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Preface

Profinite groups are Galois groups, which we view as topological groups. In this
book the theory of profinite graphs is developed as a natural tool in the study of
some aspects of profinite and abstract groups. Our approach is modelled on the by
now classical Bass—Serre theory of abstract groups acting on abstract trees as it
appears in J.-P. Serre’s monograph ‘Trees’.

We think of a graph I as the union of its sets of vertices V and edges E. A graph
I’ is profinite if it is endowed with a profinite topology (i.e., a compact, Hausdorff
and totally disconnected topology), in such a way that the functions defining the
origin and terminal points are continuous. A natural example of a profinite graph is
the Cayley graph ' (G, X) of a profinite group G with respect to a closed subset X,
say finite, of G: the vertices of I" are the elements of G, and its directed edges have
the form (g, x) (g € G, x € X) with origin dy(g, x) = g and terminal d; (g, x) = gx.
Then the topology of G naturally induces a profinite topology on I' (G, X).

Part I of this book contains an exposition of the theory of profinite graphs and
how it relates to and is motivated by the theory of profinite groups. Part II deals with
applications to profinite groups, while Part III is dedicated to the study of certain
properties of abstract groups with the help of tools developed in Parts I and II.

Our aim in Parts I and II has been to make the exposition self-contained, and
familiarity with the theory of abstract graphs and groups is not strictly necessary.
However, knowledge of the Bass—Serre theory certainly helps, and throughout these
two parts we often indicate the interconnections. These connections are in fact the
main tools for some of the applications to abstract groups in Part III, where results
and ideas ranging from topology and abstract group theory to automata theory are
used freely.

One fundamental difference with the abstract case is that a profinite group acting
freely on a profinite tree need not be a free profinite group (it is just projective). This
leads to a study of Galois coverings of profinite graphs and fundamental groups of
profinite graphs. Throughout the book we have tried to be as general as reasonably
possible, and so we consider pro-C groups, where C is a class of finite groups, rather
than profinite groups in general. Consequently the book includes studies of Galois
C-coverings, C-trees, fundamental groups of graphs of pro-C groups, etc.

vii



viii Preface

Part I (Chaps. 2-6) includes the development of free products of pro-C groups
continuously indexed by a topological profinite space, and a full treatment of the
fundamental pro-C group of a graph of pro-C groups.

Part IT (Chaps. 7-10) contains applications to the structure of profinite groups. In
Chap. 7 we describe subgroups of fundamental groups of graphs of profinite groups;
in particular, an analogue of the Kurosh subgroup theorem for open subgroups of
free products of pro-C groups is established. Chapter 8 describes the properties of
minimal G-invariant subtrees of a tree on which the group G acts; this is done for
profinite as well as abstract groups and graphs. The study of such minimal trees
was initiated by Tits when G is cyclic and acts without fixed points on an abstract
tree. It turns out that the connections between these types of minimal subtrees in the
abstract and profinite cases provides a powerful tool to study certain properties in
abstract groups. Chapters 9 and 10 of Part II deal mainly with homology. Chapter 9
includes a theorem of Neukirch and a generalization of Mel’nikov characterizing
homologically when a profinite group is the free product of a collection of sub-
groups continuously indexed by a topological (profinite) space; this plays the role of
the usual combinatorial description of free products in the case of abstract groups.
This chapter also contains a Kurosh-like theorem for countably generated closed
subgroups of free products of pro-p groups due to D. Haran and O. Mel’nikov in-
dependently. Chapter 10 includes the well-known theorem of J.-P. Serre that asserts
that a torsion-free pro-p group G with an open free pro-p subgroup must be free
pro-p. There is also a generalization of this result due to C. Scheiderer, where one
allows torsion in G. Using this, the chapter also contains a study of the subgroup of
fixed points of an automorphism of a free pro-p group.

Part IIT (Chaps. 11-15) contains applications to abstract groups. These include
generalizations of a theorem of Marshall Hall that asserts that a finitely generated
subgroup H of an abstract free group @ is the intersection of the subgroups of fi-
nite index in @ that contain H; an algorithm to compute the closure of a finitely
generated subgroup H of an abstract free group @ in the pro- p topology of @; and
applications to the theory of formal languages and finite monoids. Also included
is the study of certain properties that hold for an abstract group if and only if they
hold for the finite quotients of that group, e.g., conjugacy separability for an ab-
stract group R: for x, y € R, these elements are conjugate in R if their images are
conjugate in every finite quotient group of R.

The book ranges over a large number of areas and results, but we have not in-
tended to make this into an encyclopedia of the subject. Part I gives a fairly complete
account of profinite graphs and their connection with profinite groups. However in
Part IT and, even more, in Part III, I have made a choice of topics to illustrate some
results and methods. At the end of each of the three parts of the book there is a
section with historical comments on the development of the fundamental ideas and
theorems, statements of additional results, references to related topics, and open
questions.

In an effort to make the book self-contained, the first chapter includes a review
of basic notions and results about profinite spaces, profinite groups and homology
that are used frequently throughout the monograph. Appendix A deals with aspects
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of abstract graphs that are of interest in the book. The main purpose has been to de-
velop a terminology common to abstract and profinite graphs. Appendix B contains
a proof of a theorem of M. Benois about rational languages in free abstract groups.

I have been indebted to many colleagues during the writing of this book.
Throughout the years I have had many mathematical discussions with my longtime
collaborator Pavel Zalesskii that have helped to clarify some topics developed here;
it is a pleasure to acknowledge with thanks my debt to him. I thank John Dixon,
Wolfgang Herfort, Dan Segal and Benjaming Steinberg, who have read parts of
the manuscript and have made very useful comments, corrections and suggestions.
Jean-Eric Pin has provided helpful references, and I am very grateful to him for this.

This book was written mainly in Ottawa and Madrid. In Ottawa my thanks go
to Carleton University for continuous help throughout the years, and for sabbat-
ical periods that have allowed me to concentrate on the writing of his book. In
Madrid I have often used the facilities of the Universidad Complutense, the Uni-
versidad Auténoma and ICMAT, and I thank all of them for their generosity, and
my colleagues at these institutions for their welcome whenever I have spent time
with them. Finally, I acknowledge with thanks the continued research support from
NSERC.

Madrid—-Ottawa Luis Ribes
March, 2017
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