. In
other words Gδθ = Z〈Int(δ)◦θ〉(G). In fact, we shall truncate the notation
Int(δ) ◦ θ to δθ habitually.

We almost always denote the real Lie algebra of a Lie group using Gothic
script. For example the real Lie group of G is denoted by g. There is one
exception in section 5.3.1 where u is a complex Lie algebra. Suppose that
J is Cartan subgroup of a reductive group G. Then the pair (g⊗C, j⊗C)
determines a root system which we denote by R(g⊗C, j⊗C). We denote the
dual Lie algebra to g by g∗. The differential of the inner automorphism Int(δ)
is the adjoint automorphism Ad(δ) on g. The adjoint automorphism induces
an automorphism on g∗ in the usual way. Often, it shall be convenient to
write δ · X in place of Ad(δ)(X) for X ∈ g. Similarly, we write θ · X to
mean the differential of θ acting on X ∈ g. We extend this slightly abusive
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notation to the dual spaces, writing δ · λ or even simply δλ in place of the
coadjoint action of δ on λ ∈ g∗.

Finally, if we take H to be an algebraic group defined over R, we denote
its identity component by H0. The group of real points of H is denoted by
H(R). This is a real Lie group and we denote the identity component of
H(R) in the real manifold topology by H(R)0.

3 The foundations of real twisted endoscopy

This section is a digest of some early material in [KS99], in the special case
that the field of definition is equal to R.

3.1 Groups and automorphisms

LetG be a connected reductive algebraic group and let us fix a triple (B, T, {X})
in which B is a Borel subgroup of G, T ⊂ B is a maximal torus of G, and
{X} is a collection of root vectors given by the simple roots determined by B
and T . Such triples are called splittings of G. We take θ to be an algebraic
automorphism of G.

Lemma 1 Suppose the automorphism θ preserves the splitting (B, T, {X})
of G. Then the restriction of θ to the derived subgroup Gder is of finite order.

Proof. The automorphism θ induces a graph automorphism of the Dynkin di-
agram attached to the system of simple roots determined by (B, T ) (Corollary
2.14 [Spr79]). This graph automorphism has finite order, say k. As a result,
θk is an automorphism of G whose differential fixes each vector in {X}. It
follows in turn that θk fixes pointwise Tder = Gder∩T , {X}, and a set of root
vectors attached to the negative simple roots (Proposition 8.3 (f) [Hum94]).
As Gder is generated by Tder and the exponentials of the aforementioned root
vectors (Corollary 8.2.10 [Spr98]), we conclude that the restriction of θk to
Gder is trivial.�

From now on we require that θ preserves the splitting (B, T, {X}). Lemma
1 ensures that θ|Gder

is finite and therefore semisimple (i.e. θ is quasi-
semisimple). We shall assume that G and θ are defined over the real numbers,
and set G(R) to be the group of real points of G. Let Γ be the Galois group
of C/R and σ be its non-trivial element. The Galois group Γ acts on G
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and is trivial on G(R). If (B, T, {X}) is preserved by Γ then it is called an
R-splitting.

There is a unique quasisplit group G∗ of which G is an inner form (Lemma
16.4.8 [Spr98]). It follows that there is an isomorphism ψ : G → G∗ and
ψσψ−1σ−1 = Int(u′) for some u′ ∈ G∗. For the purpose of defining one of the
geometric transfer factors, namely ∆III (§§4.4, 5.4 [KS99]), we shall choose
uσ in the simply connected covering group G∗sc of the derived group G∗der of
G∗ so that its image under the covering map is u′. We shall then abuse
notation slightly by identifying uσ with u′ in equations such as

ψσψ−1σ−1 = Int(uσ).(3)

As G∗ is quasisplit, there is a Borel subgroup B∗ defined over R. Applying
Theorem 7.5 [Ste97] to B∗ and σ, we obtain an R-splitting (B∗, T ∗, {X∗}) .
Following the convention made for uσ ∈ G∗sc, we may choose gθ ∈ G∗sc so that
the automorphism

θ∗ = Int(gθ)ψθψ
−1(4)

preserves (B∗, T ∗, {X∗}) (Theorems 6.2.7 and 6.4.1 [Spr98], §16.5 [Hum94]).
Since

σ(θ∗) = σθ∗σ−1 = Int(σ(gθuσ)g−1
θ θ∗(uσ))θ∗

preserves (B∗, T ∗, {X∗}), and the only inner automorphisms which do so are
trivial, it follows in turn that Int(σ(gθuσ)g−1

θ θ∗(uσ)) is trivial and σ(θ∗) = θ∗.
This means that the automorphism θ∗ is defined over R.

We wish to describe the action of θ induced on the L-group of G. Recall
that (B, T, {X}) determines a based root datum (Proposition 7.4.6 [Spr98])
and an action of Γ on the Dynkin diagram of G (1.3 [Bor79]). To the dual
based root datum there is attached a dual group Ĝ defined over C, a Borel
subgroup B ⊂ Ĝ and a maximal torus T ⊂ B (2.12 [Spr79]). Let us fix a
splitting

(B, T , {X})(5)

of Ĝ. This allows us to transfer the action of Γ from the Dynkin diagram
of Ĝ to an algebraic action of Ĝ (Proposition 2.13 [Spr79]). This action
may be extended trivially to the Weil group WR, which as a set we write
as C× ∪ σC× (§9.4 [Bor79]). The L-group LG is defined by the resulting
semidirect product LG = ĜoWR.

In a parallel fashion, θ induces an automorphism of the Dynkin diagram
of G, which then transfers to an automorphism θ̂ on Ĝ. We define Lθ to be
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the automorphism of LG equal to θ̂× 1WR
. By definition, the automorphism

θ̂ preserves (B, T , {X}).
We close this section with some remarks concerning Weyl groups. Let T 1

be the identity component of T θ ⊂ T . It contains strongly regular elements
(Lemma II.1.1 [Lab04]), so its centralizer inG is the maximal torus T . Setting
the identity component of Gθ equal to G1 and the Weyl group of G1 relative
to T 1 equal to Ω(G1, T 1), we see that we have an embedding

Ω(G1, T 1)→ Ω(G, T )θ

into the θ-fixed elements of the Weyl group Ω(G, T ). In fact, this embedding
is an isomorphism (Lemma II.1.2 [Lab04]). It is simple to verify that Ω(G, T )θ

is equal to those elements of Ω(G, T ) which stabilize T θ.

3.2 Endoscopic data and z-pairs

Endoscopic data are defined in terms of the group G, the automorphism θ,
and a cohomology class a ∈ H1(WR, ZĜ), where ZĜ denotes the centre of Ĝ.
Let ω be the quasi-character of G(R) determined by a (pp. 122-123 [Lan89]),
and let us fix a one-cocycle a in the class a. By definition (pp. 17-18 [KS99]),
endoscopic data for (G, θ, a) consist of

1. a quasisplit group H defined over R

2. a split topological group extension

1→ Ĥ → H
c

� WR → 1,

whose corresponding action of WR on Ĥ coincides with the action given
by the L-group LH = Ĥ oWR

3. an element s ∈ Ĝ such that Int(s)θ̂ is a semisimple automorphism (§7
[Ste97])

4. an L-homomorphism (p. 18 [KS99]) ξ : H → LG satisfying

(a) Int(s) Lθ ◦ ξ = a′ · ξ (8.5 [Bor79]) for some one-cocycle a′ in the
class a

(b) ξ maps Ĥ isomorphically onto the identity component of Ĝsθ̂, the
group of fixed points of Ĝ under the automorphism Int(s)θ̂.
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Despite requirement 2 of this definition, it might not be possible to define
an isomorphism between H and LH which extends the identity map on Ĥ.
One therefore introduces a z-extension (§2.2 [KS99], [Lan79])

1→ Z1 → H1
pH→ H → 1(6)

in which H1 is a connected reductive group containing a central torus Z1.
The surjection pH restricts to a surjection H1(R)→ H(R).

Dual to (6) is the extension

1→ Ĥ → Ĥ1 → Ẑ1 → 1.(7)

Regarding Ĥ as a subgroup of Ĥ1, we may assume that LH embeds into LH1

and that Ĥ1 → Ẑ1 extends to an L-homomorphism

p : LH1 → LZ1.(8)

According to Lemma 2.2.A [KS99], there is an L-homomorphism ξH1 : H →
LH1 which extends the inclusion of Ĥ → Ĥ1 and defines a topological iso-
morphism between H and ξH1(H). Kottwitz and Shelstad call (H1, ξH1) a
z-pair for H.

Observe that the composition

WR
c→ H

ξH1→ LH1
p→ LZ1(9)

determines a quasicharacter λZ1 of Z1(R) via the Local Langlands Corre-
spondence (§9 [Bor79]).

3.3 Norm mappings

Our goal here is to fix endoscopic data (H,H, s, ξ) as defined in the previous
section and to describe a map from the semisimple conjugacy classes of the
endoscopic group H to the semisimple θ-conjugacy classes of G. The map
uses the quasisplit form G∗ as an intermediary. We basic reference for this
section is chapter 3 [KS99].

Since we are interested in semisimple conjugacy classes, and semisimple
elements lie in tori, we shall begin by defining maps between the tori of
H and G∗. Suppose BH is a Borel subgroup of H containing a maximal
torus TH and (BH , TH , {XH}) is the splitting of Ĥ used in the definition of
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LH (§3.1). Observe that we have already fixed a splitting (5) of Ĝ = Ĝ∗

(1.3 [Bor79]). Suppose further that B′ is a Borel subgroup of G∗ containing

a maximal torus T ′.1 We may assume that s ∈ T , ξ(TH) = (T θ̂)0 and
ξ(BH) ⊂ B. The pairs (B̂H , T̂H) and (BH , TH) determine an isomorphism
T̂H ∼= TH . Similarly, through the pairs (B̂′, T̂ ′) and (B, T ), we conclude that
T̂ ′ ∼= T . We may combine the former isomorphism with requirement 4b of
§3.2 for the endoscopic map ξ to obtain isomorphisms

T̂H ∼= TH
ξ∼= (T θ̂)0.

To connect (T θ̂)0 with T ′, we define T ′θ∗ = T ′/(1 − θ∗)T ′ and leave it as an

exercise to prove that ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ . Combining this isomorphism with the
earlier ones, we obtain in turn that

T̂H ∼= TH
ξ∼= (T θ̂)0 ∼= ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ ,(10)

and TH ∼= T ′θ∗ .
The isomorphic groups TH and T ′θ∗ are related to the conjugacy classes,

which we now define. The θ∗-conjugacy class of an element δ ∈ G∗ is defined
as {g−1δθ∗(g) : g ∈ G∗}. The element δ is called a θ∗-semisimple element if
δθ∗ is a semisimple element in G∗ o 〈θ∗〉, and a θ∗-semisimple θ∗-conjugacy
class is a θ∗-conjugacy class of a θ∗-semisimple element. Let Cl(G∗, θ∗) be the
set of all θ∗-conjugacy classes and Clss(G

∗, θ∗) be the subset of θ∗-semisimple
θ∗-conjugacy classes. With this notation in hand, we look to Lemma 3.2.A
[KS99], which tells us that there is a bijection

Clss(G
∗, θ∗)→ T ′θ∗/Ω(G∗, T ′)θ

∗
,

given by taking the coset of the intersection of a θ∗-conjugacy class with T ′.
The aforementioned map specializes to give the bijections on either end

of
Clss(H)↔ TH/Ω(H,TH)→ T ′θ∗/Ω(G∗, T ′)θ

∗ ↔ Clss(G
∗, θ∗).(11)

To describe the remaining map in the middle of (11), recall from (10) that
the isomorphism between TH and T ′θ∗ is obtained by way of ξ. Using these
ingredients and the closing remarks of §3.1, we obtain maps

Ω(H,TH) ∼= Ω(Ĥ, T̂H) ∼= Ω(Ĥ, TH)→ Ω(Ĝ∗, T )θ̂ ∼= Ω(G∗, T ′)θ
∗
.

1Readers of [KS99] should note that we write T ′ for the torus T occurring there.
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This completes the description of the map from Clss(H) to Clss(G
∗, θ∗).

We proceed by describing the a from Clss(G
∗, θ∗) to Clss(G, θ). The func-

tion m : G→ G∗ defined by

m(δ) = ψ(δ)g−1
θ , δ ∈ G

passes to a bijection from Cl(G, θ) to Cl(G∗, θ∗), since

m(g−1δθ(g)) = ψ(g)−1m(δ) θ∗(ψ(g)).

We abusively denote this map on θ∗-conjugacy classes by m as well. It is
pointed out in §3.1 [KS99] that this bijection need not be equivariant under
the action of Γ. One of our key assumptions is that it is Γ-equivariant.
Finally, we may combine this bijection with (11) to obtain a map

AH\G : Clss(H)→ Clss(G, θ).

In keeping with §3.3 [KS99], we define an element δ ∈ G to be θ-regular
if the identity component of Gδθ is a torus. It is said to be strongly θ-regular
if Gδθ itself is abelian. An element γ ∈ H is said to be (strongly) G-regular
if the elements in the image of its conjugacy class under AH\G are (strongly)
regular. An element γ ∈ H(R) is called a norm of an element δ ∈ G(R) if
the θ-conjugacy class of δ equals the image of the conjugacy class of γ under
AH\G. It is possible for AH\G(γ) to be a θ-conjugacy class which contains no
points in G(R) even though γ ∈ H(R). In this case one says that γ is not
a norm. These definitions are carried to the z-extension H1 in an obvious
manner. For example, we say that γ1 ∈ H1(R) is a norm of δ ∈ G(R) if the
image of γ1 in H(R) under (6) is a norm of δ.

As in §3.3 [KS99], we conclude with a portrayal of the situation when
a strongly regular element γ ∈ H(R) is the norm of a strongly θ-regular
element δ ∈ G(R). We may let TH = Hγ as γ is strongly regular. The
maximal torus TH is defined over R since γ lies in H(R). Lemma 3.3.B
[KS99] allows us to choose BH , B′ and T ′ as above so that both T ′ and the
isomorphism TH ∼= T ′θ∗ are defined over R. The resulting isomorphism

TH(R) ∼= T ′θ∗(R)(12)

is called an admissible embedding in §3.3 [KS99] (or toral data in §7a [She10]
for ordinary endoscopy). The image of γ under this admissible embedding
defines a coset in T ′/Ω(G∗, T ′)θ

∗
. This coset corresponds to the θ∗-conjugacy
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class of m(δ). In fact, by Lemma 3.2.A [KS99] there exists some gT ′ ∈ G∗sc
such that (after gT ′ has been identified with its image in G∗), this coset equals
gT ′m(δ)θ∗(gT ′)

−1Ω(G∗, T ′)θ
∗
. The element

δ∗ = gT ′m(δ) θ∗(gT ′)
−1(13)

belongs to T ′ and it is an exercise to show that Int(gT ′) ◦ ψ furnishes an
isomorphism between Gδθ and (G∗)δ

∗θ∗ . Since Int(δ∗) ◦ θ∗ preserves (B′, T ′),
the torus (G∗)δ

∗θ∗ contains strongly G-regular elements of T ′ (see pp. 227-
228 [Art88]) so we see in turn that the centralizer of (G∗)δ

∗θ∗ in G∗ is T ′, and
(G∗)δ

∗θ∗ = (T ′)θ
∗
. By (3.3.6) [KS99], the resulting isomorphism

Gδθ Int(gT ′ )ψ−→ (T ′)θ
∗

(14)

is defined over R.

3.4 Twisted geometric transfer

The underlying assumption of this work is twisted geometric transfer, which
is laid out generally in §5.5 [KS99]. For real groups, it has been partially
proven in [Ren03] and completely proven by different means in [Shea]. It
shall be convenient for us to state this assumption in the framework of orbital
integrals on the component G(R)θ of the group G(R)o〈θ〉. Let δ ∈ G(R) be
a θ-semisimple and strongly θ-regular and assume that the quasi-character
ω is trivial on Gδθ(R). Let C∞c (G(R)θ) be the space of smooth compactly
supported functions on the component G(R)θ. Define the twisted orbital
integral of f ∈ C∞c (G(R)θ) at δθ ∈ G(R)θ to be

Oδθ(f) =

∫
Gδθ(R)\G(R)

ω(g) f(g−1δθg) dg.

This integral depends on a choice of quotient measure dg.
We wish to match functions in C∞c (G(R)θ) with functions on the z-

extension H1. Specifically, let C∞c (H1(R),ΛZ1) be the space of smooth func-
tions fH1 on H1(R) whose support is compact modulo Z1(R) and which
satisfy

fH1(zh) = λZ1(z)−1fH1(h), z ∈ Z1(R), h ∈ H1(R)(15)

(see the end of §3.2). The definition of orbital integrals easily carries over to
functions of this type at semisimple regular elements.
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Suppose γ1 ∈ H1(R) is a norm of a θ-semisimple strongly θ-regular el-
ement δ ∈ G(R). Our geometric transfer assumption is that for every
f ∈ C∞c (G(R)θ) there exists a function fH1 ∈ C∞(H1(R), λZ1) as above
such that ∑

γ′1

Oγ′1
(fH1) =

∑
δ′

∆(γ1, δ
′)Oδ′θ(f).(16)

The sum on the left is taken over representatives inH1(R) ofH1(R)-conjugacy
classes contained in the H1-conjugacy class of γ1. The sum on the right
is taken over representatives in G(R) of θ-conjugacy classes under G(R)
contained in the θ-conjugacy class of δ. The terms ∆(γ1, δ

′) are geometric
transfer factor and are defined in chapter 4 [KS99]. We will examine the
geometric transfer factors in more detail in 6.2. For the time being, let us
simply remark that they are complex numbers which require some sort of
normalization. Normalization is also required for the measures in the orbital
integrals to be compatible (page 71 [KS99]). We also assume that the map
f 7→ fH1 is a continuous linear map in the topology given by the seminorms
defined in §3.5 [Bou87].

4 The Local Langlands Correspondence

We wish to outline the Local Langlands Correspondence for tempered repre-
sentations of G(R) as given in §3 [Lan89]. Roughly speaking, this correspon-
dence is a bijection between L-parameters and L-packets. More precisely, it is
a bijection between Ĝ-conjugacy classes ϕ of homomorphisms ϕ : WR → LG
and sets of (equivalence classes of) irreducible tempered representations Πϕ.

We begin our outline with a closer look at the homomorphisms. The ho-
momorphisms ϕ : WR → LG of the correspondence must be admissible (8.2
[Bor79]). In our context, this is equivalent to the following four requirements.

1. ϕ is continuous

2. the composition of ϕ with the projection of LG onto WR is the identity
map

3. the elements in the projection of ϕ(C×) to Ĝ are semisimple

4. the smallest Levi subgroup of LG containing ϕ(WR) is the Levi sub-
group of a relevant parabolic subgroup (§3 [Bor79]).
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An application of Theorem 5.16 [SS70], allows us to assume that ϕ(WR) nor-
malizes a maximal torus of Ĝ. Since we are only interested in the Ĝ-conjugacy
class of ϕ, we may assume that ϕ(WR) normalizes T . By requirement 1
above, ϕ(C×) is a connected subgroup. Since the group of algebraic auto-
morphisms of T is discrete, the subgroup ϕ(C×) centralizes T . Requirement
2 then ensures that ϕ(C×) is a subgroup of T .

Let X∗(T ) be the group of rational characters of T and X∗(T̂ ) be the
group of cocharacters of T̂ so thatX∗(T ) ∼= X∗(T̂ ) (3.2.1 [Spr98], 2.1 [Bor79]).
It is left as an exercise to the reader to show that every continuous homo-
morphism of C× into T is of the form

z 7→ zµz̄ν , z ∈ C×

for some µ, ν ∈ X∗(T )⊗C satisfying µ− ν ∈ X∗(T ). Suppose ϕ is given by
such a pair. Then it follows from

ϕ(−z̄) = ϕ(σ)ϕ(z)ϕ(σ), z ∈ C×

that ν = ϕ(σ) · µ. This shows that the behaviour of ϕ on C× is determined
entirely by the parameter µ. The behaviour of ϕ on σ ∈ WR is parametrized
as follows. We may write ϕ(σ) = (a, σ) for some a ∈ Ĝ. If there is λ′ ∈
X∗(T ) = X∗(T ) such that 〈λ′, α〉 = 0 for every root α of (G, T ) then λ′ a
rational character of Ĝ, i.e. λ′ ∈ X∗(Ĝ) (Corollary 8.1.6, Proposition 8.1.8
[Spr79]). It therefore makes sense to write λ′(a) and to choose λ ∈ X∗(T )⊗C
such that

λ(a) = e2πi〈λ′,λ〉.

It is clear from this equation that the choice of λ is not unique. Nevertheless,
the ensuing constructions do not depend on this lack of uniqueness.

4.1 Essentially square-integrable L-packets

In this section we assume that ϕ is an admissible homomorphism as above,
and additionally, that ϕ(WR) is not contained in any proper Levi subgroup of
LG (3.3 [Bor79]). Then it is not contained in any proper parabolic subgroup
for LG, for its non-trivial elements are not unipotent by requirement 3. Now,
β + ϕ(σ) · β is fixed by ϕ(σ) for any root β of (Ĝ, T ). As a result, the
subgroup generated by ϕ(WR) and the root spaces of those roots β1 satisfying
〈β + ϕ(σ) · β, β∨1 〉 ≥ 0 is a parabolic subgroup of LG (3.3 [Bor79], proof
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of Proposition 8.4.5 [Spr98]). Since ϕ(WR) is not contained in a proper
parabolic subgroup, this implies that 〈β + ϕ(σ) · β, β∨1 〉 ≥ 0 for all roots β1.
Consequently,

ϕ(σ) · β = −β(17)

for any root β (Proposition 8.1.8 [Spr98]).
Define ι to be the half-sum of the positive roots of (B, T ). Set µ0 = µ− ι

so that ϕ(σ) ·µ0 = ν+ ι. It is then a consequence of Lemma 3.2 [Lan89] (see
page 132 [Lan89]) that

(µ0 − ϕ(σ) · µ0)

2
+ (λ+ ϕ(σ) · λ) ∈ X∗(T ).(18)

This is precisely the condition necessary for (µ0, λ) to define a quasicharacter
on a real torus via the Local Langlands Correspondence on tori (Lemma 2.8
[Lan89]). The quasicharacter is regular in the sense that 〈µ, α〉 6= 0 for
all roots α ∈ R(Ĝ, T ) (Lemma 3.3 [Lan89]). The real torus in question is
determined by taking its L-group to be the group generated by T and ϕ(WR).

As it happens, G itself possesses a maximal torus S, defined over R,
whose L-group is isomorphic to the group generated by T and ϕ(WR) (page
132 and Lemma 3.1 [Lan89]). Those familiar with the L-groups of real tori
(9.4 [Bor79]) will see that (17) is equivalent to S(R) being an elliptic torus,
i.e. S(R) is compact modulo the centre ZG(R) of G(R). One may transfer
the pair µ0, λ ∈ X∗(T )⊗C to a pair in X∗(S)⊗C. We will abuse notation
by denoting this pair on X∗(S) ⊗ C as µ0 and λ as well. This transfer is
not unique. It depends on conjugation in Ĝ, and so it is unique only up to
the choice of an element in Ω(G,S) ∼= Ω(Ĝ, Ŝ). In this way we obtain an
Ω(G,S)-orbit of pairs

{(w−1µ0, λ) : w ∈ Ω(G,S)}(19)

to which we attach a set

{Λ(w−1µ0, λ) = w−1Λ(µ0, λ) : w ∈ Ω(G,S)}(20)

of quasicharacters of S(R) through the Local Langlands Correspondence for
tori.

To any of these quasicharacters on S(R), Harish-Chandra associated an
irreducible essentially square-integrable representation of G(R) ([HC66]), i.e.
an irreducible representation of G(R) whose matrix coefficients are square-
integrable modulo ZG(R). Moreover, any two of these representations on

20



G(R) are equivalent if and only if their corresponding quasicharacters are
conjugate under an element of ΩR(G,S), the subgroup of elements in Ω(G,S)
which have a representative in G(R) (cf. page 134 [Lan89]).

Let us summarize. The admissible homomorphism ϕ : WR → LG may
be identified with a pair µ, λ ∈ X∗(S) ⊗ C. This pair is attached to the
set of quasicharacters (20) of S(R). Each quasicharacter is of the form
w−1Λ(µ0, λ), where µ0 = µ− ι, and corresponds to an irreducible essentially
square-integrable representation πw−1Λ(µ0,λ) of G(R). Up to equivalence, the
set of these representations is of the form

{πw−1Λ(µ0,λ) : w ∈ Ω(G,S)/ΩR(G,S)}.(21)

This set of (equivalence classes of) representations is called the L-packet
corresponding to the Ĝ-conjugacy class of ϕ and is denoted by Πϕ. Langlands
proved that different L-packets are disjoint and that the union of such L-
packets exhausts the collection of irreducible essentially square-integrable
representations up to equivalence (pages 132-135 [Lan89]).

4.2 Tempered L-packets

Let us now change our assumption on ϕ by demanding that ϕ(WR) be
bounded in LG. If G is semisimple and ϕ(WR) is not contained in a proper
Levi subgroup of LG then ϕ(WR) is bounded. This is amusing to prove for
G(R) = SL(2,R), and the general case follows from it. Therefore, up to
considerations involving the centre of G, our present assumption on ϕ may
be viewed as a weakening of the one in §4.1.

Suppose P̃ is a minimal parabolic subgroup of LG containing ϕ(WR).
By requirement 4 in §4, the parabolic subgroup P̃ is relevant, that is to
say P̃ corresponds to a parabolic R-subgroup P of G (§3 [Bor79]). As was
mentioned in §4.1, the subgroup ϕ(WR) necessarily lies in a Levi subgroup
of P̃ . This Levi subgroup may be identified with the L-group LM of a Levi
subgroupM of P (3.4 [Bor79]). We may now apply the correspondence of §4.1
to obtain an L-packet Πϕ,M of essentially square-integrable representations
of M(R).

Let us scrutinize the central characters of the representations in Πϕ,M .
First off, they are all equal. Indeed, the representations in Πϕ,M are dis-
tinguished by the action Ω(M,S), where S(R) is a maximal elliptic torus in
M(R), and the parameters affecting ZM(R) are are insensitive to this action,

21



given as it is by conjugation. Our next wish is to show that the central char-
acter under scrutiny is unitary. Since ZM ⊂ S, we may restrict our attention
to the maximal R-split subtorus S0 of S. If the central character is obtained
from parameters µ0, λ (§4) which produce a bounded set ϕ(WR) then the
projection of µ0 to X∗(S0) ⊗C must be imaginary and so corresponds to a
unitary character of S0(R) (9.4 (b) [Bor79]).

The central character of any representation π ∈ Πϕ,M is unitary, one
knows that any irreducible subrepresentation of the (normalized, paraboli-

cally)induced representation ind
G(R)
P (R)π is tempered (Proposition 3.7 Chapter

IV [BW80]). The L-packet Πϕ is the set of (equivalence classes of) irreducible

subrepresentations of ind
G(R)
P (R)π as π runs over Πϕ,M (p. 153 [Lan89]). Again,

Langlands proved that different L-packets are disjoint and that the union
of such L-packets exhausts the collection of irreducible tempered representa-
tions up to equivalence (§4 [Lan89]).

4.3 L-packets stable under twisting

Now that the tempered L-packets have been defined, we shall single out those
that are preserved by twisting with ω and θ (§2.2 [KS99]). Suppose Πϕ is
a tempered L-packet of G(R) as in §4.2. We write πθ for π ◦ θ, and write
ω ⊗ (Πϕ ◦ θ) for the set

{ω ⊗ πθ : π ∈ Πϕ}.

Lemma 2 Suppose that the quasicharacter ω is unitary. Then the set ω ⊗
(Πϕ ◦ θ) is a tempered L-packet equal to Πa·(Lθ◦ϕ) . It is essentially square-
integrable if and only if Πϕ is essentially square-integrable.

Proof. Suppose first that Πϕ is an essentially square-integrable L-packet
and ω is trivial. Then the representations in Πϕ ◦ θ correspond to a set
of characters of the form Λ(wµ0, λ) ◦ θ of an elliptic torus θ−1(S(R)) of
G(R) (see (20)). The elliptic torus θ−1(S(R)) is G(R)-conjugate to S(R)
(Corollary 4.35 [Kna96], Corollary 5.31 [Spr79]). This implies that there
exists an element x ∈ G(R) so that Int(x)θ preserves the subgroup S(R) (and
any fixed splitting). The isomorphism between LS and the group generated
by ϕ(WR) and T then transports the set of characters Λ(wµ0, λ) ◦ Int(x)θ
to the data µ0 ◦ θ, λ ◦ θ ∈ X∗(T ). Finally, these data correspond to Lθ ◦ ϕ.
This proves that Πϕ ◦ θ = ΠLθ◦ϕ.
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Now let us assume merely that Πϕ is a tempered L-packet. Then each
representation in Πϕ◦θ is an irreducible subrepresentation of an induced rep-

resentation (ind
G(R)
P (R)π)◦θ for some essentially square-integrable representation

π ∈ Πϕ,M (see §4.2). As can be seen in the proof of Proposition 3.1 [Mez07],

the induced representation (ind
G(R)
P (R)π) ◦ θ is equivalent to ind

G(R)

θ−1(P (R))(π ◦ θ).
By the previous paragraph we know that π ◦ θ ∈ ΠLθ◦ϕ,θ−1(M). This proves
that

Πϕ ◦ θ = ΠLθ◦ϕ.(22)

Evidently, the set ϕ(WR) is not contained in a proper Levi subgroup of
LG if and only if the same is true for Lθ ◦ ϕ. Equivalently (§4.1), Πϕ ◦ θ is
essentially square-integrable if and only if Πϕ is.

It remains to prove the lemma for non-trivial ω. Recall from §3.2, that
ω corresponds to a cocycle a ∈ Z1(WR, ZĜ). According to condition (iii) on
page 125 [Lan89], we have

Πa·ϕ = ω ⊗ Πϕ.

The first assertion of the lemma follows from this identity combined with
(22),

ω ⊗ Πϕ ◦ θ = Πa·ϕ ◦ θ = ΠLθ◦(a·ϕ).

Given our observation on the square-integrability under a twist by θ above,
the second assertion follows from the fact that Πϕ is essentially square-
integrable if and only if Πa·ϕ is. Indeed, an equivalent statement is that
ϕ is not contained in a proper parabolic subgroup of LG if and only if a ·ϕ is
not contained in a proper parabolic subgroup of LG, and we know that ZĜ
is a subgroup of every parabolic subgroup of LG.�

5 Tempered essentially square-integrable rep-

resentations

The only tempered L-packets Πϕ which are meaningful to the spectral trans-
fer theorem for twisted endoscopy are those which are preserved by the twist-
ing data ω and θ. We record this property here for future reference.

Πϕ = Πa·(Lθ◦ϕ) = ω ⊗ (Πϕ ◦ θ).(23)
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Suppose Πϕ is a tempered essentially square-integrable L-packet. In other
words, the representations of Πϕ are unitary and essentially square-integrable.
Suppose further that Πϕ satisfies (23) and let π ∈ Πϕ. It is possible for ω⊗πθ
to be inequivalent to π. These representations of Πϕ do not contribute to
the character identities of the spectral transfer theorem. We are therefore
interested in representations π ∈ Πϕ which are equivalent to ω ⊗ πθ.

Let us assume for the remainder of §5 that π ∈ Πϕ is equivalent to ω⊗πθ.
This means that there is an intertwining operator T on the space Vπ of π
which satisfies

U ◦ ω−1(x)π(x) = πθ(x) ◦ U, x ∈ G(R).(24)

By Schur’s lemma we know that the operator U is unique only up to multi-
plication by a scalar in C×. Schur’s lemma also tells us that

ω−1
|ZG(R) χπ = χθπ,(25)

where χπ denotes the central character of π. Observe that since π is tempered,
it is unitary, and so χπ is also unitary.

5.1 Reduction to the subgroup Gder(R)0

To further dissect the representation π, we turn to the derived subgroup Gder

of G. Let Gder(R)0 denote the identity component of Gder(R) regarded as
a Lie group, i.e. as a real manifold. Then according to Lemma 3.5 [Lan89],
there exists an irreducible essentially square-integrable subrepresentation $
of the restriction of π to the subgroup ZG(R)Gder(R)0. The group ZG(R) ∩
Gder(R)0 may be non-trivial, we may identify $ with a representation on
ZG(R)×Gder(R)0 and shall abuse notation by writing

$ = χπ ⊗$1,(26)

where $1 is the restriction of $ to Gder(R)0. Since Gder(R)0 is semisimple
(Corollary 8.1.6 (ii) [Spr98]), its centre is finite, and the representation $1 is
square-integrable.

