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1 Introduction

Let G be a connected reductive algebraic group which is defined over the real
numbers R. The notion of spectral transfer combines two seemingly dissimilar
areas. The word “spectral” has its roots in harmonic analysis, specifically in
the spectrum of the regular representation. By contrast, the word “transfer”
pertains to the theory of endoscopy, which is motivated by number theory. The
theory of twisted endoscopy ascribes to G, and an automorphism θ thereof, a
collection of so-called endoscopic groups. The goal of the present article is to
transfer information about representations of the real group G(R) to represen-
tations of its endoscopic groups.

Let us dwell on the representations of G(R) for a while. We are only in-
terested in representations up to equivalence, and thus restrict our attention
to their distribution characters. In harmonic analysis, the trace or Plancherel
formulae affirm that these characters are dual to conjugacy classes. This is to
say that there is a duality between the values of characters on the one hand,
and orbital integrals of functions on G(R) on the other. We may picture this
duality as

(1.1)
�� ��conjugacy classes, orbital integrals !

�� ��representations, characters

or more coarsely under the traditional headings�� ��geometric !
�� ��spectral .

Pursuing number-theoretic goals, Langlands connected representations of
G(R) to entirely different objects called L-parameters ([Lan89], [Bor79]). This
is known as the Local Langlands Correspondence. It is a bijection between L-
parameters ϕ and finite sets Πϕ of irreducible representations of G(R) (up to
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equivalence). The sets Πϕ are called L-packets. Combining this bijection with
the earlier duality (1.1), we may conjure up a picture

(1.2)
�� ��stable orbital integrals !

�� ��L-packets ↔
�� ��L-parameters

in which the packaging of the representations in the middle translates into
a packaging of conjugacy classes and orbital integrals called stable conjugacy
classes and stable orbital integrals.

From this height it is difficult to see where endoscopic groups enter the
picture. However, anyone familiar with the details of the Local Langlands Cor-
respondence is able to appreciate the inherent path from an L-parameter of G
to another real reductive algebraic group and another L-parameter thereof (p.
24 [KS99], §1 [Mez12]). The set of such groups, the endoscopic groups of G, has
been axiomatized (§1.2 [LS87], §2 [KS99]).

Let us fix an endoscopic group1 H. There is a correspondence between
conjugacy classes of G and conjugacy classes of H (§1.3 [LS87], §3 [KS99]).
There is also a correspondence between L-parameters, and hence L-packets, of
G and H (§2 [She10]). Looking back to (1.2), these correspondences evoke the
following picture

(1.3)
�� ��stable orbital integrals for G oo ///o/o/o

OO

��

�� ��L-packets for G
OO

���� ��stable orbital integrals for H oo ///o/o/o
�� ��L-packets for H

The vertical arrows require some interpretation. One could interpret the vertical
arrow on the right to simply be the above correspondence of L-packets. How-
ever, this would not address the duality implicit in the horizontal arrows. To
incorporate the duality we must match functions on G(R) and H(R) through
orbital integrals or characters. This matching was achieved by Shelstad in the
case that θ is trivial, i.e. in ordinary endoscopy ([She82], [She08a], [She10]).

In this case, one may interpret the vertical arrow on the left in (1.3) as
geometric transfer, which states that for certain functions f on G(R) there
exist functions fH on H(R) such that

(1.4)
∑
γ

Oγ(fH) =
∑
δ

∆(γ, δ)Oδ(f).

Here, γ and δ are corresponding conjugacy classes and the sums run over repre-
sentatives in a stable conjugacy class. The summands on the left are (suitably
normalized) orbital integrals. The sum on the left is a stable orbital integral by
definition. The sum on the right is not quite a stable orbital integral as it is
modified by constants ∆(γ, δ) called geometric transfer factors. These transfer

1We shall ignore the technicalities of z-extensions in the introduction.
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factors force us not to take too literal an attitude towards the picture (1.3). They
are also responsible for much of the hard work in proving geometric transfer.

In the ordinary case, the vertical arrow on the right in (1.3) is called spectral
transfer and takes the shape

(1.5)
∑

πH∈ΠϕH

ΘπH (fH) =
∑
π∈Πϕ

∆(ϕH , π) Θπ(f).

Here, ϕH is a tempered L-parameter ofH which corresponds to the L-parameter
ϕ of G, and f and fH are as in the statement of geometric transfer (1.4). The
sum on the left is a sum of character values from the L-packet ΠϕH of tempered
representations. The matching sum on the right has been modified by constants
∆(ϕH , π) called spectral transfer factors.

So far we have left the matter of twisting in the background. How does a
non-trivial R-automorphism θ of G enter into picture (1.3)? A convenient way
of answering this question is to consider the connected component Gθ of the
group Go 〈θ〉. One may then replace G-conjugacy classes of elements in G with
G-conjugacy classes of elements in Gθ. This replacement defines the twisted
θ-conjugacy classes and twisted orbital integrals on the geometric side of (1.1).
These twisted orbital integrals enter (1.4) in the general case.

On the spectral side of (1.1), one only considers representations of G(R)
which are equivalent to their composition under θ. These are the θ-stable rep-
resentations. The character of a θ-stable representation π may be twisted by
introducing an intertwining operator Tπ exhibiting the above equivalence. The
resulting twisted characters enter equation (1.5) in the general case.

In spirit, and sometimes in practice, the alterations introduced by twisting
amount to the shifting of the harmonic analysis ofG(R) to the harmonic analysis
of the non-identity component G(R)θ.

A precise conjecture for twisted geometric transfer, that is the twisted ana-
logue of (1.4), was given in §5.5 [KS99]. Shelstad has recently proved twisted
geometric transfer in complete generality ([She12]). Specific examples of spec-
tral transfer appearing in the theory of base change were proven in [Clo82],
[Bou89] and [Clo11]. The main theorem of this paper is Theorem 8.5, which is
the twisted analogue of (1.5). It is the twisted spectral transfer theorem dual
to the twisted geometric transfer theorem of [She12], save for three notable re-
strictions. We shall call attention to the three restrictions in the discussion of
the proof. An alternative proof of spectral transfer, without these restrictions,
is given in the recent preprint of Waldspurger ([Wal13]). The techniques used
there rely on Paley-Wiener theorems which bypass the elucidation of spectral
transfer factors.

Before discussing the proof, let us mention some anticipated consequences of
twisted spectral transfer. As in the case of ordinary endoscopy, one expects to
be able to invert the spectral transfer formulae for a fixed L-packet Πϕ relative
to a set of endoscopic groups (§5.4 [She82], [She08b]). In so doing, one expects
to pair Πϕ with a group-theoretic structure fine enough to isolate individual
representations (§6 [Art08]). Such a pairing is of fundamental importance to
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twisted trace formula comparisons. This is evidenced by Arthur’s recent work
in classifying automorphic representations of symplectic and orthogonal groups
(see the remarks following Theorem 2.2.1 [Art]). Happily, neither of the three
restrictions alluded to above are relevant to the twisted groups considered in
Arthur’s work (§1.2 [Art]).

There is however, an important technical matter which remains to be worked
out before the results here become fully compatible with the contemporary
theory. That is the matter of proving that the spectral transfer factors are
canonical. Indeed, there are certain choices made in the definition of these
transfer factors (section 4.5, §6.3 [Mez12]) and one wishes to show that the
transfer factors are independent of these choices. This type of canonicity holds
for geometric transfer factors (§4.6 [KS99]), and the analogous canonicity for
spectral transfer factors is heralded by the preprint [She] (see also §12 [She10]).

Let us now discuss the proof of twisted spectral transfer. Section 3 gives an
outline of twisted endoscopic groups, correspondences of conjugacy classes, and
the twisted geometric transfer statement. All of this may be found in [KS99].
We assume that θ acts semisimply on the centre of G.

The first of the three restrictions in our twisted spectral transfer theorem is
the technical statement (3.9), concerning the Galois-equivariance of the corre-
spondence of conjugacy classes. It is satisfied for quasisplit groups when θ fixes
an R-splitting. All twisted groups in §1.2 [Art] have these properties.

In section 3 we have chosen to include the additional twisting datum of
a quasicharacter ω of G(R). This quasicharacter falls away after section 4.
However, it is a part of the bigger picture included in twisted geometric transfer
([She12])), and should be compatible with the later sections of this work after
some results in ω-equivariant harmonic analysis have been established (see §6.4
[Mez12] and §1.6 [Wal13]). This being so, the second restriction on our twisted
spectral transfer theorem is that the quasicharacter ω is trivial. This is the case
for the twisted groups in §1.2 [Art].

Section 4 provides a proof of twisted spectral transfer for fundamental series
representations (Theorem 4.22). To understand why the class of fundamental
series representations has been chosen, we should contrast the structure of proof
of ordinary spectral transfer with that of twisted spectral transfer. In ordinary
spectral transfer it suffices to prove spectral transfer for (limits of) discrete
series and then use parabolic induction to finesse a proof for the tempered rep-
resentations (§14 [She10]). Following this template, a proof of twisted spectral
transfer for (limits of) discrete series was given in [Mez12]. Alas, there is an
obstruction in the twisted case in using parabolic induction to pass to spectral
transfer for tempered representations. The obstruction is that the automor-
phism θ might not preserve any parabolic subgroups available in the induction
argument. This already appears in the example of induction from a non-Borel
subgroup of SL(3,R) under twisting by an outer automorphism and is. Thank-
fully, this obstruction may be circumvented by inducing from the broader class
of (limits of) fundamental series representations.

The proof of twisted spectral transfer for fundamental series representations
follows the proof for the discrete series representations (§6 [Mez12]) and rests
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on the work of Duflo ([Duf82]) and Bouaziz ([Bou87]). A very particular case of
this approach appears in §2.5 [CC09]. For an overview of our methods we refer
the reader to the introduction of [Mez12]. The new results needed in section
4 are concerned with the passage from elliptic tori, which are basic to discrete
series representations, to fundamental tori, which are basic to fundamental se-
ries representations. In particular, we establish structural properties (Corollary
4.3), parameterize stable data (section 4.2), and define spectral transfer factors
(section 4.5).

In section 5 we extend twisted spectral transfer to a class of representations
which we call limit of fundamental series representations (Theorem 5.4). These
are the representations obtained from fundamental series representations using
Zuckerman tensoring. This parallels the proof of twisted spectral transfer for
limits of discrete series representations in §7 [Mez12]. The proof in section 5
diverges from the proof in [Mez12] this time only slightly due to the fact that
fundamental tori appear in place of elliptic tori.

The reader will notice in both Theorem 4.22 and Theorem 5.4 that θ is
assumed to have finite order. This finiteness condition is too severe for the
passage to tempered representations. Section 6 is devoted to mitigating this
restriction to θ merely having finite order on the centre of G. This is the third
restriction on our spectral transfer theorem. All automorphisms of the twisted
groups of §1.2 [Art] have finite order on the centre.

The topic of the final two sections is the passage from limits of fundamental
series representations to tempered representations via parabolic induction. A
list of hypotheses sufficient for this passage to succeed is assembled in section
7. In section 8 these hypotheses are shown to hold. This culminates in the
main theorem, Theorem 8.5. As a final thought, we wish to point out that
the twisted spectral transfer theorems are only of interest when endoscopic
correspondences of conjugacy classes are sufficiently abundant (section 7.1),
and the L-parameters of H pass to L-parameters of G (§7.3 [Mez12]). This is
why we prove twisted spectral transfer under these hypotheses.

2 Notation

In this section only G is a real Lie group which acts upon a non-empty set J .
We set

NG(J) = {g ∈ G : g · J ⊂ J},

ZG(J) = {g ∈ G : g · j = j for all j ∈ J}.

In the sequel, the set NG(J1) always forms a group. We set Ω(G, J) equal to
the resulting factor group NG(J)/ZG(J).

For an automorphism θ of G we set 〈θ〉 equal to the group of automorphism
generated by θ. There is a corresponding semidirect product G o 〈θ〉. When
elements of G are written side-by-side with elements in 〈θ〉 we consider them to
belong to this semidirect product.
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The inner automorphism of an element δ ∈ G is defined by

Int(δ)(x) = δxδ−1, x ∈ G.

It shall be convenient to denote the fixed-point set of Int(δ) ◦ θ in G by Gδθ.
We shall abbreviate the notation Int(δ) ◦ θ to Int(δ)θ or δθ habitually.

Unless otherwise mentioned, we denote the real Lie algebra of a Lie group
using Gothic script. For example the real Lie group of G is denoted by g.
Suppose that J is Cartan subgroup of a reductive group G. Then the pair of
complex Lie algebras (g⊗C, j⊗C) determines a root system which we denote
by R(g⊗C, j⊗C). We denote the Lie algebra dual to g by g∗. The differential
of the inner automorphism Int(δ) is the adjoint automorphism Ad(δ) on g. The
adjoint automorphism induces an automorphism on g∗ in the usual way. Often,
it shall be convenient to write δ ·X in place of Ad(δ)(X) for X ∈ g. Similarly,
we write θ · X to mean the differential of θ acting on X ∈ g. We extend this
slightly abusive notation to the dual spaces, writing δ · λ or even simply δλ in
place of the coadjoint action of δ on λ ∈ g∗.

Finally, if we take H to be an algebraic group defined over R, we denote its
identity component by H0. The group of real points of H is denoted by H(R).
This is a real Lie group and we denote the identity component of H(R) in the
real manifold topology by H(R)0.

3 The foundations of real twisted endoscopy

This section is a digest of some early material in [KS99], in the special case that
the field of definition is equal to R. It is essentially a reproduction of chapter 3
[Mez12] and is included for convenience and completeness.

3.1 Groups and automorphisms

Let G be a connected reductive algebraic group defined over R. We take θ to be
an algebraic automorphism of G defined over R and assume additionally that it
acts semisimply on the centre ZG of G. Set G(R) to be the group of real points
of G. Let Γ be the Galois group of C/R and σ be its non-trivial element.

Let us fix a triple

(3.1) (BT , T, {X})

in which BT is a Borel subgroup of G, T ⊂ B is a maximal torus of G, and {X}
is a collection of root vectors corresponding to the simple roots determined by
BT and T . Such triples are called splittings of G. If (BT , T, {X}) is preserved
by Γ then it is called an R-splitting. We may assume that T is defined over R
and that it contains a maximally R-split torus of G (see page 257 [Spr98]).

There is a unique quasisplit group G∗ of which G is an inner form (Lemma
16.4.8 [Spr98]). This is to say that there is an isomorphism ψ : G → G∗ and
ψσψ−1σ−1 = Int(u′) for some u′ ∈ G∗. We shall choose uσ in the simply
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connected covering group G∗sc of the derived group G∗der of G∗ so that its im-
age under the covering map is u′. We shall then abuse notation slightly by
identifying uσ with u′ in equations such as

ψσψ−1σ−1 = Int(uσ).

As G∗ is quasisplit, there is a Borel subgroup B∗ defined over R. Applying
Theorem 7.5 [Ste97] to B∗ and σ, we obtain an R-splitting (B∗, T ∗, {X∗}).
Following the convention made for uσ ∈ G∗sc, we may choose gθ ∈ G∗sc so that
the automorphism

(3.2) θ∗ = Int(gθ)ψθψ
−1

preserves (B∗, T ∗, {X∗}) (Theorems 6.2.7 and 6.4.1 [Spr98], §16.5 [Hum94]).
Since

σ(θ∗) = σθ∗σ−1 = Int(σ(gθuσ)g−1
θ θ∗(uσ))θ∗

preserves (B∗, T ∗, {X∗}), and the only inner automorphisms which do so are
trivial, it follows in turn that Int(σ(gθuσ)g−1

θ θ∗(uσ)) is trivial and σ(θ∗) = θ∗.
This means that the automorphism θ∗ is defined over R.

We wish to describe the action of θ induced on the L-group of G. The
splitting (B, T, {X}) determines a based root datum (Proposition 7.4.6 [Spr98])
and an action of Γ on the Dynkin diagram of G (§1.3 [Bor79]). To the dual based
root datum there is attached a dual group Ĝ defined over C, a Borel subgroup
B ⊂ Ĝ and a maximal torus T ⊂ B (2.12 [Spr79]). Let us fix a splitting

(B, T , {X})

of Ĝ. This allows us to transfer the action of Γ from the Dynkin diagram of
Ĝ to an algebraic action of Ĝ (Proposition 2.13 [Spr79]). This action may be
extended trivially to the Weil group WR, which as a set we write as C× ∪ σC×
(§9.4 [Bor79]). The L-group LG is defined by the resulting semidirect product
LG = ĜoWR.

In a parallel fashion, θ induces an automorphism of the Dynkin diagram
of G, which then transfers to an automorphism θ̂ on Ĝ. We define Lθ to be
the automorphism of LG equal to θ̂ × 1WR

. By definition, the automorphism θ̂
preserves (B, T , {X}).

We close this section with some remarks concerning Weyl groups. Let us
assume for the moment that B and T are preserved by θ, and T 1 is the identity
component of T θ ⊂ T . The torus T 1 contains strongly regular elements (pp.
227-228 [Art88]), so its centralizer in G is the maximal torus T . Setting the
identity component of Gθ equal to G1 and the Weyl group of G1 relative to T 1

equal to Ω(G1, T 1), we see that we have an embedding

Ω(G1, T 1)→ Ω(G,T )θ

into the θ-fixed elements of the Weyl group Ω(G,T ). In fact, this embedding is
an isomorphism (Lemma II.1.2 [Lab04]).
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3.2 Endoscopic data and z-pairs

Endoscopic data are defined in terms of the group G, the automorphism θ, and a
cohomology class a ∈ H1(WR, ZĜ), where ZĜ denotes the centre of Ĝ. Let ω be
the quasicharacter of G(R) determined by a (pp. 122-123 [Lan89]), and let us
fix a one-cocycle a in the class a. By definition (pp. 17-18 [KS99]), endoscopic
data for (G, θ,a) consist of

1. a quasisplit group H defined over R

2. a split topological group extension

1→ Ĥ → H
c
�WR → 1,

whose corresponding action of WR on Ĥ coincides with the action given
by the L-group LH = Ĥ oWR

3. an element s ∈ Ĝ such that Int(s)θ̂ is a semisimple automorphism (§7
[Ste97])

4. an L-homomorphism (p. 18 [KS99]) ξ : H → LG satisfying

(a) Int(s) Lθ ◦ ξ = a′ · ξ (8.5 [Bor79]) for some one-cocycle a′ in the class
a

(b) ξ maps Ĥ isomorphically onto the identity component of Ĝsθ̂, the

group of fixed points of Ĝ under the automorphism Int(s)θ̂.

Despite requirement 2 of this definition, it might not be possible to define
an isomorphism between H and LH which extends the identity map on Ĥ. One
therefore introduces a z-extension (§2.2 [KS99], [Lan79])

(3.3) 1→ Z1 → H1
pH→ H → 1

in which H1 is a connected reductive group containing a central torus Z1. The
surjection pH restricts to a surjection H1(R)→ H(R).

Dual to (3.3) is the extension

(3.4) 1→ Ĥ → Ĥ1 → Ẑ1 → 1.

Regarding Ĥ as a subgroup of Ĥ1, we may assume that LH embeds into LH1

and that Ĥ1 → Ẑ1 extends to an L-homomorphism

p : LH1 → LZ1.

According to Lemma 2.2.A [KS99], there is an L-homomorphism ξH1 : H →
LH1 which extends the inclusion of Ĥ → Ĥ1 and defines a topological isomor-
phism between H and ξH1

(H). Kottwitz and Shelstad call (H1, ξH1
) a z-pair

for H.
Observe that the composition

(3.5) WR
c→ H

ξH1→ LH1
p→ LZ1

determines a quasicharacter λZ1
of Z1(R) via the Local Langlands Correspon-

dence (§9 [Bor79]).
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3.3 Norm mappings

Our goal here is to fix endoscopic data (H,H, s, ξ) as defined in the previous
section and to describe a map from the semisimple conjugacy classes of the
endoscopic group H to the semisimple θ-conjugacy classes of G. The map uses
the quasisplit form G∗ as an intermediary. The basic reference for this section
is chapter 3 [KS99].

Since we are interested in semisimple conjugacy classes, and semisimple
elements lie in tori, we shall begin by defining maps between the tori of H and
G∗. Suppose BH is a Borel subgroup of H containing a maximal torus TH
and (BH , TH , {XH}) is the splitting of Ĥ used in the definition of LH (section
3.1). Suppose further that B′ is a Borel subgroup of G∗ containing a maximal
torus T ′, and that both are preserved by θ∗.2 We may assume that s ∈ T ,

ξ(TH) = (T θ̂)0 and ξ(BH) ⊂ B. The pairs (B̂H , T̂H) and (BH , TH) determine
an isomorphism T̂H ∼= TH . Similarly, through the pairs (B̂′, T̂ ′) and (B, T ),
we conclude that T̂ ′ ∼= T . We may combine the former isomorphism with
requirement 4b of §3.2 for the endoscopic map ξ to obtain isomorphisms

T̂H ∼= TH
ξ∼= (T θ̂)0.

To connect (T θ̂)0 with T ′, we define T ′θ∗ = T ′/(1 − θ∗)T ′ and leave it as an

exercise to prove that ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ . Combining this isomorphism with the
earlier ones, we obtain in turn that

(3.6) T̂H ∼= TH
ξ∼= (T θ̂)0 ∼= ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ ,

and TH ∼= T ′θ∗ .
The isomorphic groups TH and T ′θ∗ are related to the conjugacy classes,

which we now define. The θ∗-conjugacy class of an element δ ∈ G∗ is defined
as {g−1δθ∗(g) : g ∈ G∗}. The element δ is called θ∗-semisimple if the automor-
phism Int(δ)θ∗ preserves a Borel subgroup of G∗ and maximal torus thereof.
A θ∗-semisimple θ∗-conjugacy class is a θ∗-conjugacy class of a θ∗-semisimple
element. Let Cl(G∗, θ∗) be the set of all θ∗-conjugacy classes and Clss(G

∗, θ∗)
be the subset of θ∗-semisimple θ∗-conjugacy classes. With this notation in hand,
we look to Lemma 3.2.A [KS99], which tells us that there is a bijection

Clss(G
∗, θ∗)→ T ′θ∗/Ω(G∗, T ′)θ

∗
,

given by taking the coset of the intersection of a θ∗-conjugacy class with T ′.
The aforementioned map specializes to give the bijections on either end of

(3.7) Clss(H)↔ TH/Ω(H,TH)→ T ′θ∗/Ω(G∗, T ′)θ
∗
↔ Clss(G

∗, θ∗).

