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Abstract

The subtour-elimination polytope (SEP) of a graph G is the feasible region of the linear
programming relaxation of an important integer linear programming formulation of the
Symmetric Travelling Salesman Problem (STSP) on G.

The SEP is a well-studied combinatorial object at least in the case of the complete
graph and is often used as a starting point for solving concrete STSPs. Remarkably, the
SEP is related to the century-old geometry problem of determining if a 3-connected planar
graph is of inscribable type, that is, realizable by a 3-dimensional polytope inscribed in
the sphere. The problem was open for over a century until Rivin showed that G is of
inscribable type if and only if there exists a point in the SEP of G that satisfies all the
inequalities strictly.

In this thesis, we study the SEP of a general simple graph and graphs of inscribable
type. In particular, questions on the existence of certain points in the SEP and the
certificates of unsolvability of the system that defines the polytope are considered. Some
graph operations that preserve the property that the system has a solution that satisfies all
the inequalities strictly are also described. The SEP of a (2k+1)-edge-connected (2k+1)-
regular graph is studied in detail. In particular, an efficient algorithm for computing the
dimension of the SEP of such a graph is given. A detailed sketch of Rivin’s elementary
proof of his theorem is given in the context of the SEP. Descriptions of classes graphs of

inscribable type are obtained in the thesis.
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Chapter 1

Introduction

A classical result that connects graph theory to geometry is the following:

Theorem 1.1. (Steinitz” Theorem [46]) If G is a graph, then G is isomorphic to the

graph of some 3-dimensional polytope P in R3 if and only if it is planar and 3-connected.

In casual terms, the theorem asserts that a planar graph is 3-connected if and only if
it can be realized by a 3-dimensional polytope in R3. Steinitz’ Theorem has a number of
extensions. For instance, Barnette and Griinbaum [1] showed that one can preassign the
shape of a facet in the realization. There are also results on using only integral extreme
points in the realization. However, one result that stands out among the numerous
extensions of Steinitz’ Theorem is the Koebe-Andreev-Thurston Circle Packing Theorem,
which has garnered attention of graph theorists as well as geometers.

Other than extensions of Theorem 1.1, one can look for refinements of the result.
For instance, one might ask what happens if the polytopes used in the realization are
restricted to the ones that can be inscribed in a sphere. Graphs that can be so realized
are said to be of inscribable type. The problem dates back to 1832 when Jakob Steiner
in his book [45] asked the following question:

In which cases does a convex polyhedron have a [combinatorial] equivalent

which is inscribed in, or circumscribed about, a sphere?
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Using a notion of duality, the problem of determining which convex polyhedra have a
combinatorial equivalent which is circumscribed about a sphere can be reduced to the
problem of determining which convex polyhedra have a combinatorial equivalent which

is inscribed in a sphere. Hence, one can simply consider the following problem:
Which 3-connected planar graphs are of inscribable type?

The first examples of graphs that are not of inscribable type were found by Steinitz [47].

One of these examples is the truncated cube depicted in Figure 1.1.

Figure 1.1: The truncated cube

The problem was open for well over a century until Rivin, in a series of papers pub-
lished in the 1990’s, gave a characterization of graphs of inscribable type in terms of
the existence of an inner solution of a finite system of equations and linear inequalities.
(An inner solution is one that satisfies all the inequalities of a system strictly.) Surpris-
ingly, after scaling by a positive contant, the system is the same system that defines the
subtour-elimination polytope of the graph. (The subtour-elimination polytope is the set
of solutions of the linear programming relaxation of an important integer linear program-
ming formulation of the Symmetric Travelling Salesman Problem.) Since one can find an
inner solution of this system in polynomial time using linear programming methods, one
can decide if a 3-connected planar graph is of inscribable type in polynomial time.

By studying the subtour-elimination polytope of 3-connected planar graphs, one can
obtain a number of interesting necessary conditions as well as sufficient ones for graphs
of inscribable type. For instance, Dillencourt and Smith [16] showed that 4-connected
planar graphs and planar graphs obtained from 4-connected planar graphs by removing

one vertex are of inscribable type. In [15], they gave necessary and sufficient conditions for



a 3-connected 3-regular planar graph to be of inscribable type and a linear-time algorithm
for recognizing such a graph. However, as Dillencourt and Smith [16] put it, “a general
graph-theoretical characterization has remained elusive.”

The remarkable, perhaps accidental, connection between the subtour-elimination poly-
tope and the century-old geometry problem motivated the present study of the subtour-
elimination polytope. In particular, the problem of determining when the system defining
the subtour-elimination polytope has inner solutions is of great interest. The subtour-
elimination polytope is a well-studied combinatorial object in the case of the complete
graph because of its connection with the Symmetric Travelling Salesman Problem. How-
ever, the literature on the case when the graph is not necessarily complete is relatively
sparse. One of the goals of the thesis is to obtain a deeper understanding of the subtour-
elimination polytope of general graphs. Another goal is to further the work of Dillencourt
and Smith on identifying more classes of graphs of inscribable type.

The thesis assumes the reader to be familiar with elementary Euclidean geometry and
duality theory in the context of linear programming. Knowledge of linear programming
algorithms is not required.

The rest of the thesis is organized as follows.

Chapter 2 contains basic notation and definitions on graphs and polytopes and states
some existing results that are used in the thesis.

Chapter 3 begins with the definition of the system of linear inequalities defining the
subtour-elimination polytope studied in this thesis. It then establishes some combinato-
rial properties of certain certificates of unsolvability of the system. Some simple sufficient
conditions on the feasibility of the system and graphs that satisfy two notions of min-
imality are considered. The problem of determining if a graph with maximum degree
three is feasible is then shown to be as difficult as the general problem. The chapter ends
with a compact formulation of the subtour-elimination polytope in the case of planar
graphs. This formulation is due to Rivin and will be used in Chapter 6 when Rivin’s
characterization is discussed.

Chapter 4 focuses on the study of the existence of inner solutions of the system. It

begins with graph operations that preserve the existence of inner solutions. Many of
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these operations can be applied to graphs of inscribable type to obtain new ones. The
most important of the operations discussed is the gluing operation, which allows one to
construct a non-trivial class of maximal planar graphs of inscribable type that are not
4-connected. The chapter ends with a main result of the thesis, which gives a characteri-
zation for the system to have an inner solution. This characterization incorporates some
combinatorial information which allows one to show that 4-connected planar graphs and
3-connected 3-regular planar bricks and braces are of inscribable type, thus providing,
to a certain extent, a unified proof of two previous results obtained by Dillencourt and
Smith.

Chapter 5 studies the subtour-elimination polytope of r-edge-connected r-regular
graphs where r is odd and at least 3. In particular, the connection between the subtour-
elimination polytope and the perfect matching polytope is exploited to obtain a dimension
formula and an efficient combinatorial algorithm that computes the dimension. The al-
gorithm can also be used to recognize 5-edge-connected 5-regular planar graphs that are
of inscribable type. The results in this chapter are rather self-contained and can be read
independently of the rest of the thesis.

Chapter 6 begins with a detailed sketch of Rivin’s elementary proof of his characteriza-
tion of graphs of inscribable type. It continues with a section on some graph-theoretical
conditions. A refinement of a theorem of Wagner obtained by focusing on graphs of

inscribable type ends the chapter.



Chapter 2

Preliminaries

2.1 Basic notation

In this thesis, A C B means A is a subset of B and A C B means A is a proper subset of
B. The set of integers is denoted by Z and the set of real numbers is denoted by R. R
denotes the set {x € R: 2 > 0} and R4 denotes the set {z € R:z > 0}. Vectors are
written as columns unless otherwise stated. The vector of 1’s is denoted by e.

Let S be a finite set. Let z,y € R%. If A C S, then x(A) denotes the sum Y oeca Te-
We write z > y if . > y. for all e € S. Similar notation can be defined for strict
inequalities. If T C S, then the vector z € RY with 2. = 1ife€ T and 2. =0ife ¢ T

is called the incidence vector of T.

2.2 Graphs

A graph G is an ordered pair (V, E) where V is a set whose elements are called vertices
(or nodes) and E is a multi-set whose elements are two-element subsets of V' called edges.
Note that loops are not allowed under this definition. We can also denote the set of
vertices by V/(G) and the set of edges by E(G). We call |V|+ |E| the size of G.

An edge {u,v} joins the vertices v and v and is denoted by wwv for simplicity. The

vertices u and v are said to be adjacent and are called end-vertices of the edge uwv. Edges
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that have the same end-vertices are called multiple edges. If E happens to be a set, then
G is said to be simple.

For a subset S C V, G — S is the graph obtained from G by removing S from V
and all the edges with an end-vertex in S from E. For a subset F C F, G — F is
the graph obtained from G by removing F from E. If v and v are non-adjacent, then
G+ uv = (V,EU{uv}).

Let G; and G3 be two simple graphs. Then G; U G3 denotes the graph (V(Gp) U
V(G2), E(G1)UE(G3)) and Gy NG; denotes the graph (V(G1) NV (Gs), E(G1)NE(Gy)).
G1 and Gy are said to be isomorphic (written as G; = Gj) if there exists a bijection
f:V(G1) = V(Gy) such that f(u)f(v) € E(G,) if and only if uv € E(Gy).

Given a vertex v, any edge that has v as an end-vertex is said to be incident with v.
Vertices adjacent to v are called the neighbours of v. The degree of v, denoted by deg(v),
is the number of neighbours of v. A set § C V is called an independent set if no two
vertices in S are adjacent.

A graph H = (V' E’) is a subgraph of Gif V' CV and E'CE. f V' =V, His a
spanning subgraph of G. If H # G, then H is called a proper subgraph of G. If H contains
all the edges of G that join two vertices in V', then H is said to be the subgraph induced
by V' and is denoted by G[V']. If H = G[V'], then H is an induced subgraph of G.

A simple graph is complete if every vertex is adjacent to every other vertex. Since
any two complete graphs having the same number of vertices are isomorphic, we simply
call a complete graph on n vertices a K.

G is connected if for any distinct non-adjacent u,v € V(G), there exist vy, ..., v €
V(G) for some k > 1 such that wvy,v1vg, vavs, ..., Vk_10k, kv € E(G). G is k-edge-
connected (k > 2) if it has at least two vertices and G — F' is connected for any F C F
with |F| < k—1; G is k-connected (k > 2) if either G has a K41 as a spanning subgraph
or it has at least k+2 vertices and G — S is connected for every set S C V with | S| < k—1.
A vertex v of a connected graph G is a cut-vertex if G — v is not connected. A set S CV
is called a k-separator if |S| = k and G — S is not connected. An edge e of a connected
graph G is a bridge if G — e is not connected.

A maximal connected subgraph of G is called a component of G. If G is 2-connected,
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a subgraph B of G is a block of G if either B is a bridge (together with its end-vertices)
or it is a maximal 2-connected subgraph of G.

A cycle is a connected simple graph such that every vertex has degree two. We say
that a graph G has (or contains) a cycle if there exists a subgraph of G that is a cycle. It
is not difficult to see that one can label the vertices of the cycle as vy, ..., vp_1 such that
v;v;+1 18 an edge for all ¢ = 0,...,k — 1 where addition is performed modulo k. Such a
labelling is called a cyclic order of the vertices. The edge-set of a cycle is called a circuit.
A tree is a connected simple graph that has no cycles. It is known that the number of
edges in a tree is one fewer than the number of vertices. A leaf of a tree is vertex of
degree one. A path is a tree with exactly two leaves which the path connects. It is easy
to see that every vertex on a path that is not a leaf has degree two and given any two
distinct vertices in a tree, there is a unique path connecting them. In addition, it is not
difficult to see that one can label the vertices of a path as vy, ..., vg such that v;v;41 is an
edge for ¢ = 1,...,k — 1. Such a labelling is called a sequential order of the vertices. A
rooted tree is a tree with a distinguished vertex called the root. In a rooted tree T' with
root R, the parent of v € V(T') is the neighbour of v on the path connecting v and R. If
vertices u,v € V(T) are such that v is on the path connecting u and R, then u is called a
descendant of v and v is called an ancestor of u. A child of v is a descendant of v adjacent
to v.

The number of edges in a path or a cycle is the length. The distance between two
vertices is the length of the shortest path connecting them. An odd cycle is a cycle having
odd length. An odd circuit is a circuit having an odd number of edges. An even cycle is
a cycle having even length. An even circuitis a circuit having an even number of edges.
A cycle of length three is called a triangle. A path in G is a subgraph of G that is a path.
A cycle in G is a subgraph of G that is a cycle. A cycle C in G is a chordless cycle if
there does not exists u,v € V(C) such that uv € E(G)\E(C). A triangle T in G is a
separating triangle if G — V(T') is not connected.

G is bipartite if the vertices can be partitioned into two sets U and W such that no
two vertices in U are adjacent and no two vertices in W are adjacent. In this case, (U, W)

is called a bipartition and U and W are called partitions. It is easy to show that G is
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bipartite if and only if G has no odd cycle. A complete bipartite graph is a simple bipartite
graph with bipartition (U, W) in which each vertex of U is joined to each vertex of W if
|U| = m and |W| = n, such a graph is denoted by K,, ,.

G is planar if it can be drawn in the plane so that its edges intersect only at their
ends. Such a drawing is called a planar embedding of G. A planar embedding G of G
can be seen as a graph isomorphic to G with the understanding that V(G) is the set of
points representing vertices of G and E(G) is the (multi-)set of lines representing edges
of G and a vertex of G is incident with all the edges of G containing it. Therefore, we
can refer to a planar embedding of a planar graph as a plane graph. A mazimal planar
graph is a simple planar graph having at least three vertices such that joining any two
non-adjacent vertices will result in a non-planar graph. A planar embedding of a maximal
planar graph is a plane triangulation.

A plane graph partitions the rest of the plane into a number of connected open
regions. The closures of these regions are called the faces. Each plane graph has a unique
unbounded face called the exterior face. The boundary of the exterior face is the boundary
of a plane graph. A bounded face is called an interior face. A face is incident with the
vertices and edges in its boundary. A triangle that bounds a face is called a face triangle.
If e is a bridge in a plane graph, only one face is incident with e; otherwise two faces are
incident with e. We say an edge separates the faces incident with it. A Jordan curve is a
continuous non-self-intersecting curve whose origin and terminus coincide. The union of
the elements of a circuit of a plane graph constitutes a Jordan curve. It is known that if
v is a vertex of a planar graph H, then H can be embedded in the plane such that v is
on the exterior face of the embedding.

If G is a 2-connected plane graph, the planar dual of G, denoted by G*, is defined as
follows: there is a vertex f* of G* corresponding to each face f of G and there is an edge
e* of G* corresponding to each edge e of G; two vertices f* and ¢* are joined by the edge
€* in G* if and only if their corresponding faces f and ¢ are separated by the edge e in
G.

A path in G that contains every vertex of G is called a Hamiltonian path. A cycle

in G that contains every vertex of G is called a Hamiltonian cycle. The edge-set of
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a Hamiltonian cycle is called a Hamiltonian circuit. A graph is Hamiltonian if it has a
Hamiltonian cycle. Tutte [49] showed that every 4-connected planar graph is Hamiltonian.
The following strengthening of Tutte’s result due to Sanders [42] will be used a few times

in this thesis.

Theorem 2.1. If G is a 4-connected planar graph, then there exists a Hamiltonian circuit

through any two edges.

For S,T C V, v(S,T) denotes the (multi-)set of edges joining an end-vertex in S and
an end-vertex in T. For a subset S of V, let N(S) = {v € V\S : v is adjacent to a
vertex in S}. N({v}) is abbreviated as N(v). If |S| > 1, let G x S denote the graph
obtained from G by shrinking S, that is, removing all the vertices in S and all the edges
incident with a vertex in S from G and adding a new vertex v and edges uv for every
edge us € E where s € §. The new vertex v is called a pseudo-verter of G x S. By
convention, G x {v} = G for all v € V. Let §5(S) denote v(S,V\S). If the graph G is
clear in the context, we simply write §(S5). §(S) is called a cut of G and if G is connected,
S, V\S are the shores of the cut §(S). A shore S is called a proper shore if |S| < |V| — 2.
Cuts of the form §({v}) (abbreviated as §(v)) where v is a vertex are called trivial cuts.
All other cuts are called non-trivial cuts. We denote the set of non-trivial cuts of G by
C(G). Two cuts 6(S) and §(T') are said to cross if the four sets SNT, S\T, T\S, and
VA(SUT) are all non-empty. Two cuts that do not cross are said to be non-crossing.

The number of components of G is denoted by w(G). G is I-tough if |S| > w(G — S)
for every subset S of V' with w(G — S) > 1. G is more-than-1-tough if |S| > w(G — S) for
every subset S of V' with w(G — S) > 1. Equivalently, G is more-than-1-tough if G — v is
1-tough for every v € V.

A family [F of sets is called nested if for any non-disjoint distinct elements S, T € F,
either S C T or T C S. Given a nested family F, one can construct a rooted tree T'(F)
as follows: For each element in F, create a vertex corresponding to the element. Create
an extra vertex R to be the root. For each S; € F, let S; € F be the minimal set
properly containing S;. If no such set exists, then put an edge between R and the vertex

corresponding to S;. Otherwise, put an edge between the vertex corresponding to S; and
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that corresponding to Ss.
For a graph G = (V, E), a subset M of E is a matching of G if no two edges in M
share a common endvertex. A perfect matching of G is a matching of G having cardinality

|V'|/2. The following characterization is due to Tutte.

Theorem 2.2. G has a perfect matching if and only if for every S C V', odd(G — S) is at
most |S|. (Here, odd(H) denotes the number of components of H having an odd number

of vertices.)

A cut A € C(G) is tight if every perfect matching of G uses exactly one edge in A.
G is called matching-covered if for every edge e € E, there exists a perfect matching that
contains e. G is said to be bicritical if G — {u,v} has a perfect matching for every pair
u,v € V. A 3-connected bicritical graph is called a brick. A bipartite graph G with
bipartition (U, W) is called a brace if G — {u,w,v',w'} has a perfect matching for any
two vertices u,u’ € U and two vertices w,w’ € W. It can be shown that a bipartite
graph G is a brace if and only if |U| = |[W/| and for any subset X of U (or of W) with
2 <|X| < U] =2 (or 2 < |X| < [W] = 2, [N(X)| > |X| +2

Let PM(G) denote the convex hull of incidence vectors of perfect matchings of G. An

important result in matching theory is the following:
Theorem 2.3. (Edmonds [17]) PM(G) is the set of solutions to the system:

YveV,
VS cv,3< 8| <Y |s| s odd

An immediate consequence of the above theorem is the following:

Corollary 2.4. If PM(G) is non-empty, then G has a perfect matching. Furthermore, if
PM(G) contains a point & > 0, then G is matching-covered.

We will use the two results above a few times in the thesis.
From now on, simple graphs are called graphs. A graph that is not simple will be

called a multigraph.
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2.3 Polytopes

A set C C R"is conver if for every pair z,y € C and every A € [0,1], Az + (1 — Xy € C.

Given S C R™, the convez hull of S, denoted by conv(S), is the smallest convex set
containing S. A polytope in R™ is the convex hull of a finite subset of R”. If P C R”
is a polytope, its dimension is one less than the maximum cardinality of an affinely-
independent set S C P. If the dimension of P is n, then P is said to be full-dimensional
or of full dimension.

A linear inequality a”z < bis valid for a polytope Pif P C {z : a"2 <b}. If a2 < b
is a valid inequality, the set {z € P : a’z = b} is called the face of P induced by the
inequality. A proper face of P is a face not equal to P. A maximal proper face of P is
called a facet. An important result in polyhedral theory states that given a polytope,
there exists a finite system of linear inequalities whose set of solutions is the polytope.
If the polytope is full-dimensional, then it has a unique (up to positive scalar multiples)
minimal defining system consisting of only the facet-inducing inequalities. The dimension
of a facet is exactly one less than the dimension of the polytope.

We call x € P an extreme point of P if there do not exist z’, 2" € P, 2’ # 2" and
A € (0,1) such that = Aa’4 (1 — A)z”. Two extreme points of P are said to be adjacent
in P if they are in the same 1-dimensional face of P.

A d-simplexr in R™ is the convex hull of some d + 1 affinely-independent points. A
d-dimensional polytope is called simplicial if all its facets are (d — 1)-simplices.

If P is a 3-dimensional polytope, we denote the graph of P by G(P);i.e. G(P) is the
graph (V, E) where V is the set of extreme points of P and uv € E if and only if  and v
are adjacent in P. It is not difficult to see that if P is simplicial, then G(P) is a maximal
planar graph. If G = G(P) for some 3-dimensional polytope P inscribed in a sphere,
then G is said to be of inscribable type.






Chapter 3

Feasibility

Let G be a graph having at least three vertices. Let sys(G) denote the system

z(6(v)) = 2 VveV(G),
z(A) > 2 VAel(G),
0

8
v

The subtour-elimination polytope of G is defined as
SEP(G) := {z € R : z is a solution of sys(G)}.

The constraints

z(8(v)) =2 YveV(G)
are called degree constraints and the constraints

z(A)>2 VAeC(G)

are called subtour-elimination constraints.
G is said to be feasible if SEP(G) is non-empty. Otherwise, G is said to be infeasible.

It is easy to see that the convex hull of integral points in SEP(G) is the same as the

13
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convex hull of incidence vectors of Hamiltonian circuits of G. As a result, the subtour-
elimination polytope of a graph gives a natural relaxation of the Travelling Salesman
Problem (TSP). Despite the exponential number of constraints, using the equivalence of
separation and optimization (see Grotschel et al. [24]), one can optimize a linear function
over SEP(G) in time polynomial in the size of the graph G. Over the years, SEP(G) has
been studied by various researchers in the case when G is a complete graph. For instance,
Boyd and Pulleyblank [4] studied the structure of optimal solutions when certain cost
functions are optimized over the subtour-elimination polytope. They also showed that
the extreme points are not “nice” in general.

In this chapter, we study properties of SEP(G) when G is not necessarily complete.
In particular, we look at some extreme cases in our study. We first derive necessary and
sufficient conditions for SEP(G) to be empty and study the certificates of unsolvability
of sys(G). We then look at some simple results on feasible graphs. Two notions of
minimality are discussed. The problem of determining if a graph with maximum degree
three is feasible is shown to be as difficult as the general problem. We conclude the chapter
by giving the compact formulation of the subtour-elimination polytope of 2-connected

planar graphs due to Rivin.

3.1 Certificates of unsolvability

In this section, we consider the question of when a graph is feasible. The class of feasible
graphs sits between the class of Hamiltonian graphs and the class of 1-tough graphs in the
sense that every Hamiltonian graph is feasible and every feasible graph is 1-tough but not
all 1-tough graphs are feasible and not all feasible graphs are Hamiltonian. Since testing
if a graph is feasible is polynomial-time solvable whereas the problem of determining if
a graph is Hamiltonian and the problem of determining if a graph is 1-tough are both
NP-hard, one might ask if there is a simple combinatorial characterization of feasible
graphs.

As sys(G) is a system of linear equations and inequalities, the Farkas Lemma gives a

necessary and sufficient condition for it to have no solution. As a step towards obtaining
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a simple combinatorial characterization of feasible graphs, the goal of this section is
to explore the combinatorial structure of “certificates of unsolvability” and to obtain
strengthenings of the Farkas Lemma for the system sys(G). In particular, we observe
that non-1-tough graphs are characterized by “nice” certificates of unsolvability. We
show that, however, for a class of infeasible graphs, there are no nice certificates of
unsolvability.

Now, let us recall one form of the Farkas Lemma.