To see how we may recover π from $ we appeal to Theorem 16 [HC66].
This theorem assures us that for any two representatives δ1, δ2 ∈ G(R)
of distinct cosets in G(R)/ZG(R)Gder(R)0 the representations $δ1 and $δ2

are inequivalent. By Mackey’s criterion, the finitely induced representation

24



ind
G(R)

ZG(R)Gder(R)0$ is irreducible. An application of Frobenius reciprocity then
implies that

π ∼= ind
G(R)

ZG(R)Gder(R)0$.

Combining this argument with decomposition (26), we also see that

π ∼= ind
G(R)

ZG(R)Gder(R)0(χπ ⊗$1).(27)

The close relationship between π and $ recorded above suggests that we
may reduce our study of π to that of $1. To follow this strategy, it will be
necessary to reconsider the group G(R)/ZG(R)Gder(R)0.

Let S be a maximal torus of G as in §4.1. Then Sder = S ∩ Gder is
a maximal torus of Gder such that Sder(R) is compact in Gder(R) (Lemma
3.1 [Lan89]). Since compact real tori are products of circle groups, which
are connected, the compact maximal torus Sder(R) lies in Gder(R)0. It now
follows from

G = Gder Z
0
G(28)

(Proposition 7.3.1 and Corollary 8.1.6 of [Spr98]) that

S = (Z0
G ∩ S)(Gder ∩ S) = Z0

GSder,

S(R) = (Z0
GSder)(R) = Z0

G(R)Sder(R)(29)

and

ZG(R)Gder(R)0 = ZG(R)Sder(R)Gder(R)0 = S(R)Gder(R)0.(30)

As an aside, we remark that equations (28) and (25) imply that the qua-
sicharacter ω is unitary.

Fix a maximal compact subgroup K of Gder(R)0 containing Sder(R), and
fix a positive system for the root system R(k⊗C, sder ⊗C).

Lemma 3 There exists a complete set of representatives {δ1, . . . , δk} for the
cosets of G(R)/ZG(R)Gder(R)0 such that for every 1 ≤ j ≤ k,

1. Int(δj)θ(K) = K

2. Int(δj)θ(Sder(R)) = Sder(R)

3. The differential of Int(δj)θ preserves the fixed positive system of R(k⊗
C, sder ⊗C).
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Proof. By the argument given at the beginning of the proof of Theorem
6.9.5 [Wal88], each coset in G(R)/ZG(R)Gder(R)0 contains a representative
which normalizes S(R), and so G(R)/ZG(R)Gder(R)0 may be identified with
a subset of Ω(G,S). Consequently, we may choose a finite and complete
set of representatives δ′1, . . . , δ

′
k ∈ G(R) for G(R)/ZG(R)Gder(R)0. Suppose

1 ≤ j ≤ k.
Both K and Int(δ′j)θ(K) are maximal compact subgroups of Gder(R)0.

By Corollary 5.31 [Spr79], we may choose y1, . . . , yk ∈ Gder(R)0 such that

Int(yjδ
′
j)θ(K) = K, 1 ≤ j ≤ k.

Similarly, both Sder(R) and Int(yjδ
′
j)θ(Sder(R)) are maximal tori in the con-

nected (Theorem 6.46 [Kna96]) compact groupK. By Corollary 4.35 [Kna96],
we may choose u1, . . . uk ∈ K such that

Int(ujyjδ
′
j)θ(Sder(R)) = Sder(R).

Set δj = ujyjδ
′
j. In this way, we obtain a complete set of representatives for

G(R)/ZG(R)Gder(R)0 such that the first two assertions hold.
We make an additional adjustment to the representatives δ1, . . . , δk, but

this time keeping the same notation. The Weyl group Ω(k ⊗ C, sder ⊗ C)
is isomorphic to Ω(K,Sder(R)) (Theorem 4.41 [Kna86]). Therefore, after
possibly multiplying each of δ1, . . . , δk by an element in NK(Sder(R)), we
may assume that the third assertion holds (Theorem 10.3 (b) [Hum94]).�

Fix δ1, . . . δk ∈ G(R) satisfying Lemma 3.

Lemma 4 There exists a unique 1 ≤ m ≤ k such that the representation $1

is equivalent to $δmθ
1 , where

$δmθ
1 (x) = $1(δmθ(x)δ−1

m ), x ∈ Gder(R)0.

The restriction π(δm)T|V$ of π(δm)T to the subspace V$ ⊂ Vπ of $ is an

isomorphism of V$ which intertwines $1 with $δmθ
1 , that is

π(δm)T$1(x) = $δmθ
1 (x) π(δm)T|V$ , x ∈ Gder(R)0.(31)

Proof. According to Clifford’s theorem, equation (25) and our earlier decom-
positions we have

(ω−1 ⊗ π)|ZG(R)Gder(R)0
∼= ω−1

|ZG(R) ⊗
(
⊕kj=1$

δj
)

(32)

∼= ω−1
|ZG(R) χπ ⊗ (⊕kj=1$

δj
1 )

∼= χθπ ⊗ (⊕kj=1$
δj
1 ).
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In particular, we see that χθπ ⊗ $1 is an irreducible subrepresentation of
the restriction of ω ⊗ π to ZG(R)Gder(R)0. We may therefore follow the
justification for (27) to arrive at

ind
G(R)

ZG(R)Gder(R)0(χθπ ⊗$1) ∼= ω ⊗ π ∼= πθ ∼= ind
G(R)

ZG(R)Gder(R)0(χθπ ⊗$θ
1).(33)

By Frobenius reciprocity, we have

1 = dim Hom(ω ⊗ π, πθ) = dim Hom(χθπ ⊗ (⊕kj=1$
δj
1 ), χθπ ⊗$θ

1).

In consequence, there is a unique 1 ≤ b ≤ k such that $δb
1
∼= $θ

1. The first
assertion of the lemma follows by taking m to be the unique integer such
that δm is the representative of the coset of δ−1

b .
To prove the second assertion, take 1 ≤ r ≤ k and let PrT (V$) be the

orthogonal projection of T (V$) onto the subspace π(δr)(V$), which is irre-
ducible under π|ZG(R)Gder(R)0 . It is easily verified that PrT (V$) is invariant
under π|ZG(R)Gder(R)0 . The irreducibility of π(δr)(V$) implies that the projec-
tion PrT (V$) is either zero or all of π(δr)(V$). By Clifford’s Theorem, the
representation space of π|ZG(R)Gder(R)0 is equal to ⊕kj=1π(δj)(V$) so we may
assume that π(δr)(V$) = T (V$) for some unique r. In this way the operator
π(δ−1

r )T|V$ is an isomorphism of V$. In addition, for all x ∈ Gder(R)0 and
v ∈ V$ we have

π(δ−1
r )T$(x)v = π(δ−1

r )Tπ(x)v

= πδ
−1
r θ(x)π(δ−1

r )Tv

= $δ−1
r θ(x)π(δ−1

r )Tv.

In other words, π(δ−1
r )T|V$ intertwines $1 with $δ−1

r θ
1 By the proof of the

first assertion of the lemma, we have r = b so that we may replace δ−1
r with

δm.�

5.2 Twisted characters

We continue our study of the representation π ∼= ω⊗πθ of the previous section
by defining the notion of a twisted character. According to Harish-Chandra
(§4 [HC54]), the operator ∫

G(R)

f(x) π(x) dx
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is trace-class for every f ∈ C∞c (G(R)). Since the space of trace-class opera-
tors forms a two-sided ideal in the space of bounded operators ([RS75]), we
may define the twisted character Θπ,U by

f 7→ tr

∫
G(R)

f(xθ) π(x) U dx, f ∈ C∞c (G(R)θ).(34)

We would like to express this twisted character in terms of an analogous
twisted character for $1. To this end, set

U1 = π(δm) U|V$

as in (31). One may regard Gder(R)0 as a characteristic subgroup of G(R)o
〈θ〉. In this way, the subgroup generated by Gder(R)0 and δmθ is a Lie group.
We may define C∞c (Gder(R)0δmθ) and Θ$1,U1 by tailoring the above ideas to
G(R), θ, π and U above.

Lemma 5 Suppose f ∈ C∞c (G(R)θ) and define f1 ∈ C∞c (Gder(R)0δmθ) by

f1(xδmθ) =
1

|Gder(R)0 ∩ ZG(R)|

k∑
r=1

ω(δr)

∫
ZG(R)

f(zδ−1
r xδmθδr)χπ(z) dz,

for all x ∈ Gder(R)0. Then

Θπ,U(f) = Θ$1,U1(f1).

Proof. By Proposition 7.3.1 [Spr98], the intersection Gder(R)0 ∩ ZG(R) is
finite, and so we may write

tr

∫
G(R)

f(xθ)π(x)U dx

= tr

∫
ZG(R)Gder(R)0

k∑
j=1

f(xδjθ)π(xδj)U dx

= tr

∫
Gder(R)0/Gder(R)0∩ZG(R)

k∑
j=1

∫
ZG(R)

f(zxδjθ)χπ(z) dz π(xδj)T Udx

= tr

∫
Gder(R)0

1

|Gder(R)0 ∩ ZG(R)|

k∑
j=1

∫
ZG(R)

f(zxδjθ)χπ(z) dz π(xδj)U dx.
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In the proof of Lemma 4 it was pointed out that the restriction of π to
Gder(R)0 is a unitary representation whose space is equal to the orthogonal
sum ⊕kj=1π(δj)V$. Let 〈·, ·〉 denote the inner product on this space and let
B$ be an orthonormal basis of V$. Then

tr

∫
Gder(R)0

1

|Gder(R)0 ∩ ZG(R)|

k∑
j=1

∫
ZG(R)

f(zxδjθ)χπ(z) dz π(xδj)U dx

=
∑
v∈B$

k∑
r=1

∫
Gder(R)0

1

|Gder(R)0 ∩ ZG(R)|

k∑
j=1

∫
ZG(R)

f(zxδjθ)χπ(z) dz

·〈π(xδj)Uπ(δr)v, π(δr)v〉dx

=
∑
v∈B$

k∑
r=1

∫
Gder(R)0

1

|Gder(R)0 ∩ ZG(R)|

k∑
j=1

∫
ZG(R)

f(zxδjθ)χπ(z) dz

· ω(δ−1
r )〈π(δ−1

r xδjθ(δr))Uv, v〉dx

=
∑
v∈B$

k∑
r=1

∫
Gder(R)0

1

|Gder(R)0 ∩ ZG(R)|

k∑
j=1

∫
ZG(R)

f(zδrxδjθδ
−1
r )χπ(z) dz

· ω(δ−1
r )〈π(x)π(δj)Uv, v〉dx.

Here we have used (24) and a change of variable. From Lemma 4 we know
that the only operator π(δj) U which preserves the subspace V$ is π(δm) U.
Therefore, the previous expression reduces to the integral over Gder(R)0 of

1

|Gder(R)0 ∩ ZG(R)|
∑
v∈B$

k∑
r=1

ω(δ−1
r )

∫
ZG(R)

f(zδrxδmθδ
−1
r )χπ(z) dz〈$1(x)U1v, v〉.

This is easily seen to be equal to Θ$1,U1(f1).�

5.3 Square-integrable representations on a class of dis-
connected Lie groups

At this point, we find it advantageous to set

δ = δm.(35)

Our intention in this section is to present enough of the work of Duflo
([Duf82]) and Bouaziz ([Bou87]) to be able to represent the twisted char-
acter Θπ,U of Lemma 5 as a locally integrable function on the regular sub-
set of Gder(R)0. Rather than working with the notationally burdensome
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〈Gder(R)0, δθ〉, we shall work with a semisimple Lie group L of the kind pre-
scribed in [Bou87]. To be precise, the Lie group L is prescribed to have a
semisimple Lie algebra and to posses an abelian subgroup A which centralizes
the identity component L0. Moreover, the subgroup AL0 is of finite index in
L.

Working in this level of generality is suitable for our purposes. Indeed,
the group Gder(R)0 is a connected semisimple Lie group (Corollary 8.1.6 (ii)
[Spr98]). To discover the abelian subgroup corresponding to A, we recall from
Lemma 1 that θ has finite order on Gder(R)0. Therefore, the element (δθ)|θ|

acts as inner automorphism on Gder(R)0 which normalizes S(R) (Lemma 3
and (29)). As such, the element (δθ)|θ| corresponds to a unique element of
the finite group Ω(G(R), S(R)), and for some minimal positive exponent `
there exists s0 ∈ Sder(R) such that

(Int(δ)θ|Gder(R)0)` = Int(s0).(36)

We may now take the group corresponding to A above to be 〈s−1
0 (δθ)`〉.

Indeed, the group

〈Gder(R)0, s−1
0 (δθ)`〉 = Gder(R)0〈s−1

0 (δθ)`〉

is of finite index in the group 〈Gder(R)0, δθ〉.

5.3.1 Some work of Harish-Chandra and Duflo

Suppose that $1 is an irreducible square-integrable representation of L0. In
[Duf82], Duflo parametrizes the set of representations of L (up to equiva-
lence), whose restriction to L0 is equal to $1. In section 5.4, we specialize to
L = 〈Gder(R)0, δθ〉, and Duflo’s parametrization will be conjoined with the
intertwining operators occurring in Lemma 4. A discussion similar to this
one may be found in §18 [Ren97].

Let us recall some of the work of Harish-Chandra ([HC66], IX and XII
[Kna86]). There exists a compact maximal torus H in L0 (Theorem 12.20
[Kna86]), contained in a maximal compact subgroup K of L0. Let l, k and h
be the real Lie algebras of L, K and H respectively. We may fix a maximal
nilpotent subalgebra u of l⊗C such that b1 = (h⊗C)⊕u is a Borel subalgebra
of l ⊗ C. This Borel subalgebra determines a positive system of roots for
R(l ⊗C, h ⊗C), and thereby also determines a positive system of roots for
R(k⊗C, h⊗C). Let ρ1 be the half-sum of the positive roots of (l⊗C, h⊗C).
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The representation $1 corresponds to a unique regular element Λ1 in the dual
Lie algebra h∗ ⊂ l∗, such that iΛ1 (the Harish-Chandra parameter) lies in the
positive chamber relative to b1 (Theorem 9.20 and V §3 [Kna86]). The sum
iΛ1 + ρ1 is the differential of a character of H (Proposition 4.13 [Kna86]).

We will sketch how the objects of the previous paragraph find their place
in II [Duf82]. The regularity of Λ1 ∈ h∗ translates to the technical condition
that Λ1 is bien polarisible (Theorem 2.9′ [Kna96], Lemma 7 II [Duf82]). One
of the consequences of this condition is that the bilinear form

X, Y 7→ Λ1([X, Y ]), X, Y ∈ l

induces a symplectic form on (l/h) ⊗ C. Another consequence is that the
image of the Borel subalgebra b1 = (h ⊗ C) ⊕ u in (l/h) ⊗ C is equal to
its orthogonal complement with respect to this form, i.e. the image of b1 is
a Lagrangian subspace (see the proof of Lemma 7 II [Duf82]). To any such
Lagrangian subspace, Duflo attaches a a complex linear form on h ((5) II.1
[Duf82]). The linear form for b1 is the half-sum of the roots ρ1 of (b1, h⊗C)
(see (8) II.1 [Duf82]), and the fact that the sum iΛ1 + ρ1 lifts to a character
of H is equivalent to the condition that Λ1 be admissible (Remark 2 II.2
[Duf82]) for the group L0.

For L0, the notion of admissibility pertains to a metaplectic covering
group

1→ {1, ε} → H̃ → H → 1

(chapter I [Duf82]). By definition, the element Λ1 is admissible for L0 if
there exists a unitary representation τ of H̃ such that τ(ε) = −1 and the
differential of τ equals iΛ1 (II.2 [Duf82]). We denote the set of (equivalence
classes of) all such representations which are irreducible byX irr

L0(Λ1). For each
τ ∈ X irr

L0(Λ1), Duflo constructs a unitary representation of L0 (II.4 [Duf82]).
In III.3 [Duf82] it is shown that there is only one such representation and it
is equal to $1.

The notion of admissibility extends to the group L in a similar fashion.
Let L(Λ1) be the subgroup {x ∈ L : x · (Λ1) = Λ1} of L. By the regularity
of Λ1 we know that L0(Λ1) = H. However, for the group L the notion of
admissibility pertains to a metaplectic covering group

1→ {1, ε} → L̃(Λ1)→ L(Λ1)→ 1

and X irr
L (Λ1) is defined as before, but with L(Λ1) in place of H. For each

τ ∈ X irr
L (Λ1) Duflo constructs a unitary representation of L(Λ1)L0 ((4) III.5
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[Duf82]) whose restriction to L0 is equal to $1. These representations are of
the form

τ ⊗ SΛ1$1,

where SΛ1 is a representation of L̃(Λ1) whose space is identical to that of $1

(Lemma 6 III.5 [Duf82]). To be more precise, for any y ∈ L0, x ∈ L(Λ1) and

preimage x̃ of x in L̃(Λ1)

τ ⊗ SΛ1$1(xy) = τ(x̃)⊗ SΛ1(x̃)$1(y),(37)

where the expression on the right does not depend on the choice of pre-image
x̃.

5.3.2 Some work of Bouaziz

Let us now assume that L(Λ1)L0 = L, and turn to the work of Bouaziz
which expresses the character of the representation (37) as a locally integrable
function. Fix τ ∈ X irr

L (Λ1) and let $τ be the representation of L defined by
(37). The integrals

Θ$τ (f) = tr

∫
L

f(x)$τ (x) dx, f ∈ C∞c (L)

converge (cf. §5.1). It follows from Theorem 2.1.1 [Bou87] that Θ$τ is given
by a locally integrable function.

We shall only be interested in the values of this function at particular
elements of L. Specifically, we shall evaluate Θ$τ only at elements x ∈
L(Λ1) which are regular in the sense of 1.3 [Bou87] and satisfy Ad(x)k = k.
According to Proposition 6.1.2 and page 60 [Bou87], the value Θ$τ (x) is of
the form ∑

w∈Ω(L0,H)x

(−1)q
w·Λ1

det(1− Ad(x))|u
tr(τwρ̃1)(x).(38)

Let us briefly explicate the terms of this formula. The expression Ω(L0, H)x

denotes the subgroup of elements in the Weyl group Ω(L0, H) whose action
on H commutes with that of Int(x) (see page 53 [Bou87]). The term qw·Λ1

is the number of negative eigenvalues of the matrix given by the Hermitian
form

X 7→ i(w · Λ1)([X, X̄]), X ∈ u
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(see §5.1 [Bou87]). One may compute that qΛ1 is the number of positive
compact imaginary roots of R(l⊗C, h⊗C), and that qw·Λ1 is the sum of the
number of positive compact imaginary roots which remain positive under the
action of w and the number of positive noncompact imaginary roots which
become negative under the action of w. It follows from Lemma A §10.3
[Hum94] that

(−1)q
w·Λ1 = det(w)(−1)q

Λ1 .(39)

Finally, ρ̃1 is a character of L̃(Λ1) which satisfies

ρ̃1(x̃)2 = det(Adx)|u(40)

for every x̃ ∈ L̃(Λ1) whose projection to L(Λ1) is x ((5.2.1) [Bou87]). The
product τwρ̃1 descends to a representation of L(Λ1) (§5.2 [Bou87]).

5.4 Twisted characters again

We return once more to the context and notation of §5.1. In particular π is
an essentially square-integrable representation of G(R) whose restriction to
ZG(R)Gder(R)0 contains an irreducible subrepresentation $. Equation (26)
furnishes us with a related irreducible square-integrable representation $1 of
the semisimple connected group Gder(R)0. Lemma 4 tells us that $1

∼= $δθ
1

and also provides us with an explicit intertwining operator U1 = π(δ)U|V$ .
We now wish to apply the work of Duflo and Bouaziz summarized above to
the representation $1.

We begin by hearkening back to the discussion at the beginning of §5.3
and setting L = 〈Gder(R)0, δθ〉. As we know from that discussion, there is a
least positive integer ` such that (36) holds. This implies that U`

1 intertwines
$1 with $s0

1 . Schur’s Lemma then tells us that U` is a scalar multiple of
$1(s`10 ). Since the intertwining operator U of (24) is only defined up to a
scalar multiple, we may normalize U so that U`

1 = $1(s`0). This normalization
is unique only up to multiplication by an `th root of unity. Once U is so fixed,
the representation $1 may be extended to the group L by defining $1(δθ) =
U1. In this manner one obtains ` inequivalent unitary representations $̄1

of L–one for each root of unity. There is another manner in which our
normalization is not canonical. The element s0 ∈ Sder(R) is only unique up
to multiplication by an element in the centre of the semisimple analytic group
Gder(R)0, which is finite (Proposition 7.9 [Kna96]). This non-uniqueness may
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mean that additional roots of unity are possible in the normalization of U.
However, the possibility of several extensions to L will be accounted for in
our character identities and we have chosen not to include the roots of unity
in the notations for $̄1, U1 and U.

We wish to find τ ∈ X irr
L (Λ1) as in §5.3.1 such that $τ is equivalent to

$̄1. We may specialize the framework of §5.3.1 by setting L0 = Gder(R)0,
l = gder, H = Sder(R), and h = sder. In addition, in §5.1 we have fixed a
maximal compact subgroup K ⊃ Sder(R) of Gder(R)0 and a positive system
for R(k⊗C, sder⊗C). We may associate to $1 a unique regular Λ1 ∈ s∗der in
the positive chamber determined by the positive system for R(k⊗C, sder⊗C).
We then fix b1 to be the Borel subalgebra (gder⊗C, sder⊗C) determined by
Λ1 (Theorem′ 10.1 [Hum94]).

Lemma 6 Under the assumptions of this section, the subgroup L(Λ1) of L =
〈Gder(R)0, δθ〉 is the subgroup generated by Sder(R) and δθ.

Proof. Lemma 4 tells us that $1 is equivalent to $δθ
1 . By inspecting

the character of $δθ
1 (Theorem 12.7 (a) [Kna86]) and recalling equation 2

of Lemma 3, one sees that the parameter associated to $δθ
1 is given by

δθ · Λ1 ∈ s∗der, the differential of Int(δ)θ applied to Λ1. According to Harish-
Chandra’s classification of square-integrable representations ([HC66], The-
orem 9.20 [Kna86]), the equivalence $1

∼= $δθ
1 implies that there is some

w1 ∈ Ω(K,Sder(R)) ∼= Ω(k ⊗ C, sder ⊗ C) such that Λ1 = w1δθ · Λ1. As
the representative δ was chosen so that δθ preserves the positive roots of
R(k⊗C, sder⊗C), and Λ1 lies in the positive Weyl chamber relative to these
roots, Lemma B §10.3 [Hum94] applies and we may conclude that Λ1 = δθ·Λ1.
It follows in turn that δθ ∈ L(Λ1) and L(Λ1) = 〈Sder(R), δθ〉.�

It is immediate from Lemma 6 that L(Λ1)L0 = L. Thus, for each repre-
sentation τ ∈ X irr

L (Λ1) we obtain from (37) an operator τ ⊗ SΛ1(δθ) which
intertwines $1 with $δθ

1 . We describe the representation τ by first recalling
that Λ1 = δθ · Λ1 (Lemma 6) and setting

τ0(exp(X)) = e(iΛ1+ρ1)(X), X ∈ sder(41)

This defines a character in L0(Λ1). We may extend it to a character of L(Λ1)
by recalling (36), choosing an `th root of unity ζ, and setting

τ0(δθ) = ζ e(iΛ1+ρ1)(log(s0)/`).(42)
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This produces a character τ0 of L(Λ1) which depends on a choice of an `th
root of unity. If δ happens to belong to Sder(R) then the δθ-invariance of Λ1

and ρ1 imply in turn that (iΛ1 + ρ1)(log(s0)) = (iΛ1 + ρ1)(` log(δ)) and

τ0(δθ) = ζ e(iΛ1+ρ1)(log(δ)).(43)

The product τ0ρ̃1
−1 is a character of L̃(Λ1) which lies in X irr

L (Λ1) (§5.3.2,
§5.2 [Bou87]). By Schur’s Lemma and (37), the intertwining operator τ0ρ̃

−1
1 ⊗

SΛ1(δθ) is a scalar multiple of U1. After possibly dividing τ0(δθ) by this scalar,
which is an `th root of unity, we obtain a character τ = τ0ρ̃1

−1 in X irr
L (Λ1)

such that τ ⊗ SΛ1(δθ) = U1. As a result, the representation $τ = τ ⊗ SΛ1$1

is equal to the extension $̄1 defined above.
The upshot of this identification of $̄1 with $τ is that we may express

some values of the twisted character Θ$1,U1 of §5.2 by using the work of
Bouaziz. Indeed, by (38) and (39), we deduce that for any x ∈ Sder(R) such
that xδθ is regular in L, the value Θ$1,U1(xδθ) is equal to

∑
w∈Ω(Gder(R)0,Sder(R))xδθ

det(w)(−1)q
Λ1

det(1− Ad(xδθ))|u
tr(τwρ̃1)(xδθ)

=
∑

w∈Ω(Gder(R)0,Sder(R))δθ

det(w)(−1)q
Λ1

det(1− Ad(xδθ))|u
(τw0 (ρ̃1

−1)wρ̃1)(xδθ).

The expression (τw0 (ρ̃1
−1)wρ̃1)(xδθ) may be made plainer. It follows from (40)

that for w ∈ Ω(Gder(R)0, Sder(R))δθ, x̃ ∈ L̃(Λ1) which projects to x ∈ Sder(R)
and X ∈ sder such that x = exp(X) we have

τwρ̃1(x2) = τw0 (ρ̃1
−1)wρ̃1(x2)

= τw0 (ρ̃1
−1)wρ̃1(x̃2)

= ewiΛ1(2X)ew2ρ1(X) det(Adwx−1w−1)|u det(Adx)|u

= ewiΛ1(2X) det(Adwxw−1)|u det(Adwx−1w−1)|ue
ρ1(2X)

= e(wiΛ1+ρ1)(2X).

As every element of the compact connected torus Sder(R) is a square, this
proves that

τwρ̃1(x) = τw0 (ρ̃1
−1)wρ̃1(x) = e(wiΛ1+ρ1)(X).(44)
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Likewise, we compute τwρ̃1(δθ) = τw0 (ρ̃1
−1)wρ̃1(δθ). We choose a repre-

sentative ẇ ∈ Gder(R)0 of w in the normalizer of Sδθder(R) and highlight the
element

ẇ(δθ)ẇ−1(δθ)−1 ∈ Gder(R)0(45)

which we denote by e(ẇ). By our choice of w, the element e(ẇ) acts trivially
on Sder(R) under conjugation, and is therefore actually an element in Sder(R).
According to (40),

(ρ̃−1
1 )wρ̃1(δθ) = ± det(Adẇδθẇ−1)

−1/2
|u ± det(Adδθ)

1/2
|u

= det(Ade(ẇ))
−1/2
|u .

Choose E(ẇ) ∈ sder(R) such that exp(E(ẇ)) = e(ẇ) and apply (41) to derive

τw0 (δθ) = τ0(e(ẇ) δθ) = e(iΛ1+ρ1)E(ẇ)τ0(δθ).

Combining this equation with our computation for (ρ̃−1
1 )wρ̃1(δθ) we find that

τwρ̃1(δθ) = τ0(δθ) e(iΛ1+ρ1)E(ẇ) det(Ade(ẇ))
−1/2
|u = τ0(δθ) eiΛ1E(ẇ)(46)

Observe that Λ1E(ẇ) is independent of our choice of representative as

e(sẇ) = e(ẇ) e(s), s ∈ Sder(R)

and
Λ1E(s) = Λ1(log(s))− δθ · Λ1(log(s)) = 0, s ∈ Sder(R)

(Lemma 6). We collect these simplifications in the proof of the following
lemma.

Lemma 7 Suppose x ∈ Sder(R) such that xδθ is regular in L, w ∈ Ω(Gder(R)0, Sder(R))δθ

and ẇ ∈ Gder(R)0 is any representative for w. Suppose further that X ∈ sder

satisfies exp(X) = x. Then Θ$1,U1(xδθ) is equal to

(−1)q
−Λ1 τ̄0(δθ)

∑
w∈Ω(Gder(R)0,Sder(R))δθ

det(w) e(wiΛ1−ρ1)X eiΛ1E(ẇ)

det(1− Ad(xδθ))|ū
,(47)

where τ̄0 is the character of L(Λ1) which satisfies

τ̄0(exp(X)) = e(iΛ1−ρ1)(X), X ∈ sder

and
τ̄0(δθ) = ζe(iΛ1−ρ1)(log(s0)/`)(48)

( cf. (41) and (42)).
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Proof: By the discussion above we know that Θ$1,U1(xδθ) is equal to

(−1)q
Λ1

∑
w∈Ω(Gder(R)0,Sder(R))xδθ

det(w) τwρ̃1(xδθ)

det(1− Ad(xδθ))|u

and it is easily computed that det(1− Ad(xδθ))|u is equal to

(−1)dim u e2ρ1(X) det Ad(δθ)|u det(1− Ad(xδθ))|ū.(49)

If w0 is the longest Weyl group element of R(l⊗C, sder ⊗C) then equation
(39) implies

(−1)dim u(−1)q
Λ1 = det(w0)(−1)q

Λ1 = (−1)q
w0Λ1 = (−1)q

−Λ1 .

The remaining portions of the lemma follow by drawing together (49) with
(44) and (46) and setting

τ̄0 =
τ0

det Ad|u
.�

5.4.1 The twisted Weyl integration formula

One typically computes the character of a representation by applying the
Weyl integration formula to an explicit locally integrable function, such as
the one given in (47). Our goal here is to compute the character distribution
value Θ$1,U1(f1) of Lemma 5 using this strategy. We shall compute this
value under the assumption that δ is strongly θ-regular in G and Gδθ = Sδθ,
continuing with the notations of §5.4. In particular, L = 〈Gder(R)0, δθ〉.
Some of computations here are implicit in 1.4.2 and (7.1.8) [Bou87].

The basic map for the Weyl integration formula in our situation is Ψ :
Gder(R)0 × 8Sδθder(R)→ L, where

Ψ(g, s) = gsδθg−1, g ∈ Gder(R)0, s ∈ 8Sδθder(R)

and 8Sδθder(R) denotes the subset of θ-regular elements in Sδθder(R).

Lemma 8 The map Ψ is a submersion.

Proof. We must prove that the differential dΨg,s : gder × sδθder → gder at each
point (g, s) ∈ Gder(R)0× 8Sδθder(R) is surjective. By following the computation
of (4.45) [Kna96] and §2 [Ren97], we see that

dΨg,s(X, Y ) = Ad(g)((Ad(sδθ)−1 − I)X + Y ), X ∈ gder, Y ∈ sδθder.(50)
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The image of this map contains q = (I − Ad(δθ))gder and sδθder. According
to (36), the element (δθ)` gives rise to a semisimple inner automorphism of
the semisimple group Gder(R)0. This is equivalent to δθ itself giving rise
to a semisimple automorphism of Gder(R)0 and so Ad(δθ) is a semisimple
automorphism of gder. This implies that we may decompose gder as

gder = gδθder ⊕ q = sδθder ⊕ q.�(51)

We determine the extent to which the submersion Ψ fails to be injective. As
before, Ω(Gder(R)0, Sδθder(R)) is the subgroup of the Weyl group Ω(Gder(R)0, Sder(R))
comprised of elements which commute with the action of δθ. Set

8Sδθder(R) = {s ∈ Sδθder(R) : det(I − Ad(sδmθ))|q 6= 0},(52)

where q = (I − Ad(δθ))gder. The set 8Sδθder(R) contains a dense open subset
of Sδθder(R)0 which also contains regular elements in Gder(R)0.

Lemma 9 Suppose g, g′ ∈ Gder(R)0, s, s′ ∈ 8Sδθder(R) ∩ Sδθder(R)0 and

Ψ(g, s) = Ψ(g′, s′).

Then
(g−1g′)Sδθder(R)0δθ (g−1g′)−1 = (Sδθder)(R)0δθ.

Proof. By hypothesis, we have

sδθ = (g−1g′)s′δθ(g−1g′)−1.(53)

The centralizer in gder of the left-hand side of this equation is equal to sδθder.
The centralizer of the right-hand side is equal to Ad(g−1g′)sδθder. After expo-
nentiating, this identity of centralizers translates to

Sδθder(R)0 = (g−1g′)Sδθder(R)0 (g−1g′)−1.

This identity shows that g−1g′ normalizes Sδθder(R)0. We may also rearrange
equation (53) to obtain

δθ(g−1g′)−1δθ−1(g−1g′) = (s′)−1(g−1g′)−1s(g−1g′).

Since g−1g′ normalizes Sδθder(R)0, the right-hand side belongs to Sδθder(R)0. It
now follows that

(g−1g′)Sδθder(R)0δθ(g−1g′)−1 = (g−1g′)Sδθder(R)0(g−1g′)−1δθ = Sδθder(R)0δθ.�
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In view of Lemma 9, we define NGder(R)0(Sδθder(R)0δθ) to be the group

{g ∈ Gder(R)0 : gSder(R)δθg−1 = Sder(R)δθ},

and we define Ω(Gder(R)0, Sδθder(R)0δθ) to be NGder(R)0(Sδθder(R)0δθ)/Sδθder(R).
According to Lemma 1.3.2 [Bou87], the group Ω(Gder(R)0, Sδθder(R)0δθ) is
finite. Evidently, Ψ passes to a map on Gder(R)0/Sδθder(R)× 8Sδθder(R) and we
shall likewise denote this map by Ψ.