To describe the remaining map in the middle of (3.7), recall from (3.6) that
the isomorphism between TH and T ′θ∗ is obtained by way of ξ. Using these
ingredients and the closing remarks of §3.1, we obtain maps

Ω(H,TH) ∼= Ω(Ĥ, T̂H) ∼= Ω(Ĥ, TH)→ Ω(Ĝ∗, T )θ̂ ∼= Ω(G∗, T ′)θ
∗
.

2Readers of [KS99] should note that we write T ′ for the torus T occurring there.
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This completes the description of the map from Clss(H) to Clss(G
∗, θ∗).

We proceed by describing the map from Clss(G
∗, θ∗) to Clss(G, θ). The

function m : G→ G∗ defined by

(3.8) m(δ) = ψ(δ)g−1
θ , δ ∈ G

passes to a bijection from Cl(G, θ) to Cl(G∗, θ∗), since

m(g−1δθ(g)) = ψ(g)−1m(δ) θ∗(ψ(g)).

We abusively denote this map on θ∗-conjugacy classes by m as well. It is pointed
out in §3.1 [KS99] that this bijection need not be equivariant under the action
of Γ. One of our key assumptions is that the element gθ of (3.2) may be chosen
so that

(3.9) gθuσσ(g−1
θ )θ∗(uσ)−1 ∈ (1− θ∗)ZG∗sc .

Under this assumption m is Γ-equivariant ((3) Lemma 3.1.A [KS99])). Finally,
we may combine this bijection with (3.7) to obtain a map

AH\G : Clss(H)→ Clss(G, θ).

In keeping with §3.3 [KS99], we define an element δ ∈ G to be θ-regular
if the identity component of Gδθ is a torus. It is said to be strongly θ-regular
if Gδθ itself is abelian. An element γ ∈ H is said to be (strongly) G-regular
if the elements in the image of its conjugacy class under AH\G are (strongly)
regular. An element γ ∈ H(R) is called a norm of an element δ ∈ G(R) if the
θ-conjugacy class of δ equals the image of the conjugacy class of γ under AH\G.
It is possible for AH\G(γ) to be a θ-conjugacy class which contains no points
in G(R) even though γ ∈ H(R). In this case one says that γ is not a norm.
These definitions are carried to the z-extension H1 in an obvious manner. For
example, we say that γ1 ∈ H1(R) is a norm of δ ∈ G(R) if the image of γ1 in
H(R) under (3.3) is a norm of δ.

As in §3.3 [KS99], we conclude with a portrayal of the situation when a
strongly regular element γ ∈ H(R) is the norm of a strongly θ-regular element
δ ∈ G(R). We may let TH = Hγ as γ is strongly regular. The maximal torus TH
is defined over R since γ lies in H(R). Lemma 3.3.B [KS99] allows us to choose
BH , B′ and T ′ as above so that θ∗(B′) = B′, and both T ′ and the isomorphism
TH ∼= T ′θ∗ are defined over R. The resulting isomorphism

(3.10) TH(R) ∼= T ′θ∗(R)

is called an admissible embedding in §3.3 [KS99]. The image of γ under this
admissible embedding defines a coset in T ′/Ω(G∗, T ′)θ

∗
. This coset corresponds

to the θ∗-conjugacy class of m(δ). In fact, by Lemma 3.2.A [KS99] there exists
some gT ′ ∈ G∗sc such that (after gT ′ has been identified with its image in G∗),
this coset equals gT ′m(δ)θ∗(gT ′)

−1Ω(G∗, T ′)θ
∗
. The element

(3.11) δ∗ = gT ′ m(δ) θ∗(gT ′)
−1
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belongs to T ′ and it is an exercise to show that Int(gT ′)◦ψ furnishes an isomor-
phism between Gδθ and (G∗)δ

∗θ∗ . Since Int(δ∗)◦θ∗ preserves (B′, T ′), the torus
(G∗)δ

∗θ∗ contains strongly G-regular elements of T ′ (pp. 227-228 [Art88]) so we
see in turn that the centralizer of (G∗)δ

∗θ∗ in G∗ is T ′, and (G∗)δ
∗θ∗ = (T ′)θ

∗
.

By (3.3.6) [KS99], the resulting isomorphism

(3.12) Gδθ
Int(gT ′ )ψ−→ (T ′)θ

∗

is defined over R.

3.4 Twisted geometric transfer

The underlying assumption of this work is twisted geometric transfer, which is
laid out generally in §5.5 [KS99]. For real groups, it has been proven in near
generality in [She12]. It shall be convenient for us to state our version of this
assumption in the framework of orbital integrals on the component G(R)θ of
the group G(R) o 〈θ〉. Let δ ∈ G(R) be θ-semisimple and strongly θ-regular,
and assume that the quasicharacter ω is trivial on Gδθ(R). Let C∞c (G(R)θ) be
the space of smooth compactly supported functions on the component G(R)θ.
Define the twisted orbital integral of f ∈ C∞c (G(R)θ) at δθ ∈ G(R)θ to be

Oδθ(f) =

∫
Gδθ(R)\G(R)

ω(g) f(g−1δθg) dg.

This integral depends on a choice of quotient measure dg.
We wish to match functions in C∞c (G(R)θ) with functions on the z-extension

H1. Specifically, let C∞c (H1(R), λZ1
) be the space of smooth functions fH1

on
H1(R) whose support is compact modulo Z1(R) and which satisfy

(3.13) fH1
(zh) = λZ1

(z)−1fH1
(h), z ∈ Z1(R), h ∈ H1(R)

(see the end of §3.2). The definition of orbital integrals easily carries over to
functions of this type at semisimple regular elements.

Suppose γ1 ∈ H1(R) is a norm of a θ-semisimple strongly θ-regular element
δ ∈ G(R). Our geometric transfer assumption is that for every f ∈ C∞c (G(R)θ)
there exists a function fH1

∈ C∞(H1(R), λZ1
) as above such that

(3.14)
∑
γ′1

Oγ′1(fH1
) =

∑
δ′

∆(γ1, δ
′)Oδ′θ(f).

The sum on the left is taken over representatives in H1(R) of H1(R)-conjugacy
classes contained in the H1-conjugacy class of γ1. The sum on the right is taken
over representatives in G(R) of θ-conjugacy classes under G(R) contained in
the θ-conjugacy class of δ. The terms ∆(γ1, δ

′) are geometric transfer factors
and are defined in chapter 4 [KS99]. We will come to the geometric transfer
factors again in section 4.5. Normalization is required for the measures in the
orbital integrals to be compatible (p. 71 [KS99]). We also assume that the
map f 7→ fH1

induces a map from stably invariant distributions on H1(R) to
distributions on G(R) as in ordinary endoscopy (Remark 2 §6 [Bou94]).
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4 Spectral transfer for the fundamental series

Our goal here is to prove spectral transfer under assumptions that produce
representations in the “fundamental series” as presented in III [Duf82]. The
presentation in [Duf82] is not given in the language of algebraic groups, so part
of our goal will be to match the objects in the realm of algebraic groups with
those of [Duf82].

We arrange the setting we are to work in, making six notable assumptions
along the way. A list of the six assumptions will be given again at the end. The
quadruple (H,H, s, ξ) is a fixed set of endoscopic data together with a z-pair
(H1, ξH1

). We take an L-parameter ϕH1 which is the Ĥ1-conjugacy class of an
admissible homomorphism ϕH1

: WR → LH1 (§8.2 [Bor79]). We suppose that
the composition of ϕH1

with LH1 → LZ1 corresponds to the quasicharacter
λZ1 : Z1(R) → C× of (3.5) under the Local Langlands Correspondence. The
endoscopic Langlands parameter ϕH1 corresponds to a Langlands parameter
ϕ∗ of the quasisplit form G∗ (§6 [Mez12]). Our first assumption is that ϕH1

is not contained in a proper parabolic subgroup of LH1. This is equivalent to
the assertion that the L-packet ΠϕH1

consists of essentially square-integrable
representations ((3) §10.3 [Bor79]).

Our second assumption is that there exists a strongly θ-regular element
δ ∈ G(R) which has a norm γ ∈ H(R) (section 3.3), and (Gδθ/ZθG)(R) is com-
pact. A strongly θ-regular element in G(R) satisfying the latter compactness
condition is called θ-elliptic (p. 5 [KS99]). The compactness condition passes to
a condition on a maximal torus. We say that a maximal torus S in G, which is
defined over R, is fundamental if R(G,S) has no real roots. This is equivalent
to S(R) being a maximally compact Cartan subgroup in G(R) (Lemma 2.3.5
[Wal88]). Similarly, on the level of Lie algebras, one says that s is fundamental
if R(g⊗C, s,⊗C) has no real roots.

Lemma 4.1. The element δ ∈ G(R) fixes a unique maximal torus S of G which
contains Gδθ. Moreover, the torus S is defined over R and is fundamental.

Proof. By definition of strongly θ-regular, Gδθ is an abelian group. It contains
strongly G-regular elements (pp. 227-228 [Art88]), so that the identity compo-
nent of ZG(Gδθ) is a maximal torus of G, which is uniquely determined by δ.
Suppose first that ZG is trivial. Then Gδθ(R) is compact, for δ is θ-elliptic.
The Lie algebra of Gδθ(R) is therefore contained in a Cartan subalgebra of the
Lie algebra of a maximally compact subgroup of G(R). The centralizer of this
Cartan subalgebra in g is a fundamental Cartan subalgebra s of g (Proposition
6.60 [Kna96]). The exponential of s⊗C is a maximal torus S in G (Corollary
15.3 [Hum94]). By construction, the torus S is defined over R and S(R) is max-
imally compact. Furthermore, S contains Gδθ so that S is equal the uniquely
determined torus mentioned above.

Now we remove the assumption that ZG is trivial and observe that there
is a canonical bijection between the set of maximal tori of G and the set of
maximal tori of the semisimple algebraic group G/ZG, which is induced by the
quotient map. The quotient map is defined over R (Theorem 12.2.1 [Spr98]).
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This bijection therefore passes to a bijection of maximal R-tori. In addition,
the quotient map sends δ to an element of (G/ZG)(R), and it is immediate that
this element retains the analogues of the properties of strong θ-regularity and
θ-ellipticity. By our earlier argument, we obtain a maximal torus of G/ZG. It
is left to the reader to verify that its pre-image under the quotient map is a
maximal torus in G with the desired properties.

The torus S of Lemma 4.1 has a maximally split subtorus Sd and a maxi-
mally anisotropic subtorus Sa such that S = SdSa (Proposition 8.15 [Bor91]).
The centralizer M = ZG(Sd) is a Levi subgroup of G which is defined over R
(Proposition 20.4 [Bor91]). By construction, ZM ⊃ Sd and it therefore follows
that S is elliptic in M . The torus Sd is also the split component of the centre of
M (Proposition 20.6 [Bor91]). The usual notation for the latter is AM . Observe
that since Int(δ)θ is defined over R and preserves S, it also preserves Sd = AM
and M .

Our third assumption is that ϕ∗ has a representative homomorphism ϕ∗

whose image is minimally contained in a parabolic subgroup of LG, and that this
parabolic subgroup is dual, in the sense of §3.3 (2) [Bor79], to an R-parabolic
subgroup P of G with Levi component M . In the language of §8.2 [Bor79], this
translates as the the parabolic subgroup of LG being relevant, and ϕ∗ being
admissible with respect to G. Under this assumption, we set ϕ = ϕ∗ with the
intention that ϕ be regarded as a Langlands parameter of G.

We choose a Levi subgroupM of Ĝ and an admissible homomorphism ϕ ∈ ϕ
such that M ∼= M̂ and M o WR is a standard Levi subgroup of LG which
contains ϕ(WR) minimally (§3.4 [Bor79], 4.1 [Mez12]). We may thus regard ϕ
as an admissible homomorphism into MoWR and derive from it an L-packet
Πϕ,M of essentially square-integrable representations of M(R) (§10.3 (3) and
§11.3 [Bor79]).

Our fourth assumption is that the representations in Πϕ,M have unitary
central character. From this, the Local Langlands Correspondence prescribes
that the representations in Πϕ are the irreducible subrepresentations of the
representations induced from those in Πϕ,M (§11.3 [Bor79]).

Before making our fifth assumption we must recall some facts about the
homomorphism ϕ and the L-packet Πϕ,M . The homomorphism ϕ is determined

by a pair µ, λ ∈ X∗(Ŝ) ⊗ C (§3 [Lan89], §4 [Mez12]). One may regard the
elements in this pair as elements in the dual of the complex Lie algebra of S via
the isomorphisms X∗(Ŝ) ∼= X∗(S) and

(4.1) X∗(S)⊗C ∼= s∗ ⊗C.

To be more precise isomorphism (4.1) is an isomorphism of R[Γ]-modules, given
that Γ acts on both X∗(S) and C in the usual way (cf. §9.4 [Bor79]). In other
words, isomorphism (4.1) rests upon an isomorphism

(4.2) (X∗(Sa)⊗ iR)⊕ (X∗(Sd)⊗R) ∼= s∗

of R-vector spaces. The pair may be lifted to a quasicharacter of S(R) in the
following manner. The element µ is M̂ -regular and so determines a positive
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system on R(M,S) (Lemma 3.3 [Lan89]). Let ιM ∈ X∗(Ŝ)⊗C be the half-sum
of the positive roots of R(M,S). The pair (µ − ιM , λ) corresponds to a linear
form on s, and satisfies a condition which allows one to lift to a quasicharacter
Λ = Λ(µ− ιM , λ) of S(R) (p. 132 [Lan89], §4.1 [Mez12]).

By the work of Harish-Chandra, the quasicharacter Λ corresponds to an es-
sentially square-integrable representation of ZM (R)Mder(R)0 ([HC66]). Induc-
ing this representation to M(R) produces an irreducible representation $Λ ∈
Πϕ,M (p. 134 [Lan89]). The remaining representations of Πϕ,M are obtained
by replacing Λ by w−1Λ = Λ(w−1 · (µ− ιM ), λ), where w ∈ Ω(M,S)/ΩR(M,S)
(see §4.1 [Mez12]).

Let us consider the differential of the quasicharacter Λ. The differential
only records the behaviour of Λ on the identity component S(R)0 and this
behaviour is given precisely by µ−ιM (§4.1 [She81]). The infinitesimal character
of $Λ corresponds to µ and the restriction of this infinitesimal character to
s ∩ [m,m] ⊂ sa is equal to the Harish-Chandra parameter of the underlying
representation of Mder(R)0 (p. 310 [Kna86]).

Our fifth assumption is really two separate regularity assumptions. The first
regularity assumption is that µ is Ĝ-regular, that is

〈µ, α〉 6= 0, α ∈ R(Ĝ, Ŝ).

The second regularity assumption pertains to Duflo’s characterization of fun-
damental series representations, and this depends on the behaviour of µ on the
anisotropic part Sa(R) of S(R)0 ((ii) III.1 [Duf82]). By identifying µ with a
linear form in s∗ ⊗C under (4.1), the second regularity assumption reads as〈

µ|sa , α
〉
6= 0, α ∈ R(Ĝ, Ŝ).

Holding this view, the second regularity assumption is equivalent to the g⊗C-
regularity of the s∗a⊗C-component of µ. Alternatively, the µ|sa may be regarded
as the restriction to Sa of µ ∈ X∗(Sa)⊗C.

We come to our sixth and final assumption. In order for twisted spectral
transfer to have any content, we assume that Πϕ is stable under twisting, that
is

Πϕ = ω ⊗ (Πϕ ◦ θ)

(see §4.3 [Mez12]).
We list the six assumptions of this section for convenience.

Assumption 1 ϕH1 is not contained in a proper parabolic subgroup of LH1.

Assumption 2 There exists a strongly θ-regular and θ-elliptic element δ ∈
G(R) which has a norm γ ∈ H(R).

Assumption 3 ϕ∗ has a representative ϕ∗ whose image is minimally contained
in a parabolic subgroup of LG which is dual to an R-parabolic subgroup
P with Levi component M .

Assumption 4 The representations in Πϕ,M have unitary central character.
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Assumption 5 The elements µ and µ|sa in X∗(Ŝ)⊗C are Ĝ-regular.

Assumption 6 Πϕ = ω ⊗ (Πϕ ◦ θ).

The main goal of this section is to prove an identity of the shape∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh(4.3)

=
∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ). This requires us to define the (twisted) characters ΘπH1

and Θπ,Uπ , and to define the spectral transfer factors ∆(ϕH1 , π). In the special
case that S is elliptic in G, ω is trivial and θ is of finite order, these definitions
were made and the identity was proven in §6 [Mez12]. To complete these tasks
for fundamental S we shall follow more or less the same path, indicating where
additional arguments to [Mez12] are needed.

Our first step on this path is an exposition of twisted characters. We shall
give their definitions and reduce them to an explicit formula. In the next step
we parametrize L-packets in identity (4.3). We will follow this by definitions of
the spectral transfer factors, so that the identity is intelligible. The identity is
then proven in two steps: first locally about θ-elliptic elements, then globally
using the theory of eigendistributions.

4.1 Fundamental series representations

The purpose of this section is to portray the representations in Πϕ with the
theory developed by Harish-Chandra and Duflo ([Duf82]). By definition, the
representations in Πϕ are (equivalence classes of) irreducible subrepresentations

of ind
G(R)
P (R)$, where $ ∈ Πϕ,M (§11.3 [Bor79], parabolic induction throughout

is normalized). The possible disconnectedness of G(R) in the manifold topology

complicates the description of ind
G(R)
P (R)$. The relationship of each representa-

tion ind
G(R)
P (R)$ to the identity component G(R)0 is given in §III.5 [Duf82]. Duflo

notes that this relationship is simplified enormously when the component struc-
ture of the real torus S(R) is governed by ZG(R) (Remark 2 p. 172 [Duf82]).
Fortunately, this is the case for fundamental S and our first task is to make this
clear.

Proposition 4.2. Suppose G is semisimple. Then S(R) is connected as a real
manifold.

Proof. If one identifies S with X∗(S) ⊗ C/2πiX∗(S) through the exponential
map (§9 [Bor79]), the component group S(R)/S(R)0 is identified with

{exp(πiλ) : λ ∈ X∗(S)Γ}/{exp(πiλ) : λ ∈ (1 + σ)X∗(S)}
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(§4.1 [She81]). The latter group is isomorphic to(
πiX∗(S)Γ/2πiX∗(S)Γ

)
/ (πi(1 + σ)X∗(S)/2πi(1 + σ)X∗(S))

and this reduces to X∗(S)Γ/(1 + σ)X∗(S) since 2X∗(S)Γ ⊂ (1 + σ)X∗(S). We
may choose a base for the root system R(G,S)∨ as in VI §8 [Kna96]. For
instance, one may fix ordered bases of each of the two eigenspaces of σ on s⊗C
and then take a lexicographic ordering of the roots by taking the −1-eigenspace
before the +1-eigenspace. This produces a positive system R+(G,S)∨ which is
stable under −σ, so that the positive simple roots are permuted by −σ amongst
themselves.

Let λ∨1 , . . . , λ
∨
m be the (dual) fundamental dominant weights corresponding

to the set of simple roots in R+(G,S)∨ (§31.1 [Hum75]). We may assume that
the first 0 ≤ k ≤ m of these weights are those fixed by −σ and write the
fundamental dominant weights as

λ∨1 , . . . , λ
∨
k , λ

∨
k+1, . . . , λ

∨
k+r,−σ(λ∨k+1), . . . ,−σ(λ∨k+r).

These weights form a Z-basis of a free Z-module containing X∗(S) (§1.8 [Spr79]).
Now suppose λ ∈ X∗(S)Γ and

λ =

k∑
j=1

cj λ
∨
j +

k+r∑
s=k+1

cs λ
∨
s + c′s σ(λ∨s )

where c1, . . . , ck+r, c
′
k+1, . . . , c

′
k+r ∈ Z. Then 2λ = (1 +σ)λ implies in turn that

k∑
j=1

2cjλ
∨
j +

k+r∑
s=k+1

2cs λ
∨
s + 2c′s σ(λ∨s ) =

k+r∑
s=k+1

(cs + c′s)λ
∨
s + (cs + c′s)σ(λ∨s ),

c1 = · · · = ck = 0, ck+1 = c′k+1, . . . , ck+r = c′k+r, and

λ =

k+r∑
s=k+1

cs(1 + σ)(λ∨s ).

This proves that X∗(S)Γ = (1 + σ)X∗(S). We conclude that

S(R)/S(R)0 ∼= X∗(S)Γ/(1 + σ)X∗(S)

is trivial and S(R) = S(R)0.

Let Gder be the derived subgroup of G and Sder = S ∩Gder. The group Gder

is semisimple (Corollary 8.1.6 [Spr98]) and Sder remains a fundamental torus in
Gder. By Proposition 4.2 we have Sder(R) = Sder(R)0.

Corollary 4.3. The fundamental torus S of the reductive group G may be
decomposed as

S(R) = ZG(R)S(R)0 = ZG(R)Sder(R)0.
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Proof. The group Z0
G is a torus (Proposition 7.3.1 [Spr98]) and G/Z0

G is a
connected semisimple algebraic group (Proposition 5.5.10 and Corollary 8.1.6
[Spr98]) with maximal torus S/Z0

G. Clearly, we may identify R(G,S) with
R(G/Z0

G, S/Z
0
G), and as the former has no real roots, neither does the latter.

This is to say that (S/Z0
G)(R) remains fundamental. We may therefore apply

Proposition 4.2 to conclude that (S/Z0
G)(R) is connected. Now the short exact

sequence of tori
1→ Z0

G → S → S/Z0
G → 1

splits (Corollary 8.5 [Bor91]). Therefore we obtain an exact sequence of Γ-
modules

1→ X∗(Z
0
G)→ X∗(S)→ X∗(S/Z

0
G)→ 1.

In the long exact sequence of group cohomology the portion

→ H2(Γ, X∗(Z
0
G))→ H2(Γ, X∗(S))→ H2(Γ, X∗(S/Z

0
G))→

may be rewritten as

→ X∗(Z
0
G)Γ

(1 + σ)X∗(Z0
G)
→ X∗(S)Γ

(1 + σ)X∗(S)
→ X∗(S/Z

0
G)Γ

(1 + σ)X∗(S/Z0
G)
→

(Theorem 6.2.2 [Wei94]). As we have seen in Lemma 4.2, these groups are
isomorphic to the component groups of the three tori and the group on the
right is trivial so that

→ Z0
G(R)/ZG(R)0 → S(R)/S(R)0 → 1.