Theorem 38.1. Let A € RPX" B € R7%", h € RP, d € RY. The system
Az =b, Bx >d, z >0
has no solution if and only if there exist y € Ri and z € R? such that
ATz BTy >0 and d"y > b7z (3.1)

A pair y, z that satisfies (3.1) is often called a certificate of unsolvability. Observe
that in the case when A, B,b and d are rational, if there is a certificate of unsolvability,
there exists one that is rational. In fact, we can assume it to be integral because the
linear inequalities that it need to satisfy are homogeneous (that is, having constant term
0).

Let sys’(G) denote the system

Zu + 2y — Z ys > 0 for all uv € E(G)
uww€AeC(G)

y > 0.
We obtain the following refinement of the Farkas Lemma for the system sys(G).

Theorem 3.2. If G is connected, then SEP(G) is empty if and only if there exist y,z

feasible for sys'(G) such that Z ya > Z Zp and {A € C(G) : ya > 0} is a
A€C(G) veV(G)
non-crossing family of cuts.



16 CHAPTER 3. FEASIBILITY

The proof of Theorem 3.2 relies on the notion of uncrossing which we now describe.
Let y, Z be integral and feasible for sys’(G). Let A(y) denote the set {A € C(G) : y4 > 0}.
Let 6(S) and 6(T) be crossing cuts in A(y).

Figure 3.1: Crossing cuts

By wuncrossing §(S) and 6(T), we mean applying the following modifications: Let
p = min{yss), Ys(r)}- If SNT = {v} for some v € V(G), then decrease z, by p; otherwise,
increase ys(snt) by p. If V(G)\(SUT) = {v} for some v € V(G), then decrease z, by p;
otherwise increase ys(sur) by p. Decrease yssy and ysr) by p.

This technique of uncrossing is quite common in combinatorics. (See for instance
Chapter 4 of [21].) The next result is a specialization of the technique for the purposes of
the current thesis. The idea of the proof is very similar to the idea employed by Edmonds,
Lovész, and Pulleyblank to prove Claim 1 of Theorem 4.7 in [18].

Lemma 3.3. Given an integral pair y, z feasible for sys (G), one can obtain, by perform-
ing a finite number of uncrossings, an integral pair y',z' feasible for sys'(G) such that

Z Ua — Z Zy = Z Yy — Z z, and {A € C(G) : y/y > 0} is a non-crossing
AeC(G veV(G) AeC(G veV(G)
famzly of cuts.

Proof. For y € Z6(G), let M (y) denote Z Z 7ry (A, B) where
AeC(G) BeC(G

if A, B cross;
m(4,B) =4

0 otherwise.

Let A(y) denote {A € C(G) : y4 > 0}. If M(y) = 0, then A(y) is a non-crossing family
of cuts and we are done. Suppose M(y) > 0. Then there exist S,T C V(G) such that
5(5),8(T) € A(y) cross. Pick any such pair S,T. Let A =6(S) and B = 6(T). Uncross
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A and B to obtain y/, z’. It is not difficult to see that y’, 2’ are still feasible for sys'(G)

and s — Z Zy = Yy — Z z!. Now, given any cut C € C(G)\{A4, B},
AeC(G) veV(G) AeC(G) veV(G)
there are four possibilities:

) A and C cross but B and C do not cross.

i
ii) B and C cross but A and C' do not cross.
iii) A and C do not cross and B and C' do not cross.

(
(
(
(iv) None of the above.

It is not difficult to see that in any case, Y cigp(q) Ty (C,C") < Yoeca ma(C, C).
However, m, (A, B) = 0 < my(A, B). Hence, M(y') < M(y). Since M(y) is integral for
all integral y, the result follows. O

Corollary 3.4. If there exist y,z feasible for sysd (G) satisfying Z ya > Z Zy,

A€C(G) veV(G)
then there exist y', 2’ feasible for sys'(G) such that Z Yy > Z 2l and {A € C(G) :
A€C(G) veV (G)

Y’y > 0} is a non-crossing family of cuts.

Proof. We may assume that y and z are rational. Since sys’(G) is homogeneous, we can
clear fractions and assume that y and z are in fact integral. The result now follows from

Lemma 3.3. O

Proof of Theorem 3.2. This follows directly from Theorem 3.1 and Corollary 3.4. [
In the case of non-1-tough graphs, we can say more about the certificates of unsolv-
ability. Before we proceed to the discussion, we state a well-known technical result that

will be used a few times later in the thesis.

Lemma 3.5. Let G = (V, E) be a connected graph. If A is a non-crossing family of cuts
of G, then there ezists a nested family S(A) C 2V that contains precisely one proper shore

of each cut in A.

Proof. For each cut A € A, pick a shore that has at most half the number of vertices in
the graph and put it in S(A). Clearly, S(A) contains precisely one shore of each cut in

A
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We now show that S(A) is a nested family. Suppose there exist S,T € S(A) such
that SNT # 0, S\T # 0, and T\S # §. Since §(S) and ¢(T) do not cross, we must have
V\(SUT) = 0. However, this is impossible since |S|,|T| < |L2| The result follows. O

Theorem 3.6. If G = (V, E) is connected, then G is not 1-tough if and only if there exist
Y,z feasible for sys(G) such that y € 0,1}, z € {-1,0,1}V, Z ya > ZEU,
A€C(G) vev
and {A € C(G) : ya > 0} is a non-crossing family of cuts.
Proof. Let C denote the set of all the cuts of G.
Observe that such 7, Z exist if and only if there exist y' € {0,1}¢ and 2’ € {0,1}V

satisfying
(D) z + 2z — Z vy > 0 for all uv € E
uveAeC
y,2 >0

such that Zy;l > Zzg and {A € C : y)y > 0} is non-crossing. Hence, it suffices to

AeC veV
show that such y’, 2’ exist if and only if G is not 1-tough.

Suppose G is not 1-tough. Then there exists S C V', S # 0, such that w(G—S) > |S|.
Let Si, ..., S denote the vertex-sets of the components of G — S. Construct 3’ € {0,1}¢
and 2 € {0,1}" as follows. For each v € S, set 2/, = 1. For each i € {1,...,k}, set
y(’s(si) = 1. Set all the remaining entries to zero. Clearly, Y~ o ¥y =k > [S| =" ¢y 2,
Moreover, it is easy to see that y’,z’ are feasible for (D) and {A € C : ¢y > 0} is
non-crossing.

Conversely, suppose such 3/, 2’ exist. Let A= {4 € C:y, = 1}. Choose ¥, 2’ so that
k = |A| is as small as possible. By Lemma 3.5, there exists a nested family S(A) that
contains exactly one shore of each cut of G. Let Sy, ..., S denote the elements in S(A4).
Then for any distinct ¢, 7, if S; N S; # 0, either S; C Sj or S; C S;.

Observe that if ¢ is such that S; ¢ S; for all j # ¢, then z, = 0 for all v € S;. Indeed,
if 2/ = 1 for some v € S;, then setting yg(si) and 2] to zero gives a new pair y’, 2’ that
still satisfy all the conditions, but the number of ones in y’ is ¥ — 1. This contradicts our

assumption of minimality.
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We consider two cases.
Case 1. There does not exist j such that S; C S; for some i € {1, ..., k}\{j}.

Let U = {v € V : 2z > 0}. Since z, = 0 for all v € S;, any edge e € §(S))

v

must have one end in U. This implies that the number of components in G — U is

Sy >3, 2, = |U|. Hence, G is not 1-tough.

Figure 3.2: Mlustration for Case 1

Case 2. There exist j and {71,...,%m}, m > 1, such that S; C S; for p=1,...,m. (See
Figure 3.2.)

Then there exists such a j so that for any T'C S; with T ¢ {S;,, ..., Si..}, yg(T) = 0.

Note that z, = 0 for any u € S;,, where p = 1,...,m. Consider an edge uv € §(S;,)

ips
with w € S;,. If v ¢ Sj, then 1> z; 4+ 2, > Y .Yy > y(’s(sj) + yg(Sip) = 2, which is
impossible. Hence, we must have v € S;. In addition, there cannot be an edge ww’ with
w € S;, and w' € S;, for any p # q. Let W = {v € S; : z,, = 1}. Since V\S; # 0,
w(G—-W) > m+ 1. If |W| < m, then G is not 1-tough. Otherwise, set z, = 0 for

/!

all v e W, vyt = 0forall p=1,...,m, and y;,., = 0. The new y/, 2’ still satisfy
J(Szp) 8(S;5)
all the conditions but the number of ones in y’ is strictly less than k, contradicting our

assumption of minimality. O

We next give two results that show that non-1-tough (or infeasible) planar graphs can
be “embedded” into maximal planar graphs that are non-1-tough (or infeasible). Both

results depend on the following technical lemma which contains the bulk of the work.

Lemma 3.7. Suppose G has a chordless cycle F of length at least four. Lety, z be feasible
for syd (G) such that A = {A € C(G) : ya > 0} is a non-crossing family of cuts. Then
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there exist two non-adjacent vertices w,w' on F such that, where H = G + ww' and

, o if ww' ¢ A
Ya — )
gA\{ww'} Zf ww' cA
for each A € C(H),
Zw + Zw — Z y/A > 0.

ww'€A€C(H)

Furthermore, {A € C(H) : yy > 0} is a non-crossing family of cuts, the pair y', z is
feasible for syd(H), and

Z Y= Z Yya.

AeC(H) A€C(G)

Theorem 3.8. If G is a 3-connected planar graph that is not 1-tough, then G is a

spanning subgraph of a maxrimal planar graph that is not 1-tough.

Proof. Let G’ be a non-1-tough planar graph having G as a spanning subgraph and having
as many edges as possible. Note that G’ is 3-connected. If G’ is not a maximal planar
graph, then there exists a chordless cycle F of length at least four such that in a planar
embedding of G’, F bounds a face. Since G’ is not 1-tough, by Theorem 3.6, there exist
g e {0,139 and z € {~1,0,1}V(9) feasible for sys'(G’) such that ZAGC(G’) ya >
EUQV(G,) Zp, and {A € C(G') : y4 > 0} is a non-crossing family of cuts. By Lemma 3.7,
there exist non-adjacent vertices w,w’ on F such that if H = G' + ww' and vy = yu
for every A € C(H) with ww' ¢ A and yy = Ja\{ww) for every A € C(H) with wuw' €
A, then {A € C(H) : y’y > 0} is a non-crossing family of cuts and the pair ¥/, z is
feasible for sys'(H) and satisfies 3 yccm) Y > Dvev(m) 2o~ Since y' € {0, 1}6(H) and
ze{-1,0, 1}‘/(H)7 by Theorem 3.6, H is not 1-tough. Now, H is a planar graph having

G as a spanning subgraph and has one more edge than G'. We have a contradiction. O

A similar result holds for infeasible graphs in general.
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Theorem 3.9. If G is a 3-connected infeasible planar graph, then G is a spanning sub-

graph of an infeasible mazimal planar graph.

Proof. Using Theorem 3.2 and Lemma 3.7, one can prove this result using a similar

argument used in the proof of the previous theorem. O

Proof of Lemma 3.7. The second part of the lemma follows immediately from the first
part.
Let the vertices of F, in cyclic order, be vy, ...,vx. Let U; = {A € A : v;_yv; € A}
We use the convention that vy = vg and vgy1 = vy. Let W; denote the set U; N U;y1.
First, suppose there exists 7 € {1,...,k} such that z,; <>,y ¥a.

Now

Ziy T 2%+ 2y = (Zoicy + 20) + (20 + 2w+1)

Z ya+ Z Ya

vi_1V;€EA vivip1 €A

= Z?A-I- Z Ya

AeU; AeU;

= Y gt Y yat2> ua

AeU\W; AeU; 11 \W; AeW;

v

Thus

gui_l + Zvi_}_l Z Z ya + Z YA.

AeU\W; AeU; 1 \W;
Add the edge € = v;_1vi41 to G to form H. Let C € C(H) be such that e € C. Then
C = 6(S) for some S C V such that S contains v; and exactly one of v;_; and v;11. From
this we see that C'\{e} ¢ W;. Hence, either C\{e} € U; or C\{e} € U,41. It follows that
C € (U\W,) U (U;41\W;). Forming y’ with w = v;_; and w’ = v;41, we obtain

Zw + 2w 2 Z y/A
ecA

From now on, we may assume that z,; > EAeWi ya for all 7 € {1, ..., k}. We consider
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three cases.
Case 1. For all §(S) € A, either |[SNV(F)| <1or [V(F)\S| <1

Thus, any cut in A that contains an edge in F' must contain exactly two edges in F
having a common end-vertex. It follows that U; = W;_y UW; for all i € {1,...,k}. Add
the edge e = vyv3 to G to form H. Let C € C(H) be such that e € C. Then C = §(5)
for some S C V such that S contains vy and exactly one of vy and v3. From this we see
that either C\{e} € Uy or C\{e} € Us and that C\{e} ¢ W;y. But U, = W; UW; and
Us = W,y U Wjs. It follows that C € Wy U W3. Forming y’ with w = v; and w’ = vz, we

obtain

ZotZe > D Uat D ga= Y. i

AEW; AEW; c€A€C(H)
Case 2. There exists S € S(A) such that SN V(F) = {v;,v;} or V(F)\S = {v;,v;}
where v; and v; are non-adjacent. (Here, S(A) is given by Lemma 3.5.)

Since S(A) is a nested family, for any T C S(.A) such that T contains exactly one of
v; and v;, we must have T C S if SNV(F) ={v;,v;} or T C V\S if V(F)\S = {v;, v;}.
Hence, 6(T') € W; UW;. Forming H and y’ with w = v; and w’ = v;, we obtain

GotZe > Y Yat Y. gAY Yh
AeW; AEWJ‘ ecA
Case 3. Neither Case 1 nor Case 2 holds.
Observe that there exists S € S(A) satisfying one of the following:

(1) 3<[SNV(F)[ <k =3;

(i) SNV(F) = {vj,vj41} or V(F)\S = {v;,vj41} for some j € {1, ..., k}.
We claim that in either case, we can find distinct vertices uy, ug, us, us € V(F) such
that uyug, usus € 6(S), u1,us € S, and uyuq, ugus are not edges in G.
To prove our claim, assume without loss of generality that vy ¢ S and v, € S. Let
J > 3 be the smallest integer such that v; € S and vj4; ¢ S. Observe that such j exists
and j < k — 1. Take uy = vy, up = vy, Uz = v;, ug = vj41. Then, uy, ug, uz, uy are
distinct. Since F' is a chordless cycle, u; and u4 are not adjacent and ug and ug are not

adjacent. This proves our claim.
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U € TCS Uy Y ETCV\S w € TCSYug} WETC(VI9{ug

Figure 3.4: Illustrations of nested cuts

Since S(A) is a nested family, we have

(Zur + 2uy) + (Zug + 2us)

ZZ?A—I- ZZ?A

ujug €A ugug €A

= Z Ys(T) + Z Ys(T) + Z Ys(T) + Z Ys(T)

uy 7U3ET§S UQ,U4€TC‘/Y\S uq ETQS\{ug,} UQETQ(‘/\S)\{‘M;;}

+oY wmmt Y, wmt Y, syt > Ys(T)-

up,u3€TCS uz,us €TCV\S ug€TCS\{u1} us €TC(V\S)\{u2}

v

Hence, we have either

Eul —I_ 2114

> Z Ys(ry + Z Ys(ry + Z Ys(ry + Z Ys(T)

up,uz€TCS ug,us ETCV\S u; €ETCS\{us} us €eTC(V\S)\{u2}
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or

2112 + 2113
> Z Ys(T) T Z Ys(T) + Z Ys(T) T Z Ys(T)-
uy ,U3ETQS UQ,U4ETCV\S UQETQ(V\S)\{’MA;} ug,ETES\{ul}

Without loss of generality, assume it is the former. Add the edge e = uju4 to G to form

H. Let C € C(H) be such that e € C and C\{e} € A. If S’ € S(A) is a shore of C, then
S’ C Sor S CV(G)\S. Forming y' with w = uy and w’ = u4, we obtain

= D, Wmt DL Ymt Y. Wt D Uk

uy ,ug,ETQS u2,u4€TCV\S uy ETE(V\S)\{UP,} U4€T§S\{U2}

= Z Ys(T) + Z Ys(T) + Z Ys(T) + Z Ys(T)

uy,uz€TCS uz,us €ETCV\S u €ETC(V\S)\{us} ug €ETCS\{uz}

IA

E‘Ul —I_ 2114 .

O
Since there always exists a ‘nice’ certificate of unsolvability of sys(G) if G is non-1-
tough, one might ask if there are always ‘nice’ certificates for unsolvability for arbitrary
infeasible graphs; in particular, whether or not the entries of the certificate can be required
to be of small size. In the sequel, we show that the answer is “no.”
Let Gy be the graph shown in Figure 3.5. For n > 2, define G,, recursively (see
Figure 3.6) as follows:
V(Gn) = UL {Sniitnistnis Vit UV (Gno1),
E(G,) = U2 {8niSnit1stnitnit1l, Unillnit1s VniOnitl
U{tn,10n,1, Un,15n,1, Sn,1%n=1,1, Un1tn 1, tn1Un=11}

U{Sn,Stn,37 Un,35n,3 Sn,3Un—1,3, Un,3tn737 tn,3vn—1,3} ) E(Gn—l)

! ; y
For n Z ]-7 let Gn — Gn - {un,lv Un,2; Un,3; Un 1, Un,l, Un,S}-

Lemma 3.10. Forn > 1, G, and G!, are Hamiltonian.
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Figure 3.5: G

Figure 3.6: G,

25



26 CHAPTER 3. FEASIBILITY

Proof. To prove that G,, is Hamiltonian, it suffices to show that there is a Hamiltonian

path from u,; to v, in G,. We show this by induction on n. Observe that

1,1, U1,2, U1,3, 51,3, 51,25 S1,1, %0, £1,1, £1,2, £1,3, Vo, V1,3, V1,2, V1,1

are the vertices of a Hamiltonian path from w;; to vi; in G; in sequential order. As-
sume that G, has a Hamiltonian path from u,; to v, for some n > 1. Let P denote
the sequence of vertices of this path in sequential order. Then upi1,1, Unt1,2, Unt1,3,
Sn+1,31 Sn41,2 Snt1,15 Dy tnt1,15 tnt1,2, tnt1,35 Unt1,35 Unt1,2, Untl,1, Unt1,1 are the vertices
of a Hamiltonian path from u,41, to vy, 1 in G4 in sequential order. This completes
the induction.

Now consider GJ,. Clearly, G| is Hamiltonian. Consider the case when n > 2. From
above, we see that there exists a Hamiltonian path from w,_1; to v,—1; in G,_1. Let

P denote the sequence of vertices of this path in sequential order. Then s, 3, 552, 5p1, P,

tn1:tn,2,tn3, Sp3 are the vertices of a Hamiltonian cycle in GJ, in cyclic order. O

Forn > 1, let H, be the graph with V(H,,) = V(G,,)U{wo, l1,l2,71,72}, and E(H,) =
E(Gn) U {‘Uowm woly, wory, l11z, 1179, larg, lzun,?n 7‘2%,3}

W0 r

0 O

Figure 3.7: Hy
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Lemma 3.11. Forn > 1, H,, — V(G,,) and H, — V(G},) are Hamiltonian for all m =

1,...,n.

Proof. First, consider H,, — V(G,,). The case m = n is trivial.
We now prove by induction on k,1 < k¥ < n—1 that H,, —V (G,,—¢) has a Hamiltonian

cycle using the edge s,_g413,tn—k+1,3- When k =1, it is easy to see that

Wo, Zl7 127 Un,3, Un,2; Un,1y Sn,ls Sn,2y Sn,3; tn,37 tn,27 tn,h Un,1,Vn,2,Vn,3,72, 71, Wo

are the vertices of a Hamiltonian cycle in H,, — V(G,—g) in cyclic order.

Assume that H,, — V(Gp_i) has a Hamiltonian cycle using the edge s,,_k41,3, tn—k+1.3
for some k > 1. Therefore, there exists a Hamiltonian path from ¢, 413 to s,_g41,3 in
H, — V(Gn-k). Let P denote the sequence of vertices of this path in sequential order.
Then wp_k3, Un—k,2, Un—k,1, Sn—k1; Sn—k,2, Sn—k3, tn—k3, tn—k2s tn—k1, Un—k1; Un—k2,
Un—k3, P, un_p,3 are the vertices of a Hamiltonian cycle using the edge s, 3,%,—k3 in
H,, — V(Gn—_k—-1) in cyclic order. This completes the induction.

Now, consider H, — V(G.,). We prove by induction on k, 0 < k& < n — 1 that
H, — V(G!_,) has a Hamiltonian cycle using the edge w,_ 1, Vn_f1-

When k& = 0, the statement clearly holds.

Assume that H,, — V (G’ _,) has a Hamiltonian cycle using the edge that joins u,_g
and v,_p; for some k£ > 0. Therefore, there exists a Hamiltonian path from v,_j; to
Un—k,1 in H, — V(G!,_,). Let P denote the sequence of vertices of this path in sequen-
tial order. Then Sn—k,1y Sn—k,2y Sn—k,3y Un—k—-1,3y Un—k—-1,2y Un—k—1,1y Un—k—-1,1y Un—k—1,2,
Un—k—13 tn—k,3, tn—k,2; tn—k,1, P, Sn—k,1 are the vertices of a Hamiltonian cycle using the
edge that joins s,_3 and t,_g 3 in H, — V(G _,_;) in cyclic order. This completes the

induction. O

Theorem 3.12. There exists an integral pair y, z feasible for sys' (H,) such that Z ya >
A€C(Hy)
Z Zy. Furthermore, any such pair y, z must have an entry having value at least n.
veV(Hy)
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Proof. Set
Zuo - _17
21}0 - 17
Zw, = 4n + 2;
2, = 2, =2n 41,

Zl, =%, = —(2n+1);
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Zoiy = 2y, = Zugy = 2y = 2fori=1,..,m;

i

Zsiz — Rtiz — Fuin — fvig —

Zujo T Rujn T Bsio T Rtia

lfori=1,...,n;

=—-1fori=1,..,m

Ys({l1,12}) = Us({ri,r2}) = 20+ 1

Ys(v(Gy)) = Usv(cy) = 2fori=1,...,n;

Ys({uinuin}) = Yo({virwia}) =

Ys({uo,vo}) = 1-

Ys({si2si8)) = Ys({tintis}) = lfori=1,..,n;

It is not difficult to check that Z ya — Z Z, = 1. We now show that the

A€C(H,) veV (Hy)

pair ¥, z is feasible for sys’(H,,). Clearly, § > 0. Consider the following table

EeGAGC(Hn) Ya

Ugvo, Ll

0

UQWo

Us({uo.wo}) + 2im Usv(ci) + Us(via)

VoU1,3

Ys({uo,vo}) T Ys(v(a}))

lywo

Ys({1y 1.}

)

Ys({tr oY) T Ys({r1,r2})

U 1U; 2

0

U 2U; 3

Y5 ({ui uin})

54,154,2

Ys({si.2,51.5})

54,2543

0
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€ ZeEAEC(Hn) Ya

;181 Ys({uirui2}) T Ys(v(ay)

U; 353 Ys({si.si5}) T Ys(v(G1)

Ui 1Si41,1 Ys({uinuip}) T Ys(V(G:)

Ui 35i41,3 | Y5({siz12,5i413}) T Y6(V(Gi))

Ui1Vi1 | Ys({uiq,uio}) T Ys({vit,via})

8; 383 Ys({si2.si8}) T Y6({tiztis})

Using the information from the table, one can see that for any uv € E(H,,), we have

Zu‘i’gu Z Z ?A-

Now consider any integral pair 7, 2 feasible for sys’(H,,) such that Z ga > z Zy-
AEC(G) veV(G
By Lemma 3.10 and Lemma 3.11, we see that if we remove the constraint z(6(S5)) > 2 flom

sys(H,) for any S € U"_{V(G;),V(G’)}, the resulting system has a solution. Hence, we
must have J5v(G,)), Usv(ay) > 0 for i = 1,...,n. Since uowy € 8(V(G;)) N (V(G;)) for
t=1,...,n, we have Z,, + Zy, > Z ga > Z Usev(asy) T Usvia ))) > 2n. The result

ugwg €A =1
follows. O

Observe that H, is non-planar. One might ask if similar results can be obtained
for planar graphs. We now show an infeasible planar graph which requires a certificate
having entries larger than two in absolute value. However, it is not clear if a true analog

of the previous theorem can be obtained when restricted to planar graphs.