Lemma 10 The restriction of Ψ to Gder(R)0/Sδθder(R)× 8Sδθder(R)∩ Sδθder(R)0

is |Ω(Gder(R)0, Sδθder(R)0δθ)|-to-one.

Proof. We follow Lemma 8.57 [Kna96]. Define an element ofGder(R)0/Sδθder(R)×
8Sδθder(R) ∩ Sδθder(R)0 to be equivalent to (g′Sδθder(R), s′) ∈ Gder(R)0/Sδθder(R)×
8Sδθder(R) if it is of the form (g′wSδθder(R), w−1s′δθ(w)) for some w ∈ NGder(R)0(Sδθder(R)0δθ).
Apparently, equivalent elements have the same image under Ψ, and there are
|Ω(Gder(R)0, Sδθder(R)0δθ)| elements in any equivalence class.

Conversely, suppose that Ψ(gSδθder(R), s) = Ψ(g′Sder(R), s′). We are to
show that (gSδθder(R), s) is equivalent to (g′Sder(R), s′). By Lemma 9, the ele-
ment g−1g′ belongs to NGder(R)0(Sδθder(R)0δθ), and equation (53) implies that
(g−1g′)s′δθ((g−1g′)−1) = s. Setting w = g−1g′, we see that (g′Sder(R), s′) is
equal to (gwSder(R), s′). The latter element is equivalent to (gSder(R), ws′δθ(w−1)),
and this final element is equal to (gSder(R), s).�

Proposition 1 (The twisted Weyl integration formula for Sder(R)) Suppose
f is a continuous function on Gder(R)0δθ with support in the closure of
Ψ(Gder(R)0 × 8Sδθder(R) ∩ Sδθder(R)0). Then the integral

∫
Gder(R)0 f(xδθ) dx is

equal to

1
|Ω(Gder(R)0,Sδθder(R)0δθ)|

∫
Sδθder(R)0

∫
Gder(R)0/Sδθder(R)

f(gsδθg−1)| det(1−Ad(sδθ))|q| dg ds.

Moreover, for s ∈ 8Sδθder(R) ∩ Sδθder(R)0 we have

| det(1− Ad(sδθ))|q|
= | det(1− Ad(δθ))|(sder/s

δθ
der)⊗C

| | det(1− Ad(sδθ))|u|2.(54)

Proof. The first assertion follows from Proposition 8.19 [Kna96], (8.59)
[Kna96] and Lemma 10 if the absolute value of the determinant of the differ-
ential dΨg,s is equal to | det(1−Ad(sδθ))|q| for s ∈ 8Sδθder(R). This final point
is established from the fact that

| det(dΨg,s)| = | det Ad(g)|| det(1− Ad(sδθ))|q|
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(see (50)), and that | det Ad(g)| = 1 (Lemma 4.28 [Kna96]).
As for the second assertion, it is shown in the proof of Lemma 2.3.3

[Bou87] that for s in the component of 8Sδθder(R) containing the identity, the
term | det(1− Ad(sδθ))|q| is equal to

| det(1− Ad(δθ))|q⊗C∩sder⊗C det Ad(δθ)|ū e
−2ρ1(log(s)) det(1− Ad(sδθ))2

|u|.

Here, ū is the nilpotent radical of the Borel subalgebra opposite to b1. The
map

s 7→ |e−2ρ1(log(s))| = | det Ad(s)|ū|, s ∈ Sder(R)

is a continuous homomorphism of a compact connected group into R×, so its
image is one. In addition, from §5.3 we know that (δθ)` lies in ZG(R)Sder(R).
In particular, |(Ad(δθ)|ū)

`| = 1 which implies that |(Ad(δθ)|ū)| = 1. For
s ∈ 8Sδθder(R)∩Sδθder(R)0 in the component containing the identity, the second
assertion now follows from q∩sder

∼= sder/s
δθ
der (see (51)). The second assertion

follows for any s ∈ 8Sδθder(R)∩Sδθder(R)0 by observing that the above arguments
remain true when δθ is replaced by s′δθ for any s′ ∈ Sδθder(R)0.�

The Weyl integration formula provides us with an expression of the char-
acter Θπ,U(f) = Θ$1,U1(f1) of Lemma 5 in terms of twisted orbital integrals
and the character formula (47). As Proposition 1 applies only to functions
with support in the image of Ψ, a few words are in order concerning the
support of f ∈ C∞c (G(R)θ). According to Lemma 8, the image of Ψ is open
in Gder(R)0δθ. Since the quotient G(R)/ZG(R)Gder(R)0 is finite (§5), the
set ZG(R)0Ψ(Gder(R)0× 8Sδθder(R)∩Sδθder(R)0) is open in G(R)θ. This implies
that the union of the G(R)-conjugates of ZG(R)0(8Sδθder(R) ∩ Sδθder(R)0)δθ is
open in G(R)θ. Since the intersection of 8Sδθder(R) with Sδθder(R)0 is dense in
Sδθder(R)0 (see (52)), this open set is dense in the union of the G(R)-conjugates
of ZG(R)0Sδθder(R)0δθ.

Corollary 1 Suppose f ∈ C∞c (G(R)θ) has support in the union of the G(R)-
conjugates of ZG(R)0Sδθder(R)0δθ. Then f1 ∈ C∞c (Gder(R)0δθ), as defined in
Lemma 5, has support in the closure of the image of Ψ and Θπ,U(f) is equal
to the product of

| det(1− Ad(δθ))|s/sδθ⊗C|
|Ω(Gder(R)0, Sδθder(R)0δθ)|

with the integral over s ∈ Sδθder(R)0 of three terms. The first term is the
integral over z ∈ Zδθ

G (R) of χπ(z) times the twisted orbital integral (§5.5
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[KS99])

Ozsδθ(f) =

∫
G(R)/Sδθ(R)

ω(g)f(g−1zsδθg) dg.

The second term is the character Θ$1,U1(xδθ) of Lemma 7. The third term
is | det(1− Ad(sδθ))|u|2.

Proof. Lemma 5 and Theorem 2.1.1 [Bou87] imply that

Θπ,U(f) = Θ$1,U1(f1) =

∫
Gder(R)0

f1(xδθ)Θ$1,U1(xδθ) dx.

for some locally integrable Gder(R)0-invariant function Θ$1,U1 . We may
therefore apply Proposition 1 to deduce that Θπ,U(f) is equal to

1/|Ω(Gder(R)0, Sδθder(R)0δθ)|

times∫
Sδθder(R)0

∫
Gder(R)0/Sδθder(R)

f1(gsδθg−1) dgΘ$1,U1(sδθ)| det(1− Ad(sδθ))|q| ds.(55)

It is now clear that (47) delivers the second term in the assertion. To obtain
the remaining terms, observe that∫
Gder(R)0/Sδθder(R)

f1(gsδθg−1) dg

=

∫
Gder(R)0/Sδθder(R)

1

|Gder(R)0 ∩ ZG(R)|

k∑
r=1

ω(δr)

∫
ZG(R)0

f(δ−1
r gzsδθg−1δr)χπ(z) dz dg

We may decompose the Lie algebra z of ZG(R) as z = zδθ ⊕ (1 − Ad(δθ))z.
Writing z = z1z2 accordingly, and making a change of variable from z2 to
z2δθz

−1
2 δθ−1 we find that the integral over ZG(R)0 equals

| det(1−Ad(δθ))|z/zδθ⊗C|
∫
ZδθG (R)0

∫
ZG(R)0/ZδθG (R)0

ω(z2)f(δ−1
r gz2z1sδθz

−1
2 g−1δr) dz2χπ(z1) dz1.

The first and second integrals here may be taken over Zδθ
G (R) and ZG(R)/Zδθ

G (R)
respectively, because of the support hypothesis on f . Combining the integral
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over ZG(R)/Zδθ
G (R) with the integral over Gder(R)0/Sδθder(R) recalling from

§5.1 that ∪kr=1δ
−1
r ZG(R)Gder(R)0 = G(R) we see that∫

Gder(R)0/Sδθder(R)

f1(gsδθg−1) dg

= | det(1− Ad(δθ))|z/zδθ⊗C|
∫
ZδθG (R)

∫
G(R)/ZδθG (R)Sδθder(R)

ω(g)f(gzsδθg−1) dg χπ(z) dz

= | det(1− Ad(δθ))|z/zδθ⊗C|
∫
ZδθG (R)

Ozsδθ(f) dz.

The remaining terms of the corollary result from (54) and the decomposition
s = z⊕ sder.�

6 Spectral transfer for essentially square-integrable

representations

We provide more detail to the description of spectral transfer. Fix endoscopic
data (H,H, s, ξ), a z-pair (H1, ξH1), and a quasi-character λZ1 of Z1(R) as
in §3.2. Suppose that ϕH1 is an Ĥ1-conjugacy class of an admissible homo-
morphism ϕH1 : WR → LH1 whose composition with p : LH → LZ1 (see (8))
equals homomorphism (9). In other words, p ◦ϕH1 corresponds to λZ1 under
the Local Langlands Correspondence. This assumption is equivalent to the
assumption that

χπH1
(z) = λZ1(z), z ∈ Z1(R)(56)

for the central character of any representation πH1 ∈ ΠϕH1
(cf. 10.1 [Bor79]

and §4.1).
We wish to associate to the L-parameter ϕH1an L-parameter ϕ of G(R).

In the special case that H = H1 and ξ : LH → LG is inclusion, one may
define an L-parameter for G∗(R) by defining ϕ∗ = ξ ◦ϕH1 . One may then set
ϕ = ϕ∗ in the case that ϕ∗ is relevant with respect to the inner form G(R)
(requirement 4 in §4).

The general case involving non-trivial z-extensions necessitates the use
of the intermediate map ξH1 : H → LH1. We shall verify that ϕH1(WR) is
contained in ξH1(H). Once this is done, we may use the isomorphism H ∼=
ξH1(H) of Lemma 2.2.A [KS99] to define ϕ∗ = ξ ◦ ξ−1

H1
◦ϕH1 . If ϕ∗ is relevant,

we define ϕ to be the Ĝ-conjugacy class of ϕ∗. There is also the matter of
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showing that this process does not depend on the choice of representative in
ϕH1 , but let us first take care of proving that ϕH1(WR) ⊂ ξH1(H).

Looking back to (8) and (9) we see that our hypothesis on ϕH1 is

p ◦ ϕH1 = p ◦ ξH1 ◦ c.

This implies that p(ϕH1(w)ξH1(c(w−1))) is trivial for every w ∈ WR. Since
ξH1 is an L-homomorphism (§15 [Bor79]), the element ϕH1(w)ξH1(c(w−1))
belongs to Ĥ1. Combining this observation with the fact that p is an exten-
sion of Ĥ1 → Ẑ1 (see (7)), yields ϕH1(w)ξH1(c(w−1)) ∈ Ĥ. It now follows
from the fact that ξH1 extends Ĥ → Ĥ1 (Lemma 2.2.A [KS99]) that

ϕH1(w) ∈ ξH1(c(w))Ĥ ⊂ ξH1(H)Ĥ = ξH1(H).(57)

This proves ϕH1(WR) ⊂ ξH1(H).

Lemma 11 The map from ϕH1 to ϕ∗described above is well-defined.

Proof. We are to prove that the map does not depend on the choice of
representative ϕH1 in its definition. This is shown in §2 [She10]. We shall
provide a more detailed argument here. Suppose then that ϕ′H1

∈ ϕH1 also
satisfies

p ◦ ϕ′H1
= p ◦ ξH1 ◦ c.

This means that there is some h ∈ Ĥ1 such that ϕ′H1
= Int(h) ◦ ϕH1 and

p(h)p(ϕH1(w))p(h)−1 = p(ϕ′H1
(w)) = p(ξH1(c(w))) = p(ϕH1(w)), w ∈ WR.

This equation implies that p(h) belongs to the Γ-fixed elements ẐΓ
1 in Ẑ1. It

follows from (1.8.1) [Kot84] that there exists z ∈ ZĤ1
such that p(zh) = 1.

Thus, zh belongs to Ĥ and

zϕ′H1
(w)z−1 =

{
ϕ′H1

(w), w ∈ C×

zσ(z)−1 ϕ′H1
(w), otherwise

.(58)

Notice that zσ(z)−1 belongs to ZĤ , as p(z) = p(h−1) ∈ ẐΓ
1 ((1.8.1) [Kot84]).

The map σ 7→ zσ(z)−1 therefore determines a class in H1(Γ, ZĤ). Using the
long exact sequence of Tate cohomology (§6.2 [Wei94]), we obtain an exact
sequence

ẐΓ
1 /(1 + σ)Ẑ1 → H1(Γ, ZĤ)→ H1(Γ, ZĤ1

).(59)
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The class in H1(Γ, ZĤ) given above lies in the kernel of the second map of
(59). Moreover, Γ permutes a Z-basis of the rational character group X∗(Z1)
(p. 20 [KS99]) and Ẑ1

∼= X∗(Z1)⊗Z C. Therefore,

ẐΓ
1
∼= X∗(Z1)Γ ⊗Z C = (1 + σ)X∗(Z1)⊗Z C ∼= (1 + σ)Ẑ1,

which means that the second map of (59) is injective. As a result, the afore-
mentioned class in H1(Γ, ZĤ) is trivial, i.e. there exists z′ ∈ ZĤ such that

z′σ(z′)−1 = zσ(z)−1. Consequently, (z′)−1zh is an element in Ĥ and using
(58)

((z′)−1zh)ϕH1(w)((z′)−1zh)−1 = ((z′)−1z)ϕ′H1
(w)((z′)−1z)−1 = ϕ′H1

(w).

Finally, since ξH1 extends Ĥ → Ĥ1, we see that

ϕ′H1
(WR) = (z′zh)ϕH1(WR)(z′zh)−1 ⊂ ξH1(H)

and
ξ ◦ ξ−1

H1
◦ ϕ′H1

= Int(ξ(ξ−1
H1

(z′zh))) ◦ ϕ∗ ∈ ϕ∗.�

We now make two assumptions that will remain in force for the remainder
of this section.

Assumption 1 We first assume that for any ϕ∗ ∈ ϕ∗ the subgroup ϕ∗(WR) ⊂
LG is bounded and not contained in any proper Levi subgroup of LG.
This assumption has several consequences. To start, any ϕ∗ ∈ ϕ∗ is
relevant (§3 [Bor79], 3.6 [Spr79]) so the L-parameter ϕ of G(R) is
defined. In addition, the L-packet Πϕ consists of unitary essentially
square-integrable representations (§§4.1-4.2). This implies that G(R)
is cuspidal (see p. 135 [Kna86] and §5.3.1). That is, G contains a
maximal torus S which is defined over R and elliptic (§4.1).

Assumption 2 We assume that Πϕ = ω ⊗ (Πϕ ◦ θ).

While we have the connection between ϕH1 and ϕ∗ freshly in mind, it is
worth recording a further consequence of the first assumption.

Lemma 12 Every representation in the packet ΠϕH1
is essentially square-

integrable.
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Proof. As discussed in section 4.1, it suffices to show that ϕH1(WR) is not
contained in a proper Levi subgroup of Ĥ1. By way of contradiction, suppose
that ϕH1(WR) is contained in a proper Levi subgroup. Then, by §3 [Bor79]
and §3.6 [Spr79], there exists a Γ-stable set of simple roots {β1, . . . , βr} ⊂
R(Ĥ1, T̂H1) such that ϕH1(WR) lies in the centralizer in Ĥ1 of ∩rj=1 ker βj. It
follows that ϕH1(WR) permutes the positive roots not generated by {β1, . . . , βr}.
Let β ∈ X∗(T̂H1) be the sum of the positive roots not generated by {β1, . . . , βr}.
We may identify the set of positive roots in R(Ĥ1, T̂H1) with the set of posi-
tive roots in R(Ĥ, TH) with respect to the Borel subgroup BH . The fact that
ξH1 extends the embedding Ĥ → Ĥ1 implies that ξ−1

H1
◦ ϕH1(WR) still lies in

the corresponding centralizer in Ĥ. The map ξ allows us to identify R(Ĥ, TH)

with a subsystem of Rres(Ĝ
∗, T ) = R(((Ĝ∗)θ̂)0, (T θ̂)0). Accordingly, the el-

ement β ∈ X∗(TH) corresponds to an element βres ∈ X∗((T θ̂)0) which is
generated by positive roots in Rres(Ĝ

∗, T ). Clearly, the element βres is fixed
by ξ ◦ ξ−1

H1
◦ ϕH1(WR) = ϕ∗(WR). This implies that ϕ∗(WR) is contained in

the proper parabolic subgroup of LG determined by the Γ-fixed element βres

(§8.4 [Spr98]), contradicting our assumption on ϕ∗.�
The main goal of this section is to make precise and prove an identity of

the form ∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh(60)

=
∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f), f ∈ C∞c (G(R)θ)

(cf. (16)). Here, the expressions ∆(ϕH1 , π) are complex numbers. They are
the spectral transfer factors. The terms Θπ,Uπ are distributions arising from
twisted characters. These distributions and spectral transfer factors shall be
defined in the course of this section. As we shall see, the the distributions in
(60) are determined by their behaviour on elliptic elements. We shall require
the concept of θ-elliptic elements in G(R). A strongly θ-regular element
δ ∈ G(R) is said to be θ-elliptic if the identity component of Gδθ/Zθ

G is
anisotropic over R (page 5 [KS99]). The torus (Gδθ)0 lies in a maximal
torus S which is defined and maximally compact over R. Hence, S(R) is
elliptic (Proposition 6.61 [Kna96] and section 4.1). As S is contained in the
centralizer of Gδθ in G and Gδθ contains G-regular elements (see pp. 227-228
[Art88]), the maximal torus S is uniquely determined by δ.
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Lemma 13 Suppose γ ∈ H(R) is a strongly G-regular element which is a
norm of δ ∈ G(R). Then γ is elliptic if and only if δ is θ-elliptic.

Proof. By Lemma 3.3.C (2) [KS99], the element γ is strongly H-regular.
Therefore the TH = Hγ is a maximal torus of H which is real and elliptic.
Let us describe the following sequence of homomorphisms

(Gδθ)0 ∼= (Gδ∗θ∗)0 = ((T ′)θ
∗
)0 → T ′θ∗

∼= TH .

The isomorphism on the left is given by (14) and is defined over R. The
homomorphism in the middle is induced by the quotient map T ′ → T ′/(1−
θ∗)T ′. Since θ∗ preserves the pair (B∗, T ∗) (see (4)) and the characteristic of
C is zero, the automorphism θ∗ is semisimple (§9 [Ste97]) and

t′ ⊗C = ((t′)θ
∗ ⊗C)⊕ ((1− θ∗)t′ ⊗C).

This decomposition implies that the homomorphism ((T ′)θ
∗
)0 → T ′θ∗ is dom-

inant (Theorem 4.3.6 (i) [Spr98]) and has zero-dimensional kernel (Theorem
5.1.6 [Spr98]). Therefore the kernel is finite (Proposition 2.2.1 (i) [Spr98]),
the homomorphism is surjective (Propositions 2.2.1 and 2.2.5 (ii) [Spr98])
and is defined over R (Theorem 12.2.1 [Spr98]).

The final isomorphism T ′θ∗
∼= TH is that of (12). It is also defined over

R. In summary, we have a surjection (Gδθ)0(R)→ TH(R) with finite kernel.
The same sequence of homomorphisms induces

Zθ
G
∼= Zθ∗

G∗ → ZG∗,θ∗ → ZH

(see (5.4.1) [KS99]), so that we obtain a surjection from the connected com-
ponent of (Gδθ/ZG)(R) to (TH/ZH)(R) with finite kernel. In conclusion, the
former quotient is compact if and only if the latter quotient is compact. The
lemma follows.�

We proceed by first considering (60) in the case that there exists a strongly
θ-regular and θ-elliptic element G(R) which has a norm in H(R) (section
3.3). We shall treat the case that no such elements exist in section 6.5.

Lemma 14 Suppose there is a Borel subgroup B′ of G∗ containing a maxi-
mal torus T ′, which is defined over R and elliptic. Suppose further that θ∗

preserves the pair (B′, T ′). Then there exists π ∈ Πϕ∗ = ω ⊗ (Πϕ∗ ◦ θ∗) such
that π ∼= ω ⊗ πθ.
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Proof. Recall that the set Πϕ∗ is of the form (21) (with S = T ′). We
may therefore choose π ∈ Πϕ∗ such that the differential of its corresponding
quasicharacter Λ′ on T ′(R) lies in the Weyl chamber determined by B′. As
Πϕ∗ = ω⊗(Πϕ∗◦θ∗), there exists w ∈ Ω(G∗, T ′) such that w−1Λ′ = ω|T ′(R)(Λ

′◦
θ∗|T ′(R)). Since ω|T ′(R) is trivial on T ′der(R) (see (29)) and θ∗ preserves B′, the

differential of w−1Λ′ also belongs to the chamber determined by B′. As
Λ′ is regular (section 4.1) and the Weyl group acts simply transitively on
the chambers, the element w is trivial. Consequently, the representation π,
corresponding to Λ′ = w−1Λ′, is equivalent to the representation ω ⊗ πθ,
which corresponds to ω|T ′(R)(Λ

′ ◦ θ∗|T ′(R)).�

Corollary 2 Suppose that there exists a strongly θ-regular and θ-elliptic el-
ement δ ∈ G(R) which has a norm H(R). Then there exists π ∈ Πϕ =
ω ⊗ (Πϕ ◦ θ) such that π is equivalent to ω ⊗ πθ.

Proof. By the hypothesis of the corollary and Lemma 3.3.B [KS99], there
exists a Borel subgroup B′ of G∗ containing a maximal torus T ′, defined
over R, and both are preserved by θ∗. Isomorphism (14) extends to an R-
isomorphism between T ′ and the elliptic torus S (see (149)) so that T ′ is
elliptic. Therefore the hypotheses of Lemma 14 hold. The composition of
the quasicharacter Λ′ of T ′(R) of Lemma 14 with Int(gT ′)ψ defines a quasi-
character Λ on S(R) such that

Λ ◦ Int(δ)θ = Λ′ ◦ Int(gT ′)ψ ◦ Int(δ)θ

= Λ′ ◦ Intδ∗θ∗ ◦ Int(gT ′)ψ

= Λ′ ◦ θ∗ ◦ Int(gT ′)ψ

= (ω|T ′(R)Λ
′) ◦ Int(gT ′)ψ

= ω|S(R) Λ

(see (4) and (13)) Therefore the essentially square-integrable representation
πΛ ∈ Πϕ (see (21)) satisfies

πθΛ
∼= πδθΛ

∼= πδθ·Λ = πω|S(R)Λ = ω ⊗ πΛ.�

From this point until section 6.5 we will assume that

Assumption 3 δ ∈ G(R) is a strongly θ-regular θ-elliptic element with
norm γ ∈ H(R).
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The results of sections 3 and 4 apply with S taken to be the unique elliptic
maximal torus containing Gδθ. In order to employ the results of section 5,
we must specify the objects fixed in 5.1 so as to be compatible with δ.

We may choose a maximal compact subgroup of G(R) o 〈θ〉 containing
the compact subgroup Sder(R)〈δθ〉. This maximal compact subgroup is the
fixed point set of some Cartan involution on the real algebraic group Go 〈θ〉
(For the theory of Cartan involutions we refer to §§1.1-1.6 [BHC62]). The
Cartan involution is algebraic, and so preserves the characteristic subgroup
Gder(R) and its identity component Gder(R)0. Let K be the maximal com-
pact subgroup of Gder(R)0 equal to the fixed points in Gder(R)0 of the Cartan
involution. Then the subgroup

(δθ)K(δθ)−1 = Int(δ)θ(K) ⊂ Gder(R)0

also lies in the fixed point set of the chosen Cartan involution and this means
that Int(δ)θ(K) = K.

We fix the positive system in R(g ⊗ C, s ⊗ C) determined by the Borel
subgroup of G equal to the image of the Borel subgroup B′ ⊂ G∗ of section
3.3 under (Int(gT ′)ψ)−1 (cf. 14). This also fixes positive system on the set
of roots R(k⊗C, sder ⊗C).

With these objects in place, we may assume that δ is one of the represen-
tatives listed in Lemma 3. In addition, by choosing π ∈ Πϕ in section 5.1 to
be the representation given in the proof of Corollary 2, we may assume that
δ = δm as in 4. Indeed, the arguments in the proof of Corollary 2 imply that
the Harish-Chandra parameter of $1 is fixed by δθ.

We may use these assumptions to construct a bridge between the maximal
torus TH = Hγ of H and the maximal torus S arising from Πϕ (§4.1). This
bridge comes in three pieces. The first piece is isomorphism (14) which passes
to an isomorphism

Sδθ(R)0 Int(gT ′ )ψ−→ (T ′)θ
∗
(R)0.

The second piece is the homomorphism from (T ′)θ
∗
(R)0 to T ′θ∗(R)0 defined

by
t 7→ t (1− θ∗)T ′(R), t ∈ (T ′)θ

∗
(R)0.(61)

This homomorphism is surjective and has finite kernel (see the proof of
Lemma 13 or Lemma 4.11 [Ren03]). The third piece is the restriction of
the admissible embedding (12) to T ′θ∗(R)0 which yields an isomorphism

T ′θ∗(R)0 ∼= TH(R)0.
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We denote the composition of these three maps by

η : Sδθ(R)0 → TH(R)0.(62)

The map η is not canonical, depending as it does on the choices for BH , B′,
gT ′ , etc. However, our results are independent of these choices. Although
η need not be an isomorphism, it is a local isomorphism. That is to say,
there is an open subset of the identity V ⊂ Sδθ(R)0 such that η maps V
homeomorphically onto η(V).

Let TH1 denote the pre-image of TH under the projection pH in (6). On
the set V we may extend η to a map η1 : V → TH1(R)0 by noting that (6)
induces a split exact sequence of Lie algebras

0→ z1 → tH1 → tH → 0(63)

and composing η with resulting local isomorphism between TH(R)0 and
TH1(R)0.

According to Proposition 4.12 [Ren03], η1(x)γ1 is a norm of xδ for every
x ∈ Sδθ(R)0 such that xδ is strongly θ-regular. As the latter elements form
a dense subset of Sδθ(R)0, it follows that the set of norms of elements in
Sδθ(R)0δ forms a dense subset of TH(R)0.

Corollary 3 The torus TH(R) is elliptic.

Proof. This is immediate from the assumption that δ is θ-elliptic and Lemma
13.�

6.1 A parameterization of stable data

In the matching of orbital integrals ((5.5.1) [KS99]) geometric transfer factors
of the form ∆(δH , δ) are present. In our setup, this becomes ∆(γ1, δ

′), where
δ′ ∈ G(R) runs over a set of representatives for the θ-conjugacy classes under
G(R) of elements whose norm is γ1. Every δ′ is of the form x−1δθ(x) for some
x ∈ G. Our first goal is to show that the set of representatives δ′ is to some
extent parameterized by the set

(Ω(G,S)/ΩR(G,S))δθ

which we define to be the set of cosets in Ω(G,S)/ΩR(G,S) whose represen-
tatives w ∈ Ω(G,S) satisfy

w−1 δθ w(δθ)−1 ∈ ΩR(G,S).(64)
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This property does not depend on the representative w. Indeed, if w1 ∈
ΩR(G,S) and (64) holds then w−1

1 , w−1δθw(δθ)−1, (δθ)w1(δθ)−1 ∈ ΩR(G,S)
and so

w−1
1 w−1δθww1(δθ)−1 = w−1

1 (w−1δθw(δθ)−1) (δθ)w1(δθ)−1 ∈ ΩR(G,S).

A more refined version of the set (Ω(G,S)/ΩR(G,S))δθ is obtained by
taking the elements x in the normalizer NG(S) which satisfy

x−1δθx(δθ)−1 ∈ G(R).(65)

As before, this property passes to cosets in NG(S)/NG(R)(S). We define
(NG(S)/NG(R)(S))δθ to be the collection of cosets in NG(S)/NG(R)(S) whose
representatives satisfy (65). One may then consider the double cosets

Sδθ\(NG(S)/NG(R)(S))δθ.(66)

Lemma 15 Suppose x ∈ NG(S) satisfies (65). Then the map defined by

x 7→ x−1δθ(x)

passes to a bijection from (66) to the collection of θ-conjugacy classes under
G(R) of elements in G(R) whose norm is γ1.

Proof. Suppose x ∈ NG(S) satisfies (65). Since δ belongs to G(R), property
(65) is equivalent to x−1δθ(x) ∈ G(R). As γ1 is a norm of δ it is by definition
also a norm of x−1δθ(x) (see section 3.3). It is simple to verify that any
element in the double coset Sδθ\x/NG(R)(S) maps to an element which is
θ-conjugate to x−1δθ(x) under G(R). Thus, we have a map from (66) to the
desired collection of θ-conjugacy classes.

To show that this map is surjective, suppose now that x ∈ G is any
element satisfying x−1δθ(x) ∈ G(R), that is, an element in G(R) whose
norm is γ1 (section 3.3). The automorphism Int(x−1δθ(x))θ is defined over
R. Therefore, the group Gx−1δθ(x)θ is defined over R. Since γ1 is a norm
of x−1δθ(x), there is a surjection Gx−1δθ(x)θ(R)→ TH(R) analogous to (62).
The quotient Gx−1δθ(x)θ(R)/Zθ

G(R) = x−1(Gδθ(R)/Zθ
G(R))x is compact, for

δ is θ-elliptic. Using Corollary 4.35 [Kna96] and Corollary 5.31 [Spr79], one
may then show that there exists g ∈ G(R) such that g−1Gx−1δθ(x)θ(R)g lies
in the elliptic torus S(R). Hence,

S ⊃ g−1Gx−1δθ(x)θg = (xg)−1Gδθ xg = (xg)−1Sδθ xg.
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The group Sδθ contains strongly G-regular elements (pp. 227-228 [Art88]).
The previous containment therefore implies that xg normalizes S. It is now
clear that xg ∈ NG(S) maps to the same θ-conjugacy class as x−1δθ(x) under
G(R), and surjectivity is proven.

To prove injectivity, suppose that x1, x2 ∈ G are representatives for dou-
ble cosets in (66) such that x−1

1 δθ(x1) and x−1
2 δθ(x2) belong to the same

θ-conjugacy class under G(R). Then there exists g ∈ G(R) such that

x−1
1 δθ(x1) = (x2g)−1δθ(x2g)

and it follows that
x2gx

−1
1 ∈ Gδθ = Sδθ.

In other words, x1 and x2 represent the same double coset in (66).�
Lemma 15 parametrizes the elements over which one sums in (16) with

the double coset space Sδθ\(NG(S)/NG(R)(S))δθ. It is therefore pertinent
to geometric transfer. As we shall soon see, the pertinent parameter space
for spectral transfer is (Ω(G,S)/ΩR(G,S))δθ. Let us clarify the discrepancy
between these two parameter spaces.

Proposition 2 There is a canonical surjection

Sδθ\(NG(S)/NG(R)(S))δθ → (Ω(G,S)/ΩR(G,S))δθ

whose fibres are orbits of the kernel of the homomorphism

S/S(R)Sδθ
δθ−1−→ S/S(R)

induced by Int(δ)θ − 1. Moreover, one may choose representatives z1 for
elements of this kernel such that (δθ − 1)(z1) are involutions and z1 ∈ AG,
where AG is the split component of the centre of G.

Proof. It is a simple exercise to show that there is a canonical surjection of
Sδθ\(NG(S)/NG(R)(S))δθ onto S\S(NG(S)/NG(R)(S))δθ and that there is a
canonical bijection from S\S(NG(S)/NG(R)(S))δθ onto (Ω(G,S)/ΩR(G,S))δθ.
The composition of these two maps is the canonical surjection of the propo-
sition.

To determine the fibres of this map, observe that two representatives of
cosets in Sδθ\(NG(S)/NG(R)(S))δθ map to the same element in (Ω(G,S)/ΩR(G,S))δθ
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if and only if they differ by a left-multiple of an element in S. We must there-
fore determine the elements s ∈ S which satisfy

(sx)−1δθsx(δθ)−1 ∈ G(R)(67)

for a given representative x ∈ NG(S) satisfying (65). An element s ∈ S
satisfies (67) if and only if

x−1s−1δθs(δθ)−1x(x−1δθx(δθ)−1) ∈ G(R)

⇔ x−1s−1δθs(δθ)−1x ∈ G(R)

⇔ s−1δθs(δθ)−1 ∈ S(R)

⇔ (δθ − 1)(s) ∈ S(R)

as conjugation on the elliptic torus S by elements in NG(S) is defined over
R (Lemma 6.4.1 [Lab08]). The final membership is equivalent to the coset
sS(R)Sδθ belonging to the kernel of the map

S/S(R)Sδθ
δθ−1−→ S/S(R).