This means that the canonical map Z0
G(R)/ZG(R)0 → S(R)/S(R)0 is surjective

and we may choose elements z1, . . . , zm ∈ Z0
G(R) so that S(R) is the disjoint

union of the cosets z1S(R)0, . . . , zmS(R)0. In conclusion,

ZG(R)S(R)0 ⊂ S(R) = ∪mj=1zjS(R)0 ⊂ ZG(R)S(R)0

implies that S(R) = ZG(R)S(R)0. The second identity of the corollary follows
from S(R)0 = ZG(R)0Sder(R)0 (Corollary 1.53 [Kna96]).

Corollary 4.4. The quotient group G(R)/ZG(R)Gder(R)0 has representatives
in ΩR(G,S). In particular the subgroup ZG(R)Gder(R)0 has finite index in
G(R).

Proof. For any x ∈ G(R) the group xS(R)x−1 is a fundamental torus. There-
fore there exists x1 ∈ G(R)0 such that

x1xS(R)(x1x)−1 = S(R)

(Lemma 2.3.4 [Wal88]) which proves that every coset in G(R)/S(R)G(R)0 has
a representative in ΩR(G,S). By Corollary 4.3 and Corollary 1.53 [Kna96], we
have

S(R)G(R)0 = ZG(R)Sder(R)Gder(R)0 = ZG(R)Gder(R)0

(cf. page 134 [Lan89]).
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Corollary 4.3 tells us that the component structure of S(R) is governed by
ZG(R). We shall eventually use this fact to obtain a simple expression of the
representations in Πϕ in terms of those in Πϕ,M (see Remark 2 III.5 [Duf82]).

Let us return to the representations in Πϕ,M . Recall that $Λ ∈ Πϕ,M

is induced from an irreducible representation of ZM (R)Mder(R)0. More pre-
cisely, there exists a square-integrable (i.e. discrete series) representation $0 of
Mder(R)0 such that

(4.4) $Λ
∼= ind

M(R)
ZM (R)Mder(R)0 (χϕ ⊗$0) ,

where χϕ is the central character of $Λ (or any other representation in Πϕ,M ).
Using isomorphism (4.1), one may identify the infinitesimal character of $Λ

with µ. In addition, since 〈µ, α∨〉 ∈ R for all α ∈ R(M,S) (proof of Lemma
3.3 [Lan89]) and χϕ is unitary on ZM (R) it follows from Corollary 6.49 [Kna96]
that iµ ∈ s∗ (cf. (4.2)). In particular

(4.5) σ(µ) = −µ.

This infinitesimal character must satisfy three criteria in order to place ind
G(R)
P (R)$Λ

into the category of fundamental series representations. Two of the three criteria
are covered by Assumption 5. The g⊗C-regularity of µ fulfils the criterion that
iµ be bien polarisable (Lemma 7 II and III.1 [Duf82]). The g ⊗ C-regularity
of s∗a ⊗ C-component of µ fulfils the criterion of iµ being standard ((ii) III.1
[Duf82]).

The third criterion is that µ − ρM must lift to a quasicharacter of S(R)0,
where ρM is the half-sum of the positive roots in R(g ⊗C, s ⊗C) determined
by the regular element µ (Remark 2 II.2 [Duf82]). This is equivalent to iµ
being admissible in the parlance of Duflo. This criterion is satisfied, as we are
identifying µ − ρM with µ − ιM and the latter defines the restriction of the
quasicharacter Λ to S(R)0 (§4.1 [She81]). This lifting property persists when
ρM is replaced by ρ, the half-sum of positive roots in R(g⊗C, s⊗C) determined
by the regular element µ|sa .

Lemma 4.5. The linear form µ−ρ ∈ s∗⊗C lifts to a quasicharacter of S(R)0.

Proof. Since Sd(R)0Sa(R) is a closed connected subgroup of the same dimension
as S(R)0, we see that S(R)0 = Sd(R)0Sa(R). It is clear from the isomorphism
sd ∼= Sd(R)0 that (µ−ρ)|sd lifts to a quasicharacter of Sd(R)0. To lift (µ−ρ)|sa
we observe that −σ(µ|sa) = µ|sa (cf. (4.5)) so that the positive system of
R(g⊗C, s⊗C) determined by µ|sa coincides with that given in Corollary 4.3.
We may therefore decompose ρ according to−σ-orbits of positive roots as follows

ρ =

1

2

∑
imaginary

α

+

1

2

∑
complex

α+ (−σ(α))

 .

The first summand is ρM (Lemma 15.3.2 [Spr98]) and we already know that
(µ+ ρM )|sa lifts to Sa(R). The lemma will therefore be complete once we show
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that the second summand lifts to Sa(R). For this, we compute that

1

2

∑
complex

(α− σ(α))|sa =
1

2

∑
complex

α|sa + α|sa =
∑

complex

α|sa

and note that all integer combinations of roots lift to S(R) ((4.15) [Kna86]).

We have now established the conditions on S(R) and µ for us to describe
the representations in Πϕ in Duflo’s framework.

Lemma 4.6. The representation ind
G(R)
P (R)$Λ is irreducible and equivalent to

(4.6) ind
G(R)
ZG(R)G(R)0

(
(χϕ)|ZG(R) ⊗ ind

G(R)0

P (R)∩G(R)0$1

)
where $1 is defined as

$1 = ind
M(R)∩G(R)0

ZM (R)0Mder(R)0((χϕ)|ZM (R)0 ⊗$0).

Proof. We shall first prove that (4.6) is an irreducible representation and then

complete the lemma by proving that it is equivalent to ind
G(R)
P (R)$Λ. The irre-

ducibility of (4.6) follows from Lemma 8 (i) III.6 [Duf82] once we see that it
is equal to the representation (8) on page 172 [Duf82]. To make this equality
apparent, we shall indicate how our notation matches with the notation of III
[Duf82]. Representation (8) of [Duf82] is written as

(4.7) Tg,τ = Ind
G(R)
ZG(R)G(R)0(τ ⊗ TG(R)0

g ).

Here, g ∈ g∗ is an element which is admissible, bien polarisable and standard. As

was discussed earlier, we may take g = iµ. The expression T
G(R)0

g on the right

of (4.7) is defined as ind
G(R)0

P (R)∩G(R)0$1 (p. 164 [Duf82]). The term τ in (4.7) is

an irreducible representation of a metaplectic group, but only its restriction to
ZG(R) is relevant above. This restriction is determined by g = iµ on ZG(R)0

and is arbitrary otherwise. We may therefore take τ|ZG(R) = (χϕ)|ZG(R). With
these substitutions, one sees that (4.6) is equal to (4.7). Before we move on, we
note that equation (4.7) is not a definition in [Duf82]. It is an identity which
holds for us thanks to Corollary 4.3 (Remark 2 III.5 [Duf82]).

We shall prove the equivalence of

(4.8) ind
G(R)
P (R)$Λ

∼= ind
G(R)
P (R) ind

M(R)
ZM (R)Mder(R)0 (χϕ ⊗$0)

with (4.6) through an identity of their distribution characters. It suffices to
prove equality between their characters on the strongly regular subset of S(R).
Indeed, by Harish-Chandra’s Uniqueness Theorem (Theorem 12.6 [Kna86]), the
character of χϕ ⊗ $0 is determined by its values on this subset. Moreover,
the characters of both of the representations in question are determined by the
character of χϕ ⊗$0 via induction.
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All fundamental maximal tori are conjugate over R to S(R) (Proposition
6.61 [Kna96]). Therefore the cosets in the quotient groups which correspond
to the finite inductions occurring in (4.8) and (4.6) have representatives which
normalize S(R) (cf. proof of Corollary 4.4).

We first prove the character identity under the assumption that ZG(R) =
ZG(R)0. In this case, the character of (4.6) at a strongly regular element s ∈
S(R) is the sum over

x1 ∈ NG(R)(S(R))/NG(R)0(S(R)),

x2 ∈ NG(R)0(S(R))/NM(R)∩G(R)0(S(R)),

x3 ∈ NM(R)∩G(R)0(S(R))/ZM (R)0NMder(R)0(S(R))

of the product of the reciprocals of the cardinalities of the first and third quo-
tients above with

D−1
G (s)DM ◦Θχϕ⊗$0

(x1x2x3s(x1x2x3)−1)

(cf. Lemma 7.1.3 (ii) [Bou87]). Here, DG and DM are absolute values of Weyl
denominators (§4.5 [KS99]), and Θχϕ⊗$0 denotes the character of χϕ⊗$0. This
is equal to the product of

(4.9)
∑

x∈NG(R)(S(R))/ZM (R)0NMder(R)0 (S(R))

D−1
G (s)DM ◦Θχϕ⊗$0(xsx−1)

with above reciprocals.
To compute the character of (4.8) at s, we use

(4.10)
ZM (R)Mder(R)0/ZM (R)0Mder(R)0 ∼= S(R)Mder(R)0/Mder(R)0 ∼= S(R)/S(R)0

By the connectedness of ZG(R) and Corollary 4.3 this quotient is trivial. In
consequence, the character value of (4.8) is the sum over

y1 ∈ NG(R)0(S(R))/NM(R)∩G(R)0(S(R)),

y2 ∈ NM(R)(S(R))/ZM (R)0NMder(R)0(S(R))

of the product of the reciprocal of the cardinality of the second quotient above
with

D−1
G (s)DM ◦Θχϕ⊗$0(y1y2s(y1y2)−1)

(Lemma 7.1.3 (ii) [Bou87]). We must reconcile this expression with (4.9). We
begin by using the fact that

(4.11) G(R)/G(R)0 ∼= T (R)/T (R) ∩G(R)0 ∼= M(R)/M(R) ∩G(R)0

for any maximally R-split torus T of M (Theorem 14.4 [BT65]). Writing
M(R)/ZM (R)0Mder(R)0 as the quotient of (4.11) with

(4.12) (M(R) ∩G(R)0)/ZM (R)0Mder(R)0
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allows one to choose representatives for y2 of the form x1 above. The remaining
portion of y2 corresponding to (4.12) may be absorbed into the y1 parameter
by replacing

NG(R)0(S(R))/NM(R)∩G(R)0(S(R))

with
NG(R)0(S(R))/ZM (R)0NMder(R)0(S(R)).

These changes amount to the taking sum over

y′1 ∈ NG(R)(S(R))/NG(R)0(S(R)),

y′2 ∈ NG(R)0(S(R))/ZM (R)0NMder(R)0(S(R))

of the product of the reciprocals of the cardinalities of the expected quotient
groups with

D−1
G (s)DM ◦Θχϕ⊗$0(y′1y

′
2s(y

′
1y
′
2)−1),

and this expression is equal to (4.9). This concludes the proof in case that
ZG(R) is a connected manifold. In the case that it is disconnected the reader
may verify that the tensor product in (4.6) compensates for the discrepancy in
(4.8) given by (4.10).

Corollary 4.7. Every representation of G(R) parabolically induced from an
irreducible representation in Πϕ,M is irreducible.

Proof. The representations of Πϕ,M are obtained by replacing $Λ by $w−1Λ,
where w ∈ Ω(M,S)/ΩR(M,S) (see §4.1 [Mez12]). The arguments of the proof
are unaffected by replacing Λ with ẇ−1Λ and µ by ẇ−1 ·µ for any ẇ ∈ Ω(M,S).

Corollary 4.7 implies that every irreducible representation in Πϕ is fully
induced from a unique representation in Πϕ,M . Hence, parabolic induction
furnishes a bijection between Πϕ,M and Πϕ.

Lemma 4.6 expresses ind
G(R)
P (R)$Λ in terms of an irreducible representation of

the connected Lie group G(R)0. After some additional bookkeeping, one may

express ind
G(R)
P (R)$ in terms of an irreducible representation of the connected

semisimple group Gder(R)0. This will be required in section 4.3.

Corollary 4.8. The representation ind
G(R)
P (R)$Λ is equivalent to

(4.13) ind
G(R)
ZG(R)G(R)0

(
(χϕ)|ZG(R) ⊗ ind

Gder(R)0

P (R)∩Gder(R)0$1

)
where $1 is defined as

ind
M(R)∩Gder(R)0

ZM (R)0Mder(R)0∩Gder(R)0((χϕ)|ZM (R)0∩Gder(R)0 ⊗$0).

Proof. The principal observation in showing that (4.6) is equivalent to (4.13)
is that G(R)0 is the internal direct product of ZG(R)0 and Gder(R)0. The
corollary results from removing ZG(R)0 from the second induction in (4.6) and
absorbing it into the tensor product with (χϕ)|ZG(R).
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4.2 A parameterization of stable data

There are two sorts of stable data underlying the spectral transfer identity (4.3).
The first sort is geometric and is related to the pair of elements δ ∈ G(R) and
γ1 ∈ p−1

H (γ) ⊂ H1(R). Explicitly, the stable geometric data are the θ-conjugacy
classes under G(R) of elements in G(R) whose norm is γ1. In less obtuse terms,
the stable geometric data are the collection of sets

{x−1δ′θ(x) : x ∈ G(R)}

where δ′ ∈ G(R) runs through the representatives which have norm γ1. By
Assumption 2, δ is a representative of such a conjugacy class. This collection
of sets is basic to geometric transfer (§5.5 [KS99]). When S is elliptic in G and
θ is trivial, this collection of stable data is parameterized by the collection of
cosets Ω(G,S)/ΩR(G,S) (§6.4 [Lab08]). Our first effort will be to describe how
this parameterizing set is altered when one removes these assumptions on S(R)
and θ.

The second sort of stable data is spectral and is related to representations in
the L-packet Πϕ. Again, when S is elliptic in G and θ is trivial these representa-
tions are parameterized by Ω(G,S)/ΩR(G,S) (§7.1 [Lab08]). We shall describe
how this spectral parameterizing set is altered and actually reduces to an object
attached to M in the general case. Upon having described parameterizing sets
of the stable geometric and spectral sorts, we connect them through a canonical
surjection.

Let us begin geometric parameterization by looking back to some cosets
presented in §6.1 [Mez12]. One may dissect Ω(G,S)/ΩR(G,S) and extract the
coset space NG(S)/NG(R)(S). When S is elliptic in G the elements in NG(S)
act as R-automorphisms of S (Lemma 6.4.1 [Lab08]). This is not so in general,
and the elements of NG(S) which act as R-automorphisms form the subgroup
NG(Sσ) = NG(S(R)). A moment’s reflection reveals that NG(R)(S) and S are
subgroups of NG(S(R)) so that we may consider the collection of double cosets

S\NG(Sσ)/NG(R)(S).

This collection may be identified with

(4.14) Ω(G,S)σ/ΩR(G,S).

This will be seen to be the parameterizing set of the stable geometric data when
θ is trivial. However, as seen in §6.1 [Mez12], twisting by θ forces us to consider
the collection of double cosets

Sδθ\NG(Sσ)/NG(R)(S).

In fact, the only double cosets SδθxNG(R)(S) which are of interest are those
which satisfy

(4.15) x−1δθx(δθ)−1 ∈ G(R).
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This being so, we define

(4.16) Sδθ\(NG(Sσ)/NG(R)(S))δθ

to be the collection of double cosets whose representatives x ∈ NG(Sσ) satisfy
(4.15). The following two results justify the above claims.

Lemma 4.9. Suppose x ∈ G and x−1δθ(x) ∈ G(R). Then Int(x−1)|S is defined
over R. In particular, if x also belongs to NG(S) then x ∈ NG(Sσ).

Proof. It suffices to show that Int(xσ(x−1))|S is the identity map. From (3.11)

we know that γ1 being a norm of δ entails that δ∗ = gT ′m(δ)θ∗(g−1
T ′ ) for some

gT ′ ∈ G∗sc. According to Lemma 4.4.A [KS99] the element gT ′uσσ(g−1
T ′ ) belongs

to T ′sc. Likewise, x−1δθ(x) has norm γ1. Indeed, following the computations of
§3.1 [KS99] we observe that

m(x−1δθ(x)) = ψ(x−1)m(δ) θ∗(ψ(x))

so that
δ∗ = gT ′ψ(x)m(x−1δθ(x)) θ∗(gT ′ψ(x))−1.

We may thus apply Lemma 4.4.A [KS99] to the element gT ′ψ(x) in place of gT ′ ,
to find that gT ′ψ(x)uσσ(gT ′ψ(x))−1 belongs to T ′sc. Therefore conjugation of
T ′ by gT ′ψ(x)uσσ(gT ′ψ(x))−1 is trivial. Under transport by (4.36), this implies
that the restriction to S of

ψ−1Int(gT ′)
−1 Int(gT ′ψ(x)uσσ(gT ′ψ(x))−1) Int(gT ′)ψ

is the identity map. For simplicity, we write g = gT ′ and compute

ψ−1Int(g)−1 Int(gψ(x)uσσ(gψ(x))−1) Int(g)ψ

= Int(x)ψ−1Int(uσ) Int(σ(ψ(x−1)g−1)) Int(g)ψ

= Int(x)σ−1ψ−1σ Int(σ(ψ(x−1)g−1)) Int(g)ψ

= Int(xσ(x−1)) (σ−1(Int(g)ψ)−1σInt(g)ψ)

= Int(xσ(x−1)),

where the last equality follows from (4.36) being defined over R.

The next lemma is a slightly amended version of Lemma 14 [Mez12]. Only
the surjectivity argument is affected when S is not elliptic in G.

Proposition 4.10. Suppose x ∈ NG(Sσ) satisfies (4.15). Then the map defined
by

x 7→ x−1δθ(x)

passes to a bijection from (4.16) to the collection of θ-conjugacy classes under
G(R) of elements in G(R) whose norm is γ1.
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Proof. Suppose x ∈ NG(Sσ) satisfies (4.15). Since δ belongs to G(R), property
(4.15) is equivalent to x−1δθ(x) ∈ G(R). As γ1 is a norm of δ it is also a
norm of x−1δθ(x). It is simple to verify that any element in the double coset
Sδθ\x/NG(R)(S) maps to an element which is θ-conjugate to x−1δθ(x) under
G(R). Thus, we have a well-defined map from (4.16) to the desired collection
of θ-conjugacy classes.

To show that this map is surjective, suppose now that x ∈ G is any element
satisfying x−1δθ(x) ∈ G(R), that is, an element in G(R) whose norm is γ1.
The automorphism Int(x−1δθ(x))θ is defined over R. Therefore, the group

Gx
−1δθ(x)θ is defined over R. The property that x−1δθ(x) ∈ G(R) implies in

turn that xσ(x−1) ∈ Gδθ and

Gx
−1δθ(x)θ(R) = (x−1Gδθx)(R) = x−1Gδθ(R)x.

The quotient Gx
−1δθ(x)θ(R)/ZθG(R) = x−1(Gδθ(R)/ZθG(R))x is compact, for δ

is θ-elliptic. Using Lemma 2.3.4 [Wal88] and the arguments of Lemma 4.1, one

may show that there exists g ∈ G(R) such that g−1Gx
−1δθ(x)θ(R)g lies in the

torus S(R). Hence,

S ⊃ g−1Gx
−1δθ(x)θg = (xg)−1Gδθ xg = (xg)−1Sδθ xg.

The group Sδθ contains strongly G-regular elements (pp. 227-228 [Art88]). The
previous containment therefore implies that xg ∈ NG(S). Furthermore, the
element (xg)−1δθ(xg) belongs to G(R) so that xg ∈ NG(Sσ) by Lemma 4.9.
It is clear that xg ∈ NG(Sσ) maps to the same θ-conjugacy class as x−1δθ(x)
under G(R), and surjectivity is proven.

To prove injectivity, suppose that x1, x2 ∈ G are representatives for dou-
ble cosets in (4.16) such that x−1

1 δθ(x1) and x−1
2 δθ(x2) belong to the same

θ-conjugacy class under G(R). Then there exists g ∈ G(R) such that

x−1
1 δθ(x1) = (x2g)−1δθ(x2g)

and it follows that
x2gx

−1
1 ∈ Gδθ = Sδθ.

This implies that g ∈ NG(R)(S), and x1 and x2 represent the same double coset
in (4.16).

Let us point out that there is some redundancy in the notation of (4.16). If
x ∈ NG(S) satisfies (4.15) then it satisfies x−1δθ(x) ∈ G(R). Lemma 4.9 then
tells us that x ∈ NG(Sσ). As a result, (4.16) could have been written more
simply as

Sδθ\(NG(S)/NG(R)(S))δθ.

We prefer the notation of (4.16) as it highlights a distinction which is absent for
elliptic tori, and reduces more readily to (4.14) when θ is trivial.

We now turn to the parameterization of the spectral data, namely the pa-
rameterization of Πϕ. Our assumptions on ϕ dictate that induction furnishes a
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bijection between Πϕ,M and Πϕ (Lemma 4.6). The L-packet Πϕ,M of essentially
square-integrable representations of M(R) is parameterized by the coset space
Ω(M,S)/ΩR(M,S) (see (21) [Mez12]). We wish to ascertain the cosets which
parametrize the representations in Πϕ which are stable under twisting by (ω, θ).
On the face of it, it is not clear that there exist any representations in Πϕ which
are stable under twisting.

Lemma 4.11. There exists π ∈ Πϕ which is equivalent to ω ⊗ πθ.

Proof. Assume first that G is quasisplit so that G∗ = G, T ′ = S, etc. We are
assuming that the admissible embedding (3.10) is defined via a θ∗-stable pair
(B′, T ′). The group B′∩M is a Borel subgroup of M and Ω(M,T ′) acts simply
transitively on the Weyl chambers determined by (B′∩M,T ′). The Weyl group
Ω(M,T ′) also acts transitively on the L-packet Πϕ,M through the quasicharac-
ters of T ′(R) corresponding to each representation therein (§4.3 [Mez12], page
134 [Lan89]). These actions of the Weyl group allow one to choose an essentially
square-integrable representation $Λ ∈ Πϕ,M whose corresponding quasicharac-
ter Λ has differential in the positive chamber determined by B′ ∩M . This is
equivalent to choosing µ ∈ s∗ ⊗ C so that µ|sa belongs to the Weyl chamber
determined by B′ ∩M .