Consider the graph in Figure 3.8. Call it H.
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Figure 3.8: A more-than-1-tough infeasible maximal planar graph

Let 7 € RV() be such that

1 ifved4,5,7}
-1 ifv € {3,6,8};
2 ifve{0,1,2,12,13,14);
—2 ifv e {11,15,16,17,19};
4 if v € {9,10,18);

0 otherwise.

Let 54 € R be such that

1 if A € {5({3,4}),4({5,6}),0({7,8})};
2 if A€ {5({11,12}),8({13,15}),8({14,16}),
3({1,17}),8({2,19}),8({0,3,4,5,6,7,8}) };

0 otherwise.
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Figure 3.9: Certificate of infeasibility

One can check that the pair g,z is feasible for sys’(H) and Z@A > Z,ZU. (See
A v

Figure 3.9.) By Theorem 3.2, SEP(H) = (.
Now consider any integral 3, z feasible for sys’(H) and Z ya > Z Z,. One can check
A

v

that sys(H — 6) has a solution. (See the top figure in Figure 3.10.) Thus, we must have
zg < 0.
If we drop the contraint

z(8({5,6})) > 2

from sys(H), the resulting system has a feasible solution. (See the middle figure in
Figure 3.10.) Thus, we must have yg5 6, > 0.

If we drop the constraints

2(6({0,3,4,5,6})) > 2
2(5({0,3,4,5,6,7}))

v
[\

2(6({0,3,4,5,6,7,8})) > 2
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Legend

represents avalue of .5
— representsavalueof 1
= represents avalue of 2

Figure 3.10: Various solutions
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from sys(H), the resulting system has a feasible solution. (See the bottom figure in
Figure 3.10.) Therefore, at least one of Ys({0,3,4,5,6})r Y5({0,3,4,5,6,7})> 214 Us5({0,3,4,5,6,7,8})
must be positive.

Consider the constraint z, + 2z, — >,,c4 ¥a > 0 in sys'(H) where « = 6 and v = 10.
Then

Z10 2 —Z6 t Y56} 1 Us({0,3,4,5,6}) T Ys6({0,3,4,5,6,7}) T Ys({0,3,4,5,6,7,8} = 3-

The graph H above is also somewhat interesting in a different context. Observe
that by Theorem 3.6, H is 1-tough. In fact, by Proposition 3.13, it is more-than-1-
tough. Hence, it is an infeasible, and thus non-Hamiltonian, more-than-1-tough maximal
planar graph. There has been considerable interest in deciding if certain toughness con-
ditions will guarantee Hamiltonicity. Nishizeki [35] mentioned that Chvatal raised the
following question: Is 1-toughness a sufficient condition for a maximal planar graph to
be Hamiltonian? Nishizeki constructed an infinite family of 1-tough non-Hamiltonian
maximal planar graphs. However, the graphs are not more-than-1-tough. Harant and
Owens [28] constructed an infinite family of %—tough maximal planar graphs that are
non-Hamiltonian. Later on, Owens [36] constructed a sequence of maximal planar graphs
whose toughness approaches % However, it is not difficult, albeit tedious, to show that

the graphs constructed in both papers are feasible.
Proposition 3.13. The graph H (depicted in Figure 3.8) is more-than-1-tough.

Proof. (Sketch.) Suppose H is not more-than-1-tough. Since H is 1-tough, there exists
S CV,|S|>1,such that w(G — S) =|S5]|.

First, one checks that H—v is feasible, and therefore 1-tough, for all v € {3,6,8,17,19}.
Hence, v ¢ S for all v € {3,6,8,17,19}.

Then, one checks that sys(H — v) has a positive solution for all v € {11,15,16}. By
Corollary 4.13, sys(H — v) has a point satisfying all the constraints strictly and hence,
by Theorem 4.4, H — v is more-than-1-tough. It follows that 11,15,16 ¢ S and the
neighbours of 11, 15,16 must all be in S.



34 CHAPTER 3. FEASIBILITY

Thus, {9,10,12,13,14,18} C S C {0,1,2,4,5,7,9,10,12,13, 14, 18}. By going through
all the possibilities, one can see that S could not exist. Hence, H is more-than-1-

tough. O

3.2 Points in the subtour-elimination polytope

Clearly, a graph G is Hamiltonian if and only if SEP(G) has an integral point. Thus, de-
ciding if SEP(G) has an integral point is A"P-hard. Now, one could consider the problem
of determining if SEP(G) contains a point with entries that have small size. Note that
this problem is trivial if SEP(G) always contains such a point. In this section, we show
that this is not the case. We show that for each & > 1, there exists a graph Hy such
that SEP(H}) contains exactly one point and that point has an entry with value 1/(2k+1).

Remark. Boyd and Pulleyblank [4] gave a class of extreme points of the subtour-
elimination polytope of a complete graph that have entries with arbitrarily large size.
However, there does not seem to be an obvious modification to the support graph of any
of these extreme points to give a graph whose subtour-elimination polytope has no ex-
treme points with entries having small size. (The support graph of an extreme point is the

graph induced by the edges whose corresponding entries of the extreme point are positive.)

Lkl Bkt

¢ o0 u -
2k Uy U1 i 1 o
Vak - Vak-l vy vy
V2|(+1‘ | | T | | ‘Vl W’
) ) ) ) ) v
O—O—H— v v
Yokt Mk Yok Wy oW

Figure 3.11: Py

Let £ > 1. We first construct a plane graph H} by joining together a number of
gadgets and inserting edges. Let Py denote the plane graph depicted in Figure 3.11.
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P, will be the gadget we use to construct H;. (For now, ignore the differences in the
line-style of the edges. The differences will be useful for discussion later on.)

Form Hj as follows. Join 2k + 1 copies of Py by identifying the 2k 4 1 vertices r. (In
other words, all the vertices labelled r in the copies of P, become one single vertex in Hj,
but the rest of the vertices remain distinct.) Join the vertex labelled ¢; of each copy to
the vertex labelled w; of the copy that follows immediately clockwise with a thick edge
for all + € {0,2k + 1}. (See Figure 3.12.) Figure 3.13 shows H; and H;. The meaning of

Figure 3.12: H;,

the numbers will be explained later.
Now, let Hy denote the graph obtained by replacing each thick edge in H} by a path

of length two. The next theorem is the main result of this section.

Theorem 3.14. There is a unique point z* € SEP(Hy). Furthermore, each entry of z*
has value 1, 1/(2k + 1), or 2k/(2k + 1).

Proof. We first show that Hy is feasible. Define 2% € RP(F) as follows. Set zF =
1/(2k + 1) if e is a dashed edge in P;. Set z* = 2k/(2k + 1) if e is a thin solid edge in
Py. Set z* = 1 for all the remaining edges e. By Proposition 3.15 below, z* € SEPEHy),
Since ¥ = 1 for all thick edges e, 2* can be converted to a point in SEP(Hy).

We now make an observation. If e is an edge incident with a degree-two vertex in Hy,
then z. = 1 for all z € SEP(H},). Hence, it suffices to show that 2* is the only point in
SEP(Hj,) that has the value 1 on all the thick edges.
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Figure 3.13: Hy and Hy

Let z € SEP(Hj) be such that it has the value 1 on all the thick edges. By the
degree constraints, we see that the entries in z that correspond to all the dashed-edges
in the same copy of P, must have the same value. Note that this value must be at least
1/(2k + 1) because z(§(S)) > 2 for every set S whose elements are the vertices labelled
UL, V1, eery Ugkt1, U241 Of the same copy of P,. However, z(§(r)) = 2 forces the value to

be exactly 1/(2k 4 1). This implies that z = 2*. The result follows. O
Proposition 3.15. Let 2% € REWHY be such that

1/(2k+ 1)  if e is a dashed edge,
z* 2k/(2k 4+ 1) if e is a thin solid edge,

1 otherwise.
Then z* € SEP(H;}).

Proof. Clearly, z* > 0. Also, it is not difficult to check that z* satisfies the degree
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constraints. It remains to show that z* satisfies the subtour-elimination constraints.

Let the neighbours of r, in anti-clockwise order, be po, g0, P1, ¢1----, P2k, g2x Where p;
and ¢; correspond to the vertices labelled tg and wq, respectively, of the same copy of Pj.
(See Figure 3.12.)

Let S C V be the shore of a non-trivial cut of H;. Note that we may assume that both
S and V(H})\S induce connected sugraphs of H;. Without loss of generality, assume
that r € §. We consider two cases.

Case 1. S does not contain any vertices on the boundary of H.

Suppose p;, ¢; € S for some i € {0, ...,2k}. Let Ey denote the set of edges in the copy
of P, that contains p; and ¢;. Since S does not contain any boundary vertices, one can
check that 2%(§(S) N Ep) > 2(2k)/(2k + 1). Observe that |§(S)\Ey| must be at least 2.
Hence, 2*(5(S)) > 4k/(2k + 1) +2/(2k + 1) = 2.

Suppose there does not exist i € {0, ..., 2k} such that p;,¢; € S. We may assume that
if ¢; € S, then p;y1 € S because if p;r1 ¢ S, then z*(5(S)) > 2*(6(S U {pi+1})). (Indices
are taken modulo 2k.) Similarly, we may assume that if p; € S, then ¢,_; € S. Suppose
there exists ¢ € {0, ...,2k} such that ¢;, p;+1 € S. Then p;, ¢;41 ¢ S. It is not difficult to
see that z¥(§(S)) > 2. Therefore, we may assume that there does not exists i € {0, ..., 2k}
such that ¢;, p;r1 € S. But this means that S = {r}. Since z*(§(r)) = 2, we see that
z*(8(S)) > 2 if S does not contain any vertices on the boundary of Hj.

Case 2. S contains at least one vertex of the boundary of Hj..

Let H} denote the planar dual of H;. Let O denote the vertex of H} that corresponds
to the exterior face of H;. Observe that each edge of H; crosses a unique edge of Hj. If
e € E(H.), we let ¢* denote the edge in E(H;) that crosses e. Let ¢ € RF(HE) be such
that c.» = z* for all e € E(H}).

Notice that the set of edges §(S) correspond to the edge-set of a cycle in H} containing
the vertex O having cost z*(5(S)). Hence, it suffices to show that all cycles containing
the vertex O in the graph H; with edge-costs given by c has cost at least 2. We shall
show this by computing lower bounds for shortest paths from O.

We now give the remaining details for the cases when k¥ = 1 or 2. It is not difficult

to generalize the proof for higher values of k. The idea is to using the classical tech-
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nique in network flow theory of assigning “potentials” to vertices of H}} that satisfy some
inequalities. For each vertex v € V(H}), we assign a value ¥, such that yo = 0 and
Yu + Cuw > Yu for all u,w € V(H}). The assignments for the cases when £ =1 and £ = 2
are shown in Figure 3.13. The number on each face specifies the value assigned to the
vertex that corresponds to the face. Let v € V(H}). Let v = O, vy, ..., v = u be the
vertex sequence of a path P from O to u in H;. Then the cost of the path P is

Vivig1 Z Yoipr = Yvi = Yoy = Yu-

Hence, the cost of a shortest path from O to u is bounded below by y,,. It follows that if
Yu > 1, then any cycle in H} that contains v and O has cost at least 2.

Consider a cycle containing O that does not contain any vertex w with y, > 1. It is
not difficult to see that the edges of such a cycle must cross only the edges of H; that
belong to the same copy of Py and then to check that such a cycle must have cost at least

2. O

Remark. Previously, it was not known if there exists an extreme point of the subtour-
elimination polytope whose support graph has a vertex of degree higher than 6. The-
orem 3.14 shows that the support graph of the extreme points can have a vertex of

arbitrarily high degree.

3.3 Minimality

The graph Hj where k£ > 1 defined in the previous section has a unique positive point
in the subtour-elimination polytope. Therefore, if we remove any edge from Hy, the
resulting graph will no longer be feasible. This leads us to the next definition. G is said
to be minimally feasible if G is feasible and for every e € E, G — € is not feasible. This
definition gives us a notion of minimality concerning the subtour-elimination polytope.
We can also consider minimality in terms of the dimension of the subtour-elimination

polytope. If SEP(G) has exactly one point, then G is said to be thin. Note that Hy is
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both minimally feasible and thin for every & > 1.

Since every feasible graph contains a spanning subgraph that is minimally feasible,
understanding the subtour-elimination polytope of minimally feasible graphs (in par-
ticular, the structure of the extreme points) will allow us to draw conclusions on the
subtour-elimination polytopes of feasible graphs.

We call an edge e uselessif there does not exist z € SEP(G) such that z, > 0. Observe
that a graph without useless edges is feasible. We begin this section by showing that the
set of thin graphs with no useless edge is a proper subset of the set of minimally feasible

graphs.

Proposition 3.16. Let G = (V, E) be a graph with no useless edge. If G is thin, then G

is minimally feasible.

Proof. Since G has no useless edge, SEP(G) = {z} for some z > 0. If G is not mini-
mally feasible, then there exists e € F and # € SEP(G) such that #. = 0, which is a

contradiction. O

The converse of Proposition 3.16 is not true. Consider the graph depicted in Fig-
ure 3.14. Call it G.

Figure 3.14: A minimally feasible graph that is not thin

Counsider any z € SEP(G). If e is an edge incident with a degree-two vertex, then
z. = 1. In addition, the degree constraints force us to have 1 -z, = z,, = 1 -2, = Z¢, =
1—Z¢, = Z¢;, =aforsomea € [0,1]and 1 -2y, =2y =1—2y, =24, =1—Zy, =25, =D

for some b € [0, 1].
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From the subtour-elimination constraints, we see that
20+2b=7T¢, + Tey +Zp + 25, > 2 and 2(1—a)+2(1 —b) = Ty + Te, + T4, + Ty, > 2.

Hence, a + b = 1.

Again, from the subtour-elimination constraints, we see that

404 =1T¢, + Tey + 24, +Zp, > 2 and 4(1 —a) = Tey + Te, + T4 + Tg, > 2.

Therefore, a = % Hence, z. = % for all e € {eo, ..., €5, fo, ..., fs}. But since z < e, we

must have z. > 0 for all e € {go, ..., g3}. Hence, all the points in SEP(G) are positive.
Thus, G is minimally feasible. However, GG is not thin. Figure 3.15 shows two extreme
points in SEP(G) with value 1 on the thick edges and value 1 on the thin edges. Hence,
the set of thin graphs with no useless edge is a proper subset of the set of minimally

feasible graphs.

Figure 3.15: Two points in the subtour-elimination polytope

One might now ask how many extreme points the subtour-elimination polytope of a
minimally feasible graph can have.

Consider the graph depicted in Figure 3.16. Call it G'. Let z € SEP(G’). One can

easily check that z must have value 1 on each thick edge and value % on each thin solid

edge. It follows that z. > 0 for all e € {go,-.., g3, ho, ---, h3}. Hence, G’ is minimally

feasible. Consider z',z?%, 73, z* where 7. = Z, for all e ¢ {go, ..., g3, ho, ..., h3} and z} =

1 for all e € {go, 92, ho, ha}, ! = % for all e € {g1,93,h1,h3}, 2 = 1 for all e €
{90, 92, h1, h3}, T2 = % for all € € {g1,93, ho,ha}, 22 = 1 for all e € {g1,93, ho, ha},
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Figure 3.16: A minimally feasible graph with at least 4 extreme points

z2 = 1 for all € € {g0,92,h1,h3}, 22 = 1 for all e € {g1,93,h1,h3}, 2 = } for all
e € {90, g2, ho, ha}. Clearly, z!, ..., 2% are extreme points of SEP(G’).

Now, it is not difficult to see that by “chaining” together k copies of G, one can
generalize G’ to obtain a minimally feasible graph whose subtour-elimination polytope

has 2% extreme points, k of which are affinely independent. Hence, we have the following:

Theorem 3.17. For any integer N > 0, there exists a minimally feasible graph G with
dim(SEP(Gxn)) > N.

Clearly, cycles are the only Hamiltonian minimally feasible graphs and the only Hamil-
tonian thin graphs with no useless edge. However, graph-theoretical characterizations of
thin graphs and of minimally feasible graphs are not yet known. The remainder of this
section is devoted to obtaining some classes of graphs that are not minimally feasible or

not thin.

3.3.1 Some classes of graphs that are not minimally feasible

In this subsection, we look at some classes of graphs with no useless edge that are not

minimally feasible. By Proposition 3.16, these graphs are not thin as well.

Theorem 3.18. Let G be 3-connected with no useless edge. Suppose G and G3 are
subgraphs of G such that G = G1 U Gy and Gy NGy = T where T is a triangle with
V(T) = {u,v,w}. Assume that for any two edges e, f € E(T), there exists z € SEP(G3)

such that z. = Ty = 1. Then G cannot be minimally feasible.
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Proof. Suppose G is minimally feasible. Let 2’ € SEP(G). Then z’ > 0.

Let U = V(Ga)\{u, v, w}. Let a = a/(v({u}, U),b = &/ (5({0}, U)), e = ({0}, U).
Note that 2 < 2/(6(UU{u})) =b+ c+ 2 — a. Hence, b+ ¢ — a > 0. Similarly, we have
a+b—c>0anda+c—0>0.

Figure 3.17: Illustration of modifications

Construct the graph G’ by adding a new vertex p to Gy and connecting p to u, v, and
w. Let D=2!, + 2, + 2, +(@+b+c)/2. Since 2’ >0and a+b+c>2, D > 1.

Form z € RP(G) as follows:

(zL+(a+b-0¢)/2)(1-1/D) ife=uv
(zL+(b+c—a)/2)(1-1/D) ife=vw
(zL+(a+c—0)/2)(1-1/D) ife=uw
Ze=19 1-— (2!, + 22 if e = pu
1— (e, + 2te=b) if e = pv
1- 52, + “*” ) if e = pw
! otherwise

It is not difficult to check that z € SEP(G’). Modify  as follows. Since Zy, + Zpy +
Tpy < 2, we see that there exist ¢; > 0 and €3 > 0 such that 1 — Z,, > €1, 1 — Zp, > €9,
and € + €3 = Ty,. Note that Tp, > ZTow, Tpy 2 Tuw, Tpw > Tup. Reduce T,y and Ty,
by € + €. Increase Z,, and Z,, by €1, Tp, and T,, by €. It is easy to check that
z € SEP(G") with Z,, = 0.

By assumption, there exist #',3% i € SEP(Gj) such that ., = 7., = 1, %, =

~2
Low

— =3 _ =3
=1, and &3, = T}, Let

2" = (1= Zpu) 8 4 (1 = Tpy )32 4 (1 — Tpw)°.
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Since z" is a convex combination of points in SEP(G3), 2" € SEP(Gy).

Construct § € R as follows. Set y. = z. if € € E(Gy). Set gy = zll'if e €
E(G9)\{uv,vw,uw}. (Note that Z,, = 0.) Clearly y > 0 and y(5(v")) = 2 for all
v e V(G) — {u,v, w}.

Now

y(0(u)) = 2"(da,(u)) — 2y — 2 + 2(d6, (u))
= 2= Ty — Ty + 2(0c, (u))
= Zpu + (%6, (u))
= z(0cr(u)) =2

Similarly, y(é(v)) = 2 and y(6(w)) = 2.
Consider A € C(G). If A does not contain any of uv, vw, uw, then clearly y(A4) > 2.
Assume A contains at least one of uv, vw, uw. Then it must contain exactly two of them.

Suppose uvw,vw € A. Let S C V be a shore of A with w € S. Then

y(6(5)) = 2"(66,(SNV(G2)) — Ty — 7w + 2 (0, (SNV(G1)))
= Tpw + Z(d6, (SNV(G1)))
= (8 (SNV(Gy)) > 2.

Similarly, if uwv,vw € A or if uw,vw € A, y(A) > 2. Hence y(A) > 2 for any non-trivial
cut A of G.

Thus, y € SEP(G) with 9, = %4, = 0. This contradicts that G is minimally feasible.

]

Corollary 3.19. A planar graph that is 4-connected or has a separating triangle cannot

be minimally feasible.

Proof. Let G be a planar graph. If G is 4-connected, then G is Hamiltonian by The-
orem 2.1. Hence, G is not minimally feasible. So suppose G has a separating triangle

with vertices u, v, w such that if we fix a planar embedding of G and let U be the set of
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vertices in the interior of the triangle induced by {u,v,w}, then Gy = G[U U {u, v, w}]
is isomorphic to K4 or is 4-connected. In either case, there is a Hamiltonian circuit in
G5 containing any two of wv,vw, and ww by Theorem 2.1. Let Gy = G — U and apply
Theorem 3.18. U

We now move on to deriving some general conditions. We begin with two technical
lemmas. The first is well known and the second follows from a stronger result due to

Boyd and Pulleyblank (Theorem 4.7 in [4]). We will prove both lemmas for the sake of

completeness.

Lemma 3.20. Let G = (V, E) be a connected graph having at least 3 vertices. If C is a
non-crossing family of cuts of G, then |C| < 2|V| — 3.

Proof. By Lemma 3.5, there exists a nested family & containing precisely one proper
shore of each cut in C, and no other sets.

Without loss of generality, we may assume {v} € C for each v € V. Consider the
rooted tree T(C). Note that the root R has at least three children and that T has |V|
leaves with each non-leaf having at least two children. Let L denote the set of leaves of

T. Then,

2(V(T)| - 1) =2|E(T)| > deg(R)+ ) deg(v)+ ) _deg(v)
veL vgL
> 3+ |V[+3(V(T)| - [V - 1).

= 3|V(T)| - 2|V

It follows that |C| < |V(T)| < 2|V| — 2. O

Lemma 3.21. Let G = (V, E) be feasible with |E| > 2|V| — 2. If & is an extreme point
of SEP(G), then there exists e € E(G) such that z. = 0.

Proof. Suppose z > 0. By Theorem 4.9 in Cornuéjols et al. [10], there exists a non-

crossing family of cuts C’ such that

{zy={zeRP:z2(C)=2VCe('}.
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By Lemma 3.20, we know that |C’| < 2|V|—3. Since |E| > 2|V|—=3 > |C'|, the system

z(C) = 2 for any C' € C' cannot have a unique solution. This is a contradiction. O
Theorem 3.22. If G = (V, E) is minimally feasible and |V| > 3, then |E| < 2|V| — 3.
Proof. This follows immediately from Lemma 3.21. U
Corollary 3.23. FEvery 3-connected 4-regular graph is not minimally feasible.

Proof. Let G be a 3-connected 4-regular graph. It is not difficult to see that G is 4-edge-
connected. Thus, Je € SEP(G). It follows that G has no useless edge. Since |E| = 2|V,
the result follows from Theorem 3.22. O

Theorem 3.24. Every 3-connected 3-reqular bipartite graph is not minimally feasible.