This proves the first assertion concerning the fibres of our canonical surjec-
tion.

To prove the second assertion about the fibres, we introduce some Galois
cohomology. Given s ∈ S with (δθ − 1)(s) ∈ S(R), one obtains a cocycle
as ∈ Z1(Γ, Sδθ) by setting as(σ) = s−1σ(s). Indeed, δθ is defined over R so
that

δθ(s−1σ(s)) = s−1σ(s) ⇔ (δθ − 1)(s−1σ(s)) = 1

⇔ (δθ − 1)(s) = σ((δθ − 1)(s))

⇔ (δθ − 1)(s) ∈ S(R)

It is easily verified that the map s 7→ as is a homomorphism with kernel
S(R). This homomorphism passes to an isomorphism from the kernel of

S/S(R)Sδθ
δθ−1−→ S/S(R) to the image of the connecting homomorphism

D0 : ((δθ − 1)S)(R)→ H1(Γ, Sδθ).

In consequence, the fibres of our canonical surjection have an alternative
description as the image ofD0. The mapD0 is the connecting homomorphism
in the long exact sequence of cohomology

· · · → S(R)
δθ−1−→ ((δθ − 1)S)(R)

D0→ H1(Γ, Sδθ)→ H1(Γ, S)→ · · ·(68)
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induced by the exact sequence of Γ-modules

1→ Sδθ → S
δθ−1−→ (δθ − 1)S → 1.

The identity component ((δθ − 1)S)(R)0 in the real manifold topology is
contained in the image of

S(R)
δθ−1−→ ((δθ − 1)S)(R).

Indeed, by Corollary 5.3.3 (i) [Spr98]

dim(δθ − 1)S = dimS − dimSδθ

and each of the groups in this equation is defined over R. Therefore,

dimR((δθ − 1)S)(R) = dim(δθ − 1)S

= dimS − dimSδθ

= dimR S(R)− dimR S
δθ(R)

= dimR(δθ − 1)(S(R)).

We now know that (δθ − 1)(S(R)) is open (and closed) in the Lie group
((δθ−1)S)(R), and of necessity contains ((δθ−1)S)(R)0. We conclude from
the exactness of (68) that ((δθ − 1)S)(R)0 lies in the kernel of D0.

We may decompose ((δθ − 1)S)(R) in terms of ((δθ − 1)S)(R)0 in the
following manner. As S is an elliptic torus, its split component is equal to AG.
Since δθ− 1 is defined over R, it maps the split and anisotropic components
of S to those of the torus (δθ − 1)S. In particular, the split component of
(δθ − 1)S is (δθ − 1)AG. The group of real points of this split component
decomposes as a product of real multiplicative groups and so decomposes as
direct product

((δθ − 1)AG)(R) = ((δθ − 1)AG)(R)0F,(69)

where F is an elementary 2-group. An application of Theorem 14.4 [BT65]
now yields

((δθ − 1)S)(R) = ((δθ − 1)S)(R)0 ((δθ − 1)AG)(R)

= ((δθ − 1)S)(R)0 F
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As a result

D0(((δθ − 1)S)(R)) = D0(((δθ − 1)AG)(R)) = D0(F ).

The second assertion concerning the fibres of our canonical surjection now
follows from the isomorphism between the image of D0 and the kernel of

S/S(R)Sδθ
δθ−1−→ S/S(R) outlined above.�

Lemma 15 parametrizes some data pertinent geometric transfer with
the set Sδθ\(NG(S)/NG(R)(S))δθ and Proposition 2 describes its relation to
(Ω(G,S)/ΩR(G,S))δθ. The following lemma shows that the set (Ω(G,S)/ΩR(G,S))δθ

parametrizes data pertinent to spectral transfer. Before stating it, let us re-
view the form of the L-packet Πϕ. Setting Λ = Λ(µ0, λ) as in (21) we have
Πϕ = {πw−1Λ : w ∈ Ω(G,S)/ΩR(G,S)}. We may assume π = πΛ so that the
differential of Λ is positive and regular. Recalling the groundwork of §5.3.1, it
becomes apparent that the restriction of the differential of Λ to sder = gder∩s
is Λ1 ∈ s∗der, and the restriction of Λ to ZG(R) is χπ. We may therefore write
$1 = $Λ1 and (27) is subsumed by

πw−1Λ
∼= ind

G(R)

ZG(R)Gder(R)0(χπ ⊗$w−1Λ1
), w ∈ Ω(G,S)/ΩR(G,S).(70)

Lemma 16 Suppose w ∈ Ω(G,S) is a representative of a coset in Ω(G,S)/ΩR(G,S).
Then

πw−1Λ
∼= ω ⊗ πθw−1Λ

if and only if w satisfies (64). In particular, the subset of representations
π′ ∈ Πϕ satisfying π′ ∼= ω ⊗ (π′)θ is

{πw−1Λ : w ∈ (Ω(G,S)/ΩR(G,S))δθ}.

Proof. It is a simple exercise to verify that if U′ is an intertwining operator
satisfying

U′ ◦ (ω−1 ⊗ π′) = (π′)θ ◦ U′,

for some π′ ∈ Πϕ, then π′(δ)U′ is an intertwining operator satisfying

π′(δ)U′ ◦ (ω−1 ⊗ π′) = (π′)δθ ◦ π′(δ)U′.

Similarly if U′ intertwines ω−1 ⊗ π′ with (π′)δθ then π′(δ)−1U′ intertwines
ω−1 ⊗ π′ with (π′)θ. Proving the lemma is therefore equivalent to proving
that ω−1 ⊗ πw−1Λ

∼= (πw−1Λ)δθ if and only if w satisfies (64).
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Using (70) we compute that

(πw−1Λ)δθ ∼= ind
G(R)

ZG(R)Gder(R)0(χθπ ⊗$δθ
w−1Λ1

).(71)

The representation $δθ
w−1Λ1

is determined up to equivalence by its charac-
ter values on sder (§14 [HC65a], Theorem 12.6 [Kna86]). By Theorem 12.7
(a) [Kna86] and Int(δ)θ(Λ1) = Λ1 (Lemma 6), these character values are
determined by the homomorphism

exp(iw−1Λ1(Int(δ)θ(·))) = exp(i(Int(δ)θ)−1(w−1)Λ1(·))

from sder to C×. This equation implies that $δθ
w−1Λ1

∼= $(Int(δ)θ)−1(w−1)Λ1
.

By making this substitution in the right-hand side of (71) and the leftmost
equivalence of (33) we find that

(πw−1Λ)δθ ∼= ω−1 ⊗ π(Int(δ)θ)−1(w−1)Λ.

The representation ω−1⊗π(Int(δ)θ)−1(w−1)Λ is equivalent to ω−1⊗πw−1Λ if and
only if

(Int(δ)θ)−1(w) ΩR(G,S) = wΩR(G,S)

([HC66]). As the automorphism Int(δ)θ is defined over R. Applying Int(δ)θ
to this equation yields

wΩR(G,S) = (Int(δ)θ)(w) ΩR(G,S),

and this equation holds if and only if w satisfies (64).�

6.2 Geometric transfer factors

Recall from §3.4 that we are assuming the existence of functions which sat-
isfy a matching of orbital integrals (16). The matching identity contains
geometric transfer factors. Under the assumptions of section 6, the geo-
metric transfer factors that interest us, are the form ∆(η1(x)γ1, xδ), where
x ∈ V ⊂ Sδθ(R)0 and η1(x) ∈ H1(R) is an element whose image under the
surjection H1(R) → H(R) (see (6)) is η(x) ∈ TH(R). We wish to highlight
certain properties of these particular transfer factors by referring to their
definition in §§4-5 [KS99].
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We set forth by fixing γ0
1 ∈ H1(R) and strongly θ-regular δ0 ∈ G(R) such

that γ0
1 is a norm of δ0. One may choose ∆(γ0

1 , δ
0) arbitrarily in C× and then

set (see (5.1.1) [KS99])

∆(γ̄1, δ̄) = ∆(γ̄1, δ̄; γ
0
1 , δ

0) ∆(γ0
1 , δ

0)(72)

for any strongly θ-regular δ̄ ∈ G(R) with norm γ̄1 ∈ H1(R). The term
∆(γ̄1, δ̄; γ

0
1 , δ

0) is the product of four scalars ∆I(γ̄1, δ̄; γ
0
1 , δ

0), . . . , ∆IV (γ̄1, δ̄; γ
0
1 , δ

0).
Other than ∆III(γ̄1, δ̄; γ

0
1 , δ

0), these scalars are quotients of the form

∆j(γ̄1, δ̄; γ
0
1 , δ

0) = ∆j(γ̄1, δ̄)/∆j(γ
0
1 , δ

0), j = I, II, IV.

We choose
∆(γ0

1 , δ
0) = ∆I(γ

0
1 , δ

0) ∆II(γ
0
1 , δ

0) ∆IV (γ0
1 , δ

0)

so that (72) becomes

∆(γ̄1, δ̄) = ∆I(γ̄1, δ̄) ∆II(γ̄1, δ̄) ∆III(γ̄1, δ̄; γ
0
1 , δ

0) ∆IV (γ̄1, δ̄).

In the case that γ̄1 = η1(x)γ1 and δ̄ = xδ the transfer factor ∆(η1(x)γ1, xδ)
is equal to

∆I(η1(x)γ1, xδ) ∆II(η1(x)γ1, xδ) ∆III(η1(x)γ1, xδ; γ
0
1 , δ

0) ∆IV (η1(x)γ1, xδ)(73)

We shall mention a few features of each of these four terms in order to
demonstrate how they depend on x ∈ Sδθ(R)0. The first term ∆I(η1(x)γ1, xδ)
depends on (η1(x)γ1, xδ) only through the maximal torus T ′ ⊂ G∗ defined in
§3.3 (see §4.2 [KS99]). To be more precise, the torus T ′ is the centralizer in
G∗ of gT ′m(xδ)θ∗(gT ′)

−1 (see (13)). As we are assuming xδ to be θ-regular
in G and x belongs to Gδθ, it follows from (14) that T ′ is the centralizer of
gT ′m(δ)θ∗(gT ′)

−1 and depends on δ alone. We may therefore write

∆I(η1(x)γ1, xδ) = ∆I(γ1, δ) = ∆I(γ, δ),

where the right-most term follows the convention of §4.2 [KS99].
The second and fourth terms of (73) are defined in terms of comparable

data. The definition of ∆II(η1(x)γ1, xδ) depends on a choice of a-data and
a choice of χ-data. The definitions of these data are given in (2.2) and (2.5)
[LS87] respectively (see also §1.3 [KS99], §9 [She08]). Under our assumptions,
all of the roots in

Rres(G
∗, T ′) = {α|((T ′)θ∗ )0 : α ∈ R(G∗, T ′)}
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(§1.3 [KS99]) and R(H,TH) are imaginary (see (17)). We leave it to the
reader to verify that under this assumption valid choices of a-data are given
by

aα =

{
−i, α > 0
i, α < 0

.

Here, α is a root in Rres(G
∗, T ′) or R(H,TH). The positive system for

R(H,TH) is the one determined by Borel subgroup BH and the positive
system for Rres(G

∗, T ′) is inherited from the positive system of R(G∗, T ′) de-
termined by the Borel subgroup B′ (see section 3.3). We also leave it to the
reader to verify that valid choices of χ-data are given by

χα(z) =

{
|z|/z, α > 0
z/|z|, α < 0

z ∈ C×(74)

(cf. §9 [She08]). As before, α is a root in Rres(G
∗, T ′) or R(H,TH).

The term ∆II(η1(x)γ1, xδ) is a quotient (§4.3 [KS99]). Using the above
choice of a- and χ-data, the numerator of this quotient may be written as

(−i)dim u
(G∗)θ∗

∣∣∣∏αres<0, typeR1,R2
Nα((xδ)∗)− 1

∏
αres<0, typeR3

Nα((xδ)∗) + 1
∣∣∣∏

αres<0, typeR1,R2
Nα((xδ)∗)− 1

∏
αres<0, typeR3

Nα((xδ)∗) + 1
.

(75)
To justify this expression we must refer to §1.3 [KS99]. Our products are
taken over negative roots αres in Rres(G

∗, T ′). Since all roots are assumed to
be imaginary, this is equivalent to taking products over Galois orbits of roots
as in §1.3 [KS99]. The root system Rres(G

∗, T ′) is not necessarily reduced
and so the roots αres may be categorized into three types, R1-R3, depending
on whether 2αres or 1

2
αres are also roots ((1.3.4) [KS99]). The roots of type

R1 and R2 are the indivisible roots which coincide with the root system
R(((G∗)θ

∗
)0, ((T ′)θ

∗
)0) ((1.3.4) [KS99]). The positive root spaces of type R1

and R2 therefore generate a Borel subalgebra u(G∗)θ∗ in the complex Lie

algebra of (G∗)θ
∗
. This fact and our choice of a-data account for the term

(−i)dim u
(G∗)θ∗ in (75).

For the remaining terms, we define the regular element (xδ)∗ ∈ T ′ as
gT ′m(xδ) θ∗(gT ′)

−1, in accordance with (13). The character Nα is defined
on page 16 [KS99] as

∑lα−1
j=0 θ∗α (with the convention of additive notation),

where αres = α|(T ′)θ∗ and lα is the cardinality of the θ∗-orbit of α.
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As intimated in §4.5 [KS99], one may express∏
αres<0, typeR1,R2

Nα((xδ)∗)− 1
∏

αres<0, typeR3

Nα((xδ)∗) + 1

as (−1)
dim u

(G∗)θ∗ det(1−Ad((xδ)∗)θ∗)|ūG∗ . Indeed, the exponent dim u(G∗)θ∗ of
−1 appears for the same reasons it did as an exponent of −i in (75). Further-
more, taking the union of the sets of root vectors {Xα, θ

∗(Xα), . . . , (θ∗)lα−1(Xα)},
as α runs over a set of representatives of θ∗-orbits of negative (resp. positive)
roots in R(G∗, T ′), yields a basis for a Borel subalgebra ūG∗ (resp. uG∗) of
the complex Lie algebra of G∗. Referring to (1.3.5)-(1.3.7) [KS99], one may
compute that

det(1−Ad((xδ)∗)θ∗)|ūG∗ =
∏

αres<0, typeR1,R2

1−Nα((xδ)∗)
∏

αres<0, typeR3

Nα((xδ)∗)+1.

By following this description of the numerator, one sees that denominator
of ∆II(η1(x)γ1, xδ) has an analogous, but simpler form, namely

idim uH

∣∣det(1− Ad(η(x)γ))|ūH
∣∣

det(1− Ad(η(x)γ))|ūH
.

We conclude our exposition of ∆II(η1(x)γ1, xδ) by writing it as ∆II(η(x)γ, xδ)
and noting that it is equal to

i
dim u

(G∗)θ∗−dim uH det(1− Ad(η(x)γ))|ūH
∣∣det(1− Ad((xδ)∗)θ∗)|ūG∗

∣∣
det(1− Ad((xδ)∗)θ∗)|ūG∗

∣∣det(1− Ad(η(x)γ))|ūH
∣∣(76)

for our choice of a- and χ-data.
The fourth term ∆IV (η1(x)γ1, xδ) is defined in §4.5 [KS99], where it may

be seen that it is equal to

∆IV (η(x)γ, xδ) =

∣∣∣det(1− Ad((xδ)∗θ∗)|u
G
∗+ū

G
∗

∣∣∣1/2∣∣det(1− Ad(η(x)γ))|uH+ūH

∣∣1/2 .(77)

As in §4.5 [KS99], we adopt the notation DG∗θ∗((xδ)
∗) and DH(η(x)γ) for

the numerator and denominator in (77). Before moving to the third term in
(73), we state an identity involving ∆II and ∆IV .
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Lemma 17 Suppose x ∈ Sδθ(R)0, such that xδ is strongly θ-regular and
η1(x)γ1 is a norm of xδ. Then, with the above choice of a- and χ-data,

∆II(η(x)γ, xδ) ∆IV (η(x)γ, xδ)DH(η(x)γ)2

det(1− Ad(η(x)γ))|ūH

is equal to

i
dim u

(G∗)θ∗−dim uH DGθ(xδ)
2

det(1− Ad(xδ)θ)|ū
.

Proof. According to Corollary 3, the group TH(R)/ZH(R) is compact. Re-
placing G with H and S with TH in the discussion preceding (29), we find
that TH(R)/ZH(R) is connected. It follows that, | det(Ad)|uH |, as a homo-
morphism from TH(R)/ZH(R) to R×, is trivial. Therefore,

| det(1− Ad)|uH | = |(−1)dim uH det(1− Ad−1)|uH det(Ad)|uH |
= | det(1− Ad)|ūH |.

This implies that

| det(1− Ad)|uH | = | det(1− Ad)|uH |1/2| det(1− Ad)|ūH |1/2 = DH .

Combining these facts with (76) and (77), the first expression of the lemma
is seen to be equal to

i
dim u

(G∗)θ∗−dim uH DG∗θ∗((xδ)
∗)2 DH(η(x)γ)2

det(1− Ad((xδ)∗)θ∗)|ūG∗ DH(η(x)γ)2

Transport via isomorphism (14) yields DG∗θ∗((xδ)
∗) = DGθ(xδ) and

det(1− Ad((xδ)∗θ∗)|ūG∗ = det(1− Ad(xδ)θ)|ū.�

We move on to the third term in (73). It is a consequence of Lemma
5.1.A. [KS99], that

∆III(η1(x)γ1, xδ; γ
0
1 , δ

0) = ∆III(η1(x)γ1, xδ; γ1, δ) ∆III(γ1, δ; γ
0
1 , δ

0).(78)

We shall trace the definition of ∆III(η1(x)γ1, xδ; γ1, δ) given in §4.4 [KS99].
Afterwards, we shall relate our findings to characters on TH(R) and Sδθ(R).

∆III(η1(x)γ1, xδ; γ1, δ) is defined in terms of a fibre product of two max-
imal tori. The first torus is T ′ ⊂ G∗. Denote by N : T ′ → TH the ho-
momorphism which is the composition of the coset map T ′ → T ′θ∗ with the
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isomorphism T ′θ∗
∼= TH of §3.3. The second torus is TH1 . Let T1 be the fibre

product
{(t′, t) ∈ T ′ × TH1 : N(t′) = pH(t)}.(79)

The projection of T1 to its first coordinate produces a surjection

p1 : T1 → T ′(80)

whose kernel is isomorphic to Z1. By definition,

∆III(η1(x)γ1, xδ; γ1, δ) = 〈V1,A1〉,(81)

where V1 is a class in a hypercohomology group H1(Γ, U → S1), A1 is a
class in hypercohomology group H1(WR, Ŝ1 → Û), and 〈·, ·〉 is a pairing
given in A.3 [KS99]. We shall describe both V1 and A1, and then turn to
computing 〈V1,A1〉. In our description, it shall be important to realize that
both elements, xδ and δ, are mapped under (13) to respective elements (xδ)∗

and δ∗ in the same torus, namely T ′.
As seen on p. 42 [KS99], the torus S1 in H1(Γ, U → S1) is the quotient

of T1 × T1 whose rational characters are

X∗(S1) = {(µ1, µ2) ∈ X∗(T1)×X∗(T1) : µ1 − µ2 ∈ X∗(T ′ad)}.

In fact, the quotient is taken with respect to group of elements {(z, z−1)},
where z lies in the inverse image under (80) of the centre ZG∗ = ZG. It is an
instructive exercise to prove that S1

∼= T1 × T ′ad. The isomorphism is given
by the map which sends each pair (t, tH1), (t̄, t̄H1) ∈ T1 to ((tt̄, tH1 t̄H1), t̃), the
element t̃ being the image of t under the covering map G∗ → G∗ad.

In the same vein, the other torus U , appearing in H1(Γ, U → S1), is
defined (p. 37 [KS99]) to be the quotient

(T ′sc × T ′sc)/{(z, z−1) : z ∈ ZGsc}.

The map which sends each pair t, t̄ ∈ T ′sc to the element (tt̄, t̃) in T ′sc ×
T ′ad, t̃ being the image of t under the covering map G∗sc → Gad, induces an
isomorphism U ∼= T ′sc × T ′ad.

The class V1 ∈ H1(Γ, U → S1) is defined by the 1-hypercocycle (V,D1).
In the first entry is a 1-cocycle V ∈ Z1(Γ, U). It is the image of (v−1, v) in
U of a 1-cochain v ∈ C1(Γ, T ′sc) defined by

v(σ) = gT ′uσσ(gT ′)
−1
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(see (3), (13) and p. 38 [KS99]). In the second entry is a 0-cochain D1 ∈ S1.
It is equal to the image in S1 of the pair (((xδ)∗, η1(x)γ1), (δ∗, γ1)−1) in T ′×T ′.
A straightforward computation shows that (xδ)∗ may be written as x∗δ∗,
where x∗ ∈ T ′(R) (abusively) denotes the image of x under (14). This
allows us to decompose D1 into a product DδDx, where Dδ and Dx are the
respective cosets of ((δ∗, γ1), (δ∗, γ1)−1) and ((x∗, η1(x)), 1) in S1. One may
then decompose (V,D1) into a product (V,Dδ)(1, Dx) of 1-hypercochains. By
Lemma 4.4.A [KS99], (V,Dδ) is a 1-hypercocycle. Since (x∗, η1(x)) belongs
to the real torus T ′(R)× TH(R), the element (σ(x∗)(x∗)−1, σ(η1(x))η1(x)−1)
is trivial and (1, Dx) is also a 1-hypercocycle. Writing Vδ and Vx for the
respective classes in H1(Γ, U → S1) of (V,Dδ) and (1, Dx), we obtain V1 =
VδVx. This is analogous to the decomposition given in [Shea].

We may further decompose Vδ and Vx according to the isomorphisms
S1
∼= T1 × T ′ad and U ∼= T ′sc × T ′ad given above. Through these isomorphisms,

we may identify Dδ ∈ S1 with the element (1, δ̃∗) ∈ T1×T ′ad, and the element
Dx ∈ S1 with ((x∗, η1(x)), x̃∗) ∈ T1 × T ′ad. Similarly, the 1-cochain V ∈
C1(Γ, U) is identified with (1, ṽ) ∈ C1(Γ, T ′sc × T ′ad), where ṽ ∈ C1(Γ, T ′ad) is
taken to be the composition of v with the covering map G∗ → G∗ad.

We now proceed to the class A1 ∈ H1(WR, Ŝ1 → Û), with which V1 is
paired. The class A1 is defined (p. 45 [KS99]) by a 1-hypercocycle

(A−1, sU) ∈ Z1(WR, T̂1 × T̂ ′sc → Û).

This definition makes use of the isomorphism Ŝ1
∼= T̂1× T̂ ′sc, which is dual to

S1
∼= T1 × T ′ad (see p. 38 and p. 42 [KS99]). We shall ignore the definition

of sU and merely state that under the isomorphism Û ∼= T̂ ′ad × T̂ ′sc (p. 38
[KS99]) it may be identified with an element (sad, 1) defined in terms of the
endoscopic datum s (p. 41 [KS99]). The term A is a 1-cocycle of the form
(aT ′ , 1) ∈ Z1(WR, T̂1 × T̂ ′sc). We shall have much more to say about the
definition of aT ′ ∈ Z1(WR, T̂1) shortly. For the time being, we recognize
that the Local Langlands Correspondence for tori (Theorem 1 [Lan97], 9.1
[Bor79]) attaches to the class of aT ′ in H1(WR, T̂1) a quasicharacter of T1(R).
We shall denote this quasicharacter, somewhat abusively, by 〈·, aT ′〉.

Lemma 18 The geometric transfer factor ∆III(η1(x)γ1, xδ; γ1, δ) is equal to
〈(x∗, η1(x)), aT ′〉.

Proof. Recalling (81), we compute each factor in the product

〈V1,A1〉 = 〈Vδ,A1〉〈Vx,A1〉.
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We may write

〈Vδ,A1〉 = 〈(V,Dδ), (A
−1, sU)〉

= 〈((1, ṽ), (1, δ̃∗)), ((a−1
T ′ , 1), (sad, 1))〉.

To compute this pairing, we employ isomorphism (A.3.4) [KS99]. The inverse
of this isomorphism maps the 1-cocycle (1, ṽ) ∈ Z1(Γ, T ′sc × T ′ad) to a 0-
cycle in C0(WR, X∗(T

′
sc) × X∗(T ′ad)) which we will abusively also denote by

(1, ṽ) ∈ X∗(T ′sc)×X∗(T ′ad) (see (A.3.5) [KS99]). The inverse of (A.3.4) [KS99]
maps (1, δ̃∗) to a 1-cycle in C1(WR, X∗(T1)× T ′ad) which we again abusively
denote by (1, δ̃∗). According to p. 135 [KS99], the pairing 〈Vδ,A1〉 is equal
to the product of the value of (1, ṽ) ∈ X∗(T ′sc)×X∗(T ′ad) at (sad, 1) ∈ T̂ ′ad×T̂ ′sc,
which is one, with ∏

w∈WR

1(aT ′(w)) δ̃∗w(1) =
∏

w∈WR

(1)(1) = 1.

This proves that 〈Vδ,A1〉 = 1.
We use the same method to compute

〈Vx,A1〉 = 〈(1, Dx), (A
−1, sU)〉

= 〈(1, ((x∗, η1(x)), x̃∗)), ((a−1
T ′ , 1), (sad, 1))〉.

Following the same procedure as for 〈Vδ,A1〉, this pairing is a product of
three terms: the value of the identity in X∗(T

′
sc)×X∗(T ′ad) at (sad, 1), which

is one; the product
∏

w∈WR
x̃∗w(1) = 1; and a pairing of a−1

T ′ ∈ Z1(WR, T̂1)
with (x∗, η1(x)). In this final pairing we identify (x∗, η1(x)) ∈ T1(R) with a 1-
chain in C1(WR, X∗(T1)). This identification is identical to that formulated
by Langlands in [Lan97] (p. 131 [KS99]). Consequently, the final pairing
equals the product

∏
w∈WR

(x∗, η1(x))w(aT ′(w)), and this is 〈(x∗, η1(x)), aT ′〉
(see (5) 9.2 [Bor79]).�

Lemma 18 records how ∆III is affected when multiplying the pair (γ1, δ
∗)

by the pair (η1(x), x∗). In a similar fashion, Kottwitz and Shelstad record
how ∆III is affected when multiplying the pair (γ1, δ

∗) by a pair (z1, z) ∈
Z1(R) × ZG(R) in the inverse image of ZG(R) under (80) (see pp. 53-54
[KS99]). They denote this inverse image by C and record this change in
terms of a quasicharacter ΛC of C. In particular,

∆III(z1γ1, zδ; γ1, δ) = ΛC(z1, z)
−1.
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In our discussion of ∆III it is harmless to replace (η1(x), x) with (z1, z) as
above and arrive at

∆III(z1γ1, zδ; γ1, δ) = 〈(z, z1), aT ′〉.(82)

In this way we see that λ−1
C is the restriction of the quasicharacter 〈·, aT ′〉 to

the subgroup C of T1(R).

6.2.1 ∆III and quasicharacters of TH1(R) and Sδθ(R)

Recall from the beginning of section 6 that our aim is to compare characters
of representations in the L-packet ΠϕH1

with those in the L-packet Πϕ∗ . The
purpose of this section is to show that the quasicharacters of TH1(R) attached
to an admissible homomorphism ϕH1 ∈ ϕH1 (see (20)) are comparable to
quasicharacters of Sδθ(R), which are attached to ϕ∗ ∈ ϕ∗. The comparison
will be made through the torus T1, which connects TH1 to T ′ ∼= S, and the
1-cocycle aT ′ ∈ Z1(WR, T̂1) appearing in the ∆III-term. For the comparison,
we also employ the Local Langlands Correspondence for tori ([Lan97], 9
[Bor79]), which connects characters of real tori to certain 1-cocycles and
thence to admissible homomorphisms of WR.

We begin with a description of the 1-cocycle aT ′ given on page 45 [KS99].
The χ-data fixed in (74) determine an admissible embedding LTH → LH as
shown in §2.6 [LS87]. The composition of this embedding with the inclusion
LH ↪→ LH1 (see (6)) produces an admissible embedding ξTH : LTH → LH1.
The restriction of ξTH to WR is an admissible homomorphism into LTH1 .
Recall from §3.2 the L-homomorphism ξH1 : H → LH1. As shown in §2.2
[KS99], for every w ∈ WR there exist an element u(w) ∈ H which preserves
the pair (BH , TH) under conjugation and projects to w under the surjection
H → WR. For every w ∈ WR there exists a unique element t1(w) ∈ T̂H ∼= TH
such that

ξTH (1, w) = t1(w) ξH1(u(w)), w ∈ WR.(83)

This is half of aT ′ .
The other half is an element t(w) ∈ T̂ ′ ∼= T . This element is again

defined through a comparison of L-homomorphisms. On the one hand, the
map ξ : H → LG∗ is an L-homomorphism (see 4b §3.2) which maps u(w) to
an element in T oWR. On the other hand, the χ-data of (74) may be used to
define an injective L-homomorphism ξT ′

θ∗
: LT ′θ∗ → LG∗ (p. 40 [KS99]). We

shall say more about this soon. For the moment, let us use ξT ′
θ∗

to define an
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injective L-homomorphism ξ1 : LTH → LG∗. Isomorphism (12) induces an
L-isomorphism LTH ∼= LT ′θ∗ (§2.1 [Bor79]), which we may compose with ξT ′

θ∗

to embed into LG∗. The resulting embedding is defined as ξ1, and it restricts
to an admissible homomorphism of WR. As a result, there is an element t(w)
as above such that

ξ1(1, w) = t(w) ξ(u(w)), w ∈ WR.(84)

It is shown on pages 44-45 [KS99] that the pair (t1, t
−1) defines the cocycle

aT ′ ∈ Z1(WR, T̂1) and that it is independent of our choice of splitting u(w) ∈
H (see also §11 [She08]).

A description of aT ′ being given, we turn to admissible homomorphisms
ϕH1 : WR → LH1 and ϕ∗ : WR → LG which respectively represent the L-
packets ΠϕH1

and Πϕ∗ . Looking back to section 4.1, we see that we may

identify ϕH1 with a pair µH1 , λH1 ∈ X∗(T̂H1)⊗C, and identify ϕ∗ with a pair

µ, λ ∈ X∗(((T̂ ′)θ
∗
)0)⊗C ∼= X∗(T ′θ∗)⊗C.(85)

Furthermore, these two pairs correspond to characters of TH1(R) and T ′θ∗(R)
respectively (see (18)). The Local Langlands Correspondence for tori at-
taches admissible homomorphisms ϕTH1

: WR → LTH1 and ϕT ′
θ∗

: WR → LT ′θ∗
to these two characters.

It is a direct consequence of the definitions that the pair attached to ϕTH1

is µH1 − ιH , λH1 ∈ X∗(T̂H1)⊗C. Here, ιH ∈ X∗(TH1)⊗C ∼= X∗(T̂H1)⊗C is
the image of the half-sum of the roots of R(H,TH) under (7). In addition,
by §7 [She10] and §2.6 [LS87], we have

ϕH1 = ξTH1
◦ ϕTH1

.(86)

To describe the pair attached to ϕT ′
θ∗

we work in the identity components

of (Ĝ∗)θ̂
∗

and (T̂ ′)θ̂
∗
. Denote by ιG∗res the half-sum of the roots defined by

duals of these groups (see (1.3.4) [KS99]). The pair attached to ϕT ′
θ∗

is µ−
ιG∗res, λ ∈ X∗(T ′θ∗)⊗C. Furthermore, the χ-data of (74) may be transferred

to the roots above and yield a homomorphism LT ′θ∗ → (Ĝ∗)θ̂
∗ oWR (§2.6

[LS87]), which we compose with the inclusion (Ĝ∗)θ̂
∗ oWR ↪→ LG∗ to define

an L-homomorphism
ξT ′

θ∗
: LT ′θ∗ → LG∗.

Reasoning as before, we also have

ϕ∗ = ξT ′
θ∗
◦ ϕT ′

θ∗
.(87)
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All the maps required for the comparison are in place.

Lemma 19 Let aT ′
θ∗
∈ Z1(WR, (T̂

′)θ̂
∗
) and aTH1

∈ Z1(WR, T̂H1) denote the
1-cocycles which satisfy

ϕT ′
θ∗

(w) = (aT ′
θ∗

(w), w), w ∈ WR

and
ϕTH1

(w) = (aTH1
(w), w), w ∈ WR.