We know that parabolic induction furnishes a bijection between Πϕ,M and
Πϕ, and we are assuming that Πϕ = ω ⊗ Πϕ ◦ θ∗. Moreover, since δ∗ ∈ T ′(R)
we have

ω ⊗ (ind
G∗(R)
P (R) $Λ)θ

∗ ∼= ω ⊗ (ind
G∗(R)
P (R) $Λ)δ

∗θ∗

∼= ind
G∗(R)
(δ∗θ∗)−1·P (R) ω|M(R) ⊗$δ∗θ∗

Λ(4.17)

∼= ind
G∗(R)
P (R) ω|M(R) ⊗$δ∗θ∗

Λ ∈ Πϕ

(see the proof of Proposition 4.1 [Mez07]). Therefore there exists w ∈ Ω(M,T ′)
such that $w−1Λ = ω|M(R) ⊗ $δ∗θ∗

Λ . This identity passes to the level of qua-
sicharacters, namely

(4.18) w−1 · Λ = ω|T ′(R)(Λ ◦ θ∗|T ′(R)).

Since Int(δ∗)θ∗ preserves B′ ∩M and ω is trivial on T ′der(R), the differential
of the quasicharacter w−1 · Λ lies in the positive Weyl chamber, as does Λ. By
Assumption 5, Λ is regular so the simply transitive action forces w to be trivial.
This proves

(4.19) Λ = ω|T ′(R)(Λ ◦ θ∗|T ′(R))

and

(4.20) $Λ = ω|M(R) ⊗$δ∗θ∗

Λ .

The substitution of (4.20) into (4.17) completes the proof in the quasisplit case.
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The proof in general follows by transport de structure via the map Int(gT ′)ψ,
which determines an R-isomorphism between the fundamental tori T ′ and S (see
(4.36)). See Corollary 2 [Mez12] for the transport argument when S is elliptic
in G.

Now that we know there are representations in Πϕ which are stable under
twisting we may parametrize them using Ω(M,S). Define (Ω(M,S)/ΩR(M,S))δθ

to be the subset of those cosets in Ω(M,S)/ΩR(M,S) which have a representa-
tive w ∈ Ω(M,S) satisfying

(4.21) w−1 δθ w(δθ)−1 ∈ ΩR(M,S).

Suppose $Λ is the representation Πϕ,M of Lemma 4.11 which is stable under
twisting. Suppose w ∈ Ω(M,S) is a representative of a coset in Ω(M,S)/ΩR(M,S).
Then according to Lemma 15 [Mez12]

$w−1Λ
∼= ω|M(R) ⊗$δθ

w−1Λ

if and only if w satisfies (4.21).

Proposition 4.12. The subset of representations in Πϕ which are stable under
twisting is {

ind
G(R)
P (R) $w−1Λ : w ∈ (Ω(M,S)/ΩR(M,S))δθ

}
.

Proof. It is a consequence of (4.17) that the subset of representations in Πϕ

which are stable under twisting contains the set in brackets. To prove the

reverse inclusion, suppose w ∈ Ω(M,S) and ind
G(R)
P (R) $w−1Λ is stable under δθ.

According to the Langlands Disjointness Theorem (pp. 149-151 [Lan89]), there
exists k ∈ NG(R)(AM ) such that $w−1Λ is stable under kδθ. Since k ∈ G(R)
the maximal torus kSk−1 is defined over R and also elliptic in M . As all
elliptic tori of M are M(R)-conjugate, we may assume that k normalizes S
while maintaining the stability of $w−1Λ under kδθ. This stability implies

kδθw−1 · Λ = w−1 · Λ.

By assumption δθ · Λ = Λ so that we may rewrite the above equation as

w−1
1 k · Λ′ = Λ′

where Λ′ = δθw−1(δθ)−1 · Λ and w1 = w−1δθw(δθ)−1. The differential of the
quasicharacter Λ′ is G-regular so that w−1

1 k is the identity in Ω(G,S) (Lemma
B §10.3 [Hum94]). It follows that w1 is represented by an element in G(R).
Looking back to (4.21), this means that w ∈ (ΩR(M,S)/ΩR(M,S))δθ.

This corollary tells us that (Ω(M,S)/ΩR(M,S))δθ is a spectral parameter-
izing set. Despite appearances, it is not so different from the geometric parame-
terizing set Sδθ\(NG(Sσ)/NG(R)(S))δθ. The intermediary between the two sets
is

Sδθ\(NM (S)/NM(R)(S))δθ

whose definition is given by substituting M = G in (4.15).
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Lemma 4.13. Suppose x ∈ G such that x−1δθ(x) ∈ G(R). Then there exists
y ∈ G(R) such that xy ∈M .

Proof. Fix a maximally R-split torus S′ containing Sd and a positive system
on R(G,S′). Choose β∨ ∈ X∗(Sd) ⊂ X∗(S

′) as regular as possible in the
positive chamber and let P (β∨) be its corresponding R-parabolic subgroup (see
Proposition 20.4 [Bor91]). By construction P (β∨) has Levi decomposition MU .
According to Lemma 4.9, the map Int(x−1)|S is defined over R so that x−1Sdx
is an R-split torus. Consequently, x−1P (β∨)x = P (x·β∨) is also an R-parabolic
subgroup. By Theorem 15.2.6 [Spr98] and Theorem 20.9 [Bor91], there exists
y ∈ G(R) such that (xy)−1Sdxy ⊂ S′ and (xy)−1P (β∨)xy = P (β∨). The latter
equation implies that xy ∈ P (β∨) (Theorem 11.16 [Bor91]). Writing xy = mu
according to the Levi decomposition P = MU , the earlier containment implies
that

u−1m−1smus−1 = u−1sus−1 ∈ S′ ∩ U = {1}, s ∈ Sd.

In other words, the element u belongs to M = ZG(Sd) and so xy ∈M .

We remark that Lemma 4.9 and Lemma 4.13 do not rely on the θ-ellipticity
of δ and so remain true without the assumption that S is fundamental in G.
This fact will be used in section 7.

Proposition 4.14. The canonical map from

Sδθ\(NM (S)/NM(R)(S))δθ into Sδθ\(NG(Sσ)/NG(R)(S))δθ

is a bijection.

Proof. The injectivity of this map follows from NG(R)(S) ∩M = NM(R)(S).
To prove surjectivity, suppose x ∈ NG(Sσ) is a representative of a double coset
on the right. Then x−1δθ(x) ∈ G(R) by Proposition 4.10. Choosing y ∈
G(R) as in Lemma 4.13, we see that xy ∈ M . The map Int((xy)−1)|S is
defined over R. Consequently, the torus (xy)−1S(xy) is also elliptic in M . After
possibly multiplying y on the right by an element of M(R) we may assume
that (xy)−1S(xy) = S (Lemma 2.3.4 [Wal88]) so that xy ∈ NM (S) and y ∈
NG(R)(S). Finally, as M is preserved by Int(δ)θ we have (xy)−1δθxy(δθ)−1 ∈
M , and

(xy)−1δθxy(δθ)−1 = y−1 x−1δθ(x) θ(y)δ−1 ∈ G(R) ∩M = M(R).

This proves that xy ∈ NM (S) is a representative of a double coset on the left
and that the canonical injection is surjective.

Proposition 4.15. 1. There is a canonical surjection

(4.22) Sδθ\(NG(Sσ)/NG(R)(S))δθ → (Ω(G,S)σ/ΩR(G,S))δθ

whose fibres are orbits of the kernel of the homomorphism

(4.23) S/S(R)Sδθ
δθ−1−→ S/S(R)
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induced by Int(δ)θ − 1. Moreover, one may choose representatives z1 ∈
S for elements of this kernel such that (δθ − 1)(z1) are elements in the
component subgroup of Sd(R).

2. The canonical injection

(4.24) Ω(M,S)/ΩR(M,S)→ Ω(G,S)σ/ΩR(G,S)

passes to a bijection

(4.25) (Ω(M,S)/ΩR(M,S))δθ → (Ω(G,S)σ/ΩR(G,S))δθ.

Proof. According to Proposition 2 [Mez12], it is proven that there is a canonical
surjection

Sδθ\(NM (S)/NM(R)(S))δθ → S\S(NM (S)/NM(R)(S))δθ

→ (Ω(M,S)/ΩR(M,S))δθ(4.26)

whose fibres are orbits of the kernel of (4.23). The split component of the centre
of M = ZG(Sd) is Sd (Proposition 20.6 [Bor91]). As Sd(R) is isomorphic to a
product of copies of R×, there is an elementary 2-group F ⊂ Sd(R) such that
Sd(R) is the internal direct product of F and Sd(R)0. The component subgroup
of Sd(R) is isomorphic to the subgroup F . It is also proven in Proposition 2
[Mez12] that representatives z1 ∈ S for elements in the kernel of (4.23) may be
chosen so that (δθ − 1)(z1) belongs to F .

By following the arguments of Proposition 2 [Mez12], one sees analogously
that there is a canonical surjection

Sδθ\(NG(Sσ)/NG(R)(S))δθ → S\S(NG(Sσ)/NG(R)(S))δθ

→ (Ω(G,S)σ/ΩR(G,S))δθ

whose fibres are orbits of the kernel of (4.23). The desired form of the represen-
tatives for elements in this kernel have been established above. Thus, the first
assertion of the proposition is proven.

The second assertion follows from the bijection of Proposition 4.14 by iden-
tifying elements of the cosets in (4.25) with the orbits of the kernel of (4.23) of
the double cosets.

4.3 Twisted characters

The only representations in Πϕ which make any contribution to twisted en-
doscopy are those which are stable under twisting. These representations were
identified in Lemma 4.11 and Proposition 4.12. Let us return to their proofs.
We have a quasicharacter Λ of S(R) which uniquely determines and essentially
square-integrable representation $Λ in Πϕ,M . The analogue of (4.19) in the
present context is

(4.27) Λ = ω|S(R)(δθ · Λ),
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for, unlike the quasisplit case where δ∗ ∈ T ′, the element δ need not belong to
S (§3.3 [KS99]). Taking the differential of (4.27) and restricting to sa ∩ mder,
we find that

(4.28) µ|sa∩mder
= δθ · µ|sa∩mder

.

The representation

π = πΛ = ind
G(R)
P (R)$Λ

is stable under twisting. More precisely, there exists a unitary linear operator
U = Uπ on the space Vπ of π such that

(4.29) U ◦ ω−1(x)π(x) = πθ(x) ◦ U, x ∈ G(R).

We define the twisted character Θπ,U as the distribution on G(R) defined by

(4.30) f 7→ tr

∫
G(R)

f(xθ)π(x) U dx, f ∈ C∞c (G(R)θ)

(see (34) [Mez12]). This is the kind of distribution which appears on the right of
(4.3). Our plan is to reduce this distribution to one on Gder(R)0. In this way, we
may temporarily remove the quasicharacter ω from the picture and associate the
resulting representations to those of a larger disconnected Lie group generated
by Gder(R)0 and Int(δ)θ. In this environment we obtain an explicit formula
for the distribution of a twisted character on θ-regular and θ-elliptic elements
of Gder(R)0. This is the formula which is amenable to comparison with the
characters of the representations in ΠϕH1

.
All of this was done in great detail in §§4-5 [Mez12] when M = G. Fortu-

nately, the case at hand is encompassed by the same theory. Our exposition will
therefore sketch the ideas present in [Mez12], bringing to the attention of the
reader the few points in which the theory must be adjusted to allow for proper
Levi subgroups M .

We wish to see how the stability of π under twisting behaves relative to
decomposition (4.13). For the remainder of this section then then representation
$1 is defined as in Corollary 4.8, not as in Lemma 4.6.

Lemma 4.16. The representation ind
Gder(R)0

P (R)∩Gder(R)0$1 is equivalent to (ind
Gder(R)0

P (R)∩Gder(R)0$1)δθ.

Proof. Imitating the argument of (4.17), we obtain

(ind
Gder(R)0

P (R)∩Gder(R)0$1)δθ ∼= ind
Gder(R)0

δθ·P (R)∩Gder(R)0$
δθ
1
∼= ind

Gder(R)0

P (R)∩Gder(R)0$
δθ
1 .

The representation $1 is determined up to equivalence by the Harish-Chandra
parameter µ|s∩mder

, and $δθ
1 has Harish-Chandra parameter δθ · µ|sa∩mder

. The
lemma therefore follows from (4.28).

Let δ = δ1, δ2, . . . δk ∈ G(R) be a complete set of representatives for the
quotient group G(R)/ZG(R)Gder(R)0 (Corollary 4.4).
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Lemma 4.17. Suppose 1 ≤ j ≤ k. Then the representation ind
Gder(R)0

P (R)∩Gder(R)0$1

is equivalent to (ind
Gder(R)0

P (R)∩Gder(R)0$1)δjθ if and only if j = 1. In this case, the

restriction of π(δ)U|V1
of π(δ)U to the subspace V1 ⊂ Vπ of ind

Gder(R)0

P (R)∩Gder(R)0$1 is

an isomorphism which intertwines ind
Gder(R)0

P (R)∩Gder(R)0$1 with (ind
Gder(R)0

P (R)∩Gder(R)0$1)δθ.

Proof. This is an exercise in decomposing a finitely induced representation using
Clifford’s theorem and Frobenius reciprocity. The proof when M = G is given
in Lemma 3 [Mez12]. The general proof follows by replacing $1 in Lemma 3

[Mez12] with ind
Gder(R)0

P (R)∩Gder(R)0$1.

Lemma 4.17 provides us with an intertwining operator between representa-
tions on Gder(R)0. Let us denote it by U1 = π(δ)U|V1

. In proving Lemma 4.17
one finds that the only operator π(δj)U which preserves V1 is π(δ1)U = U1. This
has the effect of reducing the twisted “trace” of the finitely induced representa-

tion π to that of ind
Gder(R)0

P (R)∩Gder(R)0$1. The precise statement of this fact is the

next lemma, whose proof is that of Lemma 4 [Mez12] with V1 replacing V$.

Lemma 4.18. Suppose f ∈ C∞c (G(R)θ) and define f1 ∈ C∞c (Gder(R)0δθ) by

f1(xδθ) =
1

|Gder(R)0 ∩ ZG(R)|

k∑
r=1

ω(δr)

∫
ZG(R)

f(zδ−1
r xδθδr)χϕ(z) dz,

for all x ∈ Gder(R)0. Then

Θπ,U(f) =

∫
Gder(R)0

f1(xδθ) ind
Gder(R)0

P (R)∩Gder(R)0$1(x) U1 dx.

We define the distribution Θ$1,U1
on Gder(R)0δθ by

Θ$1,U1(h) =

∫
Gder(R)0

h(xδθ) ind
Gder(R)0

P (R)∩Gder(R)0$1(x) U1 dx, h ∈ C∞c (Gder(R)0δθ).

So that the conclusion of Lemma 4.18 becomes

(4.31) Θπ,U(f) = Θ$1,U1(f1).

We now present an alternative and more explicit description of Θ$1,U1 given
in [Bou87]. We shall express Θ$1,U1 in terms of an ordinary representation
character of the group generated by Gder(R)0 and δθ. Let us begin with a
better description of the group. We may regard Int(δ)θ as an automorphism of
Gder(R)0 and define L = Gder(R)0o〈δθ〉 to be the resulting semidirect product.
According to (36) [Mez12], there exists s0 ∈ Sder(R) and a positive integer `
such that

(4.32) (Int(δ)θ|Gder(R)0)` = Int(s0).
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In addtion, the abelian subgroup ZGder(R)0 o 〈s−1
0 (δθ)`〉 is normal, centralizes

Gder(R)0, and its product with Gder(R)0 is of finite index in L. These are the
requirements for the group L to be compatible with (*) §1.2 [Bou87].

Another requirement pertaining to the structure of L is the existence of a
maximal compact subgroup which is preserved by Int(δ)θ.

Lemma 4.19. There exists a maximal compact subgroup K of Gder(R)0 such
that δθ ·K = K.

Proof. Let K ′ be a maximal compact subgroup of Gder(R)0. As Int(δ)θ is de-
fined over R, the group δθ ·K ′ is also a maximal compact subgroup of Gder(R)0.
There exists x ∈ Gder(R)0 such that xδθ ·K ′ = K ′ (Corollary 5.3 [Spr79]). Since
Sder is a fundamental torus its anisotropic component Sder,a = Sder∩Sa defines a
maximal torus in K ′. We may assume that xδθ ·Sder,a(R) = Sder,a(R) (Lemma
2.3.4 [Wal88]). The centralizer ZGder

(Sder,a) is a Levi subgroup whose roots
are the real roots of R(Gder, Sder) (Lemma 15.3.2 (ii) [Spr98]). By assumption,
there are no real roots in R(Gder, Sder), so that the Levi subgroup is minimal
and ZGder

(Sder,a) = Sder (Proposition 8.1.1 (ii) [Spr98]). In consequence

x · Sder = xδθ · Sder = xδθ · ZGder
(Sder,a) = ZGder

(xδθ · Sder,a) = Sder.

This implies that x ∈ NGder(R)(Sder(R)) and by Proposition 1.4.2.1 [War72]
x = x1x2, where x1 ∈ K and x2 ∈ Sder(R) ∩ Sd(R)0. A substitution of this
decomposition reveals

δθ ·K ′ = x−1
2 x−1

1 ·K ′ = x−1
2 ·K ′.

Finally, observe that the differential of Int(δ)θ has finite action on sder,d by
(4.32). Therefore the differentials Int(δ)θ and 1 − Int(δ)θ are semisimple. The
latter fact yields a decomposition

sder,d = sδθder,d ⊕ (1− δθ)sder,d.

The θ-ellipticity of δ forces Sδθd (R) to be a subgroup of ZG(R) and as a result
sδθder,d = {0}. Together with the above decomposition of sder,d we conclude that

there exists x3 ∈ Sd(R)0 such that x2 = (1− δθ)(x3). Set K = x−1
3 ·K ′. Then

K is a maximal compact subgroup of Gder(R)0 and δθ ·K = K.

Having taken care of the requirements on L, we may give the description of
Θ$1,U1

afforded by [Bou87]. This description is centred around the parameter
Λ1 = µ|sder

. The parameter Λ1 satisfies the following requirements of §5-6
[Bou87]. It is G-regular (Assumption 5), or bien polarisable in the parlance of
§5.2 [Bou87]. It is admissible (Lemma 4.5). A superficial variant of equation
(4.27) reads as δθ ·Λ1 = Λ1, so that the centralizer of Λ1 in L is Sder(R)o 〈δθ〉
and L = Sder(R) o 〈δθ〉Gder(R)0 (cf. §6 [Bou87]). In order for the results of
§6 [Bou87] to apply, Λ1 must also be elliptic in the sense that its restriction to
sder,d is zero (§5.2 [Bou87]).

Lemma 4.20. The parameter Λ1 is elliptic.
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Proof. It suffices to prove that µ|sd is central (Corollary 1.53 [Kna96]), and to do
this it suffices to prove that 〈µ|sd , α〉 = 0 for all α ∈ R(G,S)∨ (Proposition 8.1.8
(i) [Spr98]). Suppose α ∈ R(G,S)∨ and recall the compatible isomorphisms of
(3.6), (3.10), and (4.36). Using these isomorphisms and the definition of µ from
µH1

, we may transport the pairing 〈µ|sd , α〉 to the context of α ∈ R(Ĝ, T ) and

µ ∈ X∗((T θ̂)0) ⊗ C (see 4b in section 3.2). Thus, µ|sd ∈ X∗((T θ̂)0) ⊗ C and
〈µ|sd , α〉 = 〈µ|sd , αres〉 where αres = α|(T θ̂)0 (cf. Theorem 1.1.A [KS99]). If

αres 6= 0 then it may be identified with a root in α1 ∈ R(H1, TH1)∨ under the
isomorphisms of (3.6) (see (1.3.4) [KS99] and (137) [Mez12]). In this manner,
µ is identified with µH1

. The composition of these isomorphisms is defined over
R so that the restriction µ|sd is identified with the restriction of µH1

to the split
component of TH1

. Since TH1
= Hγ1

1 is elliptic in H1 (Lemma 12 [Mez12]), this
split component is central and

〈µ|sd , α〉 = 〈(µH1
)|tH1,d

, α1〉 = 0.

With all requirements in place, we define a distribution character of a repre-
sentation of L which is expressible as a locally integrable function on the regular
elements of L. Proposition 6.1.2 [Bou87] gives an explicit formula of this func-
tion on L-regular elements in Sder(R) o 〈δθ〉 (which normalize the maximal
compact subgroup K). By Lemma 4.19 and the θ-ellipticity of δ, one may ex-
pect such a formula on L-regular elements in Sδθder(R)δθ ⊂ L. A particular form
of this formula is given in the next lemma whose proof is no different from the
one given in §5.4 [Mez12].

Lemma 4.21. Suppose x ∈ Sδθder(R) such that xδθ is regular in L, w ∈ Ω(Gder(R)0, Sder(R))δθ

and ẇ ∈ Gder(R)0 is any representative for w. Suppose further that X ∈ sder

satisfies exp(X) = x. Then Θ$1,U1
(xδθ) is equal to

(4.33) (−1)q
−Λ1

τ̄0(δθ)
∑

w∈Ω(Gder(R)0,Sder(R))δθ

det(w) e(wiΛ1−ρ)X eiΛ1E(ẇ)

det(1−Ad(xδθ))|ū
,

where τ̄0 is the quasicharacter of Sder(R)〈δθ〉 which satisfies

τ̄0(exp(X)) = e(iΛ1−ρ)(X), X ∈ sder

and

(4.34) τ̄0(δθ) = ζe(iΛ1−ρ)(log(s0)/`)

for some fixed `th root of unity ζ ∈ C×.

We must elucidate the expressions in Lemma 4.21. The regular element
Λ1 ∈ s∗der determines a Borel subalgebra of gder ⊗ C which is preserved by
Int(δ)θ. Let u be the nil-radical of this complex Borel subalgebra and ū be the
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nil-radical of the opposite Borel subalgebra. The term q−Λ1 is the number of
negative eigenvalues of the matrix given by the Hermitian form

X 7→ −iΛ1([X, X̄]), X ∈ u

(see §5.1 [Bou87]). The term E(ẇ) ∈ sder is defined by

exp(E(ẇ)) = ẇ(δθ)ẇ−1(δθ)−1 ∈ Sder(R)

(see (45) [Mez12]).
The only remaining unspecified term is the `th root of unity ζ. Equation

(4.32) implies that U`1 intertwines ind
Gder(R)0

P (R)∩Gder(R)0$1 with (ind
Gder(R)0

P (R)∩Gder(R)0$1)s0 .