Proof. Let G = (V, E) be a 3-connected 3-regular bipartite graph.

Let S be a minimal shore of a non-trivial 3-edge cut. If none exists, then let S = V\{v}
for some v € V. Let u, w € S be adjacent. Let wy, wy be the neighbours of « distinct from
w and uy, uy be the neighbours of w distinct from u. Since G is bipartite, uyug, wiwy ¢ E.
Let H be the graph obtained from G — uww by removing 4 and w and adding the edges
w1 g and wyiws.

It is easy to see that G — uw is feasible if and only if there exists z € SEP(H) such
that z. = 1 for all e € {ujuq, wyws}. We show that H is 3-edge-connected. If not, then
there exists a non-trivial 3-edge cut §(T') of G that contains vw. But 6 = [6(S)|+[5(T)| >
|6(SNT)|+|6(SUT)| > 6. Hence, §(SNT) is a 3-edge cut. But this contradicts the choice
of S since SN T is a proper subset of S. Thus, H is 3-edge-connected and 3-regular.

Let G' = G x (V\S). By Corollary 5.5, G’ is bipartite and 3-regular, and has no
non-trivial 3-edge cut. Since te € PM(G'), if A is a non-trivial cut, then z(A) > 3 for
all z € PM(G’). Hence, G’ has no non-trivial tight cut. It is not difficult to see that G’
is a brace as a result. Hence, G’ — {uy, ug, wy, wy} has a perfect matching M. It follows
that M’ = M U {ujug, wiwe }\{uw} is a perfect matching of H x (V\S). Since G x S is
3-connected and 3-regular, %e € SEP(G x S). By Corollary 2.4, G is matching-covered
and M’ can be extended to a perfect matching N of H.
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Let 2 = (x" + e) where x"V denotes the incidence vector of M’. Since H is 3-
edge-connected, z € SEP(H). Furthermore, z. = 1 for all e € {ujug, wywy}. The result
follows. O

It is not known if there exist 3-connected minimally feasible graphs. In fact, the case
when the graph is 3-regular and non-bipartite is still unresolved. However, evidence seems
to point to the negative direction. The difficulty in constructing a 3-connected minimally
feasible graph, if one exists, lies in identifying 3-connected graphs that are feasible but

not Hamiltonian. We end this subsection with a question:

Problem 3.25. Can a 3-connected graph be minimally feasible?

3.3.2 Some classes of graphs that are not thin

In this subsection, we look at some classes of non-thin graphs with no useless edge that
are not covered in the previous subsection.

We begin with 3-regular graphs. These graphs are easier to handle because, in the
case when the graphs are 3-connected, we can construct points in the subtour-elimination

polytope from perfect matchings.
Theorem 3.26. Let G = (V, E) be a 3-reqular graph. If G is feasible, then G is not thin.

Proof. Since G is feasible, G must be 2-connected. Suppose G is 3-connected. Then

e € PM(G) and so G has a perfect matching M by Corollary 2.4. Hence, %e and

1
3
(XM + e) are two distinct points in SEP(G).

Suppose G is not 3-connected. Since G is 2-connected and 3-regular, there must exist

a 2-edge cut 6(S).

Figure 3.18: A 2-edge cut
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Observe that if ! € SEP(G x S) and z? € SEP(G x (V\S)), then z! and 2z? can
be spliced to give a point in SEP(G). Namely, if z € R is such that z. = 1 for every
e € §(9), z. = z! for every e € E(G[V\S]), and z. = z? for every e € E(G[S]), then
z € SEP(G). Hence, it suffices to show that either SEP(G x S) or SEP(G x (V\S)) has
more than one point.

Let v be the pseudo-vertex of G x S. Note that v has exactly two neighbours, say «
and w. Choose S so that {u, w} is the only two-separator of G x S. Observe that u and
w cannot be adjacent in G X S. Otherwise, N ({u, v, w}) will be another two-separator of
G x S. We show that SEP(G x S) has more than one point.

Form the 3-connected 3-regular graph H from G x S by removing v (and the incident
edges) and adding in the edge f = uw. Observe that if e € dgxs(v), then . = 1 for
all # € SEP(G x S). Hence, any 2’ € SEP(H) with 2, = 1 can be easily converted to
a point in SEP(G x S). Therefore, it suffices to show that SEP(H) has two points that
have value one on the edge f.

As H is matching-covered, there is a perfect matching M’ using f. Thus 2’ = %(X e
e) is a point in SEP(H) with 2/, = 1. If H has a Hamiltonian circuit using f, then the
incidence vector of the Hamiltonian circuit gives us a second point.

Assume that H has no Hamiltonian circuit using f. We show that there is a perfect
matching distinct from M’ using f. Suppose there is a unique perfect matching M
using f. Note that 7 = e € PM(H). Since Z is not an extreme point of PM(H),
Z can be written as 22:1 Mx™Mi where M;, i = 1,...,1, is a perfect matching of H,
and 0 < A; < 1 for each ¢ = 1,...,1 and Zi’:l A; = 1. Since M is the only matching
containing f, we see that M = M, for some ¢. Assume without loss of generality that
My = M. Then )\, = Yb_, )\,'Xyi = a5 =1 Now (z — IxM)p =0 forall f/ € M.
Since z — %XM = 2222 MxMi it follows that M; is a perfect matching of H — M for
any ¢ € {2,...,1}. Hence, MAM,; is composed of even circuits and induces a spanning
subgraph of H. Since H has no Hamiltonian circuit using f, there must be a circuit C' in
M AM; not containing f. It follows that M AC is a perfect matching of H using f and

distinct from M, a contradiction. O
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Theorem 3.27. Let G be a 3-connected graph that contains a degree-three vertex v whose

neighbours induce a connected subgraph. If G has no useless edge, then G is not thin.

Proof. Suppose SEP(G) = {z}. Then z > 0.
Let r, s, t be the neighbours of v such that rs, st € E(G). Since each vertex has degree
at least three and z > 0, the degree constraints guarantees that either z,,,z,; < 1 or

Ty, Trs < 1. Without loss of generality, assume the former is true.

Figure 3.19: Illustration for Theorem 3.27

Let € > 0. Form % from z by decreasing z,, and Z;, by € and increasing z,, and 4
by €. We claim that if € is sufficiently small, z € SEP(G).

Clearly, 2(6(w)) = 2 for all w € V(G) and for sufficiently small €, we have > 0 and
Z(A) > 2 for any A € C(G) that does not contain both rs and tv.

Let A € C(G) be such that rs,tv € A. Let S be a shore of A containing v. If s € S,
then it is easy to see that Z(A) = z(A) > 2. Suppose r,v € S. Since Z,, < 1, if € is
sufficiently small, we have Z,, < 1, implying that Z,, + Z:, > Tpp-

Thus,

Hence, € SEP(G). The result follows. O

One can see from Theorem 3.22 and Theorem 3.27 that if G is a 3-connected thin
graph with no useless edge, then G must have a vertex of degree 3 whose neighbours
do not induce a connected subgraph. In addition, the subtour-elimination polytope of
a 3-connected 3-regular graph always has at least two points. In light of these results,
one might ask if there exist 3-connected thin graphs with no useless edge. Notice that

no such graphs exist if the answer to Problem 3.25 is in the negative. Nevertheless,
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constructing thin graphs seem to be more difficult than constructing minimally feasible

graphs. Therefore, we end the discussion on thin graphs with a conjecture.

Conjecture 3.28. Fvery 3-connected graph with no useless edge is not thin.

3.4 Reducing to graphs with low maximum degree

In this section, we show that deciding if a graph having maximum degree 3 is feasible is
as difficult as deciding if a general graph is feasible. In particular, given a graph G, we
construct, in time polynomial in the size of G, a graph G’ with maximum degree 3 such
that the size of G’ is polynomial in the size of G and G’ is feasible if and only if G is feasible.
The idea is to “replace” each high-degree vertex by a graph with maximum degree 3. We
first introduce an operation which preserves feasibility under certain conditions.

Let Gy and Gy be graphs such that V(Gy) N V(G;) = 0. Let u; € V(Gy) and
ug € V(G32) be vertices of degree k > 1. By splicing G; and G with respect to u and v,
we mean removing u; and uy (and all the incident edges) and adding k new edges, each

joining a neighbour of #; and a neighbour of ug, that form a matching.

Figure 3.20: Splicing

The next result gives a condition under which splicing preserves feasibility.

Lemma 3.29. Let Gy and Gy be feasible graphs. Suppose uw € V(G1) and w € V(Gs)
are of degree k with N(u) = {uq, ..., ux} and N(w) = {wy, ..., wx}. Let G = (V(G1 —u)U
V(Gy — w), E(G1 — u) UE(Gy — w) U{ujwn, ..., upwy }. If there exist z' € SEP(Gy) and
x? € SEP(G3) such that x),. = 22, for alli=1,..,k, then G is feasible.

Proof. Let V. =V (G) and E = E(G). Let G} = G; — v and G, = G3 — w. For i = 1,2,
let V; = V(G}) and E; = E(G)).
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1

Construct & € R¥ as follows. For any e € Ey, set 3. = z!. For any e € Ej, set

Ze = al. Fori=1,..,k, set &y, =2, . Clearly, # >0, #(6(v)) = 2for all v € V and

We now show that Z(A) > 2 for all A € C(G)\{6(V1)}. Let §(S) € C(G)\{6(V1)}.
Clearly, if S C Vi or S C Vy,or V\S C V5 or V\S C V3, then 2(5(S)) > 2. Suppose none
of the four sets SN Vy, SNV, (V\S) NV, and (V\S) N V; is empty. Note that

#(8(8)) = 2" (8(S) N Ey) + 22(8(S) N Ey) + #(8(S) N §(V1)).
We claim that z'(6(S) N E;) > 1. Observe that
#(3(S)N Er) =21 (3(SN W) — 2" (v({u}, SN VA))

and that
21 (3(S)N Er) = 2 (8(S N ViU {u})) — &' (v({u}, Vi\S)).

Since 2! (§(u)) = ' (y({u}, SNWV1)) + 2! (v({u}, V1\S)), we have
201 (8(S)N Ey) =2 (5(SNVL)) + 2 (8(SNVyU{u})) — 2 (6(w)) >2+2-2=2.

It follows that #(4(S) N Ey) > 1. Similarly, 2?(6(S) N Ey) > 1. Thus, 2(5(S)) > 2.

Therefore, Z € SEP(G) and so G is feasible. O

For each k > 4, we introduce a gadget Hy that is bipartite with the property that
there is a vertex £ of degree k and deg(u) € {3,4} for every vertex u € V(Hy)\{¢}.

We shall not define H4 formally. It is depicted on the left of Figure 3.21. Suppose
k > 5. Let G, denote the graph with vertex-set {v;; : 0 <7 < 2, 0 < j < n} such
that v; ju;s ;# is an edge if and only if | — 4| + |j — j/| = 1. Let Hj be the graph obtained
from Gja-1) by adding a vertex § and edges v20v2,3, v22k—5V22k—1), and Evgg; for
7 =0,...,k— 1. The graph Hy is depicted on the right of Figure 3.21.

To facilitate discussion, we need a definition. Let G = (V, E) be a graph and v € V.
Let N(v) = {v1,...,vx}. Then G is said to be spliceable at v if for any 0 < y1,...,yx < 1
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Figure 3.21: Gadgets Hy and Hj

such that Ele y; = 2, there exists & € SEP(G) such that #,,, = y; fori =1,...) k.
Lemma 3.30. Hy is spliceable at € for all k > 4.

We postpone the proof to the end of this section. We now describe how to reduce
the problem of determining if a graph is feasible to the class of graphs having maximum
degree 3. Let G be a graph. Let u € V(G) be a vertex of degree k where k > 4. Let G’
be the graph obtained from splicing G and Hj with respect to u and €. By Lemma 3.30,
if G is feasible, then G’ is also feasible. Suppose G’ is feasible. Let z € SEP(G’). Clearly,
H, is bipartite and for every k > 5, Hy is bipartite with bipartition (Ug, Wj) where
Up ={vi2; :0<1<2,0<j<k—-1}U{vi2j41:0<j <k —2} and Wi = V(H)\Us.
Since the two partitions in Hy, have the same cardinality, we see that z(6(V (G —u))) = 2.
Hence, G' X V(Hy — v), and therefore, G is feasible.

Figure 3.22: After splicing

It follows that given a graph G, one can obtain a graph G’ by splicing using Hy
for k > 4 such that G is feasible if and only if G’ is and G’ has maximum degree 3.
Furthermore, if G is planar, we can require G’ to be planar as well. Finally, it is not

difficult to see that G’ can be obtained in polynomial time and its size is polynomial in
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the size of the original graph.

While it is not clear if it is more convenient to study feasible graphs with low maximum
degree, it is possible that a better understanding of these graphs might lead to answers
to some questions on general graphs.

The remainder of this section is spent on completing the proof of Lemma 3.30. We

begin with a sufficient condition for a graph to be spliceable at a vertex.

Lemma 3.31. Let G = (V,E) be a graph and v € V. If for any distinct e, f € §(v),
there ezists © € SEP(G) such that T. = 5 = 1, then G is spliceable at v.

To prove this lemma, we need the following technical lemma.

Lemma 3.32. Let n > 2. Let x € RY} be such that z; < %E?:l x; for all j such that
;> 0. Fori,je{l,...,n}, i < j, let fi; € R" denote the vector having the value 1 in
coordinates 1 and j and the value 0 everywhere else. Then there exist non-negative a;;,

i,7 €41,....n} and i < j, such that x = Ziq a;; fi;. Furthermore, Eiq a;; = %Z?:l z;.

Proof of Lemma 3.31. Let N(v) = {vy, ..., v }. For any distinct v;,v; € N(v), let g}
be a point in SEP(G) such that ac;%’f} = miﬁjf} =1.

Let ¥, ...,y;. € [0,1] be such that y} + -- -+ y; = 2. Clearly, y; < 25:1 y; for all 7 =
1,..., k. By Lemma 3.32, there exists non-negative «;; such that Eiq‘ ;= % Zle yi=1
and y; = Ty, for all i = 1,...,k where z = 3, . ;7Y Therefore, Z is a convex com-

bination of points in SEP(G), implying that G is spliceable at v. O

Proof of Lemma 3.32. Clearly, if z = Eiq a;; fij, then > ay; = %Z?:l x;.

Observe that z has at least two non-zero entries. The proof is by induction on the
number of non-zero entries in z. Suppose z has exactly 2 non-zero entries, z;, z; where
© < j. Since z;,z; < %(x, + ), we see that z; = z;. Setting «a;; to z; and all the other
a’s to zero, we get ¥ = ), . ai; fij.

Assume that the result is true up to k& — 1 non-zero entries for some k£ > 3. Suppose

x has exactly k non-zero entries. Without loss of generality, assume that zq, ...,z > 0
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and x1 > --- > xp. Let t; = o and t; = 2p_;41 — Tx—j+2 for e = 2,...,k. Let j be such

J—1 J 7—1
that Z(z + Dt <z < Z(z + 1)tg—;. Let s = a4 — Z(z + 1)tx—;. By our choice of
=0 =0 =0
J, we have s < (j + 1)tg—;.
j=i j+1
Fori=1,...,7+1,let s =s/(j+ 1)+ Z th—it1—m. Let 2/ =z — Z@ikfik- Then
m=0 =1
j+1 j+1 j=i
Ty = Tk — Zaik = IF— Z(S/(j +1)+ Z theit1—m)
=1 =1 m=0
=1
= Tp—S8— Z(z—}— 1)tk_,' =0.
=0
Moreover, if 1 <1< j+1,
k=141 k—I+1
p=w—op = Y ti—s/G+1) - > 4
=1 i=k—j+1

k—j
= th’ —s/(j+1)

= Tip1 —8/(F+1) > T4 —thj = Tj42

Hence, 23 = .-+ = 2%, > 2%, > -+ > a3. It follows that if j > 1, then
o, < 330 alforall m = 1,..,n If j = 0, it suffices to show that 2} < 37 al.
Indeed, 2} = 21 —2 < >0 @i— 2k = 5 31y @;. Now, applying the induction hypoth-

esis to z’ gives the desired result. O

We now show that Hy satisfies the condition in Lemma 3.31 by showing that Hy has
a Hamiltonian circuit using vvy; and wvvy; for every pair ¢,7 € {0,...,k — 1}. We first

consider Hy.

Proposition 3.33. For ever pair of edges e, f € dp, (v), there is a Hamiltonian circuit

m Hy using e and f.

Proof. One can see from the Hamiltonian cycles shown in Figure 3.23 that the result is
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MU [HE (FRH) (FE

Figure 3.23: Some Hamiltonian circuits in Hy

true. U
Next, we consider Hy for k > 5. We first prove two technical results about Hy.

Lemma 3.34. Letr € {0, ..., k—2}. There ezists a path in Hy with vertez-set {v; ; : 0 <

i <2, 0<j<2r} connecting vo 2, and vg g,

Proof. The proof is by induction on ¢. If r = 0, we can take the path with edge-set
{vo,0v1,0,v1,0v20}. Consider r > 1. Assume that there is a path P with vertex-set
{vij 1 0<i <2, 0< 5 <2(r— 1)} connecting vgg(,—1) and vy 3(,—1). Then the path
with edge-set E(P) U {v0,2,V1,2r, V1,2r—1V1,2r, V0,20 ~100,2(r—1)» V2,2(r—1)V2,2r—15 V2,27 ~102,2r }
is a path with vertex-set {v; ; : 0 < i <2, 0 < j < 2r} connecting vg 9, and vy g,. The

result follows from induction. O

Lemma 3.35. Letr,t € {0, ..., k—1} withr < t. There exists a path in Hy with vertez-set
{v;;:0<i<2, 2r+1<35<2(k—1)} connecting vo 2t and vz 2r41.

Proof. The path with the following edge-set is a desired path:
{Ui,j—lvi,j 0< <1, 2(7‘+ 1) <j<2tpu {v0,2r+1v1,2r+1}
U {’ULQJ"ULQJ‘_}_l it S ] S k— 2} U {UO,jvl,j . 2t+ 1 S J S 2(l€ — 1)}
U {vozj-1v0.2j 1t +1<j <k =1} UL pk-1)v2,20-1)}
U A{vgj-1ve;:2(r+ 1) <j<2(k-1)}
O

Proposition 3.36. For every pair r,t € {0, ...,k — 1} with r < t, Hy has a Hamiltonian

circuit using vvy, and vvgg.
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Proof. 1t suffices to show that there is a Hamiltonian path in Hy — v connecting vy, and
V4.

Let V! = {v;; : 0 <1< 2 0< j<2r}. By Lemma 3.34, there is a path P
connecting vy, and vy, such that V(P) = V'. By Lemma 3.35, there is a path @
connecting vg 2 and vy 2,41 such that V(Q) = V(Hy — v)\V’. Then the path with edge-
set E(P) U {vg,2,V2,2r+1} U E(Q) is a Hamiltonian path in Hjy — v connecting vy, and
Uat- U

Proof of Lemma 3.30. This follows immediately from Lemma 3.31 and Proposi-

tions 3.33 and 3.36. U

3.5 Compact formulation in the planar case

Note that for any graph G, the number of constraints in sys(G) is exponential in |V (G)]|.
Using max-flow min-cut, Claus [6] obtained a compact formulation for the subtour-
elimination polytope, that is, a formulation having a polynomial number of constraints
and variables whose set of solutions when projected to the appropriate space is the
subtour-elimination polytope.

In this section, we describe a compact formulation for the subtour-elimination poly-
tope of a planar graph that is due to Rivin. It is based on certain geometric properties
and is very different from the compact formulation due to Claus. The formulation will be
useful in Chapter 6 when we give Rivin’s elementary proof of the necessary and sufficient
conditions for a 3-connected planar graph to be the graph of a polytope inscribed in a
sphere.

We first begin with a technical lemma that allows us to drop certain redundant con-

straints from sys(G).

Lemma 3.37. Let G = (V, E) be 3-connected. Let Q denote the set of non-trivial cuts

whose shores induce 2-connected subgraphs. Then the polytope

QG)={zecREF : z2(0(v)=2VveV, z(6({u,v}))>2V w € E,
z(6(S))>2VSeQ, x>0}
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is equal to SEP(G).

Proof. Clearly, SEP(G) C Q(G). To show that Q(G) C SEP(G), it suffices to show that
if z € Q(G), then z(A) > 2 for all A € C(G).

Suppose there exists §(S) € C(G) such that z(§(S)) < 2. Choose S such that the
total number of blocks b in G[S] and G[V'\S] is as small as possible. Since we cannot
have S = {u, v} for any uv € E, we must have |S|, |[V\S| > 3.

Without loss of generality, assume that the number of blocks in G[S] is at most the
number of blocks in G[V\S]. If there is only one block in G[V'\S], we are done. Thus,
suppose there are at least two blocks in G[V'\S]. We consider two cases.

Case 1: w(G[V\S]) > 1.

Let Sy, ..., Sk be the vertex-sets of the components of G[V'\S]. Since G is 3-connected,
the number of blocks in G[S U S;] is at most the number of blocks in G[S]. However,
Z(6(SUS)) < z(8(S)) < 2. This contradicts our assumption of minimality.

Case 2: w(G[V\S]) = 1.

Let v be a cut vertex of G[V\S]. Let Sy, ..., Si be the vertex-sets of the components
of G[V\S] — v. Since G is 3-connected, G[S;] X S is 2-connected. Hence, G[S;] is a
subgraph of a block in G[S U S;]. But the edges in v(S;,S) cannot be incident to the
same vertex in S. Hence, for any subset {iy, ..., 9,5} of {1,...,k}, the number of blocks in
G[SUS;, U---US, ]is at most the number of blocks in G[S]. It follows that the total
number of blocks in G[SUS;] and in G[V\(SUS;)] is less than b. By minimality of b, we
have z(6(SUS1)) > 2. We also have that the total number of blocks in G[SUS;U- - -U Sk]
and in G[V\(SU SaU---U Sg)] is less than b. By minimality of b, we have z(§(S U Sy U
<-USE)) > 2.

But

z(6(9))=z(6(SUS))+Z(6(SUS,U---USE)) —z(d(v)) >24+2—-2=2.

This is a contradiction, and the result follows. O

The next theorem allows us to obtain a compact formulation for the subtour-elimination
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polytope of planar graphs.

Theorem 3.38. (Riwvin [39], [41]) Let H = (V, E) be a plane triangulation with at least
four vertices and a distinguished verter oo on the boundary. Define F := {{u,v,w} C
V\{oo} : u,v, w are vertices on some face triangle} and I := V\({oo} U N(o0)). Let B
be the set of edges on the boundary of H — oo and Eq C E be such that EgN B = (. Let
k> 0. Let (CPy) denote the following system:

Z O{u,u,w},w + 2y = k YV uv € E(H - OO)7 (32)

wi{uw,wleF
O{U,U,w},u + H{u,u,w},u + e{u,u,w},w = k v {U, v, w} € ‘7:7 (33)
> blupwt = 2k YueT (3.4)

vaw{u,v,wleF

Z H{U,U,w},u + Ty = kK Vue N(OO), (35)
vaw{u,v,wleF

z. = 0 Ve€ E, (3.6)

r > 0, (3.7)

6 > 0. (3.8)

If (0,7) is a solution to (CPy), then z(5(v)) = 2k for allv € V and z(A) > 2k for all
A € C(H). Furthermore, if § > 0, then z(A) > 2k for all A € C(H).

In addition, for any z € R¥ such that z > 0, z(Ey) = 0, #(8(v)) = 2k for allv €V
and z(A) > 2k for all A € C(H), there exists 6 such that (8,%) is a solution to (CP).
Furthermore, if z. > 0 for all e € B and z(A) > 2k for all A € C(H), then there exists
0 > 0 such that (0,z) is a solution to (CPy).