Identifying the torus T̂H with TH , and the torus T̂ ′ with T (see (10)), the
following identity holds

aT ′
θ∗

= t−1(ξ ◦ t1) (ξ ◦ aTH1
).(88)

Proof. Suppose w ∈ WR. Bearing in mind (57), (83) and (86), we compute
that

ξ−1
H1
◦ ϕTH1

(w) = ξ−1
H1
◦ ξTH1

◦ ϕH1(w)

= ξ−1
H1

(aTH1
(w), 1) ξ−1

H1
◦ ξTH1

(1, w)

= ξ−1
H1

(aTH1
(w), 1) ξ−1

H1
(t1(w), 1)u(w)

= ξ−1
H1

(aTH1
(w) t1(w), 1) u(w).

Since the L-homomorphism ξH1 : H → LH1 extends the inclusion Ĥ ↪→ Ĥ1

(Lemma 2.2.A [KS99]) and aTH1
(w) t1(w) lies in the image of ξH1 , it follows

that aTH1
(w) t1(w) lies in T̂H and

ξ−1
H1
◦ ϕH1(w) = (aTH1

(w) t1(w), 1) u(w)

Applying the L-homomorphism ξ to this equation and recalling (84), we find

ξ ◦ ξ−1
H1
◦ ϕH1(w) = (t−1(w)(ξ ◦ t1)(w) (ξ ◦ aTH1

)(w), 1) ξ1(1, w).(89)

By (87) and the definition of ϕ∗, the left-hand side of (89) is equal to ξT ′
θ∗
◦

ϕT ′
θ∗

(w). As for the right-hand side, it follows from the definition of ξ1 that

ξ1(1, w) = ξT ′
θ∗

(1, w). Furthermore, under the identification of T̂ ′ with T ,

the map ξT ′
θ∗

is the identity map on the identity component of T θ̂∗ ((i) §2.6
[LS87]). Therefore, equation (89) may be written as

ξT ′
θ∗
◦ ϕT ′

θ∗
(w) = ξT ′

θ∗
(t−1(w) (ξ ◦ t1)(w) (ξ ◦ aTH1

)(w), w).
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As ξT ′
θ∗

is injective, the lemma follows from this equation.�
It is now time to transplant (88) to the torus T1. We shall do this by

using the injection p∗1 : T̂ ′ → T̂1 induced by surjective projection (80). An
application of p∗1 to (88) produces a 1-cocycle in Z1(WR, T̂1). In order to
obtain a clearer picture of this cocycle, it is worth reexamining T̂1. Restriction
to each coordinate of T1 produces a injection T1 → T ′ × TH1 , whose dual is
a surjection

T̂ ′ × T̂H1 → T̂1.(90)

It is left as an exercise to show that the kernel of this surjection is isomorphic
to T̂H , and that T̂1 is isomorphic to the quotient

T̂ ′ × T̂H1 /{(ξ ◦ α, α−1) : α ∈ T̂H}

(we are identifying T̂H with its image in T̂H1 under (7)). Viewing T̂1 as this
quotient, a representative for the 1-cocycle p∗1 ◦ aT ′θ∗ of (88) is of the form

p∗1 ◦ (t−1(ξ ◦ t1) (ξ ◦ aTH1
)) = (t−1(ξ ◦ t1), 1) ((ξ ◦ aTH1

), 1)

= (t−1, t1) (1, aTH1
)

= aT ′ (1, aTH1
).(91)

We are ready to make the comparison indicated at the beginning of this
section. The quasicharacter of TH1(R) attached to the admissible homo-
morphism ϕH1 is Λ(µH1 − ιH , λH1) (see (20)). The 1-cocycle attached to
Λ(µH1 − ι, λH1) through the Local Langlands Correspondence is aTH1

(see
(86)), and so we may somewhat abusively write

Λ(µH1 − ιH , λH1)(η1(x)) = 〈η1(x), aTH1
〉.(92)

In a similar fashion we see that the quasicharacter of T ′(R) attached to
ϕ∗ is Λ(µ − ιG∗ , λ), where ιG∗ denotes the half-sum of the positive roots of
R(G∗, T ′). Since θ∗ preserves the positive roots (Lemma 3.3.B [KS99]), it

preserves ιG∗ . Regarding ιG∗ as an element in X∗((T̂
′)θ̂
∗
)⊗C, it follows from

(85) that (1 − θ∗)T ′ lies in the kernel of Λ(µ − ιG∗ , λ). This being the case,
we may identify Λ(µ − ιG∗ , λ) with a quasicharacter of T ′θ∗(R). Under this
identification ιG∗ is equal to ιG∗res (§1.3 [KS99]), and the 1-cocycle attached
to Λ(µ − ιG∗res, λ) through the Local Langlands Correspondence is aT ′

θ∗
. As

before, we write

Λ(µ− ιG∗res, λ)(x∗δ∗) = 〈x∗δ∗, aT ′
θ∗
〉.(93)
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Proposition 3 Suppose x ∈ V. Then

∆III(η1(x)γ1, xδ; γ1, δ) Λ(µH1 − ιH , λH1)(η1(x)) = Λ(µ− ιG∗res, λ)(x∗)

Proof. As in (91), let us write (1, aTH1
) for the composition of aTH1

under
(90). Then, by (91) and (92), we have

Λ(µH1 − ιH , λH1)(η1(x)) = 〈(x∗, η1(x)), (1, aTH1
)〉

= 〈(x∗, η1(x)), a−1
T ′ p

∗
1 ◦ aT ′θ∗ 〉

= 〈(x∗, η1(x)), a−1
T ′ 〉 〈x

∗, aT ′
θ∗
〉.

The proposition now follows from Lemma 18 and (93).�

Corollary 4 Suppose x ∈ V and w1 ∈ Ω(H,TH). Then

∆III(η1(x)γ1, xδ; γ1, δ) Λ(µH1 − ιH , λH1)(w1η1(x)w−1
1 ) = Λ(µ− ιG∗res, λ)(x∗).

Proof. The element w1η1(x)γ1w
−1
1 = w1η1(x)w−1

1 w1γ1w
−1
1 is stably conjugate

to η1(x)γ1 (Lemma 6.4.1 [Lab08]). The corollary follows from the proof of
Lemma 5.1.B [KS99], where it is explained how w1η1(x)γ1w

−1
1 is a norm of

xδ, and

∆III(η1(x)γ1, xδ; γ1, δ) = ∆III(w1η1(x)γ1w
−1
1 , xδ; γ1, δ).�(94)

We remark that (94) may be interpreted through Lemma 18 as

〈(x∗, η1(x)), aT ′〉 = 〈(x∗, w1η1(x)w−1
1 ), aT ′〉

for x in a open set of Sδθ(R). As a result, the character 〈·, aT ′〉 of T1 is
invariant under this action of Ω(H,TH), and for any w1 ∈ Ω(H,TH) we have
that

〈(δ∗, γ1), aT ′〉 = 〈(δ∗, w1γ1w
−1
1 ), aT ′〉.

As in the proof of Proposition 3, we see

〈(δ∗, γ1), aT ′〉 Λ(µH1 − ιH , λH1)(w1γ1w
−1
1 )) = 〈(δ∗, w1γ1w

−1
1 ), p∗1 ◦ aT ′θ∗ 〉

= Λ(µ− ιG∗ , λ)(δ∗).(95)

Before departing from the quasicharacter on T1(R) determined by aT ′ , let
us illustrate how aT ′ also determines a linear form λaT ′ : (t′)θ

∗ → C on the
Lie algebra of (T ′)θ

∗
(R). One may take differentials of the maps of the fibre
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product (79) to define the fibre product of t′ and tH1 . This fibre product is
equal to t1, and is isomorphic to a fibre product of t′ with z1⊕ tH , according
to the splitting of (63). The latter product is isomorphic to the direct sum
of z1 with a fibre product of t′ with tH (in which elements of t′ map to tH
under the differential of N). The decomposition

t′ = (t′)θ
∗ ⊕ (1− θ∗)t′(96)

yields an isomorphism between the Lie algebra of T ′θ∗(R) and (t′)θ
∗
. This

allows one to identify (t′)θ
∗

with a subspace of the fibre product of t′ and
tH , and ultimately allows one to identify (t′)θ

∗
with a subspace of t1. We

define the linear form λaT ′ to be restriction to (t′)θ
∗

of the differential of the
quasicharacter of T1(R) determined by aT ′ . In essence, and making identifi-
cations as necessary, one may regard λaT ′ as being equal to the difference of
the differentials of Λ(µ− ιG∗res

, λ) and Λ(µH1 − ιH , λH1).
It shall be valuable to note that by the admissible embedding (12), one

may also regard λaT ′ as a linear form on tH . Regarded in this way, the
Ω(H,TH)-invariance of ∆III(η1(x)γ1, xδ; γ1, δ) (see the proof of Lemma 5.1.B
[KS99]) and Lemma 18 tell us that λaT ′ too is invariant under the action of
Ω(H,TH).

6.3 A spectral comparison with small support

Recall from the discussion following (62) that there is an open subset of the
identity V ⊂ Sδθ(R)0 such that η maps V homeomorphically onto η(V) ⊂
TH(R)0. Suppose f ∈ C∞c (G(R)θ) has support in the G(R)-conjugates of
ZG(R)0Vδθ. We shall assume that there is a function fH1 ∈ C∞(H1(R)) as
in §3.4, i.e. a function whose orbital integrals match those of f (see (16)).
We wish to show that there is a corresponding matching (60) of (twisted)
characters between representations in the packets ΠϕH1

and Πϕ.
Our first step towards showing such a matching is to define the twisted

characters appearing on the right-hand side of (60). If π is equivalent to
ω⊗πθ then the distributions Θπ,Uπ are twisted characters (see (34)) where Uπ

is obtained as follows. If π = πΛ, as in the discussion surrounding (70), then
Uπ is obtained as in section 5.4 through the extension of $1 afforded by the
operator τ0ρ̃

−1
1 ⊗SΛ1(δθ). Otherwise π ∈ Πϕ is of the form πw−1Λ as in Lemma

16 and Uπ is determined in the same manner by the operator (τ0(ρ̃1)−1)ẇ
−1⊗

Sw−1Λ1
(ẇ−1δθẇ), where ẇ ∈ G is a representative of w satisfying (64) (see
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Lemma 15 and Proposition 2). Although Uπ, and hence Θπ,Uπ are only
determined up to a root of unity, we shall eventually see that the product
∆(ϕH1 , π) Θπ,Uπ(xδθ) is well-defined.

We commence our proof of (60) from the integral on the left-hand side.
Taking the integral over the quotient with Z1(R) is justified by the fact that
the integrand is invariant under Z1(R) (see (15) and (56)). By the usual
Weyl integration formula, this integral becomes

1

|Ω(H(R), TH(R))|

∫
TH(R)

∑
πH1
∈ΠϕH1

ΘπH1
(t)Ot(fH1)DH(t)2 dt.(97)

In this integral we are identifying TH(R) with the quotient TH1(R)/Z1(R)
(see §6.2). According to Lemma 16 (or Proposition 7.1.1 [Lab08]), we have∑

πH1
∈Π1

ΘπH1
(t) =

∑
w1∈Ω(H,TH)/ΩR(H,TH)

Θπ′H1
(ẇ1tẇ

−1
1 )

for any π′H1
∈ ΠϕH1

and representatives ẇ of w. In addition, as TH(R) is
elliptic (Corollary 3), the Weyl groups ΩR(H,TH) and Ω(H(R), TH(R)) are
isomorphic (Lemma 6.4.1 [Lab08]). We may consequently rewrite (97) as

1

|ΩR(H,TH)|

∫
TH(R)

∑
w1∈Ω(H,TH)/ΩR(H,TH)

ΘπH1
(ẇ1tẇ

−1
1 )Ot(fH1)DH(t)2 dt,(98)

where πH1 is some representation in ΠϕH1
. The change of variable

t 7→ ẇtẇ−1, w ∈ Ω(H,TH)/ΩR(H,TH)

has the sole effect of replacing Ot(fH1) by Oẇtẇ−1(fH1) in the integrand of
(98). Making this change of variable for every w ∈ Ω(H,TH)/ΩR(H,TH), we
see that (98) is equal to

1

|Ω(H,TH)|

∫
TH(R)

∑
w1∈Ω(H,TH)/ΩR(H,TH)

ΘπH1
(ẇ1tẇ

−1
1 )SOt(fH1)DH(t)2 dt,(99)

where
SOt(fH1) =

∑
w∈Ω(H,TH)/ΩR(H,TH)

Oẇtẇ−1(fH1).
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By Lemma 16 (or Proposition 6.4.2 [Lab08]), the sum SOt(fH1) of orbital
integrals is equal to the left-hand side of (16) for t in a dense subset of
TH(R)0γ. In fact, for almost every t ∈ TH(R)0, the element tγ is a the image
under η of a strongly θ-regular element in Sδθ(R)0δ and is a norm of this
element. Recall that the η is a local isomorphism. The geometric matching
identity (16) and Lemma 15 therefore allow us to replace SOt(fH1) in (99)
by ∑

w∈(Sδθ\(NG(S)/NG(R))
δθ

∆(tγ, ẇ−1η−1(t)δθ(ẇ))Oẇ−1η−1(t)δθẇ(f),

where ẇ ∈ G(R) is a representative for w ∈ (Sδθ\(NG(S)/NG(R))
δθ satisfying

(65). Alternatively, we may replace (99) with

1

|Ω(H,TH)|

∫
Sδθ(R)0

∑
w1

ΘπH1
(ẇ1η1(x)γ1ẇ

−1
1 )

×
∑
w

∆(η(x)γ, ẇ−1xδθ(ẇ))Oẇ−1xδθẇ(f)DH(η(x)γ)2 dx,(100)

where the first and second sums are taken over Ω(H,TH)/ΩR(H,TH) and
(Sδθ\(NG(S)/NG(R))

δθ respectively.
Let us now turn our attention to the character values ΘπH1

(ẇ1η(x)γẇ−1
1 )

in (100). The work of Harish-Chandra (see [Var77]) expresses the values of
ΘπH1

at regular elements t ∈ TH1(R) as

sgn(H)
∑

w′∈Ω(H1(R),TH1
(R))

det(w′) Λ(w′µH1 − ιH , λH1)(t)∏
α>0 1− α−1(t)

.(101)

Here, Λ(µH1 − ιH , λH1) is a quasicharacter of TH1(R) given in (92). Its dif-
ferential after restriction to TH1(R)0 is a regular element in t∗H1

⊗C. In the
language of §5.3.2, this element is equal to iΛH1 − ρH , where ρH is the half-
sum of the positive roots of the Borel subalgebra BH . Given the freedom in
our choice of πH1 ∈ ΠϕH1

, we may assume that this is the Borel subalgebra
determined by the regular element ΛH1 . The product in the denominator is
taken over the set of positive roots of (BH , TH). The term sgn(H) is a sign
which is a product of terms (see (25)-(27) [Var77]) depending only on H.

We wish to substitute (101) into (100). By Lemma 6.4.1 [Lab08], the sum
in (101) may be taken over

ΩR(H,TH) ∼= Ω(H(R), TH(R)) ∼= Ω(H1(R), TH1(R)).
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Although η(x)γ in (100) belongs to TH(R)0 and not TH1(R), the invariance
of the integrand under Z1(R) alluded to earlier justifies the abuse of writing∑

w1∈Ω(H,TH)/ΩR(H,TH)

ΘπH1
(ẇ1η(x)γẇ−1

1 )

= sgn(H)
∑
w1

∑
w′∈ΩR(H,TH)

det(w1w
′) Λ(w1w

′µH1 − ιH , λH1)(η(x)γ)∏
α>0 1− α−1(η(x)γ)

= sgn(H)
∑

w1∈Ω(H,TH)

det(w1) Λ(w1µH1 − ιH , λH1)(η(x)γ)∏
α>0 1− α−1(η(x)γ)

= sgn(H)
∑

w1∈Ω(H,TH)

det(w1) Λ(w1µH1 − ιH , λH1)(η(x)γ)

det(1− Adη(x)γ)|ūH

= sgn(H)
∑

w1∈Ω(H,TH)

Λ(µH1 − ιH , λH1)(ẇ1η(x)γẇ−1
1 )

det(1− Adη(x)γ)|ūH
.(102)

In these equations we have combined the actions from Ω(H,TH)/ΩR(H,TH)
and ΩR(H,TH) into a single action from Ω(H,TH) using (23) [Var77].

Before we substitute (102) into (100), let us explain how it is to be con-
verted into a character on Sδθ(R)0. The character expansion (102) is linked
to the geometric transfer factor ∆(η1(x)γ1, w

−1xδθ(w)), by first applying the
expansion

∆(η(x)γ, ẇ−1xδθ(ẇ)) = 〈inv(xδ, ẇ−1xδθ(ẇ)), κδ〉 ∆(η(x)γ, xδθ)

from Lemma 5.1.B and Theorem 5.1.D [KS99]. The definition of inv(xδ, ẇ−1xδθ(ẇ))
depends only on w and is independent of x (page 54 [KS99]), so we may write

∆(η(x)γ, ẇ−1xδθ(ẇ)) = 〈inv(δ, w−1δθ(w)), κδ〉 ∆(η(x)γ, xδθ).

Then, expanding ∆(η1(x)γ1, xδθ) according to (73) and (78), we may apply
Corollary 4. Corollary 4 delivers a character on T ′θ∗(R) which we may trans-
port locally to Sδθ(R)0 via isomorphisms (14) and (61). Isomorphism (14)
also applies to (95), thereby accounting for the character values at γ and δ.
Finally, the denominator of (102) may be combined with the transfer factors
∆II and ∆IV as in Lemma 17. The net effect of this course of action is to
replace (102) with

sgn(H)
∑

w1∈Ω(H,TH)

Λ(µ− ιG∗ , λ)(x∗δ∗)

det(1− Adxδθ)|ū
= sgn(H)|Ω(H,TH)|Λ(µ− ιG∗ , λ)(x∗δ∗)

det(1− Adxδθ)|ū
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and express (100) as

sgn(H)idim u
Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉

×
∫
Sδθ(R)0

Λ(µ− ιG∗ , λ)(x∗δ∗)

det(1− Adxδθ)|ū
(103)

×
∑

w∈Sδθ\(NG(S)/NG(R)(S))δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 Oẇ−1xδθẇ(f) DGθ(xδ)
2 dx.

Given our assumption on the support of f , we may replace the integral over
Sδθ(R)0 by an integral over Sδθ(R) = Sδθder(R)Zδθ

G (R) (see (29)) to obtain

sgn(H)idim u
Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉

×
∫
Sδθder(R)

∫
ZδθG (R)

Λ(µ− ιG∗ , λ)(x∗δ∗)

det(1− Adxδθ)|ū
χπ(z)(104)

×
∑

w∈Sδθ\(NG(S)/NG(R)(S))δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 Oẇ−1zxδθẇ(f) DGθ(xδ)
2 dz dx.

In order to recover the character value (47), we shall make a change of variable

x 7→ ẇ1xδθ(ẇ
−1
1 )δ−1(105)

for representatives ẇ1 ∈ Gder(R)0 of elements in w1 ∈ Ω(Gder(R)0, Sder(R))δθ

and take the sum over Ω(Gder(R)0, Sder(R))δθ in the integral of (104). Each
change of variable has no effect on the summand

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 Oẇ−1zxδθẇ(f) DGθ(xδ)
2.

by Theorem 5.1.D (2) [KS99] (see also page 71 [KS99]). To describe the effect
of the changes of variable in the denominator det(1−Adxδθ)|ū we recall the
definition of e(ẇ1) ∈ Sder(R) in (45).

Lemma 20 Suppose ẇ1 ∈ Gder(R)0 is a representative of an element in
w1 ∈ Ω(Gder(R)0, Sder(R))δθ. Then det(1− Adẇ1xδθẇ

−1
1 )|ū is equal to

det(w1) (ιG − w1ιG)(x) ι−1
G (e(ẇ1)) det(1− Adxδθ)|ū.

Moreover, this expression is independent of the choice of representative.
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Proof. As in §1.3 [KS99], set αres = α|Sδθ for any root α ∈ R(G,S) . For any
negative root α ∈ R(G,S), let gαres denote the subspace in the Lie algebra g
of G generated by the δθ-orbit of the root space of α (see Lemma 3), and gα

denote the root space of α. We further adopt the notation of §1.3 [KS99] by
setting lα equal to the cardinality of the δθ-orbit of α and Nα =

∑lα−1
i=0 (δθ)iα

(in additive notation). Then, performing the type of computation indicated
in §4.5 [KS99], we see that

det(1− Adẇ1xδθẇ
−1
1 )|ū = det(1− Adẇ1xẇ

−1
1 e(ẇ1)δθ)|ū

=
∏
αres<0

det(1− Adẇ1xẇ
−1
1 e(ẇ1)δθ)|gαres

=
∏
αres<0

1−Nw1α(x)Nα(e(ẇ1)) (Adδθ)lα|gα

Now

Nα(e(ẇ1)) = α(
lα−1∏
i=0

(Int(δ)θ)i(e(ẇ1)))

= Ad((e(ẇ1)δθ)lα(δθ)−lα)|gα

= Ad(ẇ1(δθ)lαẇ−1
1 )|gα (Adδθ)−lα|gα

so that

det(1− Adw1xδθw
−1
1 )|ū

=
∏
αres<0

1−Nw1α(x) Ad(ẇ1(δθ)lαẇ−1
1 )|gα

=
∏
αres<0

1−Nα(x) Ad((δθ)lα)|gw1α

=
∏
αres<0

det(1− Adxδθ)|gw1αres

=
∏

αres<0, w1αres<0

det(1− Adxδθ)|gw1αres

∏
αres<0, w1αres>0

det(1− Adxδθ)|gw1αres

The second product of this last expression is equal to∏
αres<0, w1αres>0

det(Adxδθ)|gw1αres (−1)lα det(1− Ad(xδθ)−1)gw1αres

= det(w1)
∏

αres<0, w1αres>0

det(Adxδθ)|gw1αres det(1− Adxδθ)g−w1αres
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(see p. 395 [Ren97]). Substituting back, we arrive at

det(1− Adw1xδθw
−1
1 )|ū

= det(1− Adxδθ)|ū det(w1)
∏

αres<0, w1αres>0

det(Adxδθ)|gw1αres .

To derive the first assertion of the lemma, we compute∏
αres<0, w1αres>0

det(Adxδθ)|gw1αres

=
∏

αres<0, w1αres>0

det(Adẇ1xδθẇ
−1
1 )|gαres

=
∏
αres>0

det(Adxδθ)
1/2
|gαres det(Adẇ1xδθẇ

−1
1 )
−1/2
|gαres

= (ιG − w1ιG)(x) det(Adδθ)
1/2
|u det(Adẇ1δθẇ

−1
1 )
−1/2
|u

= (ιG − w1ιG)(x) det(Adẇ1δθẇ
−1
1 (δθ)−1)

−1/2
|u

= (ιG − w1ιG)(x) ι−1
G (e(ẇ1)).

This value is independent of the choice of representative ẇ1, since, for any
choice of s ∈ Sder(R), we have

det(1− Adsẇ1xδθẇ
−1
1 s−1)|ū = det(Ads)|ū det(1− Adẇ1xδθẇ

−1
1 )|ū det(Ads−1)|ū

= det(1− Adẇ1xδθẇ
−1
1 )|ū.�

Under transport via isomorphism (14), the effect of the change of variable
(105) on the numerator Λ(µ − ιG∗ , λ)(x∗δ∗) in (104) may be coupled with
Lemma 20 and equations (48) and (43) to yield

Λ(µ− ιG∗ , λ)(ẇ1x
∗ẇ−1

1 ẇ1δ
∗θ∗(ẇ−1

1 )(δ∗)−1δ∗)

det(1− Adẇ1xδθẇ
−1
1 )|ū

=
Λ(µ− ιG∗ , λ)(ẇ1x

∗ẇ−1
1 ) Λ(µ− ιG∗ , λ)(e(ẇ1)) Λ(µ− ιG∗ , λ)(δ∗)

det(w1) (ιG∗ − w1ιG∗)(x∗) ι
−1
G∗(e(ẇ1)) det(1− Adxδθ)|ū

=
det(w1) Λ(w1µ− ιG∗ , λ)(x∗) Λ(µ, λ)(e(w1)) τ̄0(δθ)/ζ

det(1− Adxδθ)|ū
.

Comparing this expression with Θ$1,U1(xδθ) as in (47), and performing the
desired changes of variable in (104) results in the product of the scalar

sgn(H)idim u
Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉

|Ω(Gder(R)0, Sder(R))δθ| (−1)q
−Λ1ζ
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with the sum ∑
w∈Sδθ\(NG(S)/NG(R)(S))δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉
∫
Sδθder(R)

Θ$1,U1(xδθ)(106)

×
∫
ZδθG (R)

χπ(z) Oẇ−1zxδθẇ(f) dz DGθ(xδ)
2 dx.

There are two steps left in placing this expression into the desired form. The
first step is to “move” conjugation by w from the orbital integral to the
character. The second step is to apply the Weyl integration formula.

Towards the first step, let us determine a subset of Sδθ\(NG(S)/NG(R)(S))δθ

outside of which the summands of (106) vanish. By Proposition 2, we may
express (106) as∑
w∈(Ω(G,S)/ΩR(G,S))δθ

∑
z1

〈inv(δ, (z1ẇ)−1δθ(z1ẇ)), κδ〉(107)

×
∫
Sδθder(R)

Θ$1,U1(xδθ)

∫
ZδθG (R)

χπ(z) O(θ−1)(z1)zẇ−1xδθẇ(f) dz DGθ(xδ)
2 dx,

where z1 ∈ AG is in the split component of the centre of G, and (θ − 1)(z1)
belongs to F ⊂ AG(R), an elementary 2-group as in (69).

The support of f ensures that O(θ−1)(z1)zw−1sδθw(f) vanishes unless (θ −
1)(z1)zw−1sδθw lies in ZG(R)0Sδθδθ. For this to hold the element (θ−1)(z1)
must belong to

((θ − 1)AG)(R) ∩ ZG(R)0 ∩ F = ((θ − 1)AG)(R)0 ∩ F = {1}.

The sum in (107) consequently reduces to a positive integer multiple of∑
w

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉(108)

×
∫
Sδθder(R)

Θ$1,U1(xδθ)

∫
ZδθG (R)

χπ(z) Ozẇ−1xδθẇ(f) dz DGθ(xδ)
2 dx

in which the sum is taken over those w ∈ (Ω(G,S)/ΩR(G,S))δθ for which
there is a representative ẇ ∈ G such that

ẇ−1Sδθder(R)δθẇ ⊂ ZG(R)0 Sδθder(R)δθ.(109)
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Specializing to the identity element in Sδθder(R) in the left-hand side of (109)
we see that

ẇ−1δθẇ(δθ)−1 ∈ ZG(R)0 Sδθder(R) ⊂ S(R).(110)

Under this assumption, ẇ is a representative of a coset in Ω(G,S)δθ. It
follows that the sum in (108) reduces to a sum over the subset

(Ω(G,S)/ΩR(G,S))δθ ∩ Ω(G,S)δθΩR(G,S)/ΩR(G,S).(111)

It is easily verified that this subset is in canonical bijection with Ω(G,S)δθR/ΩR(G,S)δθ,
where Ω(G,S)δθR is defined to be the subgroup of elements w ∈ Ω(G,S)δθ,
which have a representative ẇ ∈ G satisfying w−1δθw(δθ)−1 ∈ S(R).

We may now reduce (107) to the sum

nθ
|ΩR(G,S)δθ|

∑
w∈Ω(G,S)δθR

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉(112)

×
∫
Sδθder(R)

Θ$1,U1(xδθ)

∫
ZδθG (R)

χπ(z) Oẇ−1zxδθẇ(f) dz DGθ(xδ)
2 dx,

in which we have included the sum over ΩR(G,S)δθ and nθ is the number of
representatives z1 ∈ AG in (107) such that (θ − 1)(z1) = 1.

Writing $1 = $Λ1 as in (70) and noting that the intertwining operator
U1 corresponds to a unique choice of τ0 as in section 5.4, it is valid to write
Θ$Λ1

,τ0 in place of Θ$1,U1 . Exchanging the summation over Ω(G,S)δθR in (112)

with the summation over Ω(Gder(R), Sder(R))δθ in (47) and noting that for
all w1 ∈ Ω(Gder(R), Sder(R))

inv(δ, (w1ww
−1
1 )−1δθ(w1ww

−1
1 )) = inv(δ, w−1δθ(w))

(page 54 [KS99], Proposition 2 [Tit66]) it may be computed that (112) is
equal to

nθ
|ΩR(G,S)δθ|

∑
w∈Ω(G,S)δθR

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉
∫
Sδθder(R)

Θ
$w−1Λ1

,τ ẇ
−1

0
(ẇ−1xẇẇ−1δθẇ)

×
∫
ZδθG (R)

χπ(z) Ozẇ−1xẇẇ−1δθẇ(f) dz DGθ(xδ)
2 dx

= nθ
∑

w∈Ω(G,S)δθR /ΩR(G,S)δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉
∫
Sδθder(R)

Θ
$w−1Λ1

,τ ẇ
−1

0
(xẇ−1δθẇ)

×
∫
ZδθG (R)

χπ(z) Ozxẇ−1δθẇ(f) dz DGθ(xδ)
2 dx.(113)
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It follows from Corollary 1 that (113) is equal to the product of

nθ|Ω(Gder(R)0, Sδθder(R)0δθ)|
| det(1− Ad(δθ))|s/sδθ⊗C|

with ∑
w∈Ω(G,S)δθR /ΩR(G,S)δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 Θπw−1Λ,Uπw−1Λ
(f)(114)

(see (110)).
We must account for the twisted characters missing from this sum. The

following lemma shows that the missing twisted characters are zero.

Lemma 21 Suppose w ∈ (Ω(G,S)/ΩR(G,S))δθ does not belong to the subset
(111) and that w has a representative ẇ ∈ NG(S) satisfying ẇ−1δθẇ(δθ)−1 ∈
G(R). Then Θπw−1Λ,Uπ

w−1Λ

(f) = 0.

Proof. Arguing as in Lemma 5, one finds that Θπw−1Λ,Uπ
w−1Λ

(f) is equal to

(χπ ⊗ Θ$
w−1Λ1,τ

ẇ−1
0

)(f ′), where f ′ ∈ C∞c (ZG(R)Gder(R)0ẇ−1δθẇ) is defined

by

f ′(xẇ−1δθẇ) =
k∑
r=1

ω(δr) f(δ−1
r xẇ−1δθẇδr), x ∈ ZG(R)Gder(R)0.

Suppose f ′(xẇ−1δθẇ) 6= 0. Then by our assumption on the support of f we
know that xẇ−1δθẇ is G(R)-conjugate to an element of ZG(R)0Sδθder(R)δθ,
that is there exist g1 ∈ G(R) and s ∈ ZG(R)0Sδθder(R) such that

xẇ−1δθẇ = g−1
1 sδθg1.

We will now show that (χπ ⊗ Θ$
w−1Λ1,τ

ẇ−1
0

)(g−1
1 sδθg1) vanishes when sδ is

strongly θ-regular, thereby proving the lemma. According to Theorem 5.5.3
(i) [Bou87], the character value (χπ ⊗ Θ$

w−1Λ1,τ
ẇ−1
0

)(g−1
1 sδθg1) vanishes if

there is no element g2 ∈ ZG(R)Gder(R)0 such that

g2ẇ
−1 · Λ1 ∈ (s∗der)

g−1
1 sδθg1 .

By way of contradiction, let us suppose there is an element g2 ∈ ZG(R)Gder(R)0

as above. Then, setting g = g1g2, we deduce that

gẇ−1 · Λ1 ∈ (s∗der)
δθ.
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Recall from section 5.3.1 that Λ1 ∈ s∗der is regular. The fact that the coadjoint
action of g ∈ G(R) on the regular element ẇ−1 · Λ1 ∈ s∗der belongs again to
s∗der implies that g lies in NG(R)(S). Obviously gẇ−1 lies in NG(S) and the
previous containment implies

(δθ)−1 · gẇ−1 · Λ1 = gẇ−1 · Λ1.

This equation is equivalent to

(gẇ−1)−1(δθ)−1gẇ−1δθ · Λ1 = Λ1

by Lemma 6, and so

(gẇ−1)−1(δθ)−1gẇ−1δθ ∈ S

(Theorem 7.101 [Kna96]). Since both gẇ−1 and δθ normalize S, this con-
tainment is equivalent to

gẇ−1 δθ (gẇ−1)−1 (δθ)−1 ∈ S.

The element on the left is equal to

g(ẇ−1δθẇ(δθ)−1)g−1(gδθg−1(δθ)−1) ∈ G(R)

and so we conclude that

(gẇ−1)−1(δθ)−1gẇ−1δθ ∈ S(R).