Schur’s Lemma then tells us that U`1 is a scalar multiple of ind
Gder(R)0

P (R)∩Gder(R)0$1(s0).

Since the intertwining operator U of (4.29) is only defined up to a scalar multiple,

we may normalize U so that U`1 = ind
Gder(R)0

P (R)∩Gder(R)0$1(s0). This normalization is

unique only up to multiplication by an `th root of unity, and defines an extension

of ind
Gder(R)0

P (R)∩Gder(R)0$1 to L (§5.4 [Mez12]).

On the other hand, using the theory of Duflo, the quasicharacter τ̄0 of
Sder(R) o 〈δθ〉 fixes a unique representation of L. This representation fixes

a unique operator which intertwines ind
Gder(R)0

P (R)∩Gder(R)0$1 with its δθ-conjugate

((2) III.5 [Duf82], (37) [Mez12]). As we have already fixed the intertwining op-
erator U1 with this same property, Schur’s Lemma dictates that the previous
operator is a scalar multiple of U1. As in the previous argument, this scalar
must be an `th root of unity. We choose ζ in the definition of τ̄0(δθ) so that the
scalar multiple is one and the two operators coincide.

We shall encounter this ζ again in the definition of the spectral transfer
factors, and it appears there so as to cancel with the ζ occurring in the twisted
character Θ$1,U1 . As a result, the right-hand side of (4.3) will be independent
of this normalization of U1.

Lemma 4.21 provides a fine expansion for the twisted character Θ$1,U1
.

We may alternatively write this twisted character as Θ$Λ1
,τ̄0 , for $1 is de-

termined by Λ1 and U1 is determined by τ̄0(δθ). Writing the twisted char-
acter in this way suggests how one may obtain analogous expansions for the
twisted characters in Proposition 4.12. For all w ∈ (Ω(M,S)/ΩR(M,S))δθ we

set πw−1Λ = ind
G(R)
P (R) $w−1Λ. By (4.13) it is apparent that

(4.35) πw−1Λ = ind
G(R)
ZG(R)G(R)0

(
(χϕ)|ZG(R) ⊗ ind

Gder(R)0

P (R)∩Gder(R)0$w−1Λ1

)
.

Given any representative ẇ ∈ NM (S) for w, one may verify that the theory of
Duflo and Bouaziz underlying Lemma 4.21 applies equally well with Λ1 replaced
by w−1Λ1, τ̄0 replaced by τ̄ ẇ

−1

0 and δθ replaced by ẇ−1δθẇ. We therefore
define Θπw−1Λ,Uπ

in terms of Θ
$w−1Λ1

,τ̄ ẇ
−1

0
as in (4.31), after making the above

replacements. For those π ∈ Πϕ which are not stable under twisting, i.e. not
given in Proposition 4.12, we set Uπ = 0 and Θπ,Uπ equal to the zero distribution.
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4.4 A bridge between S and endoscopic tori

Our goal here is to describe a bridge between the maximal torus TH = Hγ

of H and the maximal torus S so that we may compare values of (twisted)
characters on each of them. This bridge comes in three pieces. The first piece
is isomorphism (3.12) which passes to an isomorphism

Sδθ(R)0 Int(gT ′ )ψ−→ (T ′)θ
∗
(R)0.

In fact, this map extends to an isomorphism of the respective centralizers

(4.36) S(R)
Int(gT ′ )ψ∼= T ′(R),

as the commutator of σ and Int(gT ′)ψ lies in Int(T ′) ((3.3.6) [KS99]) and acts
trivially on T ′. The second piece is the homomorphism from (T ′)θ

∗
(R)0 to

T ′θ∗(R)0 defined by

(4.37) t 7→ t (1− θ∗)T ′(R), t ∈ (T ′)θ
∗
(R)0.

This homomorphism is surjective and has finite kernel (see the proof of Lemma
12 [Mez12]). The third piece is the restriction of the admissible embedding
(3.10) to T ′θ∗(R)0 which yields an isomorphism

T ′θ∗(R)0 ∼= TH(R)0.

We denote the composition of these three maps by

(4.38) η : Sδθ(R)0 → TH(R)0.

The map η is not canonical, depending as it does on the choices for BH , B′, gT ′ ,
etc. However, our results are independent of these choices. Although η need
not be an isomorphism, it is a local isomorphism. That is to say, there is an
open subset of the identity V ⊂ Sδθ(R)0 such that η maps V homeomorphically
onto η(V).

Let TH1 denote the pre-image of TH under the projection pH in (3.3). On
the set V we may extend η to a map η1 : V → TH1

(R)0 by noting that (3.3)
induces a split exact sequence of Lie algebras

(4.39) 0→ z1 → tH1
→ tH → 0

and composing η with resulting local injection of TH(R)0 into TH1(R)0.
According to Proposition 4.12 [Ren03], η1(x)γ1 is a norm of xδ for every

x ∈ Sδθ(R)0 such that xδ is strongly θ-regular. As the latter elements form a
dense subset of Sδθ(R)0, it follows that the set of norms of elements in Sδθ(R)0δ
forms a dense subset of TH(R)0.
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4.5 Transfer factors

The transfer factors in (4.3) have yet to be defined. For convenience, we begin
by duplicating the initial presentation in §6.2 [Mez12] of the geometric transfer
factors of Kottwitz and Shelstad (§§4-5 [KS99]). We set forth by fixing γ0

1 ∈
H1(R) and strongly θ-regular δ0 ∈ G(R) such that γ0

1 is a norm of δ0. One may
choose ∆(γ0

1 , δ
0) arbitrarily in C× and then set (see (5.1.1) [KS99])

(4.40) ∆(γ̄1, δ̄) = ∆(γ̄1, δ̄; γ
0
1 , δ

0) ∆(γ0
1 , δ

0)

for any strongly θ-regular δ̄ ∈ G(R) with norm γ̄1 ∈ H1(R). The term
∆(γ̄1, δ̄; γ

0
1 , δ

0) is the product of four scalars ∆I(γ̄1, δ̄; γ
0
1 , δ

0), . . . , ∆IV (γ̄1, δ̄; γ
0
1 , δ

0).
Other than ∆III(γ̄1, δ̄; γ

0
1 , δ

0), these scalars are quotients of the form

∆j(γ̄1, δ̄; γ
0
1 , δ

0) = ∆j(γ̄1, δ̄)/∆j(γ
0
1 , δ

0), j = I, II, IV.

We choose
∆(γ0

1 , δ
0) = ∆I(γ

0
1 , δ

0) ∆II(γ
0
1 , δ

0) ∆IV (γ0
1 , δ

0)

so that (4.40) becomes

∆(γ̄1, δ̄) = ∆I(γ̄1, δ̄) ∆II(γ̄1, δ̄) ∆III(γ̄1, δ̄; γ
0
1 , δ

0) ∆IV (γ̄1, δ̄).

In the case that γ̄1 = η1(x)γ1 and δ̄ = xδ the transfer factor ∆(η1(x)γ1, xδ) is
equal to
(4.41)

∆I(η1(x)γ1, xδ) ∆II(η1(x)γ1, xδ) ∆III(η1(x)γ1, xδ; γ
0
1 , δ

0) ∆IV (η1(x)γ1, xδ)

This closes the duplicated text, but most of the difficult arguments in this section
remain unchanged from those in §6.2 [Mez12]. As a matter of fact, of all four
∆-terms in (4.41) are the same as in the present case. The only term for which
this claim requires any justification is ∆II , as it is the only term which might
depend on the R-structure of S being fundamental rather than elliptic.

The term ∆II(η1(x)γ1, xδ) is a quotient (§4.3 [KS99]) which depends on a
choice of a-data, and a choice of χ-data ((2.2) and (2.5) [LS87], §1.3 [KS99]).
The numerator of ∆II(η1(x)γ1, xδ) is expressed in terms of products over rep-
resentatives αres for Galois orbits in Rres(G

∗, T ′) (§1.3 [KS99])
(4.42) ∏

αres, typeR1,R2

χαres

(
Nα((xδ)∗)− 1

aαres

) ∏
αres, typeR3

χαres

(
Nα((xδ)∗) + 1

aαres

)
.

The the term Nα and the three types of Galois orbits are detailed in §1.3 [KS99].
We wish to equate (4.42) with (75) [Mez12], which is a product over negative
roots
(4.43)

(−i)dim u
(G∗)θ∗

∣∣∣∏αres<0, typeR1,R2
Nα((xδ)∗)− 1

∏
αres<0, typeR3

Nα((xδ)∗) + 1
∣∣∣∏

αres<0, typeR1,R2
Nα((xδ)∗)− 1

∏
αres<0, typeR3

Nα((xδ)∗) + 1
.
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In §6.2 [Mez12] this was achieved by first proving that each Galois orbit had
a unique negative representative when the torus S was elliptic. The rest then
follows by choosing a-data

aαres
=

{
−i, αres > 0
i, αres < 0

,

and χ-data

χαres
(z) =

{
|z|/z, αres > 0
z/|z|, αres < 0

z ∈ C×.

The key step is the proof that that each Galois orbit had a unique negative
representative, and for this we require a positive system on Rres(G

∗, T ′). Re-
call from section 4.2 that we have fixed a Borel subgroup B′ of G∗ and that
Int(gT ′)ψ(µ|sa) is G∗-regular and lies in the positive chamber determined by B′.
We choose the positive roots in R(G∗, T ′) to be R(B′, T ′). Since Int(gT ′)ψ is
defined over R on S(R) (see (4.36)), it follows from (4.5) that

σ(Int(gT ′))ψ(µ|sa)) = Int(gT ′)ψ(σ(µ|sa)) = −Int(gT ′)ψ(µ|sa),

and σ(B′) is opposite to B′. In particular, every Galois orbit in R(G∗, T ′)
has a unique negative representative. The same is true for Rres(G

∗, T ′) by
restriction. This justifies the equality of (4.42) with (4.43). The denominator
of ∆II(η1(x)γ1, xδ) is identical to the one expressed in §6.2 [Mez12] and so
∆II(η1(x)γ1, xδ) is equal to

(4.44) i
dim u

(G∗)θ∗−dim uH det(1−Ad(η(x)γ))|ūH
∣∣det(1−Ad((xδ)∗)θ∗)|ūG∗

∣∣
det(1−Ad((xδ)∗)θ∗)|ūG∗

∣∣det(1−Ad(η(x)γ))|ūH
∣∣ .

Taking for granted that the geometric transfer factors of [Mez12] are equally
valid in the present context, we define the spectral transfer factors. By Propo-
sition 4.12 the set of representation in Πϕ is{

ind
G(R)
P (R) $w−1Λ : w ∈ (Ω(M,S)/ΩR(M,S))δθ

}
.

For simplicity, set πw−1Λ = ind
G(R)
P (R) $w−1Λ for all w ∈ (Ω(M,S)/ΩR(M,S))δθ.

Then we define the spectral transfer factor ∆(ϕH1 , πw−1Λ) to be the product of
three scalars:

(4.45)
nθ|Ω(Gder(R)0, (Sδθder(R))0δθ)|

|Ω(Gder(R)0, Sder(R))δθ||det(1−Ad(δθ))|s/sδθ⊗C|
,

(4.46)
sgn(H)

(−1)q
−Λ1 ζ

,

(4.47)
idim u

Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉〈 inv(δ, ẇ−1δθ(ẇ)), κδ〉.
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We refer the reader to [Mez12] for the exact definitions of the expressions occur-
ring in each of these scalars. From a bird’s-eye view, (4.45) is a constant which
depends entirely on the structure of S(R) under twisting by δθ. The constant
(4.46) is a vestige of the character expansions of Harish-Chandra or Bouaziz (cf.
(4.33)). The scalar (4.47) is derived from the geometric transfer factor ∆(γ1, δ)
after most of ∆II(γ1, δ) and ∆IV (γ1, δ) are removed. Scalars (4.45) and (4.47)
appear to depend on the choice of δ, but it is proven3 in §6.3.1 [Mez12] that any
choice of strongly θ-regular and θ-elliptic element in G(R) produces the same
spectral transfer factors. As it stands, the spectral transfer factors appear to
depend on a choice of a- and χ-data. We expect that there is in fact no such
dependence for these spectral transfer factors ought to coincide with those of
[She12] (cf. Lemma 7.5 [She]).

For those π ∈ Πϕ which are not stable under twisting, i.e. not given in
Proposition 4.12, we set ∆(ϕH1 , π) = 0.

4.6 Spectral comparisons

The terms in the spectral identity (4.3) are now all defined. We shall give a proof
of (4.3) under some restrictions. First we prove that (4.3) holds for functions of
small θ-elliptic support. To prove (4.3) for arbitrary functions in C∞c (G(R)θ)
we will later make the assumptions that the quasicharacter ω is trivial and θ is
of finite order. The finiteness assumption shall be weakened in section 6.

We should perhaps qualify what is meant by “proof” in this section. As
before, the lion’s share of the proofs are already present in [Mez12]. Rather
than enter the arguments therein we shall give an overview and indicate where
adjustments must be made to accommodate fundamental series, as opposed to
square-integrable, representations. In broad strokes, one must replace a square-

integrable representation $1 with ind
Gder(R)0

P (R)∩Gder(R)0$1, and a parameterizing

set (Ω(G,S)/ΩR(G,S))δθ with (Ω(M,S)/ΩR(M,S))δθ. All other arguments
remain unchanged.

We begin by specifying the small elliptic support of a function. There is an
open subset of the identity V ⊂ Sδθ(R)0 such that η maps V homeomorphically
onto η(V) ⊂ TH(R)0. Suppose first that f ∈ C∞c (G(R)θ) has support in the
G(R)-conjugates of ZG(R)0Vδθ. By [She12] there exists a function fH1

as in
(3.13) which satisfies the geometric transfer identity (3.14).

By applying the Weyl integration formula and identifying TH(R) with the
quotient TH1(R)/Z1(R), the left-hand side of (4.3) may be rewritten as

(4.48)
1

|Ω(H(R), TH(R))|

∫
TH(R)

∑
πH1
∈ΠϕH1

ΘπH1
(t)Ot(fH1

)DH(t)2 dt.

Here DH is the absolute value of the Weyl denominator for H (§4.5 [KS99]). We
may replace the sum over ΠϕH1

with a sum over the set Ω(H,TH)/ΩR(H,TH)

3In the proof of Lemma 21 [Mez12] the connectedness, and not the compactness, of Sder(R)
is the salient feature.
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and make a change of variable t 7→ ẇtẇ−1 for representatives ẇ ∈ NH(TH) of
w ∈ Ω(H,TH)/ΩR(H,TH). This introduces

SOt(fH1
) =

∑
w∈Ω(H,TH)/ΩR(H,TH)

Oẇtẇ−1(fH1
)

into (4.48). The geometric transfer identity (3.14) applies, and (4.48) becomes

1

|Ω(H,TH)|

∫
Sδθ(R)0

∑
w1

ΘπH1
(ẇ1η1(x)γ1ẇ

−1
1 )

×
∑
w

∆(η(x)γ, ẇ−1xδθ(ẇ))Oẇ−1xδθẇ(f)DH(η(x)γ)2 dx,(4.49)

where the first and second sums are taken over Ω(H,TH)/ΩR(H,TH) and (Sδθ\(NG(S)/NG(R))
δθ

respectively.
The next manoeuvre is to express the character values ΘπH1

(ẇ1η1(x)γ1ẇ
−1
1 )

in terms of the quasicharacter data given by the admissible homomorphism
ϕH1

((102) [Mez12]) and thereupon combine that data with the four factors
of ∆(η(x)γ, ẇ−1xδθ(ẇ)) (see (4.41)). The combination with the ∆III -factor
ultimately produces a quasicharacter on S(R) (Corollary 4 [Mez12]). The com-
bination with the ∆II - and ∆IV -factors produces a quotient with the twisted
Weyl denominator DGθ(xδ) and det(1−Ad(xδ)θ)|ū (Lemma 16 [Mez12], (4.44)).
A further change of variable ((105) and Lemma 19 [Mez12]) recovers the twisted
characters of Lemma 4.21 and places (4.49) into the form

∑
w∈Sδθ\(NG(S)/NG(R)(S))

δθ

sgn(H)idim u
Gθ
−dim uH∆I(γ, δ) ∆III(γ1, δ; γ

0
1 , δ

0) 〈(δ∗, γ1), a−1
T ′ 〉〈inv(δ, ẇ−1δθ(ẇ)), κδ〉

(−1)q
−Λ1 ζ |Ω(Gder(R)0, Sder(R))δθ|

(4.50)

×
∫
Sδθ

der
(R)

Θ$1,U1(xδθ)

∫
Zδθ
G

(R)

χϕ(z) Oẇ−1zxδθẇ(f) dz DGθ(xδ)
2 dx.

At this stage we are pleased to discern that the baroque expression preceding the
integral is most of ∆(ϕH1 , πw−1Λ) (cf. (4.45)-(4.47)). In order to obtain all of
∆(ϕH1 , πw−1Λ) and arrive at the right-hand side of (4.3), we proceed by substi-
tuting Sδθ\(NM (S)/NM(R)(S))δθ in place of Sδθ\(NG(S)/NG(R)(S))δθ (Propo-
sition 4.15). This leads to the correct parameterizing set for the representations
in Πϕ ((4.24), Proposition 4.12). We then apply some vanishing results due to
the support of f ((108) [Mez12]) and the twisted character (Lemma 20 [Mez12]).
Finally, we utilize the twisted Weyl integration formula (Proposition 1 [Mez12])
as we did at the beginning of our comparison.

The above comparison achieves (4.3) for functions with small θ-elliptic sup-
port about any strongly θ-regular θ-elliptic element in G(R) which has a norm
in H1(R) (§6.3.1 [Mez12]). In order to prove (4.3) without restriction on the
support, we appeal to a twisted version of the Harish-Chandra Uniqueness The-
orem (Theorem 15.1 [Ren97]). In essence, this uniqueness theorem tells us that
a certain kind of distribution on G(R)θ is determined everywhere by its values
on the θ-elliptic set. In order to apply Theorem 15.1 [Ren97], we require that
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the distribution defined by

Θ(f) =
∑

πH1
∈ΠϕH1

ΘπH1
(fH1

)−
∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f), f ∈ C∞c (G(R)θ)

be invariant under conjugation by G(R) and an eigendistribution under the
action of Z(g⊗C). The property of G(R)-invariance holds only under the as-
sumption that ω is trivial (see (121) [Mez12]), and so we make this assumption.
The property of Θ being an eigendistribution is Lemma 24 [Mez12]. With these
properties in place, Θ may be regarded as a locally integrable function on G(R)θ
which satisfies a growth condition (Proposition 3.6.1 [Bou87]) required in The-
orem 15.1 [Ren97]. Before applying the uniqueness theorem we must constrain
ourselves to assuming that G(R) o 〈θ〉 has a finite number of connected com-
ponents (§12 [Ren97]). This is equivalent to making the assumption that θ be
of finite order. Under these assumptions, one may apply Theorem 15.1 [Ren97]
to (4.3). Since Θ vanishes on the elliptic Cartan subspace sδθδθ (Definitions
7.1 and 12.3 [Ren97]), it also vanishes everywhere (Theorem 1 [Mez12]). We
conclude with a theorem that encapsulates these arguments.

Theorem 4.22. Suppose ω is trivial and θ is of finite order. Then

(4.51)

∫
H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ).

Under some additional restrictions on the structure of G(R) one may extend
Theorem 4.22 to include non-trivial ω (see Theorem 2 [Mez12]).

5 Spectral transfer for limits of fundamental se-
ries

In this section we work with the same framework as that of section 4, but we
weaken Assumption 3 and remove Assumption 5. Let us concentrate on As-
sumption 5 for the moment. If we remove the Ĝ-regularity of the parameters
µ and µ|sa then the irreducible representations in Πϕ need no longer be fun-
damental series representations. As we shall see, these representations may be
obtained using the method of coherent continuation or Zuckerman tensoring.
When the Levi subgroup M of section 4 is equal to G then this method pro-
duces (essential) limits of discrete series (§7 XII [Kna86]). By analogy, when
M is allowed to be a proper Levi subgroup we shall speak of (essential) limits
of fundamental series. The goal then is to prove Theorem 4.22 for L-packets
Πϕ consisting of limits of fundamental series. This was accomplished for limits
of discrete series in §§7.2-7.3 [Mez12]. The proof for the limits of fundamental
series is essentially the same once the requisite objects and assumptions are
introduced.
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To begin, we assume that ω is trivial and θ is of finite order as in Theorem
4.22. We assume that we have the same endoscopic data as in section 4 with the
same Langlands parameter ϕH1 . However, our assumptions on the Langlands
parameter ϕ∗ for G∗ shall be weaker. The pair of elements δ ∈ G(R) and
γ1 ∈ H1(R) are as before, and these bring with them the same fundamental
torus S and Levi subgroup M . We merely assume that ϕ∗ has a representative
ϕ∗ which is an admissible homomorphism with respect to G (§8.2 [Bor79]). This
amounts to the assumption that the image of ϕ∗ is minimally contained in a
parabolic subgroup of LG which is relevant (in the sense of §3.3 [Bor79]) with
respect to G.

Lemma 5.1. The image of ϕ∗ is contained in a Levi subgroup LM dual to M
(in the sense of (3) §3.3 [Bor79]).

Proof. Without loss of generality, we assume that ϕH1(C×) ⊂ TH (§4 [Mez12]).
Let M be the centralizer in Ĝ of the subtorus equal to the identity component
of the fixed point subgroup of T under conjugation by ϕ∗(σ). ThenM is a Levi
subgroup of Ĝ (Propostion 20.4 [Bor91]). Let LM be the subgroup generated by
M and ϕ∗(σ). It is a Levi subgroup of LG by Lemma 3.5 [Bor79]. Furthermore,
the image of ϕ∗ is contained in the subgroup of LM generated by T and ϕ∗(σ).
The admissibility assumption on ϕ∗ ((ii) §8.2 [Bor79]) implies that LM is dual
to (a G(R)-conjugacy class of) an R-Levi subgroup M ′ of G ((3) §3.3 [Bor79]).
The action of ϕ∗(σ) on R(M, T ) is that of inversion (Lemma 15.3.2 [Spr98]).
In the proof of Lemma 3.1 [Lan89] one sees that this implies that M ′ contains
an elliptic maximal torus S′ such that LS′ ∼= 〈T , ϕ∗(WR)〉. By the conjugacy
theorems, Corollary 4.35 [Kna96] and Corollary 5.31 [Spr79], we may assume
that the anisotropic subtorus S′a of S′ is contained in Sa.