Remark. The purpose of the parameter & in the statement of the theorem is to faciliate
discussion when Rivin’s characterization of graphs of inscribable type is considered in
Chapter 6.

We can think of a solution of (C'Py) as an assignment of values to edges and angles

of face triangles not containing oco. In other words, for an edge wv, x,, corresponds to
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the value assigned to that edge. For the angle at vertex w in the face triangle containing

vertices u, v, W, 0, w},w COITesponds to the value assigned to it. (See Figure 3.24.)

Figure 3.24: An illustration

Rivin did not state Theorem 3.38 the way it is stated here. The proof that follows is
due to Rivin proof but written in the language of the current thesis. Some parts of his

arguments have been elaborated.

Proof of Theorem 3.38. Let (#,z) be a solution of (CFy).

Claim 1. If v € Z, then Z Z é{u,v,w},w = Z (k — é{u7u7w}7u).
u€eN (v) wi{u,v,w}eF u,w{uv,wheF

Proof. Note that Z Z é{u7v7w}7w is the sum of the values assigned to the
u€N (v) wi{u,v,w}eF
marked angles in Figure 3.25 and that Z é{uw’w}’v is the sum of the values
u,wi{uv,wheF
assigned to the unmarked angles in Figure 3.25. By (3.3), the claim follows. O

We first show that z satisfies the degree constraints.

If v € Z, then
Z (k — ;fuy) = Z Z é{u,v,w},w (by (32))
uv€d(v) u€N (v) wi{u,v,w}eF

= Z (k - é{u,v,w},v) (by Claim ]_)
u,w{uv,w}eF

= deg(v)k — 2k.
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Figure 3.25: Illustration for Claim 1

Thus, Z Tuw = 2k.
uv€d(v)
If v € N(00), then

Z (k — fuu) = (k - ;fyoo) + Z Z é{u,v,w},w (by (32))

u€N(v) u€N (v),utoco wi{uv,wleF
- Z é{u,v,w},u + Z (k - é{u,v,w},v)
u,w{uv,wheF u,w{uv,w}eF

= Z k
u,w{uv,w}eF
= (deg(v) — 2)k.

Thus, Z Tuw = 2k.

uv€d(v)
Before we show that z(6(c0)) = 2, we need the following claim.

Claim 2. Let .J be a Jordan curve in H — co. Consider the 2-connected plane graph
H' = H[V(J) UW] where W is the set of vertices not on the same side of .J as co. Let
F' denote the set {{u,v,w} € F : uwv,vw,uw € E(H')}. Then

> Otuwayu = (|V(I)| = 2)k.
{uv,w}eF ueV(J)
Proof. Applying Euler’s formula to H', we obtain |V(H')| — |E(H')| + |F'| = 1. Since
H' has |V (J)| boundary edges, we see that |E(H')| = w It follows that |F'| =

2|V(H/)| - 2- |‘/(])| Hence, Z é{u,u,w},u = |‘7:/|k - 2|V(H/)\V(])|k =
{uv,w}eF weV(J)
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(|V(J)| — 2)k as desired. .

Applying Claim 2 with the boundary of H — oo as the Jordan curve J, we get

Z (k - EUOO) = Z e{u,v,w},u = (|N(OO)| - Q)k

u€N(c0) {u,v,w}eF :ueN (o)

It follows that Z Tuco = 2k.
u€N(c0)
Hence, z satisfies the degree constraints. We now show that z satisfies the subtour-

elimination constraints,
Let A € C(H). We consider two cases.
Case 1: A =§(S) for some S = {u, v}.

If wv € E(H — o0), then Z,, = k — Z 0wt < k. Hence, z(8({u,v})) =
w:{g,u,w}e]:
4k — 2%, > 2k. The inequality is strict if 8 > 0.

If wv ¢ E, then z(6({u,v})) = 4k > 2k.

If w € N(o0), then Tys = k — Z é{u,v,w},u < k. Hence, z(§({u,v})) > 2k.
B vwi{u,w,w}eF
Again, the inequality is strict if > 0.

Case 2: A = §(S) such that both H[S] and H[V'\S] are 2-connected.

Assume without loss of generality that co ¢ S. Denote the boundary vertices of H[S]
by U. Let T = N(U)\S. Observe that each of U and T is the vertex-set of a Jordan
curve in H. (See Figure 3.26.)

Suppose S C Z. Then T is the set of boundary vertices of H[T U S], U = N(T) in
H[T U S], and the number of face triangles in H[T U S] incident with a vertex in T is
|6(S)|. Let

A= Z 0 (uu,0,0} 0

uweUweT:{uv,w}eF

AZ — § O{u,v,w},un
u €T wel {uww}eF
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and

A3 = Z Z é{u,v,w},w .

uv€d(S) wi{u,v,w}eF

(Each term in A; corresponds to an angle marked with ¢ stripes in Figure 3.26.)

Observe that A; + Ay + A3 = |6(S)|k. Note that

As= Y (k=) = 5(S) |k — 2(6(5)).

c€s(S)

Hence, z(§(S)) = A1 + A;. Applying Claim 2 with the boundary of H[T U S] as the

Jordan curve .J, we obtain

> Otunayw = (IT] = 2)k.
uweUUT weT {uv,w}eF
But
Z é{u,v,w},w = Al + Z (k - é{u,u,w},w)
uweUUT weT {u,v,w}eF u €T wel {uww}eF
= Al —|— |T|k — Ag.

Thus, (|T| — 2)k = A; + |T|k — Ay. It follows that Ay — A; = 2k. Hence, if § > 0,
z(8(S)) = A1 + Ay > 2k and if > 0, 2(8(S)) = A1 + Ay > 2k.

Now, suppose S € Z. Then, SN N(o0) # (. Since H[V\S] is 2-connected, §(S) has
exactly two edges u'v" and u”v” in B. Otherwise, oo would be a cut-vertex of H[V\S].
Assume without loss of generality that «',u” € S. (It is possible that ' = u”.) Let
N = N(oo)\{u/,u"}. Let

Al — Z é{u,v,w},w7
uweU\NweT\{co}:{uv,w}eF

AZ — Z é{u,v,w},uﬂ
u,weT\{oo},weU {uv,w}eF
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Figure 3.26: An illustration
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and
As = Z Z é{u,u,w},w'
uv€d(S)\é(o0) wi{u,v,w}eF
Observe that A;+As+A3 = (|6(S)\é(c0)|—1)k. Since A3z = Z Z 00 =

uv€d(S)\é(o0) wi{u,v,wleF

> (k—x.), we have 2(5(S)\d(c0)) = Ay + Ay + k.
e€d(S)\d(c0)

Let W = SUT\{oc}. Observe that the set of boundary vertices of H[W]is (T\{oo})U
(UNN(c0)). Applying Claim 2 with the boundary of H[W] as the Jordan curve .J, we

obtain

Z é{u,v,w},w + Z é{u,v,w},w

u,weUUT\{oo},weT {u,v,w}eF u,veUUT\{co}, weUNN(co):{u,v,w}eF
= (IT\{oe}[+ [UNN(o0)| = 2)k = (|T[+ |UN N(o0)| - 3)E-

But
Z é{u,v,w},w = Z (k - fuoo)
u,veUUT\{oo}, weUNN(co):{u,v,w}eF ueUNN (o0)
and
Z é{u,u,w},w = Al + Z (k - é{u,u,w},w)
u,weUUT\{oo},weT\{oo}:{u,v,w}eF u,weT\{oo},weU {uw,w}eF

A+ (|IT| - 2)k — As.

Thus, 41 + (|T] — 2)k — Az + Z (k — Zuso) = (|T| 4+ |U N N(o0)| — 3)k. It follows
u€UNN (o00)
that Y Zuw = A1 — Ay + k. Hence, 2(3(5)) = 2(5(S)\6(00)) + > Tuoo =
u€UNN (o0) ueUNN (c0)
2A; 4 2k > 2k. The inequality is strict if § > 0.
By Lemma 3.37, we see that z(A) > 2 for any A € C(H) and the inequality is strict

when # > 0. This proves the first part of the theorem.

For the second part, let z be such that z. = 0 for all e € Ey, z(6(v)) = 2k for all
v eV, z(A) > 2k forall A € C(H), and z > 0. It is easy to see that if S C V,
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z(v(S)) < (|S| = 1)k. Let (Px) denote the following linear programming problem:

max 0
subject to Z Otuvtw T Tw = Kk Vuve E(H - o0),
wi{u,v,wleF
H{M,U,w},u + g{u,u,w},v + g{u,v,w},w = k v {u7 U, ﬂ)} € '7:7
> byt = 2k Vuel,
vaw{u,v,weF
Z O{u,u,w},u + Zuco = E Yue 1\7(00)7

vaw:{u,v,weF

8 > 0.

We first show that (Pj) has a feasible solution. Note that the last two sets of equations

in (Pg) are superfluous since if u € Z,

Z o{u,v,w},u = z (k - O{u,v,w},v - O{U,U,w},w)
vaw{u,v,weF vaw:{u,v,weF
= deg(w)k— Y (k—Zw)= Y T =2k
vEN (u) e€d(u)

and if v € N(o00),

Z H{u,v,w},u = Z (k - g{u,u,w},u - H{u,u,w},w)
vaw{u,v,weF vaw:{u,v,wleF
= (deg(u) =20k - > (k= Zw)
vEN (u)\{eco}
= (deg(u) —2)k— > (k- %) +k — Tux
e€d(u)

= (deg(u) —2)k —deg(u)k + 2k + k — Tyoo = k — Tyoo-
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The dual of (Py) without the last two sets of equations is

min Z (k — ie)ze + k Z y{u,u,w}

e€E\§(o0) {u,v,w}eF
(D) Zyy + y{u,u,w} Z 0 ({U, v, lw}fw) € F X ‘/(H - OO)? uv € E(H - OO)

Suppose (Py) is infeasible. Since (D) is not infeasible (0 is a feasible solution), there
exists a pair z, y feasible to (D) having negative objective value. Choose one such solution
that has the fewest distinct values in the entries of 3.

Suppose there are at least two distinct values in the entries of y. Let p = Irrnlg yr. Let

€
p'= min  yp. Let F" = {{u,v,w} € F : Ypypuwy = p}- Let B = {uv : {u,v,w} €
FeF yr>p 77
F" for some w}.

Let E' C E” be such that H[E'] is a component of H[E"]. Let S = V(H[E']) and
F={UeF":UCS}.

For each e € E', decrease z. by p’ — p. For each {u,v,w} € F', increase Yy, by
p' — p. Clearly, the modified solution is still feasible. Let s denote the number of interior

faces of the plane graph H[E’|. Then by Euler’s formula, we have |E'| = |S|+ s — 1.
Noting that |F'| < s, we see that the change in the objective value is

(0 =) (=D (k=2 +kIF]) < (0" = p)(=k(IS|+ 5~ 1) + Z(E') + ks)
ecl’!

< (' =p)E((S) = (IS = Dk)) < 0.

By going through each component of H[E"] and modifying the solution in the above
manner, we obtain a feasible solution for which the number of distinct values of 7 is
smaller and the objective value is not greater. This is a contradiction. Thus, we must

have 7 = Ae for some real number A and the objective value is at least

A(=|E(H — o0)|k + z(y(V(H - o0))) + | F|k)
= M—(V(H — )|+ |F| - Dk + (|[V(H — 00)| — D)k + | F|k) = 0.

This contradicts that the objective value is negative. Hence, (Py) must be feasible.
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Now, assume further that z(A) > 2k for all A € C(H) and z. > 0 for all e € B.
Observe that z(y(S)) < (|S|— 1)k for all S C V, 2 < |S| < |V| —2. In particular, z. < k
for all e € E. This implies that all the coefficients in the objective function of (D) are
positive.

From above, we know that (P) is feasible. Suppose there exists ({u, v, w}, w) such

that 6/

{u7v7w}7w

= 0 for any feasible solution 6’ of (Py). By strict complementarity, there
exists an optimal solution (z,y) of (D) that satisfies the inequality corresponding to

0/

{uvw},w

strictly.

If uv € B, we could reduce the value of z,, and get a feasible solution having negative
objective value. This is a contradiction. Hence, uv ¢ B. Let w’ be the vertex on the
other face triangle that contains the edge uv. Clearly, Zuy + Yupwr = 0. Let F' = {U €
F:1yu € Ypupwy)- Let "= Uper U. Let B = {u'v" : {u/, v, w"} € F" for some w"}.

Let E' C E” be such that H[E'] is a component of H[E"]. Let S = V(H[E']) and
F={UeF":UCS}.

Let € > 0. For each e € E’, decrease z, by e. For each {u,v, w} € F', increase ¢, , u}
by e. Clearly, if € is sufficiently small, the modified solution will still be feasible. Let s
denote the number of interior faces of the plane graph H[E']. Then the change in the

objective value is

e(= Y (k= 3e) + k| F|) < e(=(IS|+5 = Dk +2(E') + ks) < e(z(v(5)) - (IS| - 1)k) < 0.
c€E!
If | S| < |V| =2, then z(y(S)) < (|S| — 1)k. Therefore, the left-hand side is negative. If
|S|=|V|—1, then S = V(H — 00). If B\E" # 0, then z(E’) < z(v(S)) since z. > 0 for
all e € B. Hence, the left-hand side is negative. Suppose B C E’. If not all the interior
faces of H[E'] are triangles, then |F'| < s. Otherwise, {u,v,w} is the set of vertices of
a face in H[E'] but is not in F’. Again, we have |F'| < s. In either case, we see that
the left-hand side is negative. Thus, the change in the objective value is negative. This
contradicts the optimality of the original solution. Hence, (P%) has a positive feasible
solution. O

Observe that the number of constraints in (CPg) is polynomial in |V|. From the
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above theorem, we see that projecting the set of solutions of (C'P;) onto the space of
the z variables gives us SEP(H). To obtain a compact formulation for the subtour-
elimination polytope of a 2-connected planar graph G, first embed G into a plane. Then
pick any vertex on the boundary and call it co. Draw an edge from oo to any other
boundary vertex that is not a neighbour of co. Triangulate all the interior faces and call
the resulting graph H. Let Ey be the set of all the added edges. Then the projection of
the set of solutions to (C'P;) onto RFHN\Fo is the same as SEP(G).






Chapter 4

Inner points

Let G = (V, E) be a graph having at least three vertices. If Z € SEP(G) satisfies & > 0
and Z(A) > 2 for all A € C(G), then 7 is called an inner point of sys(G).

Remark. Note that our definition of an inner point depends on the system of linear
inequalities defining SEP(G) rather than the polytope itself. Hence, our definition is
different from the definition of an inner point of a polyhedron given by Nemhauser and
Wolsey [34]. They call a point % € P := {z : (¢’)Tz < b;, i = 1,...,m} an inner point of
Pif (a')T3 < b; forall i € M< where M< := {i € {1,...,m}: (¢)Tz < b; for some = € P}.

Observe that sys(G) has an inner point if and only if the linear programming problem

max e
subject to
z(8(v))=2 Vwvey,
z(A)—€e>2 V AeeC(G),

Te>€ Ve€eE,

e > 0.

has a positive optimal value. Again, using the equivalence between separation and opti-

69
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mization (Grotschel et al. [24]), one can solve the above linear programming problem in
polynomial time. Hence, one can determine if sys(G) has an inner point in polynomial
time.

Determining if sys(G) has an inner point is of interest for two reasons. First, if sys(G)
has an inner point, then dim(SEP(G)) can be determined easily. Second, we will see in
Chapter 6 that if G is 3-connected and planar, G is isomorphic to the graph of a polytope

inscribed in a sphere if and only if sys(G) has an inner point.

4.1 Main result

A cut A of G is said to be constricted if z(A) = 2 for all z € SEP(G). With this
definition, we see that sys(G) has an inner point if and only if G has no useless edge and
all constricted cuts of G are trivial. In this section, we obtain a necessary and sufficient

condition for a graph G with no useless edge to be such that sys(G) has an inner point.

We first make a simple observation.

Lemma 4.1. Let G be a feasible graph. If 6(S) is a non-trival constricted cut of G, then
G[S] and G[V\S] are connected.

Proof. Suppose the statement is false. Without loss of generality, we may assume that
G[S]is not connected. Let T and U be non-empty proper subsets of S such that S = TUU,
TNU =, and there is no edge in G[S] joining a vertex in T and a vertex in U. Then,
for any z € SEP(G),

z(6(S))=z(6(T))+z(6(V)) >2+2=4,

contradicting that §(S5) is constricted. The result follows. O

In this section, we will be working with the following primal-dual pair of linear pro-
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gramming problems.

(P) max 0
subject to

2(8(v))

—z(A)

2 VoeV(G)
—2 VA€eC(G)

IA

x

(D) min2), 2, —2Y 4ya

subject to

v
o

v
o

Zut 2o = Yueseo(q) YA Vuv € E(G)

y > 0.

We first give a simple sufficient condition for a cut to be constricted and an edge to
be useless.

(G)

Lemma 4.2. Let G be a feasible graph. If there exist y € Ri and z € RV(9 feasible

for syd (G) be such that ZAeC(G) ya = EueV(G) Zy, then all the cuts in {A:y4 > 0} are

constricted and all the edges in {uv : 2y + 2y — ), c4 Y4 > 0} are useless.

Proof. Since G is feasible, (P) has a feasible solution and, therefore, an optimal solution.

The result now follows immediately from complementary slackness. O

It is easy to see that for a graph G, if sys(G) has an inner point, then G satisfies

Property 4.3. For every non-trivial cut A and D C A, there exists & in the subtour-

elimination polytope such that not both (D) and #(A\D) are equal to 1.
The next theorem is the main result of this chapter.

Theorem 4.4. Let G be a 3-connected graph with no useless edge. Then sys(G) has an

nmner point if and only if G satisfies Property 4.8 and is more-than-1-tough or is a brace.
The proof of Theorem 4.4 depends on the next two intermediate results.

Theorem 4.5. Let G be 3-connected and more-than-1-tough. If G has no useless edge
and satisfies Property 4.3, then sys(G) has an inner point.
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Theorem 4.6. Let G be a brace. If G has no useless edge and satisfies Property 4.3,

then sys(G) has an inner point.

The proofs of Theorem 4.5 and Theorem 4.6 will be given later.

Proof of Theorem 4.4. Since G has no useless edge, if G has no non-trivial constricted
cut, then sys(G) has an inner point. So G satisfies Property 4.3.

Suppose G is non-bipartite. If G is not more-than-1-tough, then there exists S C V
such that w(G — S) = |S| = k for some k£ > 1. Let Sy,..., Sk be the vertex-sets of the
components of G — §. Construct y, z as follows. For each v € S, set z, = 1. For each
i €{1,..,k},if S; = {v} for some v € V, set z, = —1. Otherwise, set ys(s,) = 1. Note
that the pair y, z satisfies the conditions in Lemma 4.2. As G has no useless edge, S is an
independent set. Since G is non-bipartite, there exists ¢ such that S; is not a singleton.
Hence, by Lemma 4.2, §(S;) is a non-trivial constricted cut, which is a contradiction.

Suppose G is bipartite with bipartition (U, W). If G is not a brace, then, without loss
of generality, there exists a subset X of U such that 0 < |X| < |U] = 1 and |[N(X)| <
|X|+ 1. Let S =X UN(X). For any z € SEP(G), we have

2<a(8(S) = Y 2(6(v) — 3 #(5(v)) = 2AN(X)| - 2|X] < 2.
veN(X) veX
Hence, equality holds throughout. This implies that §(S) is a non-trivial constricted cut,
which is a contradiction.

The converse follows from Theorem 4.5 and Theorem 4.6. O

Before we prove Theorem 4.5 and Theorem 4.6, we obtain necessary and sufficient
conditions for sys(G) not to have an inner point in terms of solutions to sys'(G). We

begin with a simple result.

(@) and z € RV(E)

Lemma 4.7. Let G be a feasible graph. Then there exist y € Ri
feasible for sys'(G) such that EAGC(G) Ja = ZUGV(G) Zy and a cut A is constricted if and

only if ya > 0 and an edge uv is useless if and only if Zy + 2y, — Y ,,ea Y4 > 0.
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Proof. Since G is feasible, (P) has a feasible solution z such that z. = 0 if and only if e
is useless and z(A) = 2 if and only if A is constricted. The result now follows from strict

complementarity. O

Next, we obtain a refinement of the previous lemma.

Lemma 4.8. For any 3-connected feasible graph G, sys(G) has no inner points if and
@ 4nd 7 € RV(©) feasible for sys (G) such that ZAeC(G) =
ZueV(G) Zv, {A € C(G) : ya > 0} is non-crossing, and that y4 > 0 for some A € C(G)

only if there exist iy € Ri

o1 Zy + Zy — D yuea Ya > 0 for some uv € E(G). (Here, “or” is not exclusive.)

Proof. Sufficiency follows from Lemma 4.2.

Suppose sys(G) has no inner points. Then there exists either a constricted cut C' €
C(G) or a useless edge e € E(G). By Lemma 4.7, there exist an optimal solution y, z for
(D) such that y4 > 0 for every non-trivial constricted cut A and z, + z, — ZuUEA 74> 0
for every useless edge uv. Since the coefficients in (D) are integral, we may assume
that y and z are rational. As the constraints of (D) are homogeneous and the objective
value is zero, we may assume that y and z are integral. By Lemma 3.3 we may assume
{A € C(G) : ya > 0} is a family of non-crossing cuts after uncrossing pairs of crossing
cuts, if any.

It is now sufficient to show that after the uncrossings, we do not end up with y = 0
and z, + 2z, — D ,,cq4Ua = 0 for all uv € E(G). The case when G has a useless edge
uv is easy since uncrossings could not decrease the value of z, + z, — ZuUEA Y4, which
initially was greater than zero. So, suppose G has no useless edge. Then G has at least
one non-trivial constricted cut. We claim that uncrossing leaves at least one cut in {4 €
C(G) : ya > 0}. Suppose at some point, we uncrossed §(S) and 6(T') where SNT = {u}
and V\(SUT) = {v}. Since G has no useless edge, there exists z € SEP(G) such that
z>0. Then4=2z(6(5))+z(6(T)) =z(8(SNT))+z(5(SUT))+2z(y(S\T,T\S)) > 4.
It follows that v(S\T,T\S) = . But this means {u, v} is a 2-separator of G, which is a
contradiction. Hence, each time we perform uncrossing, there is at least one non-trivial

cut A such that y4 > 0.
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Therefore, the resulting ¥, z is feasible for sys’(G) such that EAGC(G) Ja = ZUGV(G) Zu,
{A € C(G) : ya > 0} is non-crossing, and that y4 > 0 for some A € C(G) or
Zut Zo = D ypea YA > 0 for some uv € E(G). O

Using Lemma 3.7 and Lemma 4.8, one can prove the next result using a similar

argument used in the proof of Theorem 3.8.

Theorem 4.9. If G is a 3-connected feasible planar graph such that sys(G) has no inner
points, then G is a spanning subgraph of a mazimal planar graph H such that sys(H) has

no mner points.

Proof of Theorem 4.5. Our proof uses ideas from the proof of Theorem 4.7 in [18]
which states that bricks have no non-trivial tight cuts.

Since G has no useless edge, by Lemma 4.8, there exists a pair y, z feasible for sys'(G)
such that 3~ scc(q) ¥4 = YXvev(a) 2o, AY) = {A € C(G) : ya > 0} is non-crossing, and
that y4 > 0 for some A € C(G) and z, + 2, — Y ,,c4 ¥4 = 0 for all wv € E(G).