However, this means that wg−1 belongs to Ω(G,S)δθR , or equivalently that
w belongs to the intersection (111). This contradicts the hypothesis of the
lemma.�

Lemma 21 allows us to replace the sum over Ω(G,S)δθR/ΩR(G,S)δθ in
(114) by the sum over the entire set (Ω(G,S)/ΩR(G,S))δθ. At last, we
conclude that the left-hand side of (60) is equal to the product of the three
scalars

nθ|Ω(Gder(R)0, (Sδθder(R))0δθ)|
|Ω(Gder(R)0, Sder(R))δθ|| det(1− Ad(δθ))|s/sδθ⊗C|

,(115)

idim u
Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉,(116)

sgn(H)

(−1)q
−Λ1ζ

(117)
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and the linear combination of twisted character values∑
w∈(Ω(G,S)/ΩR(G,S))δθ

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉
∫
G(R)

f(xδθ) Θπw−1Λ,Uπw−1Λ
(xδθ) dx.

The bijection of Lemma 16 associates to each w ∈ (Ω(G,S)/ΩR(G,S))δθ a
unique π ∈ Πϕ. Using this bijection, we define ∆(ϕH1 , π) to be equal to the
product of 〈inv(δ, w−1δθ(w)), κδ〉 with the three scalars (115)-(117). With
this definition of ∆(ϕH1 , π), it is immediate that identity (60) holds.

6.3.1 Spectral comparisons with small support at other points

The spectral transfer factors ∆(ϕH1 , π) we have recently defined, appear
to depend on our choice of δ ∈ G(R). We shall show that, in fact, the
spectral transfer factors do not depend on this choice. In consequence of this,
the spectral transfer factors are well-defined when some θ-elliptic element of
G(R) has a norm in H1(R).

Suppose that δ̄ ∈ G(R) shares the same properties as δ ∈ G(R), namely,
that δ̄ is strongly θ-regular, θ-elliptic and has norm γ̄1 ∈ H1(R) (cf. earlier
section 6). The unique maximal torus of G containing Gδ̄θ is elliptic over
R and conjugate to the torus S under some g ∈ G(R) (Proposition 6.61
[Kna96]). Let us suppose initially that g is trivial so that S contains Gδ̄θ.

Lemma 22 The compact torus Sder(R) is equal to the product of Sδθder(R)
and (1− δθ)(Sder(R)).

Proof. The compact torus Sder(R) is a product of circle groups and therefore
it is equal to the image of its Lie algebra sder under exponentiation. Since
the restriction of δθ to Sder is finite, it is a semisimple automorphism defined
over R. Consequently, the decomposition

sder = sδθder ⊕ (1− δθ)sder

holds and implies that Sder(R) = Sδθder(R) (1− δθ)(Sder(R)).�
The following lemma exhibits the strict relationship between δ̄ and δ.

Lemma 23 There exists a representative ẇ ∈ G of a unique element in
(Ω(G,S)/ΩR(G,S))δθ, an element z ∈ Z0

G(R) and an element s ∈ Sδθder(R)
such that δ̄ = zẇ−1sδθ(ẇ).
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Proof. As in the proof of Corollary 2, there exist quasicharacters Λ̄ and Λ of
S(R) such that

Λ̄ ◦ Int(δ̄θ) = ω|S(R)Λ̄, Λ ◦ Int(δθ) = ω|S(R)Λ,

πΛ̄
∼= ω ⊗ πθ

Λ̄
and πΛ

∼= ω ⊗ πθΛ. Lemma 16 informs us that Λ̄ = w−1Λ for a
unique element w in (Ω(G,S)/ΩR(G,S))δθ. By Proposition 2 the represen-
tative ẇ ∈ NG(S) may be chosen so that ẇ−1δθẇ(δθ)−1 ∈ G(R) (cf. (65)).
It follows that ẇ−1δθ(ẇ) ∈ G(R). The earlier equations now entail

w−1Λ ◦ Int(δ̄θ) = ω|S(R) w
−1Λ

⇔ ẇ(δ̄θ)−1ẇ−1 · Λ = ω|S(R) Λ

⇔ ẇ(δ̄θ)−1ẇ−1 · Λ = (δθ)−1 · Λ
⇔ (δθ)ẇ(δ̄θ)−1ẇ−1 · Λ = Λ.

As the differential of Λ is a regular element in s∗⊗C (section 4.1 and Lemma
3.3 [Lan89]), the final equation implies that

δ θ(ẇ) δ̄−1ẇ−1 = (δθ)ẇ(δ̄θ)−1ẇ−1 ∈ S

(Lemma B §10.3 [Hum94]). We may rewrite this as ẇ−1δ θ(ẇ) δ̄ ∈ S, and
by the choice of ẇ above, we actually have ẇ−1δ θ(ẇ) δ̄−1 ∈ S(R). Conse-
quently, δ̄ ∈ ẇ−1S(R)δ θ(ẇ) (Lemma 6.4.1 [Lab08]), so that δ̄ = ẇ−1s′δ θ(ẇ)
for some s′ ∈ S(R). By (29) and Lemma 22, the element s′ is equal to
zs1sInt(δ)(θ(s1)) for some z ∈ Z0

G(R), s1 ∈ Sder(R) and s ∈ Sδθder(R). In con-
clusion, δ̄ is equal to z(s1ẇ)−1sδ θ(s1ẇ) where s1ẇ remains a representative
for w.�

Let us now return to the definition of ∆(ϕH1 , π) in section 6.3 and record
the changes in each of its terms when δ is replaced by δ̄ = ẇ−1sδ θ(ẇ) as in
Lemma 23. Obviously (117) is left unchanged by the replacement. Making
use of the identities ẇ−1sδθ(ẇ)θ = ẇ−1sδθẇ and Sẇ

−1sδθẇ = ẇ−1Sδθẇ, one
may easily verify that (115) is also unaffected by the replacement.

It remains to compute the product of the remaining two terms, namely

∆I(γ̄, δ̄) ∆III(γ̄1, δ̄; γ
0
1 , δ

0) 〈inv(δ̄, ẇ−1
1 δ̄θ(ẇ1)), κδ̄〉

〈(δ̄∗, γ̄1), aT ′〉
,(118)

where π = πw−1
1 Λ̄ for some w1 ∈ (Ω(G,S)/ΩR(G,S))δ̄θ (Lemma 16) and

ẇ1 ∈ G is a representative for w1 satisfying (65) (Proposition 2). This

80



expression relies on the isomorphism Int(gT ′ψ(ẇ))ψ : Sẇ
−1sδθẇ → (T ′)θ

∗
in

place of (14). This being so, one may compute that δ̄∗ is equal to s∗δ∗

(where ∗ in the latter case is computed with respect to Int(gT ′)ψ as of old),
and γ̄1 = η1(s)γ1. Therefore, the denominator of (118) is equal to

〈(z, z1), aT ′〉 〈(s∗, η1(s)), aT ′〉 〈(δ∗, γ1), aT ′〉,

where the pair (z1, z) belongs to the inverse image of ZG(R) under (80).
There is some cancellation here with ∆III(γ̄1, δ̄; γ

0
1 , δ

0), for according to Lemma
5.1.A [KS99], the proof of 5.1.D [KS99], Lemma 18 and (82), it is equal to

∆III(γ̄1, δ̄; γ1, δ) ∆III(γ1, δ; γ
0
1 , δ

0)

= ∆III(z1η1(s)γ1, zẇ
−1sδθ(ẇ); γ1, δ) ∆III(γ1, δ; γ

0
1 , δ

0)

= 〈inv(zsδ, ẇ−1zsδθ(ẇ)), κzsδ〉 ∆III(z1η1(s)γ1, zsδ; γ1, δ) ∆III(γ1, δ; γ
0
1 , δ

0)

= 〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 ∆III(z1η1(s)γ1, zsδ; γ1, δ) ∆III(γ1, δ; γ
0
1 , δ

0)

= 〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 〈(z, z1), aT ′〉 〈(s∗, η1(s)), aT ′〉 ∆III(γ1, δ; γ
0
1 , δ

0).

At this point we see that (118) is equal to

∆I(γ̄, δ̄) ∆III(γ1, δ; γ
0
1 , δ

0) 〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 〈inv(δ̄, ẇ−1
1 δ̄θ(ẇ1)), κδ̄〉

〈(δ∗, γ1), aT ′〉
.(119)

The geometric factor ∆I(γ, δ) is defined in terms of the a-data, the torus T ′,
the automorphism θ∗ and the endoscopic datum s (§4.1 [KS99]). As none
of these data are altered in replacing δ with δ̄, we conclude that ∆I(γ̄, δ̄) =
∆I(γ, δ).

To deal with the last two terms in the numerator of (119), we compute
that

w1 ∈ (Ω(G,S)/ΩR(G,S)))δ̄θ = (Ω(G,S)/ΩR(G,S)))ẇ
−1sδθẇ

⇔ w−1
1 w−1(δθ)ww1w

−1(δθ)−1w ∈ ΩR(G,S)

⇔ (ww1)−1 (δθ) (ww1) (δθ)−1(w−1δθw(δθ)−1)−1 ∈ ΩR(G,S)

⇔ (ww1)−1 (δθ) (ww1) (δθ)−1 ∈ ΩR(G,S)

⇔ ww1 ∈ (Ω(G,S)/ΩR(G,S)))δθ.

Moreover, we compute that

w−1
1 · Λ̄ = w−1w−1 · Λ = (ww1)−1 · Λ,

81



using Λ̄ = w−1 · Λ from the proof of Lemma 23. The last step in showing
that (119) is equal to the spectral transfer factor ∆(ϕH1 , π(ww1)−1Λ) computed
with respect to δ, is to show that

〈inv(δ, ẇ−1δθ(ẇ)), κδ〉 〈inv(δ̄, ẇ−1
1 δ̄θ(ẇ1)), κδ̄〉 = 〈inv(δ, (ẇẇ1)−1δθ(ẇẇ1)), κδ〉.

(120)
For this, we point out that the definition of κδ relies on Int(gT ′)ψ, whereas the
definition of κδ̄ relies on Int(gT ′ψ(ẇ))ψ = Int(gT ′)ψInt(ẇ) (page 55 [KS99]).
In a complementary fashion, the first component of inv(δ, ẇ−1δθ(ẇ))) lies
in the simply connected covering group of Sδθ, and the first component of
inv(δ̄, ẇ−1

1 δ̄θ(ẇ1)) lies in the simply connected covering group of Sẇ
−1zsδθẇ =

ẇ−1Sδθẇ (page 54 [KS99]). The second components of the “inv” terms lie in
the centre of G and are unaffected by conjugation with ẇ. These observations
amount to the identity

〈inv(δ̄, ẇ−1
1 δ̄θ(ẇ1)), κδ̄〉 = 〈ẇ inv(δ̄, ẇ−1

1 δ̄θ(ẇ1))ẇ−1, κδ〉.

The desired equation (120) now follows from this identity and the fact that
the projection of the first component of

inv(δ, ẇ−1δθ(ẇ)) ẇ inv(δ̄, ẇ−1
1 δ̄θ(ẇ1))ẇ−1

to Sδθ is
σ(ẇ)ẇ−1ẇσ(ẇ1)ẇ−1

1 ẇ−1 = σ(ẇẇ1) (ẇẇ1)−1,

the projection to Sδθ of the first component of inv(δ, (ẇẇ1)−1δθ(ẇẇ1)).
We have now proven that ∆(ϕH1 , π) is independent of the choice of θ-

elliptic element δ̄ with norm in H1(R) when Gδ̄θ lies in S. As mentioned
earlier, there is always an element g ∈ G(R) such that Ggδ̄θg−1

= gGδ̄θg−1 ⊂
S. If g is non-trivial then we may superficially revise the arguments above to
obtain δ̄ = (ẇg)−1sδθ(ẇg) and use Int(gT ′ψ(ẇg))ψ : Gδ̄θ → (T ′)θ

∗
in place

of (14) to obtain the same conclusion.

6.4 A spectral comparison with compact support

Our next objective is to prove identity (60) without any restriction on the
support of f ∈ C∞c (G(R)θ). For convenience let us set∑

πH1
∈ΠϕH1

ΘπH1
(fH1) =

∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh
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for all f ∈ C∞c (G(R)θ). Our objective then is to prove that the distribution
Θ on G(R)θ, defined by

Θ(f) =
∑

πH1
∈ΠϕH1

ΘπH1
(fH1)−

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f), f ∈ C∞c (G(R)θ)

(see §§3.4 and 5.2), is the zero distribution. We shall first prove this under
the assumption that ω is trivial. Under this assumption we shall explain
how Θ is a G(R)-invariant eigendistribution. Once this is established, we
will have a fairly concrete description of the values of Θ on the θ-regular
elements of Sδθ(R)0. These values will be seen to equal zero in view of
section 6.3. Finally, an extension of Harish-Chandra’s Uniqueness Theorem
(Theorem I.7.13 [Var77]) allows us to conclude that Θ is zero everywhere.
These steps imitate those followed in §15 [She08]. However, they rely on
extensions of Harish-Chandra’s methods given by Bouaziz and Renard. The
proof that Θ = 0 when ω is non-trivial will be effected through a bit of
surgery in Theorem 1.

To say that Θ is G(R)-invariant is to say that Θ(f y) = Θ(f) for all
y ∈ G(R) and f ∈ C∞c (G(R)θ), where f y is defined by

f y(xθ) = f(y−1xθy) = f(y−1xθ(y) θ), x ∈ G(R).

An obvious change of variable in (34) results in

Θπ,U(f y) = tr

∫
G(R)

f y(xθ) π(x)U dx

= tr

∫
G(R)

f(y−1xθ(y)θ)π(x)U dx

= tr

∫
G(R)

f(xθ) π(y)π(x) πθ(y−1)U dx

= ω(y) trπ(y)

(∫
G(R)

f(xθ) π(x)U dx

)
π(y)−1

= ω(y) Θπ,U(f)

Here, we have used equation (24) and the invariance of the trace map un-
der conjugation. This makes it clear that Θπ,U is G(R)-invariant if ω is
trivial. A parallel change of variable in the twisted orbital integrals shows
that Oxθ(f y) = ω(y)Oxθ(f) for any θ-regular and θ-semisimple x ∈ G(R).
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Identity (16) therefore makes it plain that the function (f y)H1 may be taken
as

(f y)H1 = ω(y) fH1 .(121)

It follows that Θ(f y) = ω(y) Θ(f) so that Θ is G(R)-invariant when ω is
trivial.

To say what it means for Θ to be an eigendistribution, we set Z(g⊗C)
equal to the centre of the universal enveloping algebra of the complexified Lie
algebra of G(R). The algebra Z(g ⊗C) acts on C∞(G(R)θ) by differential
operators (cf. III.1 [Kna86]). By definition, Θ is an eigendistribution if there
is an algebra homomorphism χΘ : Z(g⊗C)→ C such that

zΘ(f) = χΘ(z) Θ(f), z ∈ Z(g⊗C), f ∈ C∞c (G(R)θ).

The action of Z(g⊗C) on Θ is defined by zΘ(f) = Θ(ztrf), where the adjoint
map z 7→ ztr is an involution which is trivial on scalars and negates elements
of g ⊗ C (§5 X [Kna86]). Thus, to better understand zΘ, we require an
understanding of the function (zf)H1 on H1(R) which matches zf through
identity (16). We shall show that there exists an algebra homomorphism
z 7→ zH1 from Z(g ⊗ C) to Z(h1 ⊗ C) such that (zf)H1 may be taken to
equal zH1fH1 . Some patience is required, as this homomorphism shall be
constructed by way of at least seven different homomorphisms.

Recall that the Harish-Chandra isomorphism (§5 VIII [Kna86])

βH1 : Z(tH1 ⊗C)→ S(tH1 ⊗C)Ω(H1,TH1
)

which takes values in the Ω(H1, TH1)-invariant elements of the symmetric
algebra of tH1 ⊗ C. A review of the final paragraph of section 3.1 and the
maps in section 3.3 makes it clear that

Ω(H1, TH1) ∼= Ω(H,TH) ∼= Ω(Ĥ, T̂H) ∼= Ω(ξ(Ĥ), ξ(TH)) ↪→ Ω(Ĝ∗, T̂ ′)θ̂
∗ ∼= Ω(G∗, T ′)θ

∗
.

By (12) and (96), we also have an isomorphism tH ∼= (t′)θ
∗
. Combining

this isomorphism with the previous embedding of Weyl groups produces an
injection

S((t′)θ
∗ ⊗C)Ω(G∗,T ′)θ

∗

↪→ S(tH ⊗C)Ω(H,TH).(122)

The decomposition tH1
∼= tH ⊕ z1 of (63) produces an algebra isomorphism

S(tH1 ⊗C)Ω(H1,TH1
) ∼= S(tH ⊗C)Ω(H,TH) S(z1 ⊗C).
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The algebra S(tH⊗C)Ω(H,TH) embeds into the right-hand side of this isomor-
phism, yielding an injection

S(tH ⊗C)Ω(H,TH) ↪→ S(tH1 ⊗C)Ω(H1,TH1
).(123)

Taking x = δ∗θ∗ in §2.4 [Bou87], we obtain an algebra homomorphism

φ : S(t′ ⊗C)Ω(G∗,T ′) → S((t′)θ
∗ ⊗C)Ω(G∗,T ′)θ

∗

induced by the projection t′ onto (t′)θ
∗

(see (96)).
The final homomorphism necessary for the definition of z 7→ zH1 is given

by the linear form λaT ′ : (t′)θ
∗ → C, defined at the end of section 6.2.1. As

noted there, we may also regard λaT ′ as a Ω(H,TH)-invariant linear form on
tH . Our admissible embedding (12) allows us to transfer ιG∗res

to a linear form
on tH . We may therefore define the linear form λ∗ on tH as

λ∗ = λaT ′ + ιG∗res
− ιH .(124)

The linear form λ∗ remains Ω(H,TH)-invariant, as the positive roots “outside
of H” are merely permuted by Ω(H,TH) (Lemma B §10.2 [Hum94]). One
may define the algebra automorphism of S(tH ⊗C)Ω(H,TH) by extending the
map

X 7→ X − λ∗(X), X ∈ t
Ω(H,TH)
H

to S(tH⊗C)Ω(H,TH) (Proposition 3.1 [Kna86]). We denote this automorphism
by I−λ∗ .

We define the algebra homomorphism z 7→ zH1 from Z(g⊗C) to Z(h1⊗C)
as the composition

Z(g⊗C) → Z(g⊗C)→ S(t′ ⊗C)Ω(G∗,T ′) → S((t′)θ
∗ ⊗C)Ω(G∗,T ′)θ

∗

→ S(tH ⊗C)Ω(H,TH) → S(tH ⊗C)Ω(H,TH)(125)

→ S(tH1 ⊗C)Ω(H1,TH1
) → Z(h1 ⊗C),

where the maps, from left to right, are given by (14), βG∗ , φ, (122), I−λ∗ , (123)
and β−1

H1
respectively. By the very definition of Z(g⊗C) and Z(h1 ⊗C), it

follows that this homomorphism is invariant under conjugation. As a result,
this homomorphism is independent of gT ′ and the choices of tori, T ′ and TH1 .
Nevertheless, the individual maps in (125) do depend on these choices and
are flexible enough to accommodate them.
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Lemma 24 Suppose f ∈ C∞c (G(R)θ) and z ∈ Z(g⊗C). Let

φ′ : S(s⊗C)Ω(G,S) → S(sδθ)Ω(G,S)δθ

be the transfer of φ to S(R) via (14). Then

DGθ(xδ) Oxδθ(zf) = φ′ ◦ βG(z) DGθ(xδ)Oxδθ(f)

for all δθ-regular x ∈ Sδθ(R).

Proof. We follow the proof of Proposition II.10.4. [Var77]. Fix δθ-regular
y ∈ Sδθ(R). It suffices to prove the lemma on a small open neighbourhood of
yδθ. According to §6 and §10 [Ren97], there exists a small Gδθ(R)-invariant
neighbourhood Vy ⊂ Sδθ(R) of y such that restriction to Vyδθ is an isomor-
phism from the space of G(R)-invariant smooth functions supported on the
union of G(R)-conjugates of Vyδθ to the space of smooth Gδθ(R)-invariant
functions on Vyδθ. Given any function f̃ in the former space, and any func-
tion f̃1 compactly supported in union of G(R)-conjugates of Vyδθ, the Weyl
integration formula (Proposition 1) tells us that up to a constant the integral∫
G(R)

f̃(gδθ)f̃1(gδθ) dg is equal to∫
Vy
f̃|Vyδθ(x)DGθ(xδ)

2Oxδθ(f̃1) dx.

Applying, Corollary 2.4.11 [Bou87] to the distribution

f1 7→
∫
G(R)

f̃(gδθ)f̃1(gδθ) dg

results in the identity∫
Vy
f̃|Vyδθ(xδθ)DGθ(xδ)

2Oxδθ(zf̃1) dx

=

∫
Vy
f̃|Vyδθ(xδθ)DGθ(xδ)φ

′ ◦ βG(z)DGθ(xδ)Oxδθ(f̃1) dx.

As this identity holds for all f̃ , we conclude that

DGθ(xδ)Oxδθ(zf̃1) = φ′ ◦ βG(z)DGθ(xδ)Oxδθ(f̃1),(126)

for all δθ-regular x in a open neighbourhood of y. By Corollary 8.5 [Ren97],
there exists a smooth G(R)-invariant function fy such that f̃1 may be re-
placed with fyf , and fy is equal to one on a neighbourhood of yδθ. In
consequence, identity (126) holds with f in place of f̃1.�
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Lemma 25 Suppose f ∈ C∞c (G(R)θ) and fH1 ∈ C∞(H1(R)) are functions
which satisfy geometric transfer identity (16). Then, for any z ∈ Z(g⊗C),
the functions zf ∈ C∞c (G(R)θ) and zH1fH1 ∈ C∞(H1(R)) also satisfy (16).

Proof. We shall verify the desired identity first at elements of Sδθ(R)δθ.
Suppose x ∈ Sδθ(R) and xδ is strongly θ-regular. By Lemma 24 we have

DGθ(xδ) Oxδθ(zf) = (Int(gT ′)ψ)−1 ◦φ ◦ (Int(gT ′)ψ) ◦βG(z) DGθ(xδ)Oxδθ(zf)

Here, we are identifying the isomorphism Int(gT ′)ψ : G→ G∗ with its differ-
ential. It is the isomorphism used in (14) and in (125). Using Int(gT ′)ψ we
obtain

DGθ(xδ) = DG∗θ∗(x
∗δ∗).

We may also rearrange the differential operator as

(Int(gT ′)ψ)−1 ◦ φ ◦ Int(gT ′)ψ ◦ βG(z) = (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z).

Observe that the composition of the three maps φ ◦ βG∗ ◦ Int(gT ′)ψ on the
right-hand side coincides with the composition of the first three maps of
(125). Observe also, that for any representative w ∈ G(R) of an element in
(Ω(G,S)/ΩR(G,S))δθ we have

DGθ(w
−1xδθ(w))Owxδθw−1(zf)

= (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z)DGθ(w
−1xδθ(w)) Ow−1xδθw(f)

= (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z)DGθ(xδ) Ow−1xδθw(f).

Looking back to Lemma 15, we see that to prove the lemma we must prove
the identity

βH1(zH1)
DH1(x1γ1)

DG∗θ∗(x∗δ∗)
∆(x1γ1, xδ)

=
DH1(x1γ1)

DG∗θ∗(x∗δ∗)
∆(x1γ1, xδ) (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z),(127)

where x1 ∈ TH1(R) is obtained from x through (14), the coset map T ′ →
T ′/(1 − θ∗)T ′, the admissible embedding (12) and a local lifting given by
(63). Indeed, this is to be interpreted as a local identity, in the sense that
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it suffices to prove it on a small open set in Sδθ(R). One may replace η1(x)
with x1 in (73), (77) and (78), so that the identity to be proven reads as

βH1(zH1)∆I(x1γ1, xδ) ∆II(x1γ1, xδ) ∆III(x1γ1, xδ; γ1, δ)

= ∆I(x1γ1, xδ) ∆II(x1γ1, xδ) ∆III(x1γ1, xδ; γ1, δ)

× (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z).

It is clear from the definition of ∆I(x1γ1, xδ) (§4.2 [KS99]) that it is a constant
independent of x. Therefore the above identity simplifies to

βH1(zH1)∆II(x1γ1, xδ) ∆III(x1γ1, xδ; γ1, δ)(128)

= ∆II(x1γ1, xδ) ∆III(x1γ1, xδ; γ1, δ) (Int(gT ′)ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z).

We wish to simplify this required identity further and relate it to I−λ∗ appear-
ing in (125). The term ∆II(x1γ1, xδ) is a quotient whose numerator is of the
form (75). Using the arguments of Lemma 20, each expression Nα(x∗δ∗)± 1
in this numerator is seen to be equal to

1−Nα(x∗) Ad((δ∗θ∗)lα)|gα = det(1− Adx∗δ∗θ∗)|gαres

up to multiplication by ±1. The square of the numerator is therefore equal
to the product over all negative αres ∈ Rres(G

∗, T ′) of

| det(1− Adx∗δ∗θ∗)|gαres |2

det(1− Adx∗δ∗θ∗)2
|gαres

=
det(1− Adx∗δ∗θ∗)|gαres det(1− Adx∗δ∗θ∗)|gαres

det(1− Adx∗δ∗θ∗)2
|gαres

=
det(1− Adx∗δ∗θ∗)|g−αres

det(1− Adx∗δ∗θ∗)|gαres

= (−1)dim gαres
Nα(x∗δ∗)

up to multiplication by ±1. Therefore, the square of this product is equal to

±
∏
αres<0

Nα(x∗δ∗) = ±
∏
αres>0

Nα(x∗δ∗) = ±ι2G∗res
(x∗)ι2G∗(δ

∗).

The same type of arguments hold true for the denominator of ∆II(x1γ1, xδ).
We conclude that ∆II(x1γ1, xδ) is equal to ιG∗res

(x∗) − ιH(x1) in additive
notation and up to multiplication by a constant independent of x. Now, by
Proposition 3 we see that

∆III(x1γ1, xδ; γ1, δ) = Λ(−µH1 + ιH ,−λH1)(x1) Λ(µ− ιG∗res, λ)(x∗).
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By the definition (124), we may interpret the map

x 7→ ∆II(x1γ1, xδ) ∆III(x1γ1, xδ; γ1, δ), x ∈ Sδθ(R)

locally to be given by a constant multiple of eλ
∗
. That is to say, on a small

open subset of Sδθ(R), this map may be lifted to λ∗ on a small open subset
of tH with the identification of the isomorphic Lie algebras sδθ ∼= (t′)θ

∗ ∼= tH
((12), (14)). With this interpretation, the required identity (128) reads as

βH1(zH1) eλ
∗

= eλ
∗
φ ◦ βG∗ ◦ Int(gT ′)ψ(z),

on a small open set of tH ⊂ tH1 . To derive this identity, one may apply the
product rule to show that the right-hand side is equal to

I−λ∗ ◦ φ ◦ βG∗ ◦ Int(gT ′)ψ(z) eλ
∗

and then compare with (125). This concludes the proof of matching (16) at
θ-regular elements which preserve an elliptic torus S.

To prove the matching in general, suppose δ′ ∈ G(R) is θ-semisimple and
strongly θ-regular and that γ′1 ∈ H1(R) is a norm of δ′. Then Gδ′θ is equal to
the fixed-point set of a maximal torus torus SM which is defined over R. Let
M be the centralizer in G of the maximally split subtorus of SM(R). It is a
Levi subgroup of G which is defined over R and SM(R) is elliptic in M(R).
For details of this construction see the appendix. The identity to prove in
this context is an analogue of (127), namely

βH1(zH1)
DH1(x1γ1)

DG∗θ∗(x∗δ∗)
∆(x1γ1, xδ)

=
DH1(x1γ1)

DG∗θ∗(x∗δ∗)
∆(x1γ1, xδ) (Int(gT ′M )ψ)−1 ◦ φ ◦ βG∗ ◦ Int(gT ′M )ψ(z).

Following section 3.3 we have replaced T ′ with a pertinent torus T ′M
∼=

SM , βG∗ is to be taken as the Harish-Chandra isomorphisms onto S(t′M ⊗
C)Ω(G∗,T ′M ), and x is in a small neighbourhood of the identity in Sδ

′θ
M (R) ⊂

M(R). The elements x∗, δ∗ ∈ T ′M follow the formalism laid out in section
3.3. We may rewrite this identity as

βH1(zH1)
∆M(x1γ

′
1, xδ

′)

∆M,IV (x1γ′1, xδ
′)

=
∆M(x1γ

′
1, xδ

′)

∆M,IV (x1γ′1, xδ
′)
ψ−1
M ◦ φM∗ ◦ βM∗ ◦ ψM(zM),
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in which we adopt the notation of the appendix and apply (150). The maps
φM∗ and βM∗ are the analogues of φ and β with G replaced by M , T ′ replaced
by T ′M , etc. and zM is the image of z under the unique algebra monomorphism
Z(g ⊗ C) → Z(m ⊗ C) (p. 52 [Var77]). Since this identity is of the same
form and is stated under the same essential assumptions as (127) we have
reduced the proof of the lemma to the case of elliptic tori, which has already
been proved.�

Lemma 26 The distribution Θ is an eigendistribution.

Proof. According to Lemma 25

zΘ(f) = Θ(ztrf)

=
∑

πH1
∈ΠϕH1

ΘπH1
((ztr)H1fH1)−

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(ztrf),

for every z ∈ Z(g⊗C) and f ∈ C∞c (G(R)θ). It is important to realize that
(ztr)H1 is not equal to (zH1)tr. Looking back to the maps in the definition
of zH1 (125) and §5 X [Kna86], we see that the only map which does not
commute with the adjoint is I−λ∗ . It is converted to its inverse, namely Iλ∗.
Consequently, the definition of (ztr)H1 differs from the definition of (zH1)tr

only through replacing −λ∗ with λ∗ in (124).
The representations in Πϕ are all of the form (70), they share a common

infinitesimal character χλϕ : Z(g ⊗ C) → C determined by the linear form
λϕ ∈ s∗ ⊗ C which is equal to the sum of the differential of Λ(µ − ιG, λ)
and ιG (see (85), §§VIII 5-6 and Theorem 9.20 [Kna86]). We may regard the
linear form λϕ as being defined on tH⊗C upon identifying X∗(((T̂

′)θ
∗
)0)⊗C

with ((t′)θ
∗
)∗⊗C (see §9.1 [Bor79]), and identifying tH ∼= (t′)θ

∗ ∼= sδθ via (12)
and (14). Similarly, the representations in ΠϕH1

share a common infinitesimal
character χλϕH1

, where λϕH1
∈ t∗H1

⊗C is the sum of the differential of Λ(µH1−
ιH , λH1) and ιH . The value χλϕH1

(zH1) depends only on the restriction of λϕH1

to t∗H ⊗C by virtue of the penultimate map (123) given in the definition of
zH1 (125). This restriction differs from λϕ by λ∗ (see (124) and the definition
of λaT ′ in section 6.2.1). The upshot of these observations is that χλϕ(z) =
χλϕH1

(((ztr)H1)tr) so that

zΘ(f) = χλϕH1
(((ztr)H1)tr)

∑
πH1
∈ΠϕH1

ΘπH1
(fH1)− χλϕ(z)

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f)

= χλϕ(z) Θ(f).�

90



Proposition 4 Suppose ω is trivial. Then Θ is the zero distribution.

Proof. Lemma 26 and the computations at the beginning of this section
tell us that Θ is a G(R)-invariant eigendistribution. We wish to show that
Θ is a tempered distribution, i.e. that Θ defines a continuous linear form
with respect to the topology on C∞c (G(R)θ) given by the seminorms of §3.5
[Bou87]. This may be seen by first noting that each π ∈ Πϕ extends to a
representation of G o 〈θ〉 through the designation π(θ) = Uπ. Indeed, this
kind of extension was detailed at the beginning of section 5.4. According
to Lemma 3.5.1 [Bou87], the character of the resulting extension of π is
tempered. Therefore the distribution Θπ,Uπ , which is the restriction of the
character of the extension to G(R)θ, is also tempered. We are assuming
that f 7→ fH1 is continuous, and we know that ΘπH1

is tempered for each
πH1 ∈ ΠϕH1

. It follows that Θ is tempered.
Next, we argue that Θ has regular infinitesimal character. Recall from

the proof of Lemma 26 that the infinitesimal character of Θ is given by a
linear form λϕ ∈ s∗⊗C . As π is essentially square-integrable, so too is each
irreducible subrepresentation of its restriction to Gder(R)0. The infinitesimal
character of each of these subrepresentations is given by the restriction of λϕ
to sder ⊗ C and is regular (Theorem 9.20 [Kna86]). This implies that λϕ is
regular.