It follows from Assumption 1 on ϕH1
that ϕH1

(σ) acts by inversion on the
root lattice in X∗(TH) ((17) [Mez12]). This implies that ϕ∗(σ) acts by inversion

on the corresponding root lattice in X∗((T θ̂)0) (see (3.6)). Since θ̂ preserves
the pair (B, T ), there exists an element β in the root lattice of R(Ĝ, T ) which

lies in the Weyl chamber fixed by B, and is invariant under the action of θ̂.
In particular, β is Ĝ-regular. The dual element β∨ (§2.2 [Spr79]) belongs to

X∗(T θ̂). Since T θ̂/(T θ̂)0 is finite we may replace β by some integer mulitple

and assume that β∨ ∈ X∗((T θ̂)0). From before we see that ϕ∗(σ) acts by
inversion on β∨. It therefore acts by inversion on β. This, together with the
isomorphism X∗(T ) ∼= X∗(S

′), allows us to identify β with a regular element in
X∗(S

′
a) (Proposition 13.2.4 [Spr98]). The regularity of β implies that ZĜ(im(β))

is a maximal torus of G. Since im(β) ⊂ S′a ⊂ Sa, we find that this maximal
torus is equal to both S′ and S.

We deduce in turn that S′ = S is elliptic in M ′, Sd ⊂ ZM ′ , and M =
ZG(Sd) ⊃M ′. On the other hand, the definition ofM and the duality between
M and M ′, and T and S, together imply that ZG(Sd) = M ′. We conclude that
M = M ′ and the lemma is complete.

According to Lemma 5.1, the group ϕ∗(WR) is minimally contained in a
Levi subgroup M1 ⊂M of G. Moreover, M1 is defined over R and corresponds
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to a Levi subgroup of LG (§§3.3-3.4 [Bor79]). This produces an admissible
homomorphism ϕ : WR → LG which we may view as a representative of a
Langlands parameter for G or for M1. We may view ϕ as a Langlands parameter
of M as well.

Regardless of which perspective one takes, the admissible homomorphism ϕ
is determined by a pair µ, λ ∈ X∗(Ŝ)⊗C . This pair is begotten from a defining
pair µH1 , λH1 ∈ X∗(T̂H1) ⊗ C for an admissible homomorphism ϕH1 ∈ ϕH1

(§3 [Lan89], §4.1 [Mez12]), and an application of the maps in (3.3), (3.6) and
(4.36) (cf. 7 (b) [She10]). There are identifications of Borel subgroups implicit
in the maps of (3.6). We may assume that µH1

is in the positive Weyl chamber
determined by the Borel subgroup BH ⊃ TH of H (Lemma 3.3 [Lan89], §4.1
[Mez12]). It follows from the identification of B̂H with BH and the containment
ξ(BH) ⊂ B ∼= B̂′ (section 3.3) that µ lies in the Weyl chamber determined by
B̂′ ∩ M̂1. To say precisely what this means, let us denote by B the image of B′

under the inverse of Int(gT ′)ψ. Then the precise statement is that 〈µ, α∨〉 > 0
for all α ∈ R(B ∩M1, S) (Lemma 3.3 [Lan89]). This ensures the M̂1-regularity
of µ, but not its Ĝ-regularity.

5.1 Shifting to the context of section 4

We shall approach the representations in Πϕ indirectly by first shifting µ by a

Ĝ-regular element ν ∈ spanZR(Ĝ, Ŝ)∨ ⊂ X∗(Ŝ). This will eventually give rise
to a pair of matching admissible homomorphisms ϕν and ϕνH1

which satisfy all
of the assumptions of section 4. We may then apply coherent continuation to
recover the representations in Πϕ. The analogue of Theorem 4.22 will follow
from the compatibility of coherent continuation with spectral transfer.

Lemma 5.2. There exists ν ∈ spanZR(Ĝ, Ŝ)∨ which lies in the positive Weyl
chamber determined by B and is fixed under the action of δθ.

Proof. Under transport by (4.36), this lemma is equivalent to proving that there
is an element ν ∈ spanZR(Ĝ, T̂ ′)∨ ∼= spanZR(G∗, T ′) which lies in the positive
Weyl chamber determined by B′ and is fixed under the action of θ∗. Let us prove
this equivalent formulation. Recall from section 3.3 that the Borel subgroup
B′ ⊃ T ′ is preserved by θ∗. Therefore this Borel subgroup fixes a Weyl chamber
in spanRR(Ĝ, T̂ ′)∨ which is preserved by the action of θ∗. Since spanZR(Ĝ, T̂ ′)∨

is a lattice of full rank, it has non-empty intersection with this Weyl chamber.
Let ν′ be an element in this intersection. As the automorphism θ∗ has finite

order on X∗(T̂ ), we may define ν =
∑|θ∗|
j=1(θ∗)j(ν′) with the desired properties.

Let us fix ν as in Lemma 5.2. After possibly replacing it by some positive
integer multiple we have Re〈µ+ ν, α∨〉 > 0 for all α ∈ R(B,S), i.e. the element
µ + ν is Ĝ-regular. This takes care of half of Assumption 5 in section 4. The
other half requires an understanding of the action of σ on ν. We may represent
the δθ-invariance of ν by ν ∈ X∗(Ŝδθ). Since Ŝδθ/(Ŝδθ)0 is finite, we may again
replace ν by some positive integer multiple and assume without loss of generality
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that ν ∈ X∗((Ŝδθ)0). There is an isomorphism X∗((Ŝ
δθ)0) ∼= X∗(Sδθ), where

Sδθ = S/(1 − δθ)S, and a surjection (Sδθ)0 → Sδθ (see proof of Lemma 12
[Mez12]). Consequently, there is an injection X∗(Sδθ) ↪→ X∗((Sδθ)0). We may
identify ν ∈ X∗((Ŝδθ)0) with its image under the map

(5.1) X∗((Ŝ
δθ)0) ↪→ X∗((Sδθ)0)

of Γ-modules. By the θ-ellipticity of δ, the automorphism σ acts as inversion
on X∗((Sδθ)0) modulo X∗(Z0

G) so that σ(ν) = −ν. The decomposition

X∗(S)⊗R ∼= (X∗(Sa)⊗R)⊕ (X∗(Sd)⊗R)

(8.15 [Bor91]) allows us to identify ν with its restriction ν|sa (cf. (4.2)). As
before, we may assume that

Re〈(µ+ ν)|sa , α
∨〉 = Re〈µ|sa + ν, α∨〉 > 0

for all α ∈ R(B,S), so that the element (µ + ν)|sa is Ĝ-regular. At this point
we have shown that Assumption 5 of section 4 holds for µ+ ν.

We turn to the construction of matching admissible homomorphisms ϕν and
ϕνH1

which satisfy the remaining assumptions of section 4. First, since σ(ν) = −ν
is in the root lattice, it is easily verified that the pair µ + ν, λ ∈ X∗(Ŝ) ⊗ C
corresponds to an admissible homomorphism ϕν : WR → LG with ϕν(σ) = ϕ(σ)
(§4 [Mez12]). The pair also corresponds to a quasicharacter Λ(µ+ ν − ιM , λ) of
S(R) ((18) [Mez12]).

Lemma 5.3. The image of WR under ϕν is not contained in a proper parabolic
subgroup of LM .

Proof. In this proof we identify LS with the group 〈T , ϕν(WR)〉 ⊂ LM so that
ν ∈ spanZR(Ĝ, T )∨ and ϕν(σ) · ν = −ν. Suppose LP is a parabolic subgroup
of LM (as in §3.3 [Bor79]) containing ϕν(WR). Fix a Borel subgroup of LM
containing T . There exists x ∈ M̂ such that x LPx−1 is standard with respect
to this Borel subgroup (Theorem 15.4.6 [Spr98]) and normalizes T (Theorem
6.4.1). Without loss of generality, we may assume then that LP is standard. Let
the connected component of LP equal P (β) as in the proof of Proposition 8.4.5
[Spr98]. We may assume that β ∈ spanZR(M̂, T )∨. Since P (β) is standard,
we have β ≥ 0 relative to the positive system determined by the fixed Borel
subgroup. Similarly, since

P (β) = ϕν(σ)P (β)ϕν(σ)−1 = P (ϕν(σ) · β)

we have that ϕν(σ) · β ≥ 0. By the regularity of ν and

〈ν∨, β + ϕν(σ) · β〉 = 〈ϕν(σ) · ν∨, β + ϕν(σ) · β〉 = −〈ν∨, β + ϕν(σ) · β〉

we deduce that β = −ϕν(σ) · β. Since ϕν(σ) · β is both non-negative and
non-positive, we conclude in turn that β = 0, P (β) = M̂ and LP = LM .
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By Lemma 5.3 we know that the L-packet Πϕν ,M consists of essentially
square-integrable representations of M(R) (§3 [Lan89], §4.1 [Mez12]). The cen-
tral character of the representations in Πϕν ,M differs from the unitary cen-
tral character of the representations in Πϕ,M by the restriction of Λ(µ + ν −
ιM , λ)Λ(µ−ιM , λ)−1 to ZM (R). This restriction depends only on the restriction
of ν ∈ X∗(Ŝ)⊗C ∼= X∗(S)⊗C to ZM ⊂ S (§9 [Bor79]). In order to show that
Assumption 4 of section 4 holds for the central character of Πϕν ,M it suffices to
show that the restriction of ν ∈ X∗(S) ⊗R to the split componenet of ZM is
trivial. This is true, as the split component of ZM is contained in Sd and the
map (1− σ) annihilates X∗(Sd) (§8.15 [Bor91]), so that

ν|Sd =
1− σ

2
(ν)|Sd =

1− σ
2

(ν|Sd) = 0.

Thus far, see Assumptions 2, 4 and 5 of section 4 hold for ϕν , and enough
of Assumption 3 has been shown to hold to conclude that the L-packet Πϕν is
comprised of fundamental series representations (see 4.1). The θ-stability of the
L-packet Πϕν follows from the δθ-invariance of ν ((136) [Mez12]). This means
Assumption 6 of section 4 is satisfied, for ω is assumed to be trivial.

It remains to construct and admissible homomorhpism ϕνH1
such that As-

sumptions 1 and 3 hold. For this, we return to viewing ν as an element of
X∗((Sδθ)

0) as in (5.1). Isomorphism (4.36) passes to an isomorphism of Sδθ
with T ′θ∗ . Let νH1 be the image of ν under the composition of the isomorphisms
X∗(Sδθ) ∼= X∗(T ′θ∗) and (3.6). By (3.4) we may regard νH1 as an element in

X∗(T̂H1
). The positivity of ν with respect to the Borel subgroup B transfers

to the postivity of νH1 with respect to the Borel subgroup BH . Regarding ν

as a θ̂-invariant element of spanZR(Ĝ, T ) we may identify it with an element
in spanZRres(Ĝ, T ). This implies that νH1

is an element of spanZR(Ĥ1, T̂H1
)

((1.3.4) [KS99], (137) [Mez12]). Let µH1
, λH1

∈ X∗(T̂H1
) ⊗ C be a defining

pair for ϕH1 . Then the pair µH1 + νH1 , λH1 ∈ X∗(T̂H1) ⊗ C defines an ad-
missible homomorphism ϕνH1

: WR → LH1 for precisely the same reasons that
the pair µ + ν, λ defined the admissible homomophism ϕν earlier on. Further-
more, Lemma 5.3 remains valid for ϕνH1

, seeing as νH1
is a regular element in

spanZR(Ĥ1, T̂H1) and TH1 is elliptic (Corollary 3 [Mez12]). Thus, Assumption
1 of section 4 holds for ϕνH1

. Finally, Assumption 3 of section 4 holds by virtue

of the definition of (ϕν)∗ as ξ ◦ ξ−1
H1
◦ ϕνH1

(§6 [Mez12]) and the definition νH1
.

Indeed, the image of µH1 + νH1 under the maps induced by ξ ◦ ξ−1
H1

corresponds
to µ+ν by the very construction of νH . This completes our task of constructing
matching admissible homomorphisms ϕν and ϕνH1

which satisfy all of the six
assumptions of section 4.

5.2 Coherent continuation to limit of fundamental series
representations

In what follows, we describe the relationship between the L-packets of ϕ and
those of the shifted admissible homomorphism ϕν . Our presentation follows §7
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[Mez12]. The irreducible representations Πϕν ,M are parameterized by Ω(M,S)/ΩR(M,S).
Each irreducible representation in Πϕ,M is an essential limit of discrete series
obtained via Zuckerman tensoring a unique representation in Πϕν ,M ((1.10)
[KZ84]). The converse is not always true, for the process of Zuckerman ten-
soring may result in a zero module. To explain these relationships better, let
w ∈ Ω(M,S)/ΩR(M,S) and $w−1Λ ∈ Πϕν ,M be as in Proposition 4.12. Denote
the distribution character of the representation obtained from $w−1Λ through
Zuckerman tensoring by Θ(w−1µ, λ,w−1 · B̂). Then the set of characters of the
irreducible representations in Πϕ,M is equal to the non-zero characters in

{Θ(w−1µ, λ,w−1 · B̂) : w ∈ Ω(M,S)/ΩR(M,S)}.

Using Hecht-Schmid identities, one may parametrize this non-zero subset by
taking only those w in Ω(M,S)/ΩR(M,S) which lie in a subset of the form

(5.2) 〈wα∨1 , . . . , wα∨r 〉Ω(M1, SM1
)ΩR(M,S)/ΩR(M,S).

((142) [Mez12], page 408 [She82]). Here, SM1
is an elliptic torus in M1 obtained

through Cayley transforms from S, and α∨1 , . . . , α
∨
r are the positive real roots

in R(M,SM1
) (Lemma 31 [Mez12]). The Weyl group elements in (5.2) which

belong to Ω(M,SM1) are identified with their images in Ω(M,S) through the
Cayley transforms.

The irreducible representations in Πϕ and Πϕν are the irreducible subrep-
resentations of the representations induced from Πϕ,M and Πϕν ,M respectively.
In the present context parabolic induction and Zuckerman tensoring commute
with one another (Corollary 5.9 [SV80]) and produce irreducible representations
(when non-zero) (Theorem 5.15 [SV80]). Hence, parabolic induction furnishes
a bijection between Πϕ,M and Πϕ, just as it does between Πϕν ,M and Πϕν . We
may write the characters of the representations occurring in Πϕ as

(5.3) ind
G(R)
P (R) Θ(w−1µ, λ,w−1 · B̂),

where w lies in (5.2). We call the representations corresponding to these charac-
ters limit of fundamental series representations. They are special cases of limit
of generalized principal series representations given on p. 265 §5 [SV80].

This is an adequate description of Πϕ for our purposes. However, only the θ-
stable representations in Πϕ contribute to twisted spectral transfer. Arguing as
in (4.17), it is evident these representations are given by induction from the δθ-
stable representations in Πϕ,M . According to Proposition 4 [Mez12], characters
of the latter are of the form

(5.4) Θ(w−1
1 w−1

2 · µ, λ,w−1
1 w−1

2 · B̂)

where w1 runs through (〈wα∨1 , . . . wα∨r 〉ΩR(M,S)/ΩR(M,S))δθ and w2 runs

through (Ω(M1, SM1
)/ΩR(M1, SM1

))δθ.
To define twisted characters, we apply some results of [Duc02] to the alge-

braic group G(R)o〈θ〉. Suppose that π′ ∈ Πϕν and U′ is a choice of intertwining

44



operator satisfying

U′ ◦ π′(x) = (π′)θ(x) ◦ U′, x ∈ G(R)

(cf. (4.29)) with the normalization of section 4.3. Then π′ lifts to a represen-
tation π̄′ of G(R) o 〈θ〉 by setting π̄′(θ) = U′. The irreducible representation
π̄′ is tempered and therefore has a distribution character Θπ̄′ which one may
identify with a locally integrable function on the regular elements of G(R)o 〈θ〉
(§3 [Bou87]). By construction, we have

(5.5) Θπ′,U′(xθ) = Θπ̄′(xθ)

for all regular xθ in G(R) o 〈θ〉. In other words, the twisted character is the
restriction of the character of π̄ to the component G(R)θ. To keep the prolifer-
ation of subscripts at bay, we will abusively write Θπ̄′ in place of Θπ′,U′

The representation π̄′ falls under the classification of Theorem 9.6 [Duc02]4.
By Proposition 12.3 (c) [Duc02], one may extend the process of Zuckerman
tensoring to π̄′ and by means of that recover a representation π̄ of G(R) o 〈θ〉,
provided that the result is non-zero. The representation π̄ is an extension of
Zuckerman tensoring on G(R) in the sense that the restriction of π̄ to G(R)
is a limit of fundamental series representation π obtained from π′ as above.
It follows, that the representation π is θ-stable, with intertwining operator Uπ
defined to be π̄(θ). We define the twisted character Θπ,Uπ from Θπ̄ as in (5.5).

We combine these results on G(R) o 〈θ〉 with the previous results on G(R)
as follows. Suppose w = w1w2, where w1 and w2 are as in (5.4). Set πw−1ν =

ind
G(R)
P (R)$w−1Λ for$Λ ∈ Πϕν ,M and all w = w1w2. Using the intertwining opera-

tors of section 4.3 we may extend πw−1ν to a representation π̄w−1ν on G(R)o〈θ〉.
Let Ψ

w−1·(µ+ν)
w−1·µ π̄w−1ν denote the representation, obtained by Ducloux’s exten-

sion of Zuckerman tensoring, whose restriction to G(R) has character (5.3).

This was denoted simply as π̄ above. We write Ψ
w−1·(µ+ν)
w−1·µ Θπ̄w−1ν

for the char-

acter of Ψ
w−1·(µ+ν)
w−1·µ π̄w−1ν . This restricts to the twisted character Θπ,Uπ above.

When θ is the identity automorphism, we see that Ψ
w−1·(µ+ν)
w−1·µ Θπw−1ν

is equal

to (5.3). A precise expansion of Ψ
w−1·(µ+ν)
w−1·µ Θπ̄w−1ν

on regular elements is given

in Proposition 12.3 (c) [Duc02].
We are almost in the position to apply coherent continuation to the right-

hand side of identity (4.3). Let ϕν and ϕνH1
be the respective L-parameters

of ϕν and ϕνH1
. We may now replace ϕ with ϕν in the right-hand side of the

spectral transfer identity (4.3). Let us define

(5.6) ∆(ϕH1 ,Ψ
w−1·(µ+ν)
w−1·µ πw−1ν) = ∆(ϕνH1

, πw−1·ν)

for w = w1w2 as in (5.4). This definition does not depend on the choice of ν
(cf. (4.45)-(4.47)). If we apply coherent continuation to each of the twisted

4Its form is given in Definition 8.3 [Duc02] with M ′0 = G(R).
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characters on the right, we obtain∑
w∈(Ω(M,S)/ΩR(M,S))δθ

∆(ϕνH1
, πw−1·ν) Ψ

w−1·(µ+ν)
w−1·µ Θπ̄w−1·ν

=
∑
w1,w2

∆(ϕνH1
, π(w1w2)−1·ν) Ψ

(w1w2)−1·(µ+ν)
(w1w2)−1·µ Θπ̄(w1w2)−1·ν

(5.7)

=
∑
π∈Πϕ

∆(ϕνH1
, π) Θπ̄

=
∑
π∈Πϕ

∆(ϕνH1
, π) Θπ,Uπ

One may apply coherent continuation to the left-hand side of (4.3) in the
same manner, so that

(5.8)
∑

w∈Ω(H1,TH1
)/ΩR(H1,TH1

)

Ψ
w−1·(µH1

+νH1
)

w−1·µH1
Θπw−1·νH1

=
∑

πH1
∈ΠϕH1

ΘπH1
.

We would like the right-hand sides of (5.7) and (5.8) to match under geomet-
ric transfer. This matching follows from a comparison of character values on
Sδθ(R)δθ and the twisted version of Harish Chandra’s Uniqueness Theorem
(Theorem 15.1 [Ren97]) as in the essentially square integrable case. The argu-
ment relies on character expansions of the limits of fundamental series (Lemma
5.5 [SV80], Proposition 12.3 (c) [Duc02]).

Theorem 5.4. Suppose ω is trivial and θ is of finite order. Then∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ).

Proof. The proof is identical to that of Theorem 3 [Mez12].

6 A reduction to finite order automorphisms

In this section θ is an algebraic automorphism of G which is defined over R and
has finite action on ZG.

Proposition 6.1. There exists g0 ∈ Gder(R) such that Int(g0)θ has finite order
and preserves a maximally R-split maximal torus T of G.

Proof. Since θ has finite order when restricted to ZG, and G = ZGGder (Corol-
lary 8.1.6 [Spr98]), we may assume without loss of generality that G = Gder.
Recall that in splitting (3.1), the maximal torus T is defined over R and con-
tains a maximal R-split torus of G. In other words, the split component of T
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is a maximal R-split torus in G. The split component of the maximal torus
θ(T ) is also a maximal R-split torus of G, as θ is defined over R. Therefore
there exists x1 ∈ G(R) such that Int(x1)θ preserves T (Theorem 15.2.6 [Spr98]).
We may therefore assume without loss of generality that θ itself preserves T .
Splitting (3.1) affords a decomposition of Aut(G) as a split semidirect product
of the group of inner automorphisms and the group of graph automorphisms of
the Dynkin diagram (Corollary 2.14 [Spr79]). As the latter group is finite, there
exists some positive integer `1 and an element x2 ∈ G such that θ`1 = Int(x2).
Since θ preserves T , so does Int(x2) and this is the same as saying that x2 is
a representative of an element in Ω(G,T ). The Weyl group Ω(G,T ) is finite
so that for some positive integer `2 we have θ`1`2 = Int(x3) where x3 = x`22

belongs to T . The automorphism θ`1`2 commutes with σ and consequently
Int(σ(x3)x−1

3 ) is the identity automorphism. This implies that σ(x3)x−1
3 lies

in the centre of the semisimple group G. The centre is finite, so there exists a
positive integer `3 such that

σ(x`33 )x−`33 = (σ(x3)x−1
3 )`3 = 1.