Let C € A(y) and e = uv € C. Since Z, + 2z, — ) e Y4 = 0, at least one of z, and
Zy is positive. Without loss of generality, assume that z, > 0. Let S be a shore of C
containing u. Since C' is a non-trivial cut, neither S nor V'\S can be a singleton. Choose
C, e, and u so that |S| is as small as possible.

Let Si,.., Sk be the maximal proper subsets of S which are shores of cuts in A(y).
Since A(y) is non-crossing, S, ..., Si are disjoint. Let X = S\(S; U---U Sg) and let
Y ={veX:z, >0} Observe that u € Y by the minimality of S.

Figure 4.1: Tllustration of S and Sy, ..., Sk
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We first show that v(S;, S;) = 0 for all 7, j. Assume that there exists an edge f = ww’
with w € S; and w’ € S; for some 4, j. Then, either z, > 0 or Z,s > 0. Say Z,, > 0. Then
5(S;), f, and w should have been chosen, contradicting the minimality of S. Similarly,

one can show that v(S;, X\Y) = 0 for all 1.

Next, observe that y(Y,Y) = v(Y, X\Y) = 0. Indeed, if ww' is an edge in either of
the two sets, then z,, + z, > 0 but y4 = 0 for all A containing ww’. This contradicts
that z, + 2w — D urea ¥4 = 0.

By Lemma 4.1, G[S] is connected. Hence, X\Y = 0.

Let z € SEP(G) with # > 0. Since Y is an independent set, we obtain z(§(Y)) =
Y vey Z(8(v)) =2|Y]. Since v(S;, S;) =0 for all 4,j and X\Y = ), we see that

k

k
ST w(3(5)) - 23 2(4(S0, S)) = 2(3(Y)) = 2|V

=0 =1
where S = V\S. As 2(6(S;)) = 2fori =0,...,k and S5, #(v(S0, Si)) < #(5(S0)) —Ze <
2, it follows that k < |Y| < k + 1.

Suppose |Y| = k. Consider any z’ € SEP(G). Then,

k
2k =2|Y| = 2'(5(Y)) = ) _«'(5(S —2235 (So, S; _2k+1—2z v(So, S;

=0 =1

Hence, S°% . #/(v(S0,8:)) = 2'(7(So,Y)) = 1. But this contradicts that G satisfies
Property 4.3.

Hence, we must have |Y| = k4 1. But in this case, we must have v(Sp, S;) = 0 for
i = 1,...,k. This implies w(G —-Y) = k+ 1 = |Y|. However, G is more-than-1-tough.
We must have Y = {u} and X = S. Since X\Y = 0, this contradicts that |[S| > 1. The

result follows. O

Proof of Theorem 4.6. Suppose G has a non-trivial constricted cut 6(5). Let X = SNU
and Y = SN W. Observe that neither X nor Y can be empty. Otherwise, S would be a
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singleton. Without loss of generality, assume that |X| > |Y|. Let 2 € SEP(G). Now,

Y 2(3(v) = e (y(X,W\Y)) = 2((X,Y)) = Y 2(8(v)) - 2(7(¥, U\X)).

veX veY
It follows that 2| X| — 2|Y| = z(y(X,W\Y)) — z(v(Y,U\X)) < 2. If | X| = |Y|, we have
r(y(X, W -Y)) = z(y(Y,U\X)) = 1. Since G satisfies Property 4.3, this is impossible.
Hence, | X| = |Y|+ 1 and so z(y(Y,U\X)) = 0. As G has no useless edge, we must have
v(Y,U\X) = (. Therefore, X = N(Y) with |X| = |Y|+ 1, which contradicts that G is a
brace. O

Using Theorem 4.4, one obtains a different (but not necessarily easier) proof of the

following result due to Dillencourt and Smith [16].
Theorem 4.10. If G is a 4-connected planar graph, then sys(G) has an inner point.

Remark. The proof by Dillencourt and Smith relies on the fact that G —v is Hamiltonian
for every v € V(G). They showed that an inner point of sys(G) can be constructed from
the incidence vectors of elements in {C” : v € V(G)}, where C? is a Hamiltonian circuit
of G — v. Using a similar approach and the fact that every 4-connected planar graph
minus any two vertices is Hamiltonian (Thomas and Yu [48]), they showed that if G is
obtained from a 4-connected planar graph by removing a single vertex, then sys(G) has

an inner point.

Proof of Theorem 4.10. By Theorem 2.1, G has no useless edge. Since each cut in G
has cardinality at least four, G satisfies Property 4.3 by Theorem 2.1. Hence, it suffices
to show that G is more-than-1-tough and the result will follow from Theorem 4.4.
Suppose G is not more-than-1-tough. Since G has no useless edge, there exists an
independent subset S of V(G) such that w(G —S) = |S| = k for some k > 1. Let Sy, ..., S
be the vertex-sets of the components of G — S. Let G' = G x S; X - - - X Sk. Remove
multiple edges from G, if any. Note that G’ is bipartite having S as one of the partitions.

Since G is 4-connected, each pseudo-vertex of G’ is adjacent to at least four vertices
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in S. Since the partitions have the same cardinality, the average degree of a vertex in

G' is at least 4. But this is impossible as G’ is planar and bipartite. The result follows. [

As mentioned at the beginning of this section, checking if sys(G) has an inner point
involves checking two conditions: Checking if G has a useless edge and checking if G has
a non-trivial constricted cut. The next two results show that, in general, checking either

condition is as hard as checking both of them.

Theorem 4.11. Let G be a 3-connected (2k + 1)-edge-connected (2k + 1)-regular graph
where k is a natural number. Then sys(G) has an inner point if and only if G is more-

than-1-tough or is a brace.

Proof. Let & = ﬁe. Then > 0 and & € SEP(G). Hence, G has no useless edge. For
any cut A, if D C A, then neither #(D) nor #(A\D) can be equal to 1. Hence, G satisfies

Property 4.3. The result now follows from Theorem 4.4. O

Theorem 4.12. Let G be a 3-connected plane graph such that each interior face is a

triangle. Then sys(G) has an inner point if and only if G has no useless edge.

Proof. Suppose there exists z € SEP(G) such that z > 0. Assume that sys(G) does not
have an inner point. Since G has no useless edge, G must have at least one non-trivial
constricted cut. By Lemma 4.8, we see that there exist y € Ri(G) and z € RV() feasible
for sys'(G) such that 3 ,cci) ¥4 = Xpev(a) 2vr AY) = {4 € C(G) : y4 > 0} is non-
crossing, y4 > 0 for some A € C(G), and 2z, + 2, — >, ca¥a = 0 for all wv € E(G).
Choose y, z such that |.A(y)| is as small as possible.

If Z is not non-negative, pick w such that z,, < 0 and let u, v be neighbours of w such
that » and v are adjacent.

If 2 > 0, choose a shore S of a cut in A(y) such that for all T C S, ysr) = 0. Since
G is feasible, G[S] must be connected. If there exists v € S such that z, > 0, then there
exists w € S such that vw is an edge and z, + 2z, — zquA YA = Zy+ Zw > 0. This implies

that z,, = 0 for all z € SEP(G), contradicting that G has no useless edge. Therefore,
z, = 0 for all v € S. It follows that if w € N(S), we must have z, > y55). If N(u) C S,
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we can decrease z, by ys(s) and set yssy to zero to obtain a new pair y, z that is feasible
for sys’(G). Observe that y and Z cannot both be zero. Thus, if § = 0, then z # 0. As
G has no useless edge, we have z, + z,, = 0 for all vw € E(G). But this implies that G
is bipartite, which is impossible. It follows that the pair g,z certifies that sys(G) does
not have an inner point with a smaller A(y), which is a contradiction. Thus, there exists
u € N(S) that has a neighbour v’ not in S. Let the neighbours of u be {vg, vy, ..., U}
where v;v;41 € E(G) for ¢ =0, ..., m— 1. (Observe that if u is not on the boundary of G,
then vov,, € E(G).) Note that v’ = v; for some j € {0,...,m}. Since v’ ¢ S and u has a
neighbour in S, we see that there exists 4y, ¢ such that |¢; — i3/ = 1 and that v;, € S and
v, ¢ S. Set w = v;, and v = v;,. Then in G, w has v and v as neighbours with uv being
an edge.

For an edge e, let U, denote the set {A € A(y) : e € A}. Now 2,42y~ 4cpr,, U4 =0

and z, + Zy — Y acp,, Ya = 0. Hence, we have

Zut 2y = Z ya + Z gA_zgw

A€Uyw A€Uyw

= E ya+ § ya+2 § Ya — 22y
AeUuw\(LTuwnl/Tyw) AeUyw\(l/Tume’vw) AeUyuwnUyw

> E ya+ 5 Yya = § Ya.
AEUuw\(Uuwﬂva) Ael]vw\(Uuwnva) A€Uyy

This contradicts that z, + 2, — > ,,c4 ¥4 = 0 for all wv € E(G). The result follows. [

Corollary 4.13. Let G be a mazimal planar graph. Then sys(G) has an inner point if

and only if G has no useless edge.

4.2 Operations

In this section, we study graph operations that preserves the existence of inner points.
The ultimate goal is to have a finite list of operations that permit one to construct
inductively all the graphs G such that that sys(G) has an inner point starting from a

(small) list of basis graphs. That goal is not attained in this thesis; however, some of the
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operations described in this section will be used in Chapter 6 to obtain large classes of
graphs that are of inscribable type. As we will see in Chapter 6, a 3-connected planar
graph is of inscribable type if and only if sys(G) has an inner point. Hence, operations
that preserve the existence of inner points will preserve inscribability when restricted to

planar graphs.

4.2.1 Adding and deleting edges

Dillencourt and Smith [14] gave conditions on the addition of edges to graphs of inscribable

type to obtain graphs of inscribable. The next three propositions generalize their results.

Proposition 4.14. Let G be a non-bipartite graph such that sys(G) has an inner point.

Then sys(G + uv) has an inner point for any non-adjacent u, v € V(G).

Proof. Denote the set of contraints in sys(G) by {Az = 2e, Bz > 2e, z > 0} and the set
of contraints in sys(G + uv) by {A'y = 2e, B'y > 2e, y > 0}. Without loss of generality,
assume that A’ = [A a] where a € RYV(%) is such that

1 if we {u,v}

Ay =
0 otherwise

Since sys(G) has an inner point, G must be connected. As G is non-bipartite,

rank(A) = |V(G)|. It follows that @ is in the column space of A and so there exists
d € RE(G+w) with d,, = 1 and A'd = 0. If 7 is an inner point of sys(G) and ¢ > 0 is

T

sufficiently small, then + €d is an inner point of sys(G + uv). U
0

Proposition 4.15. Let G be a bipartite graph with bipartition (X,Y) such that sys(G)

has an inner point. Then sys(G + uv) has an inner point for any u € X and v € Y such

that uv ¢ E(G).

Proof. Since sys(G) has an inner point, G must be 2-connected. Hence, there exists a

cycle C in G + uv containing the edge uv. Since G + uv is bipartite, |E(C)| is even.
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Denote the perfect matching of C' containing uv by M. Let d € RF(G+u) be such that

1 ifee M
de=4 -1 ife€c E(C)\M

0 otherwise.

Let # € RE(G+40) he such that #4, = 0 and 7. = 7. if € € E(G) where 7 is an inner point

of sys(G). Then, & + ed is an inner point of sys(G + uv) if € > 0 is sufficiently small. O

Remark. It is not difficult to see that if u,v are vertices in the same partition of a
bipartite feasible graph G, then sys(G + wv) does not have an inner point. In fact,
Ty = 0 for all z € SEP(G + uv).

Proposition 4.16. Let G be a bipartite graph with bipartition (X,Y) such that sys(G)
has an inner point. Then sys(G + uv + u'v’) has an inner point for any distinct u,v € X

and distinct v’ ,v' €Y.

Proof. Since sys(G) has an inner point, G must be 2-connected. By Menger’s Theorem,
there are two edge-disjoint paths P and @ in G connecting u and ' and v and v/,
respectively. Since G is bipartite, both |E(P)| and |E(Q)| are odd. Let M be a maximum

matching of P and N a maximum matching of Q. Let d € RE(GHuww+uv') be guch that

1 if e € {uv, w'v'} U (E(P)\M) U (E(Q)\N)
do={ -1 ifec MUN

0 otherwise.

Let Z be an inner point of sys(G). Let & € RF(GHuwtu's) be such that 3, = 0 if e €
{wv,u'v'} and 2. = z. if e € E(G). Then & + ed is an inner point of sys(G + uv + u'v’) if

¢ is sufficiently small. O

The next result gives a condition when edge-deletion preserves the existence of inner

points.
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Proposition 4.17. Let G be a graph having at least five vertices. Suppose G has a
degree-three verter u whose neighbours vy, ve,vs are pairwise adjacent. If sys(G) has an

inner point, then so does sys(G — vivs).

Proof. Let & be an inner point of sys(G). Let o = Zy,4,. Let € = € +max{0, o+ Zyp, — 1)}

where ¢ > 0.

a=x
Viva

Figure 4.2: Deleting vyvy

Construct 2’ € RF(G=v1v2) a4 follows:

Te — @ if e = wuvs
Te+a—¢ if e =uvy
, Te+ € if e=wuvy
Te+ € if e = vyu3

Tet+a—¢ ife=wvuv3

Te otherwise.

Clearly, 2'(6(v)) = 2 for all v € V(G — vyv3).

Since Z(8(u)) = 2 and Tyy, + Tuvy + Tuyw, < 2, We have Ty, > Ty v, Similary, one
can show that Zyy,, > Ty e Clearly, if € is sufficiently small, 2’ > 0 and 2 < 1 for all
e € E(G). It is now not difficult to check that if € is sufficiently small, 2/(A4) > 2 for all
A € C(G — vyvg). Thus sys(G — vyvz) has an inner point. O

4.2.2 Gluing

In this subsection, we look at when we can glue two graphs together at a triangle to give a

graph G such that sys(G) has an inner point. Gluing will be used in Chapter 6 to obtain
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a non-trivial class of maximal planar graphs of inscribable type that are not 4-connected.
We first show that if G is a graph with a 3-separator, then one can break it up into

two pieces while preserving inner points.

Lemma 4.18. Let G be 3-connected. Suppose there exist subgraphs G and G of G with
G =G UGy and V(G1) NV (G2) = {u,v,w}. For each i € {1,2}, let G. denote the
graph obtained from G; by joining non-adjacent pairs of vertices in {u,v,w}. If sys(G)
has an inner point, then sys(G:) has an inner point & such that &y, + Zpw + Tuw > 1 for

all i € {1,2}.

Proof. Let z' € SEP(G) be an inner point. It suffices to consider G|. Let U =
V(G)\{u,v,w}. Let a = 2'(({u},V)), b = 2'(({v},U)), ¢ = 2'(({w},U)). Note that
2 < 2'(8q(UU{u})) =b+c+2—a. Hence, b+ c—a > 0. Similarly, we have a+b—¢ > 0
and a+c—b> 0.

With the understanding that 2/ = 0if e € {uv, vw, uw}\E(G), construct € SEP(G})

as follows:
i+ (a+b—c)/2 ife=uv

. L+ (b+c—a)/2 if e=vw

o= i+ (a+ec—0)/2 ife=uw

zl otherwise.

Clearly, 2 > 0. Since z'(§(U U {v,w})) > 2 and 2'(6(U U {v,w})) = a+ (2 - b —
)+ (2—-c—2zl,), wehave 1+ (¢ — b —¢)/2 > z],. Hence, Z,, < 1. Similarly, we
have Z,, < 1 and Z,,, < 1.

It is now easy to check that Z(A) > 2 for all A in C(GY). Finally, 4y + Zpw + Tuw =

o+, ., +(a+b+e)/2>1since 2’ >0and a+b+c> 2. O

With the above lemma, we give a condition on when one can glue two graphs together

while preserving the existence of inner points.

Lemma 4.19. Let G be 3-connected such that there exist subgraphs G, and Gy of G with
G =Gy UGy and Gy NGy =T where T is a triangle with V(T) = {u,v,w}. Suppose
sys(Gz) has an inner point and for any two edges e, f € E(T), there exists T € SEP(G3)
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such that z. = Ty = 1. Then sys(G) has an inner point if and only if sys(Gy) has an

mner point & such that Tyy + Tow + Tuw > 1.

Proof. Necessity follows from Lemma 4.18.
Assume that sys(G1) has an inner point Z such that Zy, + Zyw + Tuw > 1. Let 2 be
an inner point of sys(Gz). Let d = 24y + Zpw + Zuw and D = Zyp + Tow + Tuw-

Let
Ouo = Zuw/D+ X2 —d)/3, Opy = Zow/D + A2 —=d)/3, Oy = Tuw/D+A2—4d)/3

for some A > 0.

By assumption, there exist #',7% % € SEP(G2) such that zl, =z, = 1, 22, =

52 73 — x3
‘ruw - 17 'ruw - xuw - 1

Consider 2/ = az! + 552 + 7533 4+ \Z where

1- (Ouu + Ouw - va) - )\(éuu + 2uw - 21)11;)

2
1- (euu + Huw - Ouw) - )‘(éuv + ng - éuw)

o= 5
1- (euw + Ouw - guu) - )\(éuw ‘|’ 21;11; - éuu)
v = 5 :

If A is sufficiently small, we have 2a = 1 — (Zyy + Fuw — Tow)/D — A2 —=d) /3 = A(Zuw +
Zuw — Zow) > 0. Hence, o > 0. Similarly, 8,7 > 0 if X is sufficiently small. Further,
a+B+7= (3= (buw + 0w+ Ouw — Ad) /2= (3— (142X — Ad) — Ad))/2 =1 — A. Hence,
a+B8+v+A=1with a,8,7,A > 0. It follows that z’ is a convex combination of
#',3% %3, and 2, which are points in SEP(G3). Since % is an inner point of sys(Gy), 2’ is
an inner point of sys(Gy).

It is easy to check that

/ /
Typ T Ty = 2 — Ouv - euun
x4 = 2-46,, -0

uv vw - uv vw

! !
Tyw T Tow = 2— Ouw — Opw-
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Construct y as follows. For any e € E(G1)\E(T), set yo. = Z.. For any e €
E(G2)\E(T)a set ye = 'r/e' Set Yur = -%uv - ouuy Yow = iuw - OUUH Yuw = ifuw - guw-
Observe that § > 0 and y(dg(v")) = 2 for all v’ € V(G)\V(T).

Now

! A

Y06 (1) = Yuo = Juw = 2'(86,(40)) = 2y — Tuw + 2(06, (0) = Fuv — Fuw
= 2- (2_0uv_0uw)+2_£uu_iuw

= 2- (iuu - ouu) - (iuw - Ouw) =2~ Yuv — Yuw-

Hence, y(dg(u)) = 2. Similarly, y(dg(v)) = y(dg(w)) = 2.

Consider A € C(G). If A does not contain any of uv, vw, uw, then y(A) > 2. Assume
A contains at least one of v, vw, ww. Then it must contain exactly two of them. Without
loss of generality, assume that uv, uw € A. Let S C V be such that A = §¢(S) and u € S.
Then

y(0a(S)) = 2'(06,(SNV(G2)) = 2y — Ty + 206, (SN V(G1))) = Ouv — Ouw
> 2_(2_0uu_0uw)+2_0uu_evw:2-

Hence, y(A) > 2 for any A € C(G). It follows that 7 is an inner point of sys(G). O

Corollary 4.20. Let G be 3-connected and G1 and Go be such that GNG1 = GNGy =T
where T is a triangle. Suppose sys(G1) and sys(Ga) have inner points and for any two
edges e, f € E(T), there exists € SEP(G;) such that . = y = 1 for i = 1,2. Then
sys(G U G1) has an inner point if and only if sys(G U G3) does.

Proof. This follows immediately from Lemma 4.19. U

Remark. If H is K4 or a 4-connected planar graph containing a triangle, then sys(H)
has an inner point (see Theorem 4.10) and for every two distinct edges in E(H), there
exists a Hamiltonian circuit using them. Hence, H can be the graph G; or G2 in the

previous corollary.
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Corollary 4.21. Let G be a 3-connected graph such that there exrist subgraphs G1 and
Gs of G with G = G1UGy and G1NGy =T where T is a triangle with V(T') = {u, v, w}.
Suppose that at least one of u,v,w is a degree-three vertex in Gy, that sys(Ga) has an
inner point, and that for any two edges e, f € E(T), there exists T € SEP(G3) such that

Te = Zf5 = 1. Then sys(G) has an inner point if and only if sys(G1) has an inner point.

Proof. Without loss of generality, assume that v is of degree three and let ¢t be the
remaining neighbour of v. Let z be an inner point of sys(G1). Since Zyp + Tyw + Tto = 2
and T < 1, we have Ty, + Zyw > 1. Thus, Tyy + Tyw + Tuw > 1. The result now follows

from Lemma 4.19. O

Proposition 4.22. Let G be such that sys(G) has an inner point. Suppose G has a
degree-three vertex u whose neighbours vy, ve, vs are such that vive, vivs € E(G). If G' is
obtained from G by adding two new vertices uy and uy and edges ugu, ugvy, Ugve, UL,

uyv1, and uqvs, then sys(G') has an inner point. (See Figure 4.3.)

Figure 4.3: Double glue

Proof. Let T be an inner point of G. Let H denote the graph G’ — u;. Let € > 0 be such
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that € < Z,,,,. Construct 2’ € RE(H) as follows:

1—Zyy, +€ if e = ugvy
1—c¢ if e = wug
Ty if e = ugvy
z, = Te — € if e = w109

Te — (1 = Typy) if e =uvy

€ if e = uvy

Te otherwise

It is easy to check that z’ is an inner point of sys(H).
Now, z,, + Ty, + Th v, = Tuvy — (1 = Tuwy) + Tuvy + Touy = 1+ Ty > 1. By
Lemma 4.19, sys(G’) has an inner point. O

4.2.3 Splicing

We end the chapter by considering the splicing operation that was introduced in Sec-
tion 3.4. The conditions considered in this thesis under which this operation preserves
the existence of inner points are quite stringent. However, the cases for which the opera-

tion works are already strong enough to yield interesting results. We show the following.

Lemma 4.23. Let G1 and Gy be non-bipartite graphs. Suppose u € V(G1) and w €
V(G2) are of degree k with N(u) = {u1,...,ux} and N(w) = {wy,...,wx}. Let G =
(V(Gy —u) UV (Gy — w), E(G1 — u) U E(Gy — w) U{ugwy, ..., ugwi }). If sys(G1) has an
inner point x' and sys(G,) has an inner point % such that ac,lml. = ac?uwi foralli =1, ..k,

then sys(G) has an inner point.
The proof depends on the next lemma.

Lemma 4.24. Let G = (V, E) be a graph with no useless edge. Suppose there ezists
& € SEP(G) with & > 0 such that 6(S) is the only non-trivial cut of G with £(5(5)) = 2.
Then sys(G) has an inner point if both G X S and G x (V\S) are non-bipartite.

Proof. It suffices to show that 6(5) is not a constricted cut.
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Assume to the contrary that §(S) is a constricted cut. Since Z > 0 and Z(A4) > 2
for any non-trivial cut A # §(S), by Lemma 4.7, there exist g, 2 feasible for sys’(G) such
that 55y > 0, §a = 0 for all non-trivial cuts A # §(5), 2, + 2, = 0 for all vw € E\4(9),
and 2, + 2, = §s(g) for all vw € §(S).