Now, since Θ is a G(R)-invariant tempered eigendistribution Θ (sup-
ported on G(R)θ), with regular infinitesimal character, it follows from §3.6
[Bou87] that on any connected open set V ′ ⊂ sδθ such that exp(X)δ is θ-
regular for every X ∈ V ′ there exist a finite number of constants Cj and
linear forms µj ∈ (sδθ)∗ ⊗C which satisfy

Θ(exp(X)δθ) =

∑
j Cje

µj(X)

DGθ(exp(X))
, X ∈ V ′(129)

(see p. 34 [Bou87] and Proposition 12.3 (b) [Duc02]). It was proven in
section 6.3 that this expansion is zero when V ′ is taken to be the logarithmic
image of V ⊂ Sδθ(R)0. It follows that Θ vanishes on the component of the
strongly θ-regular elements of Sδθ(R)0δ containing δ. If s ∈ Sδθ(R)0 and sδ
is strongly θ-regular, the properties of sδ and δ are the same as far as the
results of section 6.3 are concerned (see section 6.3.1). We may therefore
replace δ replaced with sδ as above to conclude that Θ vanishes on any
θ-regular component of Sδθ(R)0δθ.
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We may now apply Proposition 3.6.1 [Bou87] and Theorem 15.1 [Ren97],
the latter being a twisted version of Harish-Chandra’s Uniqueness Theorem
(I.7.13 [Var77]). The result is that Θ vanishes on the set of G(R)-conjugates
of ZG(R)G(R)0δθ, and by section 6.3.1 this is true for any strongly θ-regular
θ-elliptic element δ ∈ G(R) which has a norm in H1(R).

We must show that Θ vanishes on any remaining subsets of G(R). By
Lemma 1.6.1 [Bou87] any maximal compact subgroup of G(R) has non-
trivial intersection with any component of G(R) (in the manifold topology).
It then follows from Lemma 1.5.1 and Lemma 1.6.2 (ii) [Bou87] that every
component of G(R) contains a strongly θ-regular and θ-elliptic element of
G(R). If such an element has a norm in H1(R) we know from the above that
Θ vanishes on the component. The other possibility is that a component
of G(R) is equal to G(R)0δ̄ where δ̄ ∈ G(R) is strongly θ-regular and θ-
elliptic, and no strongly θ-regular θ-elliptic element of ZG(R)G(R)0δ̄ has a
norm in H1(R). In this case, for any function f ∈ C∞c (G(R)θ) with small
elliptic support about δ̄θ we may assume that fH1 = 0 (see (16) so that the
left-hand side of (60) vanishes. We must show that Θπ,Uπ(f) = 0 for every
π ∈ Πϕ, and we do so by contradiction.

Suppose first that π = πΛ, where Λ ∈ s∗ is as in section 6.1 and Θπ,Uπ(f) 6=
0. Lemma 5 tells us that Θπ,Uπ(f) vanishes if the support of f lies outside of
the G(R)-conjugates of ZG(R)Gder(R)0δθ. Together with the density results,
Lemma 1.5.1 and Lemma 1.6.2 [Bou87], we deduce that there are elements
x ∈ ZG(R)Gder(R)0 and g ∈ G(R) such that g−1xδ̄θ(g) is equal to a strongly
θ-regular and θ-elliptic element zsδ, where z ∈ ZG(R) and s ∈ Sder(R).
Taking Lemma 22 into consideration, we may assume that s actually belongs
to Sδθder(R). Now, by assumption δ has a norm and by virtue of (62) the
element sδ has a norm as well. Let z1 ∈ ZH1(R) be any element such that
p1(z, z1) = z (see (80). Then the product of z1 and the norm of sδ is a norm
of zsδ. Composing (14) with Int(g) yields a map which produces a norm of xδ̄
equal to that of zsδ (cf. §6). However, this contradicts the assumption that
no strongly θ-regular and θ-elliptic element of ZG(R)G(R)0δ̄ has a norm. We
conclude that Θπ,Uπ(f) = 0.

The remaining representations π ∈ Πϕ are of the form π = πw−1Λ where
w ∈ (Ω(G,S)/ΩR(G,S))δθ (Lemma 16). The previous argument applies to
these representations with δ replaced by ẇ−1δθ(ẇ) ∈ G(R), where ẇG is a
representative for w obtained from Proposition 2. We conclude that Θπ,Uπ(f)
vanishes for all π ∈ Πϕ so that Θ vanishes on ZG(R)G(R)0δ̄θ (Theorem
15.1 [Ren97]).� In our main theorem, we remove the hypothesis that the
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quasicharacter ω is trivial.

Theorem 1 Suppose f ∈ C∞c (G(R)θ). Then∑
πH1
∈ΠϕH1

ΘπH1
(fH1) =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f).

Proof. It follows from Proposition 7.3.1 (i) and Corollary 8.1.6 [Spr98], that
the homomorphism

Z0
G(R)×Gder(R)→ G(R)

given by multiplication is surjective with finite kernel isomorphic to Z0
G(R)∩

Gder(R). One may further decompose Z0
G(R) using the isomorphisms

Z0
G(R)/(Z0

G)θ(R)
1−θ→ (1− θ)Z0

G(R)(Z0
G)θ(R)/(Z0

G)θ(R)
∼= (1− θ)Z0

G(R)/(1− θ)Z0
G(R) ∩ (Z0

G)θ(R).

An argument given in the proof of Lemma 4.11 [Ren03] shows that the in-
tersection (1 − θ)Z0

G(R) ∩ (Z0
G)θ(R) finite. Accordingly, the following com-

mutative diagram

(1− θ)Z0
G(R)× (Z0

G)θ(R)×Gder(R) //

��

Z0
G(R)×Gder(R)

��
(1− θ)Z0

G(R)× (Z0
G)θ(R)Gder(R) // G(R)

(130)

has finite fibres when moving on the top right, or down. Therefore the lower
homomorphism also has finite fibres. In other words, the kernel of the lower
homomorphism is isomorphic to the finite intersection

(1− θ)Z0
G(R) ∩ (Z0

G)θ(R)Gder(R).(131)

Suppose first that this kernel is trivial. Then the linear combinations of
products of functions in C∞c ((1 − θ)Z0

G(R)) and C∞c ((Z0
G)θ(R)Gder(R)θ)

form a dense subspace of C∞c (G(R)θ) (Proposition 1 §4.8 [Hor66]) Let us
fix h ∈ C∞c ((1 − θ)Z0

G(R)) for a moment and define a distribution Θh on
(Z0

G)θ(R)Gder(R)θ by Θh(f̃) = Θ(hf̃). It is left as an exercise to the reader
to verify that Θh is (Z0

G)θ(R)Gder(R)-invariant (see (25)) and is an eigendis-
tribution of Z((zG + gder) ⊗ C). In fact, the distribution Θh satisfies all of
the hypotheses required in the proof of Proposition 4, and so Θh vanishes.
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Since this is true for any h ∈ C∞c ((1− θ)Z0
G(R)), it follows that for f = hf̃ ,

we have
Θ(f) = Θ(hf̃) = Θh(f̃) = 0.

By the density statement above and since Θ is tempered, this implies that
Θ vanishes.

In the case that (131) is non-trivial, the argument becomes more delicate.
Define f1 ∈ C∞c (G(R)θ) by setting

f1(xθ) =
∑
z

χπ(z) f(zxθ), x ∈ G(R),(132)

where the sum is taken over the finite number of elements z belonging to
(131). Clearly, the function f1 is equivariant under (131) in the sense that

f1(zxθ) = χ−1
π (z) f1(xθ), x ∈ G(R),

for all z belonging to (131). Given that such z are of the form yjθ(y
−1
j ) for

yj ∈ Z0
G(R), we may also write

f1(xθ) =
∑
j

χπ(yjθ(y
−1
j )) f(yjθ(y

−1
j )xθ) =

∑
j

ω(yj) f
y−1
j (xθ), x ∈ G(R)

(see (25)). Recalling the observations made at the beginning of this section,
we see that

Θ(f1) =
∑
j

ω(yj) Θ(f y
−1
j ) =

∑
j

ω(yj)ω(y−1
j ) Θ(f) =

∑
j

Θ(f).

For the sake of simplicity let F1 = (1−θ)Z0
G(R) and F2 = (Z0

G)θ(R)Gder(R).
As G(R) is isomorphic to F1×F2/F1 ∩F2, we have C∞c (G(R)θ) ∼= C∞c (F1×
F2/F1 ∩ F2). We denote the isomorphic F1 ∩ F2-equivariant subspaces by
C∞c (G(R)θ, χ−1

π ) and C∞c (F1 × F2/F1 ∩ F2, χ
−1
π ). If we denote by C∞c (F1 ×

F2, χ
−1
π ) the smooth, compactly supported functions on F1 × F2, which are

F1 ∩ F2-equivariant in each coordinate then we have an isomorphism

C∞c (F1 × F2, χ
−1
π )→ C∞c (F1 × F2/F1 ∩ F2, χ

−1
π )

defined by the averaging over {(z, z−1) : z ∈ F1 ∩ F2}. The inverse of this
isomorphism is induced by the quotient map F1 × F2 → F1 × F2/F1 ∩ F2, as
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the group F1 ∩ F2 is finite. Together with our earlier observation concerning
the density of the tensor product, we obtain the commutative diagram

C∞c (F1, χ
−1
π )⊗ C∞c (F2, χ

−1
π ) //

��

C∞c (F1 × F2, χ
−1
π )

∼=
��

C∞c (F1, χ
−1
π )⊗C[F1∩F2] C

∞
c (F2, χ

−1
π ) // C∞c (F1 × F2/F1 ∩ F2, χ

−1
π ) ∼= C∞c (G(R)θ, χ−1

π ).

(133)
In this diagram the horizontal maps are injective with dense image and the
lower tensor product is taken over the complex group algebra of F1 ∩ F2.
It follows that the function f1 ∈ C∞c (G(R)θ, χ−1

π ) may be approximated by
linear combinations of products hf̃ , where h ∈ C∞c ((1 − θ)Z0

G(R), χ−1
π ) and

f̃ ∈ C∞c ((Z0
G)θ(R)Gder(R))θ, χ−1

π ). We may now imitate the earlier strategy
by fixing h and defining Θh on (Z0

G)θ(R)Gder(R)θ to conclude that

Θ(hf̃) = Θh(f̃) = 0.

The continuity of Θ and the density of the tensor product imply that∑
j

Θ(f) = Θ(f1) = 0

and so Θ vanishes.�

6.5 The case of no norms

The last case to consider in proving (60) for essentially square-integrable
representations is the case in which there are no strongly θ-regular θ-elliptic
elements in G(R) which have norm in H(R). Let us assume that this is so.
In this case we set the spectral transfer factors ∆(ϕH1 , π) = 0 for all π ∈ Πϕ.
Our task then is to prove that∫

H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh = 0, f ∈ C∞c (G(R)θ).

In other words, we must show that the distribution Θ, defined by

Θ(f) =

∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh, f ∈ C∞c (G(R)θ),
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is the zero distribution. Our tactics are essentially the same as in the case
where norms exist and our proof that Θ vanishes consists of pointing to the
relevant facts already present in that case. We first assume that ω is trivial
and establish that Θ is given by a locally integrable function on the θ-regular
set of G(R)θ. We then show that this locally integrable function vanishes
on the θ-elliptic subset and deduce that Θ is zero by applying the twisted
version of the Harish-Chandra Uniqueness Theorem. The vanishing of Θ
for non-trivial ω follows using the same arguments employed in the proof of
Theorem 1.

Suppose therefore that ω is trivial. Then (121) implies that Θ is G(R)-
invariant. Lemma 26 is not affected by ∆(ϕH1 , π) being zero, so Θ remains
an eigendistribution. As Θ is a G(R)-invariant eigendistribution, it is given
by a locally integrable function which is analytic on the regular set (Theorem
2.1.1 [Bou87]). Recall that ΘπH1

is tempered for all πH1 ∈ ΠϕH1
and the map

f 7→ fH1 is assumed to be continuous, so that Θ is also tempered.
Now suppose δ is a θ-regular and θ-elliptic element of G(R) and f ∈

C∞c (G(R)θ) has small support about δθ as in section 6.3. Then the support
of f lies in the θ-regular θ-elliptic subset of G(R)θ. As elements in this subset
are assumed to have no norm in H(R) we may take fH1 = 0 (cf. (16)). As a
result, Θ(f) vanishes for all such f and so Θ vanishes at δθ. This proves that
Θ is zero on the θ-regular θ-elliptic set. Since Θ vanishes on the θ-regular θ-
elliptic set, it vanishes everywhere by Theorem 15.1 [Ren97] and Proposition
3.6.1 [Bou87].

7 Spectral transfer for limits of discrete se-

ries

In this section we wish to generalize the character identity of Theorem 1
to include the possibility that Πϕ consists of limits of discrete series (§8
XII [Kna86], §5 [SJ80]). We shall work with the same general framework
as given in section 6, except that we shall loosen assumptions 1-3. In this
section we shall assume that ΠϕH1

is an essentially square-integrable L-packet
(cf. Lemma 12). However, we shall weaken the assumption that Πϕ∗ is an
essentially square-integrable L-packet to Πϕ∗ containing an “essential” limit
of discrete series representation π which is equivalent to ω⊗πθ∗ . The meaning
of this assumption is the topic of the next subsection.
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This weaker assumption allows for the possibility that ϕ∗(WR) is con-
tained in a proper parabolic subgroup of Ĝ∗ = Ĝ, and it may be possible
for this parabolic subgroup not to be relevant (§3.3 [Bor79]). When this
parabolic subgroup is not relevant the L-parameter ϕis not defined.

This being said, our approach will be to first prove an identity of the form∑
πH1
∈ΠϕH1

ΘπH1
(fH1) =

∑
π∈Πϕ∗

∆(ϕH1 , π) Θπ,Uπ(f)

in the case that G is quasisplit, that is G = G∗. Thereafter we shall treat the
case when G is not quasisplit, considering the possibilities of relevant and
non-relevant parabolic subgroups in turn.

7.1 Essential limits of discrete series

The theory of limits of discrete series has its roots in the work of Zucker-
man, Schmid, Hecht and Knapp ([Zuc77], [HS75], [KZ84])). An extension of
this theory to a class of Lie groups which includes connected real reductive
algebraic groups is given in §5 [SJ80]. Let us state how limits of discrete
series appear in the assumptions of this section. Assume for the time being
that ϕ is any relevant L-parameter for G and µ, λ ∈ X∗(T )⊗C is a defining
pair (section 4). Suppose 〈µ, α〉 ≥ 0 for all roots α ∈ R(B, T ). Note that
the inequalities here are weak, so that µ may be singular. We assume that
there is some ν ∈ X∗(T )⊗C such that the pair µ+ ν, λ defines an admissi-
ble homomorphism ϕν : WR → Ĝ whose L-packet Πϕν consists of tempered
essentially square-integrable representations. In other words, we are assum-
ing that ϕν satisfies the conditions of section 4.1 with ϕ replaced by ϕν . In
addition, we assume that equation (18) is satisfied for both µ0 = µ − ι and
µ0 = µ+ν− ι. Recall that this assumption allots quasi-characters Λ(µ− ι, λ)
and Λ(µ+ν−ι, λ) of an elliptic maximal torus S(R) to ϕ and ϕν respectively.
As a result

Λ(ν) = Λ(µ+ ν − ι, λ) Λ(µ− ι, λ)−1(134)

is a character of S(R) (i.e. ν is analytically integral in the parlance of
[Kna86]). Moreover, µ and λ may be identified with elements of X∗(Ŝ)⊗C.

Let πν be the representation in (an equivalence class of) Πϕν attached to
Λ(µ + ν − ι, λ). The group G(R) has a Langlands decomposition G(R) =
0G(R)AG(R)0 in which AG is the split component of the centre of G and
0G(R) is the intersection of kernels of all homomorphisms of G(R) into (R×)0
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(§§5.1, 5.11-5.12 [Spr79]). The representation πν is a tensor product of the
quasicharacter given by restriction of Λ(µ+ν−ι, λ) to AG(R)0, and a square-
integrable (discrete series) representation 0πν of 0G(R). We define the limit of
discrete series character Θ0π as on page 397 [KZ84] (or Lemma 5.7 [SJ80]).
It is possible for this character to be zero. When it is non-zero it is the
character of an irreducible tempered representation 0π which is independent
of our choice of ν as above (Theorem 1.1 [KZ84]). For non-zero Θ0π one may
define an irreducible representation π of G(R) by setting it to be equal to
the tensor product of 0π with the quasicharacter given by the restriction of
Λ(µ − ι, λ) to AG(R)0. The representation π is tempered if and only if this
quasicharacter is unitary. We shall call representations of this form essential
limits of discrete series. We emphasize that an essential limit of discrete
series representation carries the assumption that the distribution Θ0π is not
zero. We denote the character of π by Θ(µ, λ,B). If the distribution Θ0π

vanishes we define Θ(µ, λ,B) to be zero.
Given an essential limit of discrete series representation π as above, the

set of characters of the representations in Πϕ is equal to the subset of non-zero
distributions in

{Θ(w−1µ,w−1λ,wBw−1) : w ∈ Ω(Ĝ, T )}

((4.3.4) [She82], §14 [She08]). It is immediate that Πϕ consists entirely of
essential limits of discrete series.

In this section we will make the assumption that π is an essential limit of
discrete series representation as above which is equivalent to ω⊗πθ. Thank-
fully, the setup of section 5.1 applies to the present context. We adopt the
objects defined in that section, e.g. the elliptic maximal torus S, and the rep-
resentatives δ1, . . . , δk for G(R)/ZG(R)Gder(R)0. This presupposes a choice
of positive system for the roots of (k ⊗C, sder ⊗C). This choice is fixed by
by the unique Borel subgroup B containing S such that the pair (B̂, Ŝ) is
conjugate to (B, T ), which in turn fixes a positive system for the roots of
(g⊗C, s⊗C) and fixes a positive system for the roots (k⊗C, sder ⊗C) by
restriction.

It is equally fortuitous that the representation 0π of 0G(R) is obtained
via finite induction (p. 397 [KZ84]) from the subgroup

0G(R)0 0ZG(R) = 0Gder(R)0 0ZG(R).

The representation being induced may be written as a tensor product of
the central character of 0π with a representation $1 in the limit of discrete
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series of 0Gder(R)0. With these modifications Lemma 4 carries over to the
present situation. As in earlier sections, we set δ = δm where 1 ≤ m ≤ k
is the unique integer such that $δmθ

1 is equivalent to $1 (31). It follows
that π ∼= ω⊗πδθ and, after identifying (B̂, Ŝ) with (B, T ), that Θ(µ, λ, B̂) =
ωΘ(δθ·µ, δθ·λ, δθ·B̂) . The latter identity and Theorem 1.1 (c) [KZ84] imply
that there exists w ∈ ΩR(G,S) such that wδθ fixes B. Since ΩR(G,S) ∼=
Ω(k⊗C, sder⊗C) (Lemma 5.18 [Spr79], Theorem 4.41 [Kna86]) and δθ fixes
the positive system of (k⊗C, sder⊗C) (Lemma 3) determined by B, we deduce
that w is trivial. Consequently both B and S are stable under the action of
δθ. It further follows from Theorem 1.1 (c) [KZ84] that Λ(δθ · µ − ι, δθ · λ)
is a quasicharacter of S(R) satisfying

ω|S(R) Λ(δθ · µ− ι, δθ · λ) = Λ(µ− ι, λ).(135)

Here, we have identified ι with the half-sum of the positive roots R(B̂, Ŝ).

7.2 The quasisplit case

In this section we assume that G = G∗, i.e. that G is quasisplit. Our
remaining assumptions are as follows. We assume that ϕH1 is an L-parameter
as in section 6 such that ΠϕH1

is a essentially square-integrable L-packet (cf.
Lemma 12). We assume that ϕ∗ = ϕ is the L-parameter for G as in section
6 and that π is a tempered essential limit of discrete series representation
of G∗(R) contained in Πϕ∗ satisfying π ∼= ω ⊗ πδθ. It is implicit in these
last assumptions that we are adopting the framework of section 7.1 and its
modified relation to section 5.1. This framework attaches to ϕ∗ = ϕ a defining
pair µ, λ ∈ X∗(Ŝ)⊗C (§§3.2, 4).

As stated in section 7.1, we are free to choose ν ∈ X∗(Ŝder)⊗C such that
it lies in the positive chamber determined by B, and µ − ι and µ + ν − ι
satisfy equation (18). After possibly averaging over the finite action of δθ
on X∗(Ŝder) (Lemma 3.1), we may assume that ν is fixed by δθ. With this
assumption in place we see from (134) and (135) that

Λ(δθ · (µ+ ν)− ι, δθ · λ) = Λ(δθ · µ− ι+ ν, δθ · λ)

= Λ(δθ · µ− ι, δθ · λ) Λ(ν)

= ω−1
|S(R) Λ(µ− ι, λ) Λ(ν)

= ω−1
|S(R) Λ(µ+ ν − ι, λ).(136)
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This means in turn that ω ⊗ πδθν ∼= πν , ω ⊗ πθν ∼= πν and ω ⊗ Πϕν = Πϕν .
Let us look back to the three assumptions enumerated in section 6 and

see to what extent ϕν and πν fit in with them. The first assumption is satis-
fied by ϕν since πν is a tempered essentially square-integrable representation
(Lemma 3.4 [Lan89], §4.1, 12.3 [Bor79]). We have just shown that the second
assumption is satisfied by πν . However, the third assumption, namely that
there exists γ1 ∈ H1(R) which is the norm of θ-elliptic δ does not follow from
the preceding assumptions. We make this our final assumption so that we
may appeal to Theorem 1 for ϕν when the time is ripe.

7.2.1 A minimal Levi subgroup containing ϕ(WR)

In order to understand the (twisted) characters of the L-packet Πϕ. One

must find a Levi subgroup M of G such that ϕ(WR) ⊂ M̂ oWR and ϕ(WR)
is not contained in any proper Levi subgroup of M̂oWR (§4.2). A procedure
for finding such M in the case of ordinary endoscopy is given in §4.3 [She82]
and §14 [She08]. We shall follow this procedure partway, and continue with a
result of Borel (Proposition 3.6 [Bor79]). This procedure uses a root system
R(ϕ) ⊂ R(Ĝ, T ) to describe a torus in Ĝder. The centralizer of this torus in
LG will be a Levi subgroup and it pins down the Levi subgroup M of sought
for in G.

For the next few paragraphs it shall be easier to return to the view that µ
and λ are elements of X∗(T )⊗C, for we shall be using the endoscopic data

given in section 3.2. Recall that Ĥ
ξ∼= (Ĝsθ̂)0 and ϕ = ξ ◦ ξ−1

H1
◦ ϕH1 so that

ϕ(WR) ⊂ (Ĝsθ̂)0. As in the proof of Lemma 2.2.A [KS99], we may assume

that s ∈ T . This means that µ actually belongs to X∗((T θ̂)0)⊗C.
The set R(ϕ) = {α ∈ R(Ĝ, T ) : 〈µ, α〉 = 0} is easily shown to satisfy

the axioms of a root system. This root system is related to the root system
R(Ĥ1, T̂H1). To explain this relationship, consider the following diagram

R(Ĥ1, T̂H1)↔ R(Ĥ, TH)↔ R((Ĝsθ̂)0, (T θ̂)0) ↪→ Rres(Ĝ, T ).(137)

The leftmost map is a bijection (actually an isomorphism as in §9.2 [Hum94])
which is induced by conjugation (see section 3.3) and the inclusion Ĥ → Ĥ1

(see (7)). The middle map is a bijection obtained from ξ (see condition 4 of
section 3.2). The object on the right a root system defined as

Rres(Ĝ, T ) = {αres = α|(T θ̂)0 : α ∈ R(Ĝ, T )}
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(§1.3 [KS99]). The map on the right is an injection described by (1.3.5)

[KS99]2, which tells us that αres belongs to R((Ĝsθ̂)0, (T θ̂)0) if and only if
Nα(s) =

∑lα−1
j=0 θ̂jα(s) = 1. Here, lα is the cardinality of the θ̂-orbit of

α ∈ R(Ĝ, T ). Making identifications according to the (137), we may state
this as

αres ∈ R(Ĥ1, T̂H1)⇔ Nα(s) = 1.(138)

An immediate consequence of this equivalence is that Nα(s2) = 1 when
αres ∈ R(Ĥ1, T̂H1). The following lemma shows that this is true in general.

Lemma 27 The square s2 of the endoscopic datum belongs to ZĜ.

Proof. Suppose a ∈ Ĝ satisfies ϕν(σ) = (a, σ) ∈ LG. The element ϕν(σ) acts
on T /ZĜ by conjugation and the resulting action is equal to inversion (see
section 4.1 and 9.4 [Bor79]). From this we compute that

sZĜ = a σ(s−1a)ZĜ.

On the other hand, condition 4 of section 3.2 dictates that

s Lθ(ϕν(σ))s−1ZĜ = a′(σ)ϕν(σ)ZĜ = ϕν(σ)ZĜ

whence we compute
sZĜ = aσ(sθ̂(a))ZĜ.

Equating terms in the above two computations, we arrive at

s2ZĜ = θ̂(a) a−1ZĜ.

We shall now prove that θ̂(a) a−1 lies in ZĜ by using the splitting (B, T , {X}),
which is preserved by both σ and θ̂ (§3.1). The action of ϕν(σ)2 on Ĝ is
trivial, and our assumption that Πϕν is essentially square-integrable ensures
equation (17). Consequently,

Int(a)σ · (B, T , {X}) = (B̄, T , {±X̄}),

where B̄ is the Borel subgroup opposite to B and {X̄ } is the set of root
vectors given by {X} and Proposition 8.3 (f) [Hum94]. We may apply θ̂

2Note that R(Ĥ, TH) is reduced (Lemma 7.4.4 [Spr98]) so that (1.3.6) and (1.3.7) [KS99]
do not apply.
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to the left-hand side of this equation, without affecting the right-hand side.
This in turn implies

Int(a)σ · (B, T , {X}) = Int(θ̂(a))σ · (B, T , {X}),

Int(a−1θ̂(a)) · (B, T , {X}) = (B, T , {X}), and a−1θ̂(a) ∈ ZĜ. The trivial

action of ϕν(σ)2 on Ĝ implies that Int(aσ(a)) is trivial. We therefore conclude
that aσ(a) ∈ ZĜ and

(θ̂(a) a−1)−1ZĜ = a θ̂(a−1)ZĜ = σ(a−1) θ̂(σ(a))ZĜ = σ(a−1θ̂(a))ZĜ = ZĜ.�

Lemma 27 strengthens (138) to the statement that αres ∈ R(Ĥ1, T̂H1) if
and only if Nα(s) = 1 and αres /∈ R(Ĥ1, T̂H1) if and only if Nα(s) = −1 (cf.
proof of Proposition 4.4.7 [She82]). This is an explicit connection between
Nα and αres ∈ R(Ĥ1, T̂H1). There is a further connection between R(Ĥ1, T̂H1)
and R(ϕ).

Lemma 28 Suppose α ∈ R(ϕ). Then αres /∈ R(Ĥ1, T̂H1).

Proof. We prove the contrapositive assertion. Suppose that αres ∈ R(Ĥ1, T̂H1).
We are making some identifications here (cf. (137)), and to make them
apparent we may write αres = ξ ◦ ξ−1

H1
· β for some β ∈ R(Ĥ1, T̂H1). Let

µH1 , λH1 ∈ X∗(T̂H1)⊗C be a defining pair for ϕH1 (as in section 4.1). As we
are assuming that ΠϕH1

is an essentially square-integrable L-packet we have
〈µH1 , β〉 6= 0 (Lemma 3.3 [Lan89]). Unwrapping the terms, we deduce that

〈µ, α〉 = 〈µ, αres〉 = 〈ξ ◦ ξ−1
H1
· µH1 , ξ ◦ ξ−1

H1
· β〉 = 〈µH1 , β〉 6= 0

so that α /∈ R(ϕ).�
The next lemma is Proposition 4.4.7 [She82] in the case of ordinary en-

doscopy. Our proof is a mild paraphrase of Shelstad’s.

Lemma 29 The root system R(ϕ) is of type A1 × A1 × · · · × A1.

Proof. The assertion of the lemma is equivalent to α + β /∈ R(ϕ) for all
α, β ∈ R(ϕ). Suppose α, β ∈ R(ϕ). Then Lemma 28 tells us that αres, βres /∈
R(Ĥ1, T̂H1). By the observation following Lemma 27, we know that Nα(s) =
Nβ(s) = −1. In additive notation, this implies that N(α+β)(s) = 1, so that
αres + βres ∈ R(Ĥ1, T̂H1) (see (138)). Finally, Lemma 28 tells us again that
α + β /∈ R(ϕ).�
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Having established the mutual orthogonality of the roots in R(ϕ), we
may use the construction on page 407 [She82] by defining for each positive
α ∈ R(ϕ) an element

sα =

{
exp

(
π
4
(Xα −X−α)

)
, if ϕ(σ) · Xα = X−α

exp
(
iπ
4

(Xα + X−α)
)
, if ϕ(σ) · Xα = −X−α

Here, the elements Xα are chosen from {X} (fixed in (5)) and the X−α are
defined so that Xα, X−α, Hα = [Xα,X−α] map to the usual basis for sl(2,C)
under an isomorphism (Proposition 8.3 (f) [Hum94]). Orthogonality allows
us to define s =

∏
α sα. It is easy to calculate that ϕ(σ) · sα = s−1

α , so that

ϕ(σ) · s = s−1.(139)

Lemma 30 Suppose α ∈ R(ϕ) is a positive root and wα ∈ Ω(Ĝ, T ) is the
reflection generated by α. Then Int(s2

α) acts on T as wα.

Proof. Suppose sα = exp
(
π
4
(Xα −X−α)

)
. Then we compute that

Ad(s2
α)Hα = Ad

(
exp

(π
2

(Xα −X−α)
))

Hα

= Hα −
π

2
(2(Xα + X−α))− (π/2)2

2!
Hα + · · ·

=
∞∑
j=0

(−1)j
π2j

2j!
Hα +

∞∑
r=0

(−1)r+1 π2r+1

(2r + 1)!
(Xα + X−α)

= cos(π)Hα − sin(π)(Xα + X−α)

= wα ·Hα.

Now suppose sα = exp
(
iπ
4

(Xα + X−α)
)
. A similar computation yields

Ad(s2
α)Hα = cos(π)Hα − i sin(π)(Xα −X−α) = wα ·Hα

from which the lemma follows.�

Lemma 31 The element ϕ(σ) normalizes the maximal torus sT s−1 of Ĝ
and fixes each root s · α ∈ R(Ĝ, sT s−1) for every α ∈ R(ϕ).

Proof. Applying (139) and Lemma 30, we obtain

ϕ(σ) · sT s−1 = s−1(ϕ(σ) · T )s
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= ss−2(T )s2s−1

= s

 ∏
α∈R(ϕ), α>0

wα · T

 s−1

= sT s−1.

This proves the first assertion. To prove the second assertion, recall from
section 7.1 and (17) that ϕ(σ) negates the roots of R(Ĝ, T ). Therefore, as
in the computation above we see that for any β ∈ R(ϕ) we have

ϕ(σ) · (s · β) = s · (
∏

wαϕ(σ) · β) = s · (−wβ · β) = s · β.�

We will now follow the procedure given in the proof of Proposition 3.6
[Bor79] to produce the Levi subgroup M . We compute the identity compo-
nent of the centralizer of ϕ(WR) in Ĝder, which we denote by ZĜder

(ϕ(WR))0.
It is equal to the intersection of the identity components of the respective
centralizers ZĜder

(ϕ(C×))0 and ZĜder
(ϕ(σ))0 of ϕ(C×) and ϕ(σ). The for-

mer group depends only on µ ∈ X∗(T ) ⊗ C (§4). Observe that s · µ = µ,
so that µ also belongs to X∗(sT s−1) ⊗ C. Let us identify X∗(sT s−1) ⊗ C
with the Lie algebra of sT s−1, and consider the root space decomposition of
the Lie algebra of Ĝ with respect to sT s−1. We then compute that the Lie
algebra of ZĜder

(ϕ(C×)) is generated by the elements s · Xα, s · X−α, s · Hα,
where α runs through the positive roots in R(ϕ), Xα is chosen from {X}
(fixed in (5)), and X−α is chosen so that Hα = [Xα,X−α] (Proposition 8.3
(f) [Hum94]). By Lemma 29 this Lie algebra is isomorphic to a direct sum
of copies of sl(2,C). By Lemma 31 the element s · Hα is contained in the
Lie algebra of ZĜder

(ϕ(σ)) for every α ∈ R(ϕ). As a result, the complex
span of {s · Hα : α ∈ R(ϕ), α > 0} is the Lie algebra of a maximal torus of
ZĜder

(ϕ(WR))0. This torus is clearly a subtorus of sT s−1.

Clearly, the centralizer in LG of this torus contains ZĜder
(ϕ(WR))0, which

itself contains ϕ(WR). The projection of ϕ(WR) to WR is surjective. By
Lemma 3.5 [Bor79] and the proof of Proposition 3.6 [Bor79] this centralizer
is a Levi subgroup of LG which contains ϕ(WR) minimally. According to
§§3.3-3.4 [Bor79], there exists m ∈ Ĝ and a Levi subgroup M of G defined
over R such that the previous Levi subgroup is m-conjugate to M̂ oWR. In
this way msT s−1m−1 is a maximal torus of M̂ and by Lemma 3.3 [Lan89], it
is the unique maximal torus of M̂ normalized by mϕ(WR)m−1. By Lemma
3.1 [Lan89] there is a maximal torus SM of M defined over R and elliptic in
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M(R). As in section section 4.1, we identify msT s−1m−1 with ŜM . Set

ϕM(w) = mϕ(w)m−1, w ∈ WR.