This equation implies that x4 = x`33 ∈ T (R). Similarly, Int(x4) = θ`1`2`3

commutes with θ and this in turn implies that Int(θ(x4)x−1
4 ) is the identity

automorphism and θ(x`44 ) = x`44 for some positive integer `4. Set x5 = x`44 ∈
T θ(R). Finally, being the real points of an algebraic group, the group T θ(R)
has finitely many connected components as a real manifold. Therefore, there
is a positive integer `5 such that y = x`55 belongs to T θ(R)0. Set ` = `1 · · · `5.
Then θ` = Int(y) and there exists Y ∈ tθ such that exp(Y ) = y. Let g0 =
exp(− 1

`Y ) ∈ T θ(R)0. Clearly,

(Int(g0)θ)` = Int(g`0) θ` = Int(y−1)θ`

is the identity automorphism.

Corollary 6.2. Let g0 ∈ G(R) be as in Proposition 6.1. Then the cyclic sub-
group 〈(g0θ)

`〉 of G(R) o 〈θ〉 generated by (g0θ)
` centralizes G(R). Moreover,

〈(g0θ)
`〉G(R)0 has finite index in G(R) o 〈θ〉.

Proof. By hypothesis (Int(g0)θ)` is the trivial automorphism of G(R). An im-
mediate consequence of this is that 〈(g0θ)

`〉 is centralizes G(R). The second
assertion follows from the fact that G(R)/G(R)0 is finite ((c) (i) §C 24 V
[Bor91]).

Corollary 6.2 is significant in that it asserts that the Lie group G(R) o
〈θ〉 satisfies the requirements for Bouaziz’ work on characters to apply ((*)
§1.2 [Bou87]). In fact, one may prove twisted spectral transfer for limits of
fundamental series by replacing θ everywhere in sections 4-5 by Int(g0)θ. One
might then hope that the following claim is true:

(?) Suppose g0 ∈ G(R) and spectral transfer holds for Int(g0)θ. Then spectral
transfer holds for θ.
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If this claim is true then Proposition 6.1 implies that twisted spectral transfer
holds for limits of fundamental series representations when θ is merely finite
on the centre of G. We shall spend the rest of this section making this claim
precise and giving justification for its truth. Many of the ideas that follow are
also present in §11 [She].

Our starting point is a choice of endoscopic data (H,H, s, ξ) for (G, θ,a)
(section 3.2). We fix an L-parameter ϕH1 relative to a z-pair (H1, ξH1) such
that ΠϕH1

consists of essentially tempered representations whose central char-
acter is determined by λZ1

on Z1(R). We assume that the endoscopic data
render a corresponding L-parameter ϕ for G, whose L-packet Πϕ also consists
of essentially tempered representations. We assume that ω ⊗ (Πϕ ◦ θ) = Πϕ,
and that there is a strongly θ-regular element δ ∈ G(R) which is has a norm
γ1 ∈ H1(R).

This backdrop places us in a context where spectral transfer is relevant with
respect to twisting by θ. Now, fix g0 ∈ G(R). Our first undertaking is to
furnish a backdrop for spectral transfer with respect to twisting by Int(g0)θ.
The key observation in this undertaking is that the passage from θ to the dual
map θ̂ is insensitive to composition with inner automorphisms (section 3.1, cf.

§1.3 [Bor79]). Indeed, θ̂ is obtained via an action on based root data and such
actions are independent of composition by an inner automorphism. The upshot

of this observation is that ̂Int(g0)θ = θ̂.

The definition of endoscopic data depends on θ̂, not θ per se. In conse-
quence, the previous endoscopic data (H,H, s, ξ) are also a choice of endoscopic
data for (G, Int(g0)θ,a), and the L-parameter ϕH1 passes to ϕ as before. Ac-
cording to Lemma 2 [Mez12], twisted L-packets may be represented in terms of

a representative cocycle a ∈ a and Lθ = θ̂ × 1WR
, so that

ω ⊗ (Πϕ ◦ Int(g0)θ) = ΠLθ◦(a·ϕ) = ω ⊗ (Πϕ ◦ θ) = Πϕ.

It is simple to show that δg−1
0 ∈ G(R) is a strongly Int(g0)θ-regular element.

We wish to prove that δg−1
0 has norm γ1. To do this we must retrace the

definitions of the maps in section 3.3. These maps are defined in terms of the
endoscopic data and the automorphism θ∗. Replacing θ with Int(g0)θ does not
have an effect on θ∗ for the automorphism

Int(gθψ(g0)−1)ψInt(g0)θψ−1 = θ∗

preserves the splitting (B∗, T ∗, {X∗}). However, this replacement does have an
effect on gθ. The effect is to replace gθ with gθψ(g0)−1, and this affects the
definition of (3.8). By substituting gθψ(g0)−1 in place of gθ and δg−1

0 in place
of δ in (3.8), we find that

ψ(δg−1
0 )(gθψ(g0)−1)−1 = ψ(δ)g−1

θ ,

and the expression on the right is equal to the image of δ under the original
map (3.8). Conjugating this equation by gT ′ (cf. (3.11)), it is evident that δg−1

0
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corresponds to δ∗ under twisting by Int(g0)θ in the same way that δ corresponds
to δ∗ under twisting by θ.

We should also observe that the change from gθ to gθψ(g0)−1 does not affect
the Γ-equivariance ofm. To ensure this equivariance, we have assumed in section
3.3 that gθ has been chosen so that (3.9) holds. Substituting gθψ(g0)−1 in place
of gθ into (3.9) yields

gθψ(g0)−1uσσ((gθψ(g0)−1)−1)θ∗(uσ)−1

= gθψ(g0)−1 (Int(uσ)σψ(g0))uσσ(g−1
θ )θ∗(uσ)−1

= gθψ(g0)−1 ψ(σ(g0))uσσ(g−1
θ )

= gθuσσ(g−1
θ )θ∗(uσ)−1 ∈ (1− θ∗)ZG∗sc .

This ensures the Γ-equivariance of m relative to twisting by Int(g0)θ. The rest
being the same, we conclude that δg−1

0 has norm γ1.
Given that the backdrop for spectral transfer is barely perturbed by replacing

θ with Int(g0)θ, we examine the effect of this replacement on twisted characters.
Clearly, given any π ∈ Πϕ satisfying (4.29), it also satisfies

(6.1) π(g0)U ◦ ω−1(x)π(x) = πg0θ(x) ◦ π(g0)U, x ∈ G(R).

This presents us with the intertwining operator Ug0
π = π(g0)U and the corre-

sponding twisted character Θπ,U
g0
π

defined by

(6.2) f 7→ tr

∫
G(R)

f(x)π(x)π(g0)U dx, f ∈ C∞c (G(R)),

(cf. (4.29))5. Let R· denote the right regular representation of G(R) on
C∞c (G(R)). Then

(6.3) Θπ,U
g0
π

(f) =

∫
G(R)

f(x)π(xg0)U dx = Θπ,Uπ (Rg−1
0
f), f ∈ C∞c (G(R)),

by the invariance of the Haar measure (cf. (5.1) [DM08]).
There is a dual identity to (6.3) for twisted orbital integrals. The orbital

integral of f ∈ C∞c (G(R)) at δg−1
0 when twisted by Int(g0)θ is

(6.4)

∫
Gδθ(R)\G(R)

ω(g) f(g−1δg−1
0 g0θ(g)g−1

0 ) dg = Oδθ(Rg−1
0
f).

Let us denote the geometric transfer factors with respect to twisting by Int(g0)θ
by ∆g0 . It follows for (many small and) purely formal reasons that we may take
∆g0(γ1, δ

′g−1
0 ) = ∆(γ1, δ

′) for any pair (γ1, δ
′) appearing in (3.14). Combining

this identity with (6.4), we deduce that the geometric transfer of f with respect
to twisting by Int(g0)θ may be taken to equal (Rg−1

0
f)H1 ∈ C∞(H1(R), λZ1).

5In this discusion, we find it less confusing to take test functions in C∞c (G(R)) instead of
C∞c (G(R)θ).
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Let us summarize where we stand with regard to the claim (?). In replacing
the automorphism θ with Int(g0)θ we retain the same endoscopic backdrop. A
strongly θ-regular element δ with norm γ1 is replaced by δg−1

0 and the norm
remains the same. The geometric transfer factors are changed accordingly.

The final missing piece in the notion of spectral transfer is the definition of
spectral transfer factors. Let us suppose that these have been defined relative to
twisting by Int(g0)θ and denote them by ∆g0(ϕH1 , π) for π ∈ Πϕ. We define6

the spectral transfer factors relative to twisting by θ by

(6.5) ∆(ϕH1 , π) = ∆g0(ϕH1 , π), π ∈ Πϕ.

Given these relationships, to say that spectral transfer holds for Int(g0)θ is
to say that for all f ∈ C∞c (G(R)) we have∫
H1(R)/Z1(R)

(Rg−1
0
f)H1

(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆g0(ϕH1 , π) Θπ,U
g0
π

(f)

or equivalently∫
H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆g0(ϕH1 , π) Θπ,U
g0
π

(Rg0
f).

The content of claim (?) is that the right-hand side of this equation may be
replaced with ∑

π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f),

and this is an immediate consequence of (6.3) and (6.5).
This completes our discussion of (?). When taken together with Proposition

6.1, it results in a reduction of twisted spectral transfer to the case that θ is
finite on ZG.

Theorem 6.3. Suppose ω is trivial and θ is of finite order on ZG. Then, under
the assumptions of section 5, we have

(6.6)

∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ).

7 A reduction of spectral transfer through parabolic
induction

In this section we investigate the compatibility of twisted spectral transfer with
parabolic induction. We assume that the quasicharacter ω is trivial and that θ
is an algebraic automorphism of G defined over R.

6One could also establish an independent definition and prove that the spectral transfer
factors are equal.
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The principal assumption of this section is that P̄ is an R-parabolic subgroup
of G which is preserved by θ. Let P̄ = M̄N̄ be a Levi decomposition of P̄ . It
follows that θ preserves N̄ . We also assume that θ preserves M̄ , that θ has
finite action on ZM̄ , and preserves a maximal compact subgroup K of G(R)
(cf. Lemma 4.19).

Suppose π is an irreducible tempered representation of M̄(R) such that

(7.1) U ◦ π(x) = πθ(x) ◦ U, x ∈ M̄(R)

for a non-zero intertwining operator U. The representation (ind
G(R)

P̄ (R)
π)θ is equiv-

alent to ind
G(R)

P̄ (R)
πθ ∼= ind

G(R)

P̄ (R)
π. Indeed, we may define an operator T on the

functions φ in the representation space of ind
G(R)

P̄ (R)
π by

(Tφ)(g) = Uφ(θ−1(g)), g ∈ G(R).

The reader may easily verify that ind
G(R)

P̄ (R)
π is stable under θ and satisfies

(7.2) T ◦ ind
G(R)

P̄ (R)
π(x) = (ind

G(R)

P̄ (R)
π)θ(x) ◦ T, x ∈ G(R)

(cf. proof of Proposition 3.1 [Mez07] and Lemma 5 (i)-(ii) [DM08]).
We wish to compute the twisted character7 Θ

ind
G(R)

P̄ (R)
π,T

defined by

f 7→ tr

∫
G(R)

f(x) ind
G(R)

P̄ (R)
π(x) T dx, f ∈ C∞c (G(R))

in terms of the twisted character of π. This amounts to a twisted version of
a well-known descent formula ((10.21) [Kna86]), and the techniques are en-
tirely the same. We begin with the twisted descent formula for functions in
C∞c (G(R)). Suppose f ∈ C∞c (G(R)) and n̄ is the real Lie algebra of the unipo-
tent group N̄(R). Define

f (P̄ )(x) = |det Ad(x)|n̄|1/2
∫
K

∫
N̄(R)

f(kxuθ(k−1)) dn dk, x ∈ M̄(R).

This defines a smooth and compactly supported function on M̄(R) (cf. (10.22)
[Kna86]). The expected identities for twisted geometric descent are given in the
next lemma.

Lemma 7.1. Suppose f ∈ C∞c (G(R)). Then
(7.3)

f (P̄ )(x) = |det Ad(x)|n̄|1/2|det(Ad(xθ)−1−1)|n̄|
∫
K

∫
N̄(R)

f((nk)−1xθ(nk)) dn dk

for all x ∈ M̄(R). Furthermore, for any strongly θ-regular element δ ∈ M̄(R)

(7.4) Oδθ(f) = |det(1−Ad(δθ))|g/m|−1/2 Oδθ(f (P̄ )).

7In this section it will again be less confusing to take test functions in C∞c (G(R)) due to
the simplification of the geometric computations. The change is purely cosmetic.
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Proof. Suppose x ∈ M̄(R). By making the change of variable

n 7→ x−1nxθ(n−1) = Int(x−1)(n) θ(n−1)

in the definition of f (P̄ ) one computes that f (P̄ )(x) is equal to
(7.5)

|det Ad(x)|n̄|1/2|det(Ad(x)−1 −Ad(θ))|n̄|
∫
K

∫
N̄(R)

f(knxθ(n−1k−1)) dn dk

(cf. Lemma 10.16 [Kna86]). By Ad(θ) we mean the adjoint action in the Lie
group G(R) o 〈θ〉. Since θ is assumed to be finite on ZM̄ , it is also finite
on ZG ⊂ ZM̄ . By Corollary 6.2 the Lie group G(R) o 〈θ〉 satisfies the hy-
potheses of [Bou87]. Thus, Lemma 1.6.1 [Bou87] applies to G(R) o 〈θ〉 and
tells us that Ad(θ), which preserves K, has eigenvalues which are all of mod-
ulus one. Equation (7.3) follows by multiplying |det(Ad(x)−1 − Ad(θ))|n̄| by
|det Ad(θ)|n̄|−1 = 1 in (7.5).

To prove (7.4), suppose δ ∈ M̄(R) is strongly θ-regular. Then δ is strongly
θ-regular in M̄ and M̄ δθ = Gδθ. For compatible choices of Haar measures, we
have

Oδθ(f) =

∫
Gδθ(R)\G(R)

f(g−1δθ(g)) dg

=

∫
M̄δθ(R)\M̄(R)

∫
N̄(R)

∫
K

f(k−1n−1m−1δ θ(mnk)) dk dn dm

=

∫
M̄δθ(R)\M̄(R)

|det Ad(x)|n̄|−1/2|det(Ad(xθ)−1 − 1)|n̄|−1f (P̄ )(m−1δθ(m)) dm

where x = m−1δθ(m). Recall that |det Ad(θ)| = 1 so that

|det Ad(x)| = |det Ad(m−1δθ(m))|
= |det Ad(m−1δθmθ−1)|
= |det Ad(m−1)||det Ad(δθ)||det Ad(m)||det Ad(θ−1)|
= |det Ad(δθ)|.

Similarly, Ad(xθ) = Ad(m−1)Ad(δθ)Ad(m). As a result,

|det Ad(x)|n̄|−1/2|det(Ad(xθ)−1 − 1)|n̄|−1

= |det Ad(δθ)|n̄|−1/2|det(Ad(δθ)−1 − 1)|n̄|−1

= |det Ad(δθ)|n̄|1/2|det(1−Ad(δθ))|n̄|−1

= |det(1−Ad(δθ))|g/m|−1/2.

Equation (7.4) now follows by substituting this expression into the earlier de-
composition for Oδθ(f).

Let us return to spectral considerations. The analytic manipulations in §3
X [Kna86] give us the reduction

(7.6) Θ
ind

G(R)

P̄ (R)
π,T

(f) = Θπ,U(f (P̄ )), f ∈ C∞c (G(R))
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(cf. (10.21) [Kna86]). This reduction suggests a strategy for proving spectral
transfer in the special case that π a limit of fundamental series representation
as in section 5. The strategy is basically the same as Shelstad’s in the ordinary
case (§14 [She10]) and in the twisted case (§11 [She]).

Let us assume that ϕ is an L-parameter for G and that Πϕ = Πϕ ◦ θ. Let us
further assume that each irreducible representation in Πϕ is a subrepresentation

of ind
G(R)

P̄ (R)
π, where π ∈ Πϕ,M̄ is a limit of fundamental series representation of

M̄(R). Finally let us assume that the θ-stable representations in Πϕ are exactly
the subrepresentations induced from the θ-stable representations in Πϕ,M̄ .

The restriction of θ to M̄ might not be of finite order, but its restriction to
ZM̄ is by assumption. The arguments of section 6 therefore apply. By Theorem
6.3 we have spectral transfer for the limits of fundamental series on M̄(R), as
long as the assumptions of section 5 are met with G replaced by M̄ .

One may substitute f (P̄ ) ∈ C∞c (M̄(R)) into the right-hand side of (6.6) and
reintroduce subscripts for U and T to obtain

(7.7)
∑

π∈Πϕ,M̄

∆(ϕM̄H1
, π) Θπ,Uπ (f (P̄ )) =

∑
π∈Πϕ,M̄

∆(ϕM̄H1
, π) Θ

ind
G(R)

P̄ (R)
π,Tπ

(f).

In this equation we have written M̄H1
in place of H1 in order to emphasize that

M̄H1
must be an endoscopic group for M̄ , not G. If ϕ arises from an endoscopic

group H1 in the usual fashion (§6 [Mez12]) and M̄H1
were suitably compatible

with H1 then one might define spectral transfer factors for π′ ∈ Πϕ by

(7.8) ∆(ϕH1 , π
′) = ∆(ϕM̄H1

, π),

whenever π′ is a subrepresentation of ind
G(R)

P̄ (R)
π and π ∈ Πϕ,M̄ . If π is θ-stable in

this definition then one could define the twisted character Θπ′,Tπ′ by taking Tπ′
to be the resriction of Tπ to the space of π′ (Corollary 14.66 [Kna86], Theorem
2.3 (b) [KZ79]). With these definitions we recover∑
π′∈Πϕ

∆(ϕH1 , π
′) Θπ′,Tπ′ (f) =

∑
π∈Πϕ,M̄

∆(ϕM̄H1
, π) Θ

ind
G(R)

P̄ (R)
π,Tπ

(f)

=
∑

π∈Πϕ,M̄

∆(ϕM̄H1
, π) Θπ,Uπ (f (P̄ ))

=

∫
M̄H1

(R)/Z1(R)

(f (P̄ ))M̄H1
(h)

∑
πM̄H1

∈ΠϕM̄H1

ΘπM̄H1

(h) dh(7.9)

by applying Theorem 6.3. In order to continue with this strategy the “suitable
compatibility” above would then need to also apply to geometric transfer. A
natural expectation for this compatibility would be for M̄H1 to be the Levi
subgroup of a parabolic subgroup P̄H1 of H1 and

(7.10) (f (P̄ ))M̄H1
= (fH1

)(P̄H1
).
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Given such compatibility, one could apply the usual formula for induced char-
acters and continue with∑
π′∈Πϕ

∆(ϕH1 , π
′) Θπ′,Tπ′ (f) =

∫
M̄H1

(R)/Z1(R)

(fH1
)(P̄H1

)(h)
∑

πM̄H1
∈ΠϕM̄H1

ΘπM̄H1

(h) dh

=

∫
H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh.(7.11)

This final equation would then constitute spectral transfer for ϕ.
Let us formally state the required hypotheses in this strategy and give the

explicit constructions for the earlier compatibilities.

1. θ preserves P̄ and M̄ .

2. ϕH1 passes to an L-parameter of a Levi subgroup M̄H1
of H1 which is an

endoscopic group of M̄ .

3. θ has finite order on ZM̄ .

4. The assumptions of section 5 hold with G replaced by M̄ .

5. The θ-stable representations of Πϕ are precisely the subrepresentations of
the representations induced from θ-stable representations of Πϕ,M̄ .

Let us assume these hypotheses to hold. Our assumption implicitly includes an
admissible homomorphism ϕ ∈ ϕ whose image lies in a (standard) Levi sub-
group MoWR of LG which is (identified with) LM̄ . We assume that twisted
characters Θπ,Uπ have been specified as in section 5 for every π ∈ Πϕ,M̄ . Accord-
ing to (7.6), the twisted character Θ

ind
G(R)

P̄ (R)
π,Tπ

is completely determined by the

twisted character Θπ,Uπ , and the support of Θ
ind

G(R)

P̄ (R)
π,Tπ

lies in the θ-conjugates

in G(R) of M̄(R) (see (7.3)). We know from section 4.6 that Θπ,Uπ depends
entirely on its values on elements of δ ∈ M̄(R) which are strongly θ-regular
and θ-elliptic in the sense that M̄ δθ is abelian, and the centralizer of ZM̄ (M̄ δθ)
is a fundamental maximal torus S in M̄ (Lemma 4.1). This dependence moti-
vates our next assumption, which is the existence of an element δ ∈ M̄(R) for
which Gδθ is abelian, S = ZM̄ (M̄δθ) is a fundamental maximal torus in M̄ , and
γ1 ∈ H1(R) is a norm. The existence of a norm for δ allows us to engage the
machinery of section 3.3.

We must establish endoscopic data for M̄ and θ|M̄ which are compatible
with the underlying endoscopic data for G and θ. This is done in the appendix
to [Mez12]. The resulting endoscopic data (M̄H ,HM̄ , sM̄ , ξM̄ ) are given through
the standard Levi subgroup MoWR of LG. To be more explicit sM̄ = s, M̄H

is dual to the Levi subgroup ˆ̄MH = ξ−1((Msθ̂)0) of Ĥ, HM̄ = ˆ̄MH ocWR (see
2 in section 3.2), and ξM̄ = ξ|HM̄ . In addition, we set M̄H1

= p−1
H (M̄H), which

is a z-extension of M̄H (see (3.3)).
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The admissible homomorphism ϕ is obtained from an admissible homomor-
phism ϕH1 ∈ ϕH1 by ϕ = ξ ◦ ξ−1

H1
◦ ϕH1 . One could define

ϕM̄H1
= ξH1 ◦ ξ−1

M̄
◦ ϕ

to obtain an admissible homomorphism of M̄H1
as in (7.7). If one substitutes

ϕ = ξ ◦ ξ−1
H1
◦ ϕH1 into this definition it is apparent that ϕM̄H1

has the same
values as ϕH1 . The only difference between ϕM̄H1

and ϕH1 is their codomains.
In the interest of reducing subscripts from the notation we shall identify the two
from here on.