Since §5(sy > 0, 2 # 0. Note that 2, = —2, for every edge uv ¢ §(S5). By Lemma 4.1,
G[S] and G[V\S] are connected. Hence, there exist a,b € R, such that |Z,| = a for
all v € S and |2, = bforall v € V\S. Let A = {v € S :5v)Nd&S) # 0} and
B ={veV\S:4(v)ndS)#0}. If a =0, then 2, = fsg) for all v € B. This implies
that G x S is bipartite, which is a contradiction. Hence, ¢ > 0. Similarly, b > 0.

If 2, has the same sign for all v € A, then G x (V'\S) is bipartite, which is a contradic-
tion. Hence, assume that Z, = —2, for some u,v € A. Let u’,v’ € B be neighbours of u
and v, respectively. Since Z, + Zu = Js(s) and 2, + Zy = Us(s), we have 2y + 2 = 275(s).
Since §s(sy > 0 and |2,| = |Z|, we must have 2, = 2,/ = §s(5). But this implies that

Zu = 2, = 0, contradicting our assumption. The result follows. O

Proof of Lemma 4.23. Let V = V(G) and E = E(G). Let G| = Gy — u and
GL=Gy—w. Fori=1,2let V; = V(G!) and E; = E(G}).

Construct & € R¥ as follows. For any e € Ej, set #, = z!. For any e € Es, set

e =al. Fori=1,..,k, set Zy;u; = Ty,.. Clearly, 2 > 0, #(6(v)) = 2for all v € V and
#(6(Vh)) = 2.

2>

We now show that Z(A4) > 2 for all A € C(G)\{6(V1)}. Let §(S) € C(G)\{6(V1)}.
Clearly, if S C Vi or S C Vy,or VAS C V5 or V\S C V3, then 2(5(S)) > 2. Suppose none
of the four sets SNVy, SNV, VAS NV, and V\SNV; is empty. Note that

#(8(8)) = 2 (8(S) N Ey) + 2%(8(S) N Ey) + #(6(S) N éa(V1)).
We claim that z'(6(S) N E;) > 1. Observe that

' (6(S)NEy) =2'(5(SNW)) —z' (y({u},SNW))
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and that
21 (8(S) N Ey) = 2! (8(SN Vi U{u})) — o' (v({u}, Vi\S)).

Since z!(d(u)) = ' (y({u}, SN V1)) + 2 (y({u}, V4\S)), we have

2:1(5(S)NEy) = 2'(8(SNV)) + 2 (6(SN ViU {u})) — 2 (8(u))
> 242-2=2.

It follows that Z(8(S)N Ey) > 1.

Similarly, 22(6(S) N Ez) > 1. Thus, £(5(5)) > 2.

Therefore, we have 2 € SEP(G) and Z(A) > 2 for all non-trivial cuts A # §(V;). By
Lemma 4.24, sys(G) has an inner point. O

The next two results are immediate consequences of Lemma 4.23.

Corollary 4.25. Let G = (V, E) be a non-bipartite graph and v € V.. Let G' = (V' E')
be isomorphic to G and v’ € V' is the image of v under some isomorphism f. Let N(v) =
{v1,...,vx}. Let G = (VUV\{v,v'}, E(G—v)UE(G" —v")U{v1f(v1),...,vef(ve))}. If

sys(G) has an inner point, then so does sys(G").

The previous corollary basically states that G can be spliced with a copy of itself with
respect to any vertex and its corresponding copy.

A non-bipartite graph G is said to be strongly spliceable at v if G is spliceable at v
and if for any 91, ...,y € (0,1) satisfying Ele ¥; = 2, there exists an inner point # of
sys(G) such that Z,,, =y; fori=1,..., k.

Corollary 4.26. Let Gy and Gy be non-bipartite graphs such that sys(G1) and sys(G3)
have inner points. Suppose u € V(G1) and w € V(G3) are of degree k with N(u) =
{u1, ..., ux} and N(w) = {wy,...,wx}. Let G = (V(G1 —u) UV (G — w), E(G; — u) U
E(Gy—w)U{ugwy, ..., upwg }). If Gy is strongly spliceable at w, then sys(G) has an inner

point.

We now consider some classes of graphs that are strongly spliceable at selected vertices.
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First, we prove the following.

Lemma 4.27. Let G = (V, E) be non-bipartite and v € V. If sys(G) has an inner point
and for any distinct e, f € §(v), there ezists a point z € SEP(G) such that z. = 75 = 1,
then G is strongly spliceable at v.

Proof. Let N(v) = {vy,...,vx}. For any distinct v;,v; € N(v), let 217} be a point in
SEP(G) such that $;{,Z’f} = x;{ﬁjj} =1.

Let 41, ..., yk € (0,1) be such that y; +-- -+ yx = 2. Let Z be an inner point of sys(G).
Fori=1,..,k, let y. = y; — €4y, where € > 0. Since y; < Ele y; forall + = 1,...,k,
if € > 0 is sufficiently small, then y! < 25:1 y; for all i« = 1,...,k. By Lemma 3.32,
there exists non-negative «a;; such that ) ._-a;; = %Ele y; and that y! = Z,,, for all

i=1,...kwhere =3, . ajaihit)

i<J

Let z = €2 + 2. Clearly, Zyy; = €Zpv; + Tow; = €Zpw; + Yb = Y;. Also,

k

k k
1 , 1 Y .
€+ Zai]’ :6+§Zyi =6+§Zyz— 52%”‘ =1
1< =1 =1 =1

Hence, 7 is a convex combination of points in SEP(G). Since Z is an inner point and the
coefficient of # in the convex combination is positive, Z is an inner point of sys(G). The

result follows. O

Wheels are strongly spliceable at any of its vertices except at the hub. And clearly,
K, is strongly spliceable at any of its vertices. The same can be said for 4-connected

planar graphs, as the next result shows.

Corollary 4.28. Let G be a 4-connected planar graph. Let v be any vertex of G. Then
G s strongly spliceable at v.

Proof. Note that G is non-bipartite. By Theorem 4.10, sys(G) has an inner point. By
Theorem 2.1, there is a Hamiltonian cycle using any two distinct edges in §(v). The result

follows from Lemma 4.27. O






Chapter 5

(2k + 1)-edge-connected
(2k + 1)-regular graphs

Theorem 4.11 of the previous chapter gives a graph-theoretical necessary and sufficient
condition for sys(G) to have an inner point when G is a (2k+ 1)-edge-connected (2k+1)-
regular graph. In this chapter, we study the subtour-elimination polytope of such graphs
in more detail. In particular, we exploit the connection between the subtour-elimination
polytope and the perfect matching polytope to obtain a dimension formula and an efficient
combinatorial algorithm that computes the dimension. It is known that one can compute
in polynomial time the dimension of the subtour-elimination polytope using the ellipsoid
method (see Grotschel, Lovasz, and Schrijver [24]). However, the ellipsoid method is
not combinatorial and is not efficient in practice. Hence, one might ask if there exist
efficient combinatorial algorithms for computing the dimension of the subtour-elimination
polytope. The algorithm presented in this chapter is therefore a partial answer to the
question.

We begin with some notation and definitions. If § is a set of disjoint subsets of V,
then G(S) denotes the graph obtained from G by shrinking each element in S. In this
chapter, we refer to a pseudo-vertex by the set that was shrunk to it. In other words, we
make no distinction between the pseudo-vertex and the set from which it was shrunk.

Unless otherwise stated, G = (V, E) denotes an r-edge-connected r-regular graph

91
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where r is odd and at least 3. Note that G is 3-connected and feasible and therefore
1-tough. Furthermore, as % € PM(G), all tight cuts of G are r-edge cuts and by Corol-
lary 2.4, G is matching-covered.

The next result relates the dimension of the subtour-elimination polytope and the

dimension of the perfect matching polytope of G.

Theorem 5.1. The dimension of PM(G) is the same as the dimension of SEP(G).

Furthermore, a non-trivial cut C of G is tight if and only if it is constricted.

Proof. Clearly, 3 SEP(G) C PM(G). Hence, dim(SEP(G)) < dim(PM(G)).
We now show that dim(SEP(G)) > dim(PM(G)). Define the affine function f :
R¥ — R¥ by f(z) = (1/r)z + ((2r — 1)/r?)e. Let M be any perfect matching of G. Let

# = f(xM) where xM denotes the incidence vector of M. Then for any vertex v € V,

o) =1/r+ > @r—=1)/r"=1/r+r@2r-1)/r’=2.

e€d(v)

Consider S C V such that 1 < |S| < |V| and |S] is odd. Since |§(S) N M| > 1 and
|6(S)| > r, we have

BOS) = 1/r+ > @r-1)/r > 1/r4r2r—1)/r" =2,
e€é(S)

Next, consider S C V such that 1 < |S| < |V| and |S] is even. Then [§(S)| > r + 1.

Hence,

BES)= D @r-1/r> (r+1)(2r—1)/r*> 2.

e€d(S)
Hence, z € SEP(G). It follows that

f(PM(G)) C SEP(G).

As fis bijective, dim(f(PM(G))) = dim(PM(G)). Therefore, dim(PM(G)) < dim(SEP(G)).
This proves the first part of the theorem.
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We now prove the second part. Let C' be a non-trivial cut. Suppose & € PM(G) is
such that Z(C) > 1. Let § = f(£). Then §(C) > 2 and § € SEP(G), implying that C
is not a constricted cut. Suppose # € SEP(G) is such that 2(C) > 2. Then £2(C) > 1.
Since 1& € PM(G), C is not a tight cut. The result now follows. O

The previous theorem tells us that we can determine the dimension of SEP(G) by
determining the dimension of PM(G). Edmonds, Lovéasz, and Pulleyblank [18] showed
that if the number of bricks in the brick decomposition of a matching-covered graph is
B, then dim(PM(G)) = |E| — |V| 4+ 1 — B. They also gave a combinatorial algorithm
for obtaining the brick decomposition. Hence, there is a combinatorial algorithm to
determine the dimension of SEP(G).

In alandmark paper on the matching lattice (the lattice of the incidence vectors of per-
fect matchings), Lovész [33] considered the tight cut decomposition of a matching-covered
graph. One of the results he showed was that the number of bricks in the brick decompo-
sition is the same as the number of bricks in the tight cut decomposition. The tight cut
decomposition is important in matching theory and is the main method in Lovasz’ paper.
The remainder of this chapter is devoted to presenting an O(r%|V|log(|V|/r)) algorithm
using O(r|V|) space that computes a representation of the tight cut decomposition. From
such a representation, one can easily deduce the number of bricks and hence find the di-
mension of PM(G) and SEP(G). In the case of 3-regular planar graphs, one can improve
the running time to O(|V]).

We point out that having a tight cut decomposition of a matching-covered graph allows
one to determine if the graph is bicritical. At the moment, the O(|V||E|)-algorithm by Lou
and Zhong [32] has the best time-complexity bound for recognizing bicritical graphs and
there is no known algorithm that finds a tight cut decomposition with a time-complexity
bound better than O(|V||E|). Hence, for any fixed r, the bound O(r?|V|log(|V|/r)) is
currently asymptotically better than what one can achieve for general graphs.

The rest of the chapter is organized as follows. We first describe the tight cut de-
composition procedure and establish a series of structural results that we need for the

algorithm. We then describe the key data structure on which the algorithm depends. Es-
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sentially, the data structure is a tree-representation of all the r-edge cuts of G. Assuming
that the data structure can be built efficiently, we then give a high-level description of
the algorithm. We conclude the chapter by giving the technical details for building the

data structure.

Remark. Dillencourt and Smith [15] gave a linear-time algorithm for determining if
sys(G) has an inner point when G is 3-regular and planar. As we will see in Section 5.2,
their algorithm is equivalent to determining if G is a brace or a brick. Our algorithm is

based on generalizations of their ideas.

5.1 Tight cut decomposition
The tight cut decomposition procedure described by Lovész [33] hinges on the next result.

Lemma 5.2. (Lovdsz [33]) A matching-covered graph has no non-trivial tight cuts if and

only if it is either a brick or a brace.

The proof of Lemma 5.2 will not be described here. It uses a non-trivial result by Ed-

monds, Lovdsz, and Pulleyblank [18] that states that bricks have no non-trivial tight cuts.

The tight cut decomposition procedure is as follows. Given a matching-covered graph
H, find a non-trivial tight cut C. If all the tight cuts are trivial, stop. Otherwise, let S be
ashore of C. Let Hy = H xS and Hy = Hx (V(H)\S). Hy and H, are matching-covered
as well. Apply the procedure to H; and Hy and so forth. At the end, we have a list of
bricks and braces.

Lovész [33] showed that the resulting list of bricks and braces is independent of the
order in which the cuts are used.

It is not difficult to show that at any stage of the procedure, each of the graphs
obtained can be obtained by shrinking shores of tight cuts of H. In particular, if H' is a
graph obtained at some stage of the procedure and §(S’) is a cut of H’', then 6(S’) is a
tight cut of H' if and only if §(S) is a tight cut of H where S C V(H) is such that v € S
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if and only if v is in S’ or v is in a set that is shrunk to a pseudo-vertex in S’.

5.2 Structural results

In this section, we established a series of structural results that we will need for the

algorithm. We first characterize when G is a brace.

Lemma 5.3. If G is bipartite, then G is a brace if and only if G has no non-trivial r-edge

cuts.
Before we give the proof, we need a few technical results.

Lemma 5.4. Suppose G is bipartite with bipartition (U, W). Let S C V be a shore of an
r-edge cut. Then either N(S) C U or N(S) C W; moreover, |SNU|—|SNW| € {-1,1}.

Proof. Since G is r-regular, |[U| = |W|. Let X = SNU and Y = SNW. Without loss of
generality, assume that | X| > |Y|. Now,

r|X] = [y (X, WAY) > 16(0) = [y (X, W\Y)]

veX
= (X, Y)]

= D _15()] - (Y, U\X)|
veY
= Y| - y(Y, U\X)].

It follows that r| X | —r|Y| = |v(X, W\Y) — |v(Y,U\X)| < r, implying that | X| < |Y|+1.
If | X|=1Y]|, we have |v(X,W\Y)| = |v(Y,U\X)|. Since |v(X,W\Y)| + [v(Y,U\X)| =
|6(S)| = r and r is odd, this is impossible. Hence, |X| = |Y |+ 1 and so v(Y,U\X) = 0.
It follows that N(S) C W. O

Corollary 5.5. Let Sy, ..., 5, C V be disjoint shores of non-trivial r-edge cuts of G. Then
G is bipartite if and only if G' = GX Sy x---x S, and G x (V\S;), i = 1, ..., p are bipartite.

Proof. 1t is immediate from Lemma 5.4 that if G is bipartite, then G’ and G x (V\S;),

1 =1,...,p, are bipartite.
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Suppose G’ and G x (V\S;), ¢ = 1, ..., p, are bipartite. If G is non-bipartite, then G
has an odd circuit C. Since G x (V\S;) is bipartite, G[S;] must have an even number of
edges from C'. Therefore, the image of C' under shrinking Sy, ..., S, must contain an odd

circuit in G’. This contradicts that G’ is bipartite. O

Proposition 5.6. Suppose G is bipartite. If S C V is a proper shore of a non-trivial
r-edge cut, then 6(S) is a tight cut of G.

Proof. Let the bipartition be (U, W). Denote SNU and SNW by X and Y respectively.
Without loss of generality, assume |X| < |Y|. By Lemma 5.4, | X|+ 1 = |Y|. Since G is
r-regular, every perfect matching of G must have exactly one edge in §(S). Hence, 6(5)
is a tight cut. O

Proof of Lemma 5.3. By Proposition 5.6, we see that a non-trivial cut is tight if and

only if it is an r-edge cut. The result now follows from Lemma 5.2. O

Next, we characterize when G is a brick.

Proposition 5.7. If G is non-bipartite, then G is a brick if and only if G is more-than-
1-tough.

Proof. Since G is 3-connected, it suffices to show that G is bicritical if and only if G is
more-than-1-tough.

Suppose G is not more-than-1-tough. Since G is 1-tough, then there exists S C V
such that w(G — S) = |S| = k for some k£ > 1. Let Sy, ..., S denote the vertex sets of
the components of G — S. Since G is r-edge-connected, |§(S;)| > r for i =1, ..., k. Since
Ele 18(Si)| < Y pesdeg(v) = rk, we have that |§(S;)| = r for i = 1,.... k. As r is odd,
|S;i| is odd for ¢ = 1, ..., k. Hence, odd(G — S) = |S|, implying that G is not bicritical.

Conversely, suppose G is not bicritical. Then there exist two vertices u,v € V such
that H = G — {u, v} has no perfect matching. By Theorem 2.2, there exists S C V(H)
such that odd(H — S) > |S|. Observe that odd(H — S) and |S| must have the same
parity. Hence, odd(G — (S U {u,v})) > |S|+ 2 = |S U {u,v}|, implying that G is not
more-than-1-tough. O
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Putting together Lemma 5.2 and Proposition 5.7, we obtain the next result.

Theorem 5.8. G has no non-trivial tight cut if and only if G is more-than-1-tough or

G 1s a brace.

Remark. By Theorem 5.1, Theorem 5.8 is equivalent to Theorem 4.11.

We now define an object that will allow us to give a more refined characterization for
r-edge-connected r-regular bricks when r > 3 is odd. This object generalizes the notion
of an s-localization of a 3-regular planar graph defined by Dillencourt and Smith [15].

We first make a simple observation that is well-known.
Proposition 5.9. No two r-edge cuts of G cross.

Proof. Suppose 6(S) and §(T) are r-edge cuts of G that cross. Since G is r-edge-

connected, we have
2r = [5(S)| + |8(T)| = 5(S N T)| +15(S UT)| +2/5(S\T, T\S)| > 2r.
Hence, §(SNT) and §(SUT) are both r-edge cuts and +(S\T,T\S) = 0. It follows that
2r = [5(S)] + 18(T)| = [5(S\T)| + |§(T\S)| +2/7(S N T, V\(SUT))| > 2r.

Hence, 6(S\T) and §(T\S) are both r-edge cuts. Since r is odd, |S|, |T|, |S\T|, |T\S]|,
and |S N T| must all be odd, which is impossible. The result follows. O

For a proper shore S of an r-edge cut of G, let M(G,S) := {Si1,...,Sp} be the set
of maximal shores of non-trivial r-edge cuts strictly contained in V\S. As no two r-
edge cuts cross, Sy, ..., S, are disjoint and uniquely determined. Let H(G,S) denote the
multigraph GXSxS; x---xS,. Observe thatif ' € M(G, S), then H(G,T)= H(G,S). In
addition, H(G, S) is r-edge-connected and r-regular. If v € V, H(G, {v}) and M (G, {v})
are abbreviated as H (G, v) and M (G, v), respectively. Figure 5.1 shows a graph G and
H (G, S) for various choices of S.

The next theorem is the main result of this section.
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g
a b
H (Go,a)

H(Go{j, k1D

@ pseudo-vertex

H (Go. k) H(Gg.e)

Figure 5.1: H(Gy,v) for various v

Theorem 5.10. Suppose G is non-bipartite. Then G is a brick if and only if there does
not exist v € V such that H(G,v) is bipartite with all the pseudo-vertices in the same

partition.
Before we give the proof, we need a few technical results.

Proposition 5.11. If v € V is such that H(G,v) is bipartite with bipartition (X,Y) and
has all the pseudo-vertices in'Y, then odd(G — X) = | X|.

Proof. Consider v € V such that H(G,v) is bipartite with bipartition (X,Y’) and has all
the pseudo-vertices in Y. Since H(G,v) is r-edge-connected and r-regular, we must have
|X| = |Y]|. Since ris odd, if S € M(G,v), then |S| is also odd. Hence, odd(G — X) =
Y| =1|X]|. O

Corollary 5.12. Ifv € V is such that H(G,v) is bipartite and has all the pseudo-vertices
in the same partition, then §(S) is a tight cut of G for every S € M(G,v).

Proof. This follows immediately from Proposition 5.11. U

Lemma 5.13. If G is non-bipartite, then G is more-than-1-tough if and only if there
does not exist v € V such that H(G,v) is bipartite with all the pseudo-vertices in the

same partition.
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Proof. Suppose there exists v € V such that H(G,v) is bipartite with bipartition (X,Y)
and has all the pseudo-vertices in Y. By Proposition 5.11, we have | X| = odd(G — X) <
w(G — X). Hence, G is not more-than-1-tough.

Conversely, suppose G is not more-than-1-tough. Since G is 1-tough, there exists
S C V such that w(G — S) = |S| = p for some p > 1. Choose a smallest such S. Since
G is r-edge-connected and r-regular, S is an independent set. Let Sy,..., S, denote the
vertex sets of the components of G — S. Form the multigraph H from G by shrinking S;
for 2 =1,...,p. Then H is bipartite and all the pseudo-vertices are in the same partition.
Suppose H has a non-trivial r-edge cut (7). By Lemma 5.4, either §(T") = v(S\T,T) or
5(T) =~v(SNT,V\T). Without loss of generality, assume the former. Obtain H’ from
H by shrinking T'.

Figure 5.2: 6(T) and H X T

By Corollary 5.5, H' is bipartite with all the non-pseudo-vertices in the same partition.
Furthermore, the partitions have the same cardinality. This contradicts the minimality
of |S|. Hence H has no non-trivial r-edge cuts. But this implies that H = H(G, v) for
any v € S. O

Proof of Theorem 5.10. The result follows immediately from Proposition 5.7 and
Lemma 5.13. U
5.3 Tree-representation

As no two r-edge cuts cross, by Lemma 3.5, there is a nested family F of proper shores
of all the r-edge cuts with exactly one shore for each r-edge cut. Note that {v} € F for
all v € V since |§(v)| = r. We call T = T'(F) a tree-representation of the r-edge cuts of
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G. (See Figure 5.3. Circles with a thick perimeter represent tight cuts. What this means
exactly will become clear when we discuss the details of the algorithm.) From now on, we
will abuse notation and treat each S € V(T') as the set of vertices of G that it represents.
In other words, we think of V(T') as FU {V'}.

Let n = |V|. Since T has n leaves and each non-leaf in V' (T') has at least two children,
T has at most 2n — 1 vertices. Note that if S € V(T'), then S is the union of the leaves of
T that are descendants of S. For each S € V(T'), let depth(S) denote the distance from
R to S in T. Observe that given such a tree-representation, one can easily construct the
family F associated with it. In Section 5.5, we will show how to construct T given G and

discuss the running time.

O
{a} {b} {c}

{d} {&t {f} (n} (3 {m} {n}

{it {x} {1}

Figure 5.3: A tree-representation of 3-edge cuts of Gg

5.4 The algorithm

Let T be a tree-representation of all the r-edge-cuts of G as defined in the previous
section. For our purposes, we need T to have the following attributes: type(R) (initially
undefined) for the root R, traversed(S) (initially set to FALSE) for every S € V(T)\{R},
and the following for every non-leaf S € V(T')\{R}: bipartite(S) (initially undefined),
type(S) (initially undefined), and tight(S) (initially set to FALSE).

More attributes need to be added for the actual implementation of the algorithm.
However, we will postpone the details to a later section.

We need an algorithm that has the following behaviour. Since 7' is a representation
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of all the potential tight cuts, we want the algorithm to set tight(S) to TRUE if and only
if 6(S) is a tight cut of G. For each S € V(T), let B(S) denote the set {U € V(T) : U
is a maximal proper subset of S with tight(U) = TRUE}. Notice that all the elements
in B(S) are descendants of S in T. (For example, considering the tree in Figure 5.3,
B({h,i,j,k,I,m,n}) contains only the set {j,k,/} and B(R) contains the sets {d,e, f}
and {h,7,j,k,I,m,n}.) Once the tight cuts are known, it is not difficult to see that
G(B(R)) and G(B(S) U {V\S}) for all non-leaf S € V(T)\{R} such that tight(S) =
TRUE give the list of bricks and braces in the result of the tight cut decomposition
procedure. Hence, we want the algorithm to set type(R) to BRICK (or BRACE) if and
only if G(B(R)) is a brick (or brace) and type(S) to BRICK (or BRACE) if and only
if G(B(S)U{V\S}) is a brick (or brace) for each S € V(T)\{R} such that tight(S) =
TRUE.