It is immediate from the definitions that ϕM ∈ ϕ. The roots α ∈ R(ms ·
B, ŜM) correspond to the coroots α∨ ∈ R(G,SM) (§7.3 [Spr98]), which fix a
unique Borel subgroup BM of G containing SM (§8.2 [Spr98]). This completes
our goal of finding the desired Levi subgroup M of G.

We close this subsection by describing how SM(R) may be converted into
an elliptic torus of G(R) through the application of Cayley transforms. By
Lemma 29, we may enumerate the positive roots inms·R(ϕ) as {α1, . . . αr} ⊂
R(ms · B, ŜM), and thereby enumerate the positive roots of R(G,SM).

Lemma 32 The positive real roots (p. 349 [Kna86]) in R(G,SM) are α∨1 , . . . , α
∨
r

and each of these roots is simple.

Proof. Lemma 31 implies that ϕM(σ) · αj = αj for every 1 ≤ j ≤ r and

αj ∈ X∗(msT s−1m−1) ∼= X∗(ŜM) ∼= X∗(SM), 1 ≤ j ≤ r.

Therefore in the L-group LSM , the element σ, which acts as ϕM(σ) does on
msT s−1m−1, fixes pointwise the subtorus of SM generated by the images of
the cocharacters α1, . . . , αr. In particular, this subtorus is defined over R
and split in SM(R) (§9.4 [Bor79]). It follows from (17) that the correspond-
ing coroots (§7.3 [Spr98]) α∨1 , . . . , α

∨
r ∈ R(G,SM) vanish on the maximally

compact subtorus of SM(R) and are therefore real roots (p. 349 [Kna86]).
It is immediate from the definitions that if β ∈ R(Ĝ, ŜM) is not in

{±α1, . . . ,±αr} then 〈m · µ, β〉 6= 0 and (17) implies

〈m · µ, ϕM(σ) · β〉 = 〈ϕM(σ) · (m · µ), β〉 = 〈m · (ϕ(σ) · µ), β〉 = −〈m · µ, β〉.

Consequently, ϕM(σ)·β 6= β and, reasoning as above, the root β∨ ∈ R(G,SM)
is not real. This proves that the only real roots ofR(Ĝ, ŜM) are {±α∨1 , . . . ,±α∨r }.

Finally, let us illustrate by way of an example why the roots α1, . . . , αr
are simple in the set of positive roots R(ms · B, ŜM). For instance, if α1 is
decomposable as a sum of two simple roots β1, β2 then 〈m · µ, β1〉 = 〈m ·
µ, β2〉 = 0 and so β1, β2 ∈ {α1, . . . , αr}. However, this contradicts Lemma
29. The simplicity of α∨1 , . . . , α

∨
r is equivalent to that of α1, . . . , αr.�

Lemma 32 makes it possible for us to apply Cayley transforms dα∨1 ,
. . . ,dα∨r to SM (§XI.6 [Kna86]). These transforms commute with one an-
other thanks to Lemma 29, and the torus dα∨1 ◦ · · · ◦ dα∨r (SM) is defined
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over R and elliptic (Proposition 11.16 (a) [Kna86] and Lemma 32). All
elliptic tori in G(R) being conjugate in G(R) (Proposition 6.61 [Kna96]),
we lose no generality in assuming that the torus S of section 7.1 is equal
to dα∨1 ◦ · · · ◦ dα∨r (SM) and B = dα∨1 ◦ · · · ◦ dα∨r (BM). We shall make this
assumption. However, in doing so, the reader is cautioned that the identifica-
tion between the two pairs (B̂, Ŝ) and (B, T ) made in section 7.1, abusively
identifies µ with ms · µ = m · µ and λ with ms · λ.

The map dα∨1 ◦ · · · ◦ dα∨r induces an embedding of R(M̂, ŜM) as a root

subsystem of R(Ĝ, Ŝ). To see this, we apply Lemma 31 and (17) to obtain

〈αj, β∨〉 = 〈σ · αj, σ · β∨〉 = −〈αj, β∨〉, 1 ≤ j ≤ r, β ∈ R(M̂, ŜM).(140)

As a result, αj is orthogonal to β and β = dα∨1 ◦ · · · ◦ dα∨r · β for every

β ∈ R(M̂, ŜM). The root on the right belongs to R(Ĝ, Ŝ).
It is noteworthy, that orthogonality to {α1, . . . , αr} in R(Ĝ, ŜM) char-

acterizes R(M̂, ŜM). For β ∈ R(Ĝ, ŜM) being orthogonal to {α1, . . . , αr} is
equivalent to the root space of β belonging to the (Lie algebra of the) central-
izer of (∩rj=1 kerαj)

0 = M̂ (Proposition 8.4 (e) and §9.4 [Hum94]). Similar
consequences may be drawn between R(M,SM) and R(G,S).

7.2.2 L-packets for essential limits of discrete series under twisting

According to section 4.2, (21), and section 7.2.1, there exists a tempered es-
sentially square-integrable representation πΛ in ΠϕM ,M such that Πϕ is equal
to the (equivalence classes of) irreducible subrepresentations of⊕

w∈Ω(M,SM )/ΩR(M,SM )

ind
G(R)
P (R) πw−1Λ.(141)

Here, P is the R-parabolic subgroup of G dual to a parabolic subgroup in
LG, whose Levi subgroup is M̂ o WR (§3.3 [Bor79]) and contains ms · B.
In addition, Λ = Λ(m · µ− ιM , λ) is a character of SM(R) which is positive
relative to BM and ιM is the half-sum of the positive roots in R(M̂, ŜM).

On page 408 [She82], it is shown that the characters of the irreducible
subrepresentations of (141) are Θ(w−1 · µ, λ, w−1 · B̂) where w runs through

〈wα∨1 , . . . , wα∨r 〉Ω(M,SM)ΩR(G,S)/ΩR(G,S).(142)

In this quotient, wα∨j denotes the reflection generated by the root dα∨j ·α
∨
j =

dα∨1 ◦ · · · ◦ dα∨r · α∨j ∈ R(G,S). Also, we are identifying Ω(M,SM) by way of
the embedding of R(M,SM) in R(G,S) given in section 7.2.1.
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As we shall be making a comparison of twisted characters, not every
θ(w−1·µ, λ, w−1·B̂) is necessarily pertinent to the comparison. The characters
that are pertinent are ascertained using the following lemma.

Lemma 33 Suppose w ∈ Ω(G,S) and the essential limit of discrete series
character Θ(w−1 · µ, λ, w−1 · B̂) is non-zero. Then Θ(w−1 · µ, λ, w−1 · B̂) is
equal to ωΘ(θ ·w−1 · µ, θ · λ, θ ·w−1 · B̂) if and only if w ∈ ΩR(G,S) belongs
to (Ω(G,S)/ΩR(G,S))δθ.

Proof. Since characters are invariant under conjugation by G(R), we may
replace ωΘ(θ · w−1 · µ, θ · λ, θ · w−1 · B̂) in the assertion by ωΘ(δθ · w−1 ·
µ, δθ ·λ, δθ ·w−1 · B̂) without changing the content of the assertion. Suppose
first that Θ(w−1 · µ, λ, w−1 · B̂) is equal to ωΘ(δθ · w−1 · µ, δθ · λ, δθ · w−1 ·
B̂). Then there exists w1 ∈ ΩR(G,S) such that w1δθw

−1 · B = w−1 · B
(Theorem 1.1 (c) [KZ84]). As noted in section 7.1, the action of δθ on G
preserves B, so the previous identity is equivalent to w1δθw

−1(δθ)−1 · B =
w−1 ·B. Since δθ preserves Ω(G,S) (Lemma 3) the last identity implies that
ww1δθw

−1(δθ)−1 is trivial in Ω(G,S) and this means that wΩR(G,S) belongs
to (Ω(G,S)/ΩR(G,S))δθ (definition (64)).

Conversely, suppose that w1 = w−1δθw(δθ)−1w belongs to ΩR(G,S).
Then, using equation (135), we have the following list of equivalent iden-
tities between quasicharacters of S(R):

Λ(δθw(δθ)−1w−1w1 · (µ− ι), λ) = Λ(µ− ι, λ),

Λ(w(δθ)−1w−1w1 · (µ− ι), (δθ)−1 · λ) = Λ((δθ)−1 · (µ− ι), (δθ)−1 · λ)

= ω
(δθ)−1

|S(R) Λ(µ− ι, λ),

Λ(w1 · (µ− ι), λ) = ω|S(R) Λ(wδθw−1 · (µ− ι), δθ · λ).

The final identity and Theorem 1.1 (c) [KZ84] imply that

Θ(µ, λ, B̂) = Θ(w−1
1 ·µ, λ, w−1

1 · B̂) = ωΘ(wδθw−1 · (µ− ι), δθ ·λ,wδθw−1 · B̂)

from which it follows that

Θ(w−1 · µ, λ, w−1 · B̂) = ωΘ(δθ · w−1 · (µ− ι), δθ · λ, δθ · w−1 · B̂).�
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Corollary 5 Suppose ν ∈ X∗((Ŝδθ)0)⊗C as in section 7.2, w ∈ Ω(G,S) is
a representative of an element in (Ω(G,S)/ΩR(G,S))δθ, and the character
Θ(w−1 · µ, λ, w−1 · B̂) is non-zero. Then the essentially square-integrable
character Θ(w−1 · (µ + ν), λ, w−1 · B̂) is equal to ωΘ(δθ · w−1 · (µ + ν), δθ ·
λ,w−1 · B̂).

Proof. The corollary follows from the δθ-stability of B̂ and replacing µ with
w−1 · µ in equation (136).�

The characters Θ(w−1 · µ, λ, w−1 · B̂) of the L-packet Πϕ which are perti-
nent to a twisted character comparison are those which satisfy the hypotheses
of Lemma 33, namely those characters for which w belongs to the inter-
section of (Ω(G,S)/ΩR(G,S))δθ and (142). We denote this intersection by
(〈wα∨1 , . . . , wα∨r 〉Ω(M,SM)ΩR(G,S)/ΩR(G,S))δθ.

Lemma 34 The action of δθ on R(Ĝ, Ŝ) preserves {±dα∨1 ·α1, . . . ,±dα∨r ·αr}
and R(M̂, ŜM).

Proof. Recall that the defining property of the roots α1, . . . , αr is that they
are orthogonal to µ (actually, orthogonal to m ·µ if one removes the identifi-
cation of section 7.1). It suffices to show that 〈δθ ·dα∨j ·α

∨
j , µ〉 = 0. Consider

equation (135). The quasicharacter ω|S(R) therein is trivial on Sder(R) and
may therefore be identified with a quasicharacter of ZG (see (29)) and rep-
resented by a pair of elements in X∗(ẐG) ⊗C (§9 [Bor79]). Equation (135)
implies that δθ ·µ = µ modulo X∗(ZĜ)⊗C ∼= X∗(ẐG)⊗C, and consequently

〈δθ · dα∨j · α
∨
j , µ〉 = 〈α∨j ,d−1

α∨j
· (δθ)−1 · µ〉 = 〈α∨j , µ〉 = 0, 1 ≤ j ≤ r.

This proves the first assertion. The second assertion follows from the fact
that R(M̂, ŜM) is the set of roots in R(Ĝ, Ŝ) which are orthogonal to {dα∨1 ·
α1, . . . ,dα∨r · αr} (see the end of section 7.2.1).�

Lemma 35 Suppose w1 ∈ 〈wα∨1 , . . . , wα∨r 〉 and w2 ∈ Ω(M,SM). Then the
coset w1w2ΩR(G,S) belongs to (Ω(G,S)/ΩR(G,S))δθ if and only if w1ΩR(G,S)
and w2ΩR(G,S) belong to (Ω(G,S)/ΩR(G,S))δθ.

Proof. To say that w1w2ΩR(G,S) belongs to (Ω(G,S)/ΩR(G,S))δθ is the
saying that

(w1w2)−1δθ(w1w2)(δθ)−1 ∈ ΩR(G,S).
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Recall from the end of section 7.2.1 that each β ∈ Ω(M,SM) is orthogonal
to each α∨j , 1 ≤ j ≤ r. Thus, the elements w1 and w2 commute (Lemma 9.2
[Hum94]). We may therefore rewrite the above membership statement as

w−1
1 (w−1

2 δθw2(δθ)−1)δθw1(δθ)−1 ∈ ΩR(G,S).

From Lemma 34 it is evident that w−1
2 δθw2(δθ)−1 ∈ Ω(M,SM) and the or-

thogonality relations discussed in section 7.2.1 imply that this membership
is equivalent to

(w−1
2 δθw2(δθ)−1) (w−1

1 δθw1(δθ)−1) ∈ ΩR(G,S).

Lemma 34 also makes it clear that w−1
1 δθw1(δθ)−1 ∈ 〈wα∨1 , . . . wα∨r 〉. Since σ

negates all roots inR(G,S) (cf. (17)), it preserves Ω(M,SM) and 〈wα∨1 , . . . wα∨r 〉.
The previous statement is therefore equivalent to

σ(w−1
2 δθw2(δθ)−1)(w−1

2 δθw2(δθ)−1)−1 = (w−1
1 δθw1(δθ)−1)σ(w−1

1 δθw1(δθ)−1)−1.

The left-hand side lies in the subgroup Ω(M,SM) and the right-hand side lies
in the subgroup 〈wα∨1 , . . . wα∨r 〉, and these subgroups have trivial intersection.
In conclusion, this identity is equivalent to

w−1
1 δθw1(δθ)−1, w−1

2 δθw2(δθ)−1 ∈ ΩR(G,S).�

Proposition 5 The irreducible characters of Πϕ which satisfy the conditions
of Lemma 33 are of the form

Θ(w−1
1 w−1

2 · µ, λ, w−1
1 w−1

2 · B̂)

where w1 runs through (〈wα∨1 , . . . wα∨r 〉ΩR(G,S)/ΩR(G,S))δθ and w2 runs
through (Ω(M,SM)/ΩR(M,SM))δθ. In particular, the representations in Πϕ

whose characters satisfy the conditions of Lemma 33 are subrepresentations
of

ind
G(R)
P (R) πw−1Λ, w ∈ (Ω(M,SM)/ΩR(M,SM))δθ.

Proof. The first assertion is an obvious result of Lemma 35. The second
assertion follows from the manner in which the Hecht-Schmid identities are
used in giving the original decomposition of Πϕ (p. 408 [She82]).�
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7.2.3 Twisted coherent continuation and the spectral comparison

Coherent continuation is a means of passing from a character of a Harish-
Chandra module with infinitesimal character to a character of a new Harish-
Chandra module whose infinitesimal character is a modification of the previ-
ous one by the weight of a finite-dimensional representation (§5 [SJ80]). On
the level of Harish-Chandra modules themselves, this passage is sometimes
called Zuckerman tensoring (§X.9 [Kna86]). These equivalent methods form
the foundation of the theory of limits of discrete series discussed in section
7.1.

J.-Y. Ducloux (§12 [Duc02]) has extended this theory to a class of Lie
groups which includes groups of the form G(R)o〈θ〉, when G(R) is connected
as a Lie group. We shall sketch how his extension applies to our twisted
characters.

We may apply the machinery of section 5.1 to the essentially square in-
tegrable representation πν of section 7.2 to obtain an irreducible square-
integrable representation representation $ν of Gder(R)0. We are free to
choose $ν so that the limit of discrete series representation $1 of section 7.2
is obtained from $ν through Zuckerman tensoring with a finite-dimensional
irreducible representation whose lowest weight is −Λ(ν)|Sder(R) (in additive
notation). It follows from the δθ-stability of $1 and ν that $ν is also δθ-
stable. The representation $ν extends, by the methods of section 5.4, to
a unique irreducible representation $̄ν of Gder(R)0 o 〈δθ〉, upon making a
choice of intertwining operator Uν satisfying

Uν ◦ ω−1(x)πν(x) = πθν(x) ◦ Uν , x ∈ G(R)

(cf. (24)).
The representation space of $1 is obtained from that of $ν through Zuck-

erman tensoring. According to Proposition 12.3 (c) [Duc02], this represen-
tation space is a Gder(R)-module which is stable under the action of δθ and
thus, may be regarded as the representation space of a representation $̄1

of Gder(R)0 o 〈δθ〉. By definition, $1 is the restriction of $̄1 to Gder(R)0.
We obtain a intertwining operator U between π and ω ⊗ πθ by defining
U = π(δ)−1$̄1(δθ) on the space of $1 (cf. (31)), and the twisted character
identity of Lemma 5 holds with U1 = $̄1(δθ).

More can be said about these twisted characters. Proposition 12.3 (b)
[Duc02] tells us that the twisted character Θ$ν ,$̄ν(δθ) has an expansion of the
form (129) on θ-regular components of sδθder. Proposition 12.3 (c) [Duc02] tells
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us that the twisted character Θ$1,U1 is obtained from Θ$ν ,$̄ν(δθ) by coherent
continuation (p. 260 [SJ80]). In other words, the twisted character Θ$1,U1

satisfies the same form of expansion (129) as Θ$ν ,$̄ν(δθ), only shifted by the
weight of the finite-dimensional representation attached to the lowest weight
−Λ(ν)|Sder(R).

3

The process and relationships we have just described are valid if the initial
data µ, λ, B̂, ν attached to π are replaced by w−1 · µ, λ, w−1 · B̂, w−1 · ν, with
w ∈ (Ω(G,S)/ΩR(G,S))δθ as in Lemma 33 and its corollary. However, in the
case that Θ(w−1 · µ, λ, w−1 · B̂) vanishes the statements are vacuous. To be
more precise, the Gder(R)0-module obtained by Zuckerman tensoring from
the square-integrable representation $w−1·ν might vanish, and in this case
one defines the character Θ(w−1 ·µ, λ, w−1 · B̂) and its twisted analogue to be
zero. We may write these matters more succinctly by denoting the twisted
character by ΘU(w−1 · µ, λ, w−1 · B̂), and coherent continuation of twisted
characters from µ+ ν to µ by Ψµ+ν

µ . With this notation in hand we have

Ψ
w−1·(µ+ν)

w−1·µ (Θπw−1·ν ,Uν
) = ΘU(w−1 · µ, λ, w−1 · B̂),(143)

for all w ∈ (Ω(G,S)/ΩR(G,S))δθ. On pages 408-409 [She82], Shelstad shows
that Θ(w−1·µ, λ, w−1·B̂) vanishes for w /∈ 〈wα∨1 , . . . wα∨r 〉Ω(M,SM)ΩR(G,S)/ΩR(G,S).
As we have noted, this means that the right-hand side of (143) vanishes for
w outside of 〈wα∨1 , . . . wα∨r 〉Ω(M,SM)ΩR(G,S)/ΩR(G,S).

At last, we are ready to return the twisted character comparison of Theo-
rem 1. Replace ϕH1 by ϕνH1

, and π by πν on the right-hand side of the identity

of Theorem 1. If one applies Ψ
w−1·(µ+ν)

w−1·µ to each of the twisted characters on
the right one finds that∑

w∈(Ω(G,S)/ΩR(G,S))δθ

∆(ϕνH1
, πw−1·ν) Ψ

w−1·(µ+ν)

w−1·µ Θπw−1·ν,Uν
(144)

is equal to the distribution∑
w1,w2

∆(ϕνH1
, π(w1w2)−1·ν) ΘU((w1w2)−1 · µ, λ, (w1w2)−1 · B̂)(145)

where ϕνH1
: WR → LH1 is an admissible homomorphism which maps to ϕν

(Lemma 11), w1 runs through (〈wα∨1 , . . . wα∨r 〉ΩR(G,S)/ΩR(G,S))δθ and w2

runs through (Ω(M,SM)/ΩR(M,SM))δθ as in Proposition 5.

3This amounts to a twisted version of Lemma 5.5 [SJ80]. Analogous expansions hold
on the other Cartan subspaces (Definition 7.1 [Ren97]) of Gder(R)0δθ.
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To complete the twisted character comparison for the essential limits
of discrete series, we investigate the behaviour of coherent continuation on
left-hand side of the identity in Theorem 1. For this we need the requisite
notation. Let νH1 ∈ X∗(T̂H1) ⊗ C be the image of ν ∈ X∗((Ŝ

δθ)0 ⊗ C) by
way of the maps (14), (10) and (7). Assuming that ϕH1 ∈ ϕH1 is determined
by the pair µH1 , λH1 ∈ X∗(T̂H1)⊗C, one may verify that ϕνH1

is determined
by the pair µH1 + νH1 , λH1 . Let πνH1

∈ ΠϕνH1
denote the unique essentially

square-integrable representation whose character on TH1(R) is positive with
respect to the system determined by the regular element µH1 + νH1 (see sec-

tion 4.1). We denote coherent continuation Ψ
µH1

+νH1
µH1

as before and observe

that Ψ
µH1

+νH1
µH1

ΘπνH1
is the character of an essentially square integrable rep-

resentation in ΠϕH1
(Theorem 5.2 [SJ80]). We deduce from (21) that∑

w∈Ω(H1,TH1
)/ΩR(H1,TH1

)

Ψ
w−1·(µH1

+νH1
)

w−1·µH1
Θπw−1·νH1

=
∑

πH1
∈ΠϕH1

ΘπH1
.(146)

Theorem 2 The distribution

f 7→
∑

πH1
∈ΠϕH1

ΘπH1
(fH1), f ∈ C∞c (G(R)θ)(147)

is equal to (145).

Proof. Suppose first that ω is trivial. Then, as may be seen from the
proof of Lemma 26 and Proposition 4, the distribution (147) is a tempered,
G(R)-invariant, eigendistribution. Hence, according to the twisted version of
Harish-Chandra’s uniqueness theorem (Theorem 15.1 [Ren97]), distribution
(147) is completely determined by its expansion on Sδθ(R)0δθ. Looking back
to (100), (101) and taking the twisted Weyl integration formula (Proposition
1) into consideration, we see that on S(R)0δθ the character expansion of
(147) is of the form (129), where the µj are Weyl conjugates of the linear form
determined by µ, the “lift” of µH1 via ξ. According to the procedure of coher-
ent continuation (Theorem 12.3 [Duc02]), one may shift each of these linear
forms, by the consonant Weyl conjugate of the weight the finite-dimensional
representation determined by ν. Alternatively one may first shift the linear
forms attached to µH1 by the weights of the finite-dimensional representa-
tions determined by νH1 and then “lift” via ξ. These two procedures have the
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same effect and this is the same as saying that coherent continuation com-
mutes with the spectral transfer of the distribution

∑
πνH1

ΘπH1
. Applying

this commutativity in conjunction with Theorem 1 and (146), we obtain∑
πH1
∈ΠϕH1

ΘπH1
(fH1

)

=
∑

w∈Ω(H1,TH1
)/ΩR(H1,TH1

)

Ψ
w−1·(µH1

+νH1
)

w−1·µH1
Θπw−1·νH1

(fH1)

=
∑

w∈(Ω(G,S)/ΩR(G,S))δθ

∆(ϕνH1
, πw−1·ν) Ψ

w−1·(µ+ν)

w−1·µ Θπw−1·ν,Uν
(f)

=
∑
w1,w2

∆(ϕνH1
, π(w1w2)−1·ν) ΘU((w1w2)−1 · ν, λ, (w1w2)−1 · B̂)(f).

This prove the theorem in the case that ω is trivial. To complete the theorem,
we allow ω to to non-trivial and apply the techniques used in the proof of
Theorem 1, setting Θ to be the difference of (145) and (147).�

We conclude by inviting the reader to review section 6.2 and thereby
realize that the spectral transfer factors ∆(ϕνH1

, π(w1w2)−1·ν) in (145) do not
depend on the choice of ν. This justifies the definition

∆(ϕH1 , π(w−1·µ, λ, w−1·B̂)) =

{
∆(ϕνH1

, πw−1·ν), w = w1w2 as in Prop. 5
0, otherwise

for essential limit of discrete series representations π(w−1 ·µ, λ, w−1 · B̂) with
character Θ(w−1 · µ, λ, w−1 · B̂). With this notation Theorem 2 reads as∑

πH1
∈ΠϕH1

ΘπH1
(fH1) =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ(f)(148)

(see (141), (142)).

7.3 The remaining cases

We now remove the hypothesis that G = G∗ so that we must revisit the
definition of ϕ from ϕ∗ (section 6). The admissible homomorphism ϕ is
defined (and equal to ϕ∗) only if the Levi subgroup M̂oWR ⊂ LG defined in
section 7.2.1 is relevant (§3.3 [Bor79]), i.e. only if there is a Levi subgroup M
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in G defined over R such that M̂ oWR contains ϕM(WR) minimally. If this
is true then we may proceed as in section 7.2, as long as one bears in mind
that the objects related to M , such as SM , BM , S, P , are objects related
to the inner form G of G∗ and not necessarily G∗ itself. In this way, one
recovers (148) for G.

The image of the admissible homomorphism ϕν of section 7.1, being at-
tached to an essentially square-integrable L-packet, is not contained in a
proper subgroup of LG, and LG is relevant. We therefore have a maximal
torus S of G defined over R and elliptic and it makes sense to consider
the distributions Θ(w−1 · µ, λ, w−1 · B̂) for any w ∈ Ω(G∗, S)/ΩR(G∗, S). If
M̂oWR ⊂ LG is not relevant then Shelstad has proven that Θ(w−1 ·µ, λ, w−1 ·
B̂) = 0 for all w ∈ Ω(G,S)/ΩR(G,S) ((4.3.3) [She82]). This implies that
the Gder(R)0-module obtained by Zuckerman tensoring from $ν in section
7.2.3 is also zero. As a result the twisted character ΘU(w−1 · µ, λ, w−1 · B̂)
also vanishes for every w ∈ (Ω(G,S)/ΩR(G,S))δθ. In conclusion, if M̂ oWR

is not relevant then ϕ is undefined and the twisted characters obtained by
coherent continuation vanish.

Finally, we consider the case that there is no θ-elliptic element of G(R)
which has a norm in H1(R). In this case the arguments of section 6.5 may
be applied to (60) with π replaced by πν as in section 7.2. Both sides of
(60) vanish in this case and coherent continuation, as applied above, does
not change matters. In other words, the character identity (60) holds with
all spectral transfer factors set to equal zero.

A Parabolic descent for geometric transfer

factors

In this section we assume that we are given endoscopic data (H,H, s, ξ) for
(G, θ, a) and a z-extension H1 of H (see section 3.2). We wish to produce
compatible endoscopic data for some Levi subgroups of G and to normalize
geometric transfer factors for these Levi subgroups. All in all, this is an
application of §11 [Sheb].

Suppose that k ∈ G(R) and M is a kθ-stable Levi subgroup of G which
is defined over R and that M(R) is cuspidal. Furthermore, suppose that
δ ∈ M(R) is a kθ-semisimple, strongly kθ-regular element. We know that
Gδkθ contains G-regular elements. We assume that some of these G-regular
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elements lie in M . Then the centralizer of M δkθ is a maximal torus SM of
M is contained in the centralizer of Gδkθ in G, which is a maximal torus in
G. Since the maximal tori of M are maximal in G, the torus SM is equal to
the centralizer of Gδkθ and SδkθM = Gδkθ. We assume that SM(R) is elliptic in
M(R). Observe that δ is (strongly) kθ-regular if and only if δk is (strongly)
θ-regular (section 3.1).

Our next assumption is that there exists γ1 ∈ H1(R) which is a norm
of δk ∈ G(R). In §11 [Sheb] Shelstad introduces the notion of a z-norm for
specific elements z ∈ ZG. In the case at hand, Shelstad specifies an element
zk ∈ ZG such that γ1 is a zk-norm of δ with respect to the algebraic R-
automorphism Int(k)θ of G. Attached to this zk-norm is a geometric transfer
factor ∆zk(γ1, δ) which one may assume to be normalized so that it is equal
to ∆(γ1, δk).

The centralizer of γ1 in H1 is a maximal torus TH1 which is defined over
R. All of the conveniences of section 3.3 are available to us, with δk in place
of δ, so that we have homomorphisms

TH1 → TH ∼= T ′θ∗

(cf. 12) and
Gδkθ = SδkθM

∼= (T ′)θ
∗ → T ′θ∗

(cf. (14)), all being defined over R. Recall that the isomorphism between
Sδkθ and (T ′)θ

∗
is of the form Int(gT ′)ψ. It extends to an R-isomorphism of

the respective centralizers

Int(gT ′)ψ : SM ∼= T ′,(149)

as the commutator of σ and Int(gT ′)ψ lies in Int(T ′) ((3.3.6 [KS99]). We may
use this R-isomorphism to define a Levi subgroup M∗ in G∗ in the following
fashion. The maximal compact and split subtori of SM(R) are S−σM (R) and
SσM(R) respectively (§9.4 [Bor79]). As SM is elliptic, we know that

SM(R)/ZM(R) = S−σM (R)SσM(R)/ZM(R)

is compact. Therefore the subtorus SσM(R) is contained in ZM(R), SσM is a
maximal R-split torus in the centre of M , and M = ZG(SσM) (§3.6 [Spr98]).
The R-isomorphism Int(gT ′)ψ sends S−σM to (T ′)−σ, SσM to (T ′)σ, and ZG(SσM)
to ZG∗((T

′)σ). This being said, we set M∗ = ZG∗((T
′)σ) and see that M∗

is a Levi subgroup of G∗ (§3.6) and T ′(R) is an elliptic torus therein. We
define ψM to be the restriction of Int(gT ′)ψ to M . Clearly, ψM : M →M∗ is
an inner twisting.
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Lemma 36 The Levi subgroup M∗ is stable under θ∗.

Proof. As we are assuming that δ ∈ M(R) and M is preserved by the R-
automorphism kθ, the automorphism δkθ preserves M , is defined over R and
so preserves SσM . It is left to the reader to compute that

Int(δ∗)θ∗Int(gT ′)ψ = Int(gT ′)ψInt(δ)θ.

Applying this equation to SσM , and recalling that δ∗ ∈ T ′ one sees that
θ∗((T ′)σ) = (T ′)σ. The θ∗-stability of M∗ now follows from the definition of
M∗ as the centralizer ZG∗((T

′)σ).�
We turn to defining endoscopic data on the level of M . If one fixes

an R-torus of G which is maximally R-split, one has the construct of a
standard Levi (R-)subgroup (§§3.5-3.6 [Spr79]). Standard Levi subgroups
are parameterized by subsets of a fixed base, and every Levi subgroup of
G∗ is G∗(R)-conjugate to a unique standard Levi subgroup (Theorem 15.4.6
[Spr98]). Hence, we may associate to M∗ a unique subset of a base. The
dual of this base corresponds to a Levi subgroup of LG (§3.3 [Bor79]) and,
after possibly conjugating this Levi subgroup by an element of Ĝ, one may
assume that it is standard with respect to the torus T and base defined by
B, i.e. of the form MoWR, where M is a standard Levi subgroup in Ĝ .

As in section 3.3, we assume that the endoscopic datum s belongs to T .
The θ∗-stability of M∗ is equivalent to the θ̂-stability of M (§1.2 [KS99])
and the kθ-stability of M . We let θM equal the restriction of Int(k)θ to
M . We set about defining endoscopic data (HM ,HM , sM , ξM) for the triple
(M, θM , a) by putting sM = s. Since M is standard, it is determined by a

set simple roots of R(B, T ). The subgroup ξ−1((Msθ̂)0) ⊂ Ĥ is determined

in the same way by the restriction of the corresponding roots to (T θ̂)0 ∼= TH
(see §1.3 [KS99]). In particular, it is a standard Levi subgroup M̂H of Ĥ with
respect to the pair BH ⊃ TH of section 3.3. We let HM equal the subgroup
M̂H oc WR of H (see 2. in section 3.2)and set ξM = ξ|HM . The action of

WR on M̂H in H coincides with the action in LH. Therefore, in accordance
with the notation, M̂H truly corresponds to the dual of a Levi subgroup
MH in H which is defined over R (§3.3 [Bor79]). One may now verify that
this construction produces the desired endoscopic data. Additionally, the
subgroup MH1 = p−1

H (MH) ⊂ H1 is a z-extension of H (cf. (6)).
Our final assumption is that the norm γ1 of δk lies in MH(R). In §11

[Sheb], Shelstad produces an element z† ∈ ZM such that γ1 is a z†-norm of
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δ ∈M(R) with respect to the endoscopic data (MH ,HM , s, ξM) of (M, θM , a).
Using this z†-norm, one may define twisted geometric transfer factors ∆M as
in §4 [KS99]. By Lemma 11.4 [Sheb] we have

∆M(γ1, δ) =
∆M,IV (γ1, δ)

∆IV (γ1, δk)
∆(γ1, δk).(150)
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