The spectral transfer factors in (7.7) are defined in (5.6), and are ultimately
expressed as the product of (4.45)-(4.47). The only expression which depends on
the geometric transfer factors is (4.47), which depends on the first and third part
of the geometric transfer factors ∆M̄ for M̄ . According to Lemma 11.4 [She],
we may choose geometric transfer factors ∆ for G and a compatible definition
of norm between γ1 and δ on the level of M̄ (z†-norm) so that the first three
parts of ∆M̄ (γ1, δ) and ∆(γ1, δ) agree.

We may now rightly make definition (7.8) and proceed to equation (7.9).

Lemma 7.2. Let P̄H1
be a parabolic subgroup of H1 with Levi subgroup M̄H1

.
Then, under suitable normalization of geometric transfer factors and measures,
we may assume that equation (7.10) holds.

Proof. Suppose f ∈ C∞c (G(R)). Then f (P̄ ) ∈ C∞c (M̄(R)), and by (3.14) there
exists a function (f (P̄ ))M̄H1

such that

(7.12)
∑
γ′1

Oγ′1((f (P̄ ))M̄H1
) =

∑
δ′

∆M̄ (γ1, δ
′)Oδ′θ(f (P̄ )).

The sum on the right is taken the θ-conjugacy classes under M̄(R) of elements
in M̄(R) whose norm is γ1. It follows from the remark following Lemma 4.13,
that this collection of θ-conjugacy classes over M̄(R) is in bijection with the
collection of θ-conjugacy classes under G(R) of elements in G(R) whose norm
is γ1. This bijection is necessary for us to convert the right-hand side of (7.12)
into the analogous sum over G(R). Towards this end, we also substitute (7.4)
into right right-hand side, to obtain

(7.13)
∑
γ′1

Oγ′1((f (P̄ ))M̄H1
) =

∑
δ′

∆M̄ (γ1, δ
′)|det(1−Ad(δ′θ))|g/m|1/2Oδ′θ(f).

The normalization of geometric transfer factors as in Lemma 11.4 [She] yields

∆M̄ (γ1, δ) =
∆M̄,IV (γ1, δ)

∆IV (γ1, δ)
∆(γ1, δ),

where

∆IV (γ1, δ) =
|det(Ad(δθ)− 1)|g/s⊗C|1/2

|det(Ad(γ)− 1)|h/tH⊗C|1/2
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and

∆M̄,IV (γ1, δ) =
|det(Ad(δθ)− 1)|m/s⊗C|1/2

|det(Ad(γ)− 1)|mH/tH⊗C|1/2

(§4.5 [KS99]). The quotient of the numerators of ∆M̄,IV (γ1, δ) and ∆IV (γ1, δ)

equals |det(1−Ad(δθ))|g/m|−1/2 and cancels with the corresponding term on the
right-hand side of (7.12). The quotient of the denominators of ∆M,IV (γ1, δ) and
∆IV (γ1, δ) equals |det(1−Ad(γ))|h/mH |1/2. Making the consonant substitutions
in (7.13), applying (3.14) and (7.3), we find∑

γ′1

Oγ′1((f (P̄ ))M̄H1
) = |det(1−Ad(γ))|h/mH |

1/2
∑
δ′

∆G(γ1, δ
′)Oδ′θ(f)

= |det(1−Ad(γ))|h/mH |
1/2
∑
γ′1

Oγ′1(fH1
)

=
∑
γ′1

Oγ′1((fH1)(P̄H1
)).

In the sums over γ′1 we have also used the bijection between stable conjugacy
classes over H1 and M̄H1

(Lemma 4.13 with trivial θ, cf. §14 [She08a]). The
above identity between orbital integrals justifies the asserted assumption of the
lemma.

Justification of equation (7.10) was the final step in the proof of the twisted
spectral transfer identity (7.11) and this is now complete.

7.1 No norms from M̄(R)

The purpose of this subsection is to persuade the reader that the assumption
of the existence of θ-regular and θ-elliptic δ ∈ M̄(R) with norm in H1(R) is a
restriction to the only interesting case of spectral transfer.

Identity (7.10) allows us to reduce character values of functions in C∞c (H1(R), λZ1
)

to functions (f (P̄ ))M̄H1
matching f (P̄ ). If there is no strongly θ-regular δ ∈

M̄(R) with norm in H1(R) then (f (P̄ ))MH1
may be taken to equal zero. For

this reason the character values on the left-hand side of the desired spectral
identity (7.11) are zero. We may conclude that twisted spectral transfer holds
by taking all spectral transfer factors equal to zero.

We assume then that there exists a strongly θ-regular element in M̄(R)
which has a norm H1(R). If none of these elements is θ-elliptic then we set
all spectral transfer factors equal to zero and prove twisted specral transfer as
follows. By (7.11) it suffices to show that the distribution

f 7→
∫
M̄H1

(R)/Z1(R)

(fH1
)(P̄H1

)(h)
∑

πM̄H1
∈ΠϕM̄H1

ΘπM̄H1

(h) dh

vanishes. To this end, we show that this distribution is an invariant eigendistri-
bution and apply the twisted version of Harish-Chandra’s uniqueness theorem
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(cf. §6.5 and 7.3 [Mez12]). The invariance of this distribution follows from
(121) [Mez12]. The eigendistribution property follows from Lemma 24 [Mez12]
and Proposition 30 (38) §6 [Var77], which allow us to pull out the element z in
the centre of the universal enveloping algebra from the parentheses in (zf)(P̄H1

).
The lack of a θ-elliptic element with norm implies that this distribution vanishes
on any fundamental torus of M̄ . The uniqueness theorem Theorem 15.1 [Ren97]
then tells us that the distribution vanishes everywhere when the L-packet ΠϕM̄H1

is essentially square-integrable.
Having disposed of the uninteresting spectral transfer identity “zero equals

zero”, one may assume that there exists a strongly θ-regular and θ-elliptic ele-
ment δ ∈ M̄(R) which has a norm γ1 ∈ H1(R).

8 Spectral transfer for tempered representations

In this section we show how the framework of the previous section applies to
tempered representations. Suppose, that we have an endoscopic quadruple
(H,H, s, ξ) and a compatible z-pair (H1, ξH1) as in section 4 and that θ has
finite order on ZG. Suppose further that ϕH1

: WR → LH1 is an admissible ho-
momorphism such that ΠϕH1

consists of irreducible tempered representations.

We shall further assume that the homomorphism ϕ∗ = ξ ◦ ξ−1
H1
◦ ϕH1

is admis-
sible with respect to G (in the sense of §8.2 [Bor79]). As earlier, we denote ϕ∗

by ϕ to distiguish the resulting admissible homomorphism of G. The condition
that ΠϕH1

be tempered is equivalent to ϕH1 having bounded image (§(4) 10.3

[Bor79]). It follows from the continuity of ξ and ξ−1
H1

that ϕ has bounded image
so that Πϕ is an L-packet consisting of irreducible tempered representations of
G(R). In order for this L-packet to have any bearing on twisted endsocopy, we
assume that Πϕ = Πϕ ◦ θ.

Let LM̄H1
be the smallest Levi subgroup of LH1 containing the image of ϕH1

.
By definition, the irreducible representations in ΠϕH1

are the irreducible sub-
representations of the representations induced from ΠϕH1

,M̄H1
(§11.3 [Bor79]).

We wish to produce an R-Levi subgroup M̄ of G and a correponding endo-
scopic quadruple (M̄H ,H, sM̄ , ξM̄ ) such that M̄H1

is a z-extension of M̄H . We
will achieve this by running the arguments of Appendix A [Mez12] in reverse. In
section 3.3 we have fixed a Borel subgroup BH of Ĥ containing a maximal torus
TH . We may assume that LM̄H1 is a standard Levi subgroup with respect to
this fixed data (§3.3 [Bor79]). As such, LM̄H1 is determined by a Γ-stable set of
simple roots I ⊂ R(Ĥ1, TH1

). Given that H1 is a central extension of H, the root
system R(Ĥ1, TH1

) may be identified with R(Ĥ, TH). Let M̄H be the R-Levi
subgroup of H corresponding to I ⊂ R(Ĥ, TH). The root system R(Ĥ, TH)

embeds into the system of indivisible roots in Rres(Ĝ, T ) = R((Ĝsθ̂)0, (T θ̂)0)
under ξ ((137) [Mez12]). This embedding preserves positivity, as ξ(BH) ⊂ B
(section 3.3). Let us identify I with its image in Rres(Ĝ, T ) and define

Ī = {α ∈ R(Ĝ, T ) : α|(T θ̂)0 ∈ I}.
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This is a set of positive roots (Theorem 1.1.A (2) [KS99]).

Lemma 8.1. Every root in Ī is simple with respect to the positive system fixed
by B.

Proof. Suppose β ∈ Ī so that the root β|(T θ̂)0 is simple in Rres(Ĝ, T ). By way of

contradiction, suppose that β = β1 +β2 for positive roots β1, β2 ∈ R(Ĝ, T ). The

restrictions of β1 and β2 to (T θ̂)0 are non-negative relative to R((Bsθ̂), (T θ̂)0)
(Theorem 1.1.A (2) [KS99]). By simplicity, one of the two must have trivial

restriction. Suppose β1 has trivial restriction. The automorphism θ̂ preserves
the pair (B, T ) (section 3.1) so that it has finite order l on T (Corollary 2.14

[Spr79]). Moreover, θ̂j · β1 is another positive root for any j ≥ 1. The trivial

restriction of β1 implies 0 =
∑l
j=1 θ̂

j · β1, and this equation contradicts the
positivity of the summands on the right.

By Lemma 8.1, we know that Ī is a set of simple roots. In addition, the
set Ī is stable under the action of θ̂ ((1.3.1) [KS99]). As a result Ī corresponds

to a unique standard parabolic subgroup of Ĝ which is preserved by θ̂. Since

the action of Γ on Ĥ in H is transferred to the action of Γ on (Ĝsθ̂)0 in LG
under ξ ((2.1.2), (2.1.4) [KS99]), it follows that Ī is preserved by Γ. Thus,
the parabolic subgroup of Ĝ corresponding to Ī is the identity component of a
parabolic subgroup LP̄ of LG, and LP̄ is dual to an R-parabolic subgroup of
G∗ ((2) §3.3 [Bor79]). The admissibility assumption on ϕ∗ above tells us that
LP̄ ⊃ ϕ∗(WR) is relevant so that it is actually dual to (a G(R)-conjugacy class
of) an R-parabolic subgroup P̄ of G. The subset Ī also corresponds to a unique

θ̂-stable Levi subgroup M in Ĝ such that M oWR is a Levi subgroup of LP̄ ,
and M is dual to the Levi subgroup M̄ of P̄ . The definitions of P̄ and M̄ rely
on a choice of a Borel subgroup and maximal torus in G. Let us choose this
pair to be T ⊂ BT from (3.1). Using this pair of groups for the definitions of P̄

and M̄ , the θ̂-stability of Ī translates into the Int(g0)θ-stability of P̄ and M̄ , for
some g0 ∈ G(R) (cf. §1.3 [Bor79] and Theorem 20.9 (iii) [Bor91]). We define
θ1 = Int(g0)θ so that the first hypothesis listed in section 7 is satisfied with θ1

in place of θ. Recall from section 6 that θ̂1 = θ̂. Our aim is to show that the
remaining hypotheses of section 7 also hold for θ1.

The group (Msθ̂)0 is generated by the restriction to (T θ̂)0 of the roots gen-
erated by Ī (Theorem 1.1.A (2) [KS99], Proposition 8.1.1 (ii) [Spr98]). This

implies that (Msθ̂)0 is isomorphic to the dual of M̄H by construction. Set

HM̄ = ξ−1((Msθ̂)0), ξM̄ = ξ|HM̄ , sM̄ = s and θM̄ = (θ1)|M̄ . Then it is easily

verified that (M̄H ,HM̄ , sM̄ , ξM̄ ) is an endoscopic datum for the pair (M̄, θM̄ ),
and that M̄H1 = p−1(M̄H) is a z-extension of M̄H with corresponding homo-
morphism (ξH1)|HM̄ (see section 3.2).

Let LM̄ =MoWR. Then the image of ϕ is contained in LM̄ (cf. proof of
Lemma 5.1). We may therefore regard ϕ as an admissible homomorphism of M̄
obtained from an admissible homomorphism ϕH1

of M̄H1
. This is another way

of saying that the second hypothesis listed in section 7 is satisfied.
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Before showing that the third such hypothesis holds, it is convenient to
jump to the fourth. We require that Πϕ,M̄ consists of limits of fundamental
series representations of M̄(R). This becomes evident from section 5 once we
indicate how the assumptions of that section are satisfied with G replaced by
M̄ , and H1 replaced by M̄H1

. Looking back, we see that the assumptions of
section 5 are a modified list of those given in section 4.

The first assumption in our context is that ϕH1 is not contained in a proper
parabolic subgroup of LMH1

. This assumption is satisfied by the definition of
MH1

.
The second assumption is that there exists a θ1-elliptic element in M̄(R)

which has a norm in M̄H1
(R). In section 7.1, we have argued that making

the additional assumption that there exists θ1-elliptic δ ∈ M̄(R) with norm in
H1(R) is innocuous. We make this assumption now.

The third assumption of section 5 is that ϕ∗ is an admissible homomorphism,
and this assumption has already been made here.

The fourth assumption is that the representations in Πϕ,M have unitary
central character. If the representations in Πϕ,M do not have unitary central
character, then Πϕ,M does not consist of tempered representations. In that case
ϕ is not bounded in M or G, so that Πϕ is not a tempered L-packet ((4) §10.3
[Bor79]). This would contradict Πϕ being a tempered L-packet. In consequence,
the fourth assumption holds.

The fifth assumption of section 4 is eliminated from section 5, so that we are
in the position to conclude that Πϕ,M̄ consists of limits of fundamental series
representations.

Let us show that θ1 has finite order on ZM̄ . We are assuming that Int(δ)θ1

determines a fundamental maximal torus S of M̄ (Lemma 4.1). The auto-
morphism Int(δ)θ1 preserves the torus S and has finite order on ZG ⊂ S. In
consequence, some power of this automorphism is trivial on S (cf. (36) [Mez12]).
Since ZM̄ is contained in the maximal torus S and δ ∈ M̄ , some power of θ1 is
trivial on ZM̄ .

There remain two related results which we must verify in order for the mech-
anism of section 7 to apply. The first of the two is the final assumption of section
4. In the current context of twisted endoscopy for (M̄, θM̄ ) this assumption takes
the shape

Πϕ,M̄ = Πϕ,M̄ ◦ θ1.

One would rightly suspect that this identity might be derived from the given
assumption

Πϕ = Πϕ ◦ θ = Πϕ ◦ θ1.

The other remaining result is the final hypothesis listed in section 7, namely
the requirement that the Int(δ)θ1-stable representations in Πϕ be exactly the
subrepresentations induced from the Int(δ)θ1-stable representations in Πϕ,M̄ . To
prove both of these results, it helps to recall that any representation in Πϕ,M̄ is of

the form ind
M̄(R)
P (R) $, where P ⊂ M̄ is a parabolic subgroup with Levi subgroup

M = ZM̄ (Sd), $ ∈ Πϕ,M is an essential limit of discrete series representation
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of M(R), etc. (see sections 4-5). The next lemma is a consequence of the
Langlands Disjointness Theorem (pp. 149-151 [Lan89], Theorem 14.90 [Kna86])
given in the language of this description of Πϕ,M̄ (cf. the proof of Proposition
4.12). The remaining two assumptions will follow as corollaries.

Lemma 8.2. Suppose S is the fundamental torus of M̄ generated by δ ∈ M̄(R),
M = ZM̄ (Sd), P is a parabolic subgroup of G with M as a Levi subgroup, and
$,$′ ∈ Πϕ,M are essential limit of discrete series representations of M(R)

such that ind
G(R)
P (R)$

′ and (ind
G(R)
P (R)$)δθ1 share equivalent irreducible subrepre-

sentations. Then $′ is equivalent to $δθ1 .

Proof. Suppose first that $′ and $ are essentially square-integrable representa-
tions. As in section 4.2, we may write $ = $w−1Λ and $′ = $(w′)−1Λ, where S
is an elliptic torus of M = M̄ , Λ is an M -regular and δθ1-stable quasicharacter
of S(R), and w,w′ ∈ Ω(M,S) (cf. Lemma 4.11). The Langlands Disjointness
Theorem (pp. 149-151 [Lan89]) provides k ∈ NG(R)(M) such that $′ is equiva-

lent to ($)kδθ1 . As in Proposition 4.12, we may assume that k ∈ NG(R)(S) and
identify it with an element of ΩR(G,S). We have the equation

kδθ1w
−1 · Λ = (w′)−1 · Λ.

which may be rewritten in the form

(8.1) w−1
1 k · Λ′ = Λ′,

where Λ′ = δθ1w
−1(δθ1)−1 · Λ and w1 = (w′)−1δθ1w(δθ1)−1.

The (differential of the) quasicharacter Λ′ is M -regular. We choose a positive
system on R(G,S) so that its induced positive system on R(M,S) corresponds
to a Weyl chamber containing Λ′. Equation (8.1) implies that the element
w−1

1 k ∈ Ω(G,S) is a product of reflections generated by simple roots in R(G,S)
which are orthogonal to Λ′ (Lemma B §10.3 [Hum94]). Suppose α is such a
simple root and let ρM be the half-sum of the positive roots of R(M,S). The
simple reflection sα fixes Λ′ and therefore stabilizes the system of positive roots
for R(M,S). This implies that sα fixes ρM , or equivalently, that α is orthogonal
to ρM .

Using the terminology of §3 [Vog82], this proves that α is a quasisplit root
and that w−1

1 k lies in the quasisplit Weyl group generated by the quasisplit roots.
We also know that w1 ∈ Ω(M,S) is defined over R (Lemma 6.4.1 [Lab08]) so
that w−1

1 k belongs to the subgroup of the quasisplit Weyl group whose ele-
ments are defined over R. According to Vogan, this subgroup is a semidirect
product of two groups (p. 961 [Vog82]) and each of these two is contained in
ΩR(G,S) (Lemma 3.1 [Vog82]). In short, w−1

1 k belongs to ΩR(G,S) so that
w1 ∈ ΩR(M,S) and

w′ΩR(M,S) = (δθ1 · w)ΩR(M,S).

We deduce from §6.4 [Lab08] and a character comparison that

$′ = $(w′)−1Λ
∼= $δθ1·w−1Λ

∼= ($w−1Λ)δθ1 = $δθ1 .
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Suppose now that $,$′ ∈ Πϕ,M are essential limit of discrete series represen-

tations. In the notation of section 5 we may write $ = Ψ
w−1·(µ+ν′)
w−1·µ $w−1Λ

and $′ = Ψ
(w′)−1·(µ+ν′)
(w′)−1·µ $(w′)−1Λ, where $w−1Λ and $(w′)−1Λ are essentially

square-integrable representations as above. As in the previous case, the Lang-
lands Disjointness Theorem supplies k ∈ NG(R)(S) such that $′ is equivalent

to $kδθ1 . By Theorem 1.1 (c) [KZ84], there exists k1 ∈ NM̄(R)(S) such that

k1kδθ1w
−1 · Λ = (w′)−1 · Λ. The previous argument for essentially square-

integrable representations therefore applies after replacing k with k1k. We con-
clude in turn that $(w′)−1Λ

∼= ($w−1Λ)δθ1 and

$′ = Ψ
(w′)−1·(µ+ν′)
(w′)−1·µ $(w′)−1Λ

∼= Ψ
δθ1·w−1·(µ+ν′)
δθ1·w−1·µ ($w−1Λ)δθ1 ∼= (Ψ

w−1·(µ+ν′)
w−1·µ $w−1Λ)δθ1 = $δθ1 .

Corollary 8.3. The L-packet Πϕ,M̄ is equal to the L-packet Πϕ,M̄ ◦ θ1.

Proof. Suppose$ ∈ Πϕ,M̄ . Then the irreducible subrepresentations of ind
G(R)

P̄ (R)
$

belong to Πϕ (§11.3 [Bor79]). We are assuming that Πϕ = Πϕ ◦ θ1 so that there

exists $′ ∈ Πϕ,M̄ such that ind
G(R)

P̄ (R)
$′ and (ind

G(R)

P̄ (R)
$)δθ1 have some equivalent

irreducible subrepresentations. By Lemma 8.2 and the fact that the irreducible
representations in Πϕ,M̄ are induced from irreducible representations in Πϕ,M ,

$′ is equivalent to $δθ1 ∼= $θ1 ∈ Πϕ,M̄ ◦ θ1. Since L-packets with non-empty
intersection are equal, the corollary is complete.

Corollary 8.4. Suppose π ∈ Πϕ and $ ∈ Πϕ,M̄ such that π is a subrepre-

sentation of ind
G(R)

P̄ (R)
$ (§11.3 [Bor79]). Then π is θ1-stable if and only if $ is

θ1-stable.

Proof. If π is δθ1-stable then $ is δθ1-stable by Lemma 8.2. Clearly, δθ1-
stability is equivalent to θ1 stability here so that one implication of the corollary

is proven. Conversely, suppose $ is θ1-stable. Then ind
G(R)

P̄ (R)
$ is θ1-stable (see

the proof of Proposition 4.1 [Mez07]). Since every irreducible subrepresentation

of ind
G(R)

P̄ (R)
$ occurs with multiplicity one (Theorem 2.3 (b) [KZ79]) it follows

that π is θ1-stable.

All of the hypotheses of section 7 have been shown to hold. We now conclude
with the main theorem, whose objects have also been defined in section 7.

Theorem 8.5. Suppose θ has finite order on ZG, (H,H, s, ξ) is an endoscopic
datum for (G, θ) and (H1, ξH1) is a compatible z-pair. Suppose further that
ϕH1 : WR → LH1 is a tempered admissible homomorphism which passes to an
admissible homomorphism ϕ : WR → LG such that Πϕ = Πϕ ◦ θ. Then∑

π∈Πϕ

∆(ϕH1 , π) Θπ,Tπ (f) =

∫
H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh

for all f ∈ C∞c (G(R)θ).
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Proof. The theorem holds for θ1 = Int(g0)θ by the arguments of section 7. It
therefore follows for θ by (?) of section 6, as g0 ∈ G(R).
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