We now establish some connections between T and the graphs H (G, S) for any S that

is a proper shore of an r-edge cut.

Proposition 5.14. Let S be the shore of an r-edge cut.
IfVAS e V(T), then V(H(G,S)) = S U {the children of V\S}.
If S € V(T)\{R}, then
(i) if parent(S) = R, then V(H(G,S)) = S U {the siblings of S};

(i) if parent(S) # R, then V(H (G, S)) = S U {the siblings of S} U{V'\ parent(S)}.

Proof. The result follows from the following observation: Let S be a proper shore of
an r-edge cut. From the definition of T, if V\S € V(T), then the children of V\S are
all the maximal proper shores of r-edge cuts strictly contained V\S. If S € V(T') and
parent(S) = R, then the siblings of S are all the maximal proper shores of r-edge cuts
strictly contained in V\S. If S € V(T) and S is not a child of R, then the siblings of
S together with V\parent(S) are all the maximal proper shores of r-edge cuts strictly
contained in V\S. O

Proposition 5.14 shows that it is easy to identify the elements in V(T') that are in
M(G, S) for a given proper shore of an r-edge cut, S.
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For the algorithm, we need a subroutine TRAVERSE_UP that takes any S € V(T)\{R}
as the input and sets traversed(U) to TRUE for every U € H(G,S) such that depth(U)
= depth(S) and returns a 4-tuple (is-bip, Q, same-ptin, all-bip) such that

e is-bip = TRUE if and only if H(G, S) is bipartite,

e Q={U e V(H(G,S)): tight(U) = FALSE and depth(U) = depth(S)},

e same-pttn = TRUE if and only if @ = () or all the elements in @) are in the same

partition,

e all-bip = TRUE if and only if bipartite(U) = TRUE for every U € @Q,
and a subroutine TRAVERSE_ DOWN that takes a non-leaf S € V(T') as the input and

returns a 4-tuple (is-bip, Q, same-ptin, all-bip) such that
e is-bip = TRUE if and only if H(G,V\S) is bipartite,

e Q={U e V(H(G,S)): tight(U) = FALSE, and depth(U) = depth(S) + 1},

e same-pttn = TRUE if and only if @ = () or all the elements in @) are in the same

partition,

e all-bip = TRUE if and only if bipartite(U) = TRUE for every U € Q.

Observe that we can implement TRAVERSE_UP and TRAVERSE DOWN (using
some sort of depth-first search algorithm) such that TRAVERSE_UP(S) and TRA-
VERSE_DOWN(S) take O(r|V(H (G, S))|) time and O(r|V(H (G, V\S))|) time, respec-
tively, provided that given any U € V(H(G,S)) or any U € V(H(G,V\S)), we can
find out in O(r) time all the elements in V(T') corresponding to the neighbours of U in
H(G,S) or in H(G,V\S). In Section 5.5, we will add more attributes to T' to make
it possible. Assuming that we can build 7" with the attributes we need to implement
TRAVERSE UP and TRAVERSE DOWN, we claim that the algorithm below takes G
as input and returns a tree-representation 7' of all the r-edge cuts with the attributes set

properly as described at the beginning of this section.

DECOMPOSE(G)
1. Using G, build T with the necessary attributes

2. put the elements of V/(T') into a list L in non-increasing order of depth
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3. while L is non-empty do

4. remove first element S from L

5. if traversed(S) = FALSE then

6. (is-bip, Q, same-ptin, all-bip):= TRAVERSE_UP(S)
7. if (is-bip = TRUE) and (same-pttn = TRUE) then
8. if S# R then

9. tight(parent(S)) := TRUE

10. endif

11. type(parent(S)) := BRACE

12. TRICKLE_DOWN (Q)

13. else if (is-bip = TRUE) and (all-bip = TRUE) then
14. bipartite(parent(S)) := TRUE

15. else if S = R then

16. type(R) := BRICK

17. else

18. bipartite(parent(S)) := FALSE

19. endif

20. endif

21. endwhile

22, return T

TRICKLE_DOWN (Q)

1. while Q # 0 do

2. remove an element S from @

(is-bip, Q', same-ptin, all-bip) := TRAVERSE DOWN(S)

tight(S) := TRUE

if (is-bip = TRUE) and (same-pttn = TRUE or all-bip = TRUE) then
type(S) := BRACE
TRICKLE_DOWN (Q')

® N o W

else
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9. type(S) := BRICK
10. endif
11. endwhile

Figure 5.4 illustrates the execution of DECOMPOSE(G)).

We now make some observations without proof. Let G = {H(G,S): S € V(T)\{R}}.
Observation 1. Every graph in G is traversed exactly once by TRAVERSE_UP. (This
follows from Proposition 5.14 since TRAVERSE_UP(S) sets traversed(U) to TRUE for
all the siblings U of S.)

Observation 2. Let S € V(T)\{R} be not a leaf. Once tight(S) is set to TRUE,
H(G,V\S) will not be traversed again by TRAVERSE DOWN. (This is because tight(U)
= FALSE for every U in @ passed to TRICKLE DOWN.)

Observation 3. Each graph in G is traversed at most once by TRAVERSE DOWN.
(This follows from the previous observation since tight(S) is set to TRUE in line 4 of
TRICKLE_DOWN after H(G,V\S) is traversed by TRAVERSE_ DOWN.)

Theorem 5.15. The running time of DECOMPOSE is O(time required to build T') +
O(rn).

Proof. By Observation 1, we see that the total running time of TRAVERSE UP over
each graph in G = Y 4 O(r|V(G')|) = O(r|V(T)|) because for each S € V(T), S
appears in at most one G’ € G and so does V\S. Similarly, by Observation 3, the total
running time of TRAVERSE_ DOWN over each graph in G = O(r|V(T)|). Now, what
DECOMPOSE does in line 2 can be accomplished using a breadth-first search on 7' in
O(|V(T)]) time. Hence, the running time of DECOMPOSE is O(time required to build
T)+ O(r|V(T)|) = O(time required to build T') + O(rn) since |V (T)| < 2n — 1. O

We now show that DECOMPOSE is our desired algorithm.
Suppose DECOMPOSE has completed execution for a particular G. Let t,, denote
the time when the algorithm terminated. We first establish the following:

Theorem 5.16. Let S € V(T)\{R} be not a leaf. Then tight(S) = TRUE at time t, if
and only if §(S) is a non-trivial tight cut of G.
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Figure 5.4: Execution of DECOMPOSE(Gy)
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Before we present the proof, we need a few technical results. We first define some
notation. For each S € V(T)\{R} that is not a leaf, let t;4p:(S) denote the time when
tight(S) was set to TRUE. Let t,,,(S) denote the time when DECOMPOSE began execut-
ing TRAVERSE_UP(U) for some child U of S. In other words, t,,(S) denotes the time
when TRAVERSE_UP began traversing H(G,V\S). Let typ_done(S) denote the earliest
time DECOMPOSE reached line 19 after time #,,(S). Let By(¢t,S) ={U e V(T) : U is
a maximal proper subset of S such that t;n:(U) <t} and B(¢,S) = Bo(t, S) U {V\S}.

Proposition 5.17. Let U € V(T)\{R} be not a leaf and S be the parent of U. Then
2(;up—done(l-j) < tup(S)

Proof. By Observation 1, each of H(G,V\S) and H(G,V\U) was traversed exactly once
by TRAVERSE_UP. In addition, H(G,V\S) was traversed when DECOMPOSE exe-
cuted TRAVERSE_UP(G, §) for some child S of S and H(G,V\U) was traversed when
DECOMPOSE executed TRAVERSE_UP (G, U’) for some child U’ of U. Since the ele-
ments of V(T') are put into the list L in line 2 of DECOMPOSE in non-increasing order
of depth and depth(U’) = depth(U) + 1 = depth(S’) + 1, U’ preceded S’ in L and the

result follows. O

Lemma 5.18. If S € V(T)\{R} is not a leaf, then B(t,,(S),S) = B(t,S) for all t
satisfying typ(S) <t < trigne(S).

Proof. If t1ight (S) < tup—done (S), then tight(S) was set to TRUE in line 9 right after DE-
COMPOSE executed TRAVERSE_UP (U) for some child U of S. Clearly, B(t,,(S5),S) =
B(t,S) for all t satisfying t,,(S) <t < t1ignt(S) in this case.

Otherwise, after DECOMPOSE executed TRAVERSE_UP(U) for some child U of S,
the condition in line 7 was not satisfied. Thus, if U’ is a descendant of S that is not a
leaf, the value of tight(U’) did not change between time t,,(S) and time t,,_done (S). In
addition, after time typ_done (S), the value of tight(U’) could not be changed from FALSE
to TRUE until S was in some set that was later passed to TRICKLE DOWN. However,
this could not happen before time t4;4n¢(S). The result follows. O
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Lemma 5.19. Let S € V(T)\{R} be not a leaf. Lett be such that typ_done(S) < t <
tright(S). Then at time t, bipartite(S) was not undefined. Furthermore, bipartite(S) =
TRUE at time t if and only if G(B(t,S)) is bipartite.

Proof. Since tight(S) > tup—done (S), we see that DECOMPOSE executed either line 14
or line 18 right before time t,,_done (S). Hence, bipartite(S) was set to TRUE or FALSE
before tup—done(S). Since the value of bipartite(S) could not change afterwards, this
proves the first part of the lemma.

To prove the second part, suppose at some time #, typ—done(S) < t < tright(S)
bipartite(S) = TRUE if and only if G(B(t, S)) is non-bipartite. Let G’ = G(B(t.p(S),5)).
By Lemma 5.18, G’ = G(B(t, S)). Since bipartite(S) was not undefined at time t,,_done (S)

3

and its value did not change afterwards, we have:
bipartite(S) = TRUE at time t,p—done (S) if and only if G’ is non-bipartite. (5.1)

Choose S so that fyp_done(S) is as early as possible. By Proposition 5.17, if U is a
non-leaf child of S, then typ_done (U) < typ(S). Hence, if t,,(S) < trignt(U), by the first
part of the lemma, bipartite(U) was not undefined at time ¢,,(S) and by minimality of

tup—done (S), we have
bipartite(U) = TRUE at time t,,(S) if and only if G(B(ty(S),U)) is bipartite. (5.2)

Observe that DECOMPOSE set bipartite(S) to TRUE between time t,,(S) and time
tup—done (S) if and only if TRAVERSE_UP returned TRUE for both all-bip and is-bip
if and only if H(G,V\S) is bipartite and G(B(t,,(S),U)) is bipartite for every child
U of S such that tygnt(U) > typ(S). But by Corollary 5.5, G’ is bipartite if and only
if H(G',V\S) is bipartite and G(B(t.,(S),U)) is bipartite for every child U of S such
that tyign:(U) > tup(S). Since H(G',V\S) is bipartite if and only if H(G,V\S) is and
TRAVERSE_UP returned TRUE for all-bip if and only if bipartite(U) = TRUE for every
child U of S such that t;igne (U) > typ(S), it follows from (5.2) that G’ is bipartite if and
only if bipartite(S) = TRUE by time typ_done (S), which contradicts (5.1). O
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The next result proves one direction of Theorem 5.16.

Proposition 5.20. Let S € V(T)\{R} be not a leaf such that tight(S) = TRUE at time
teo. Then 6(S) is a non-trivial tight cut of G.

Proof. Suppose there exists a non-leaf S € V(T)\{R} such that tight(S) = TRUE but
§(S) is not a non-trivial tight cut of G. Choose S so that t;;4n¢(S) is as early as possible.

Assume that tight(S) was set to TRUE in line 9 of DECOMPOSE or in line 4 of
TRICKLE_DOWN called by DECOMPOSE. By Proposition 5.14, line 6 of DECOM-
POSE must have at some point executed TRAVERSE_UP(S’) for some S’ that is either
a child of S or a sibling of § and TRUE was returned for both is-bip and same-ptin.
Let G' = G(Bo(tup(S),S)). Then, H(G',S’) is bipartite and has all its pseudo-vertices
in the same partition. By Corollary 5.12, if U € M(G’,S’), then §(U) is a non-trivial
tight cut of G’. By minimality of t44n(S), G’ is obtained from G by shrinking shores of
tight cuts of G. Hence, 6(U) is a non-trivial tight cut of G for all U € M(G, S’). Since
S e M(G,S’), §(S) is a tight cut of G, contradicting our assumption.

Suppose tight(S) was set to TRUE in line 4 of TRICKLE_DOWN after it was called by
itself. Then at some point, line 3 of TRICKLE_DOWN executed TRAVERSE DOWN(S)
where § = parent(S) and the value TRUE was returned for is-bip and for either same-
pttn or all-bip. If TRUE was returned for same-ptin, then one can show as above that
§(S) is a non-trivial tight cut of G, contradicting our assumption. If TRUE was returned
for all-bip, let G' = G(B(ttight(g), S)) By Lemma 5.19 and Corollary 5.5, G’ is bipartite.
By Proposition 5.6, §(U) is a non-trivial tight cut of G’ for all U € M(G',V\S). By
minimality of t;4n:(S), we see that G’ is obtained from G by shrinking shores of tight
cuts of G. Hence, §(U) is a non-trivial tight cut of G for all U € M(G,V\S). Since

S e M(G,V\S), 8(S) is a tight cut of G, contradicting our assumption. O
To complete the proof of Theorem 5.16, we need the next two results.

Proposition 5.21. Let S € V(T)\{R} be not a leaf such that tight(S) = TRUE. Upon
termination of DECOMPOSE, if type(S) = BRICK (BRACE) then G(B(tx,S)) is a
brick (brace).
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Proof. Clearly, if tight(S) = TRUE at time ¢, type(S) had been set to either BRICK
or BRACE. In addition, once type(S) was set, its value could not change.

Let G’ denote the graph G(B(teo, S)).

Suppose tight(S) was set to TRUE in line 9 of DECOMPOSE. Then type(S) was set
to BRACE in line 11 and TRAVERSE _UP had returned TRUE for is-bip and TRUE for
either same-pttn or all-bip. In any case, after executing TRICKLE DOWN in line 11,
tight(S’) = TRUE for every child S’ of S. Hence, G’ is bipartite and has no non-trivial
r-edge cuts. By Lemma 5.3, G’ is a brace.

Now suppose tight(S) was set to TRUE in line 4 of TRICKLE_DOWN.

If type(S) was set to BRACE, then TRAVERSE DOWN had returned TRUE for is-
bip and TRUE for either same-ptin or all-bip. In any case, after line 7 of TRICKLE DOWN,
tight(S”) = TRUE for every child S’ of S. As before, G’ is a brace.

Suppose type(S) was set to BRICK. By Theorem 5.10, to show that G’ is a brick, it
suffices to show that for any U € V(G'), H(G',U) is not a bipartite graph with all its
pseudo-vertices in the same partition.

Let G denote the graph G(B(tdown,S)) where tgown denotes the time when TRA-
VERSE_DOWN(S) finished. Note that TRAVERSE DOWN(S) did not return TRUE
for is-bip. It also did not return TRUE for at least one of same-pttn and all-bip. Hence,
H(é7 V\S) is not bipartite with all its pseudo-vertices (that is, the vertices shrunk from
vertices of é) in the same partition. Since f4gp:(S) came right after time f4oy, and
the condition in line 5 of TRICKLE DOWN was not satisfied, by Observation 3, we see
that after time f4own, H(G,S’) was not traversed by TRAVERSE DOWN again for ev-
ery descendant S’ of S. Hence, G = G’ and so H(G',V\S) is not bipartite with all its
pseudo-vertices in the same partition.

Now, consider U € V(G’) that is not a child of S. Let § = parent(U). Since U C S
and U € V(G'), tight(S) = FALSE at time t,,. By Lemma 5.18, G(B(t,(5),5)) =
G(B(ts, S)). Therefore, if H(G',U) is bipartite with all its pseudo-vertices in the same
partition, then H (G(B(tuy(S),S)), U) is bipartite with all its pseudo-vertices in the same
partition. This implies that DECOMPOSE would have set tight(é‘) to TRUE between

~

time tup(é) and typ—done (S), which is a contradiction. O
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Similarly, one can show the following:

Proposition 5.22. Let S = {S : S is a descendant of R and tyigh(S) < too}. If type(R)
= BRICK (BRACE), then G(S) is a brick (brace).

Proof of Theorem 5.16. By Proposition 5.20, it suffices to show that if S € V(T)\{R}
is not a leaf and tight(S) = FALSE, then §(S) is not a non-trivial tight cut of G.

Let U € V(T) be the ancestor of S such that tight(U) = TRUE and depth(U) is as
large as possible. If §(S) were a tight cut of G, then G(B(to, U)) would have a non-trivial
tight cut. However, this contradicts that G(B(tx, U)) is either a brick or a brace asserted

by the previous two propositions. O

It is now clear from Theorem 5.16 and Propositions 5.21 and 5.22 that DECOMPOSE

is our desired algorithm.

5.5 Building a desired tree-representation

In this section, we show how to build 7" with all the necessary attributes in O(r?nlog(n/r))
time. Then by Theorem 5.15, the running time of DECOMPOSE is O(r%nlog(n/r)).

In addition to the attributes mentioned in the previous section, we add to T the
following attributes for each S # R that allow TRAVERSE_UP and TRAVERSE DOWN
to traverse H(G, S) for any S € V(T)\{R} by navigating through T. For each leaf S, we
add a neighbour-set N(S). For each non-leaf S € V(T)\{R}, we make a clone of S to
represent V\S and a neighbour-set for S and a neighbour-set for the clone of S denoted
by N(S) and N(V\S), respectively. The goal is to have N(S) contain the pointers to
nodes that correspond to neighbours of S in H(G, S). Figure 5.5 gives a partial pictorial
representation of the neighbour-sets for the example with the graph Gy.)

We now show how to build 7. First, build a tree-representation of all the minimum
cuts (that is, r-edge cuts) in O(r’nlog(n/r)) time consuming O(rn) space using the
algorithm by Gabow ([22], [23]). Then initialize depth(S), tight(S) (if S is not a leaf),
and traversed(S) for each node S using a breadth-first search. This can be done in O(rn)
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Figure 5.5: Illustration of neighbour-sets

time.

Finally, build the neighbour-sets using the following algorithm:

1. for each uv € E do

2 if depth({u}) > depth({v}) then
3 Sy :={u}, Sz :={v}
4 else

5. Sy :=={u}, S; :=={v}
6 endif

7 while depth(S;) > depth(S;) do

8 add to N(S1) a pointer to the clone of parent(S;)
9 add to N(V\S;) a pointer to Sy

10. S1 = parent(Sy)

11. endwhile

12. while parent(S;) # parent(S;) do

13. add to N(S;) a pointer to the clone of parent(Ss)
14. add to N(V\S;) a pointer to Sy

15. Sy := parent(S3)

16. add to N(S1) a pointer to the clone of parent(S;)
17. add to N(V\S;) a pointer to Sy

18. Sy := parent(S;)
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19. endwhile

20. add to N (S3) a pointer to Sy
21. add to N(S1) a pointer to Sy
22. endfor

It is not difficult to see that the above algorithm is correct with the following observation:
Let uv € E. Let S € V(T') be a proper shore of an r-edge cut. Without loss of generality,
assume that u € S. Let S = parent(S). If {v} is not a descendant of S, then V\S is
the maximal shore of an r-edge cut properly contained in V\S that contains v. If {v} is
a descendant of S, then the child S’ of § that has {v} as a descendant is the maximal
shore of an r-edge cut properly contained in V\S that contains v.

For the running time, note that each neighbour-set has exactly r elements and there
are O(n) such sets. Since in each of lines 8, 9, 13, 14, 16, 17, 20, 21, a new element is
added to one of the sets, the above algorithm takes O(rn) time.

Hence, the desired T can be built in O(r?nlog(n/r)) time.

5.6 3-connected 3-regular planar graphs

One can see from Theorem 5.15 that building a desired tree-representation of all the
r-edge cuts is the bottle neck for the running time of DECOMPOSE. In this section, we
give a sketch of how one can build a tree-representation in linear time when the graph is 3-
connected, 3-regular, and planar. As a result, we have a linear-time algorithm for finding
a representation of the result of the tight cut decomposition procedure of a 3-connected
3-regular planar graph.

The algorithm is an extension of the preprocessing step of the linear-time algorithm
for recognizing 3-regular planar bricks given by Dillencourt and Smith [15]. Below is a
description of the preprocessing step. First, construct G*, the planar dual of a planar
embedding of G. If z, y, and z are three vertices of a triangle (not necessarily a face
triangle) of G*, define ewsucce(z,y; z) to be the vertex w € V(G*) such that z, y, and

w are vertices of a triangle of G* and w is the first vertex with this property that can
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be reached by starting at z and following one or more edges, moving clockwise about y
through the neighbours of y. Dillencourt and Smith showed how to build in linear time
a structure that makes it possible to compute cwsuce(z,y;2) in O(1) time given z, y,

and z. Their algorithm involves enumerating all the triangles in G*.

cwsucc (a, b;q)=r
cwsucc (p, g;b) =r

cwsucc (b,c;r)=a

Figure 5.6: Illustration of the function cwsuce

Now, consider a triangle zyz in G* where z, y, and z appear in anti-clockwise order.
Let w = cwsuce(z,y; z). Let S C V(G) be the set of vertices separated by zyz from the
exterior face of G and let Sy C V(G) be the set of vertices separated by zyw from the
exterior face of G. Then either S5 is the minimal shore of a 3-edge cut strictly containing
S or Sy is a maximal shore of a 3-edge cut strictly contained in V/(G)\S;. It is the former

if , y, and w appear in anti-clockwise order and the latter otherwise.

Below is a high-level description of the algorithm. For each triangle zyz in G*, create a
node corresponding to it and denote the node by n(zyz). For each non-boundary triangle
zyz where z, y, and z apear in anti-clockwise order, compute w; = cwsuce(z,y; 2).
wy = cwsucce(y, z;z). wz = cwsucc(z, z;y). Suppose z, y, and w; do not appear in
anti-clockwise order for all ¢ € {1,2,3}. If for some j € {1,2,3}, n(zyw;) has already
been made a child of some node, then make n(zyz) a child of the parent of n(zyw;);
otherwise, make a temporary connection between n(zyz) and n(zyw;) for j = 1,2,3.
Suppose z, y, and w; appear in anti-clockwise order for some ¢ € {1,2,3}. (Note that
there cannot be more than one such i.) Then make n(zyw;) the parent of n(zyz) as well

as all the nodes reachable from n(zyz) via the temporary connections.
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If we denote the node corresponding to the boundary triangle by R, then the above
algorithm terminates with a tree-representation of the 3-edge cuts of G. It is not difficult

to see that the running time is linear in the number of vertices of G.



Chapter 6
Inscribing a polytope in a sphere

In this chapter, we consider the problem of determining which 3-connected planar graphs
are of inscribable type. We first begin with Rivin’s characterization and give a detailed
sketch of Rivin’s elementary proof of the result. We then describe some classes of 3-
connected planar graphs of inscribable type. We end the chapter by giving a refinement

of a theorem of Wagner when restricted to graphs of inscribable type.

6.1 Rivin’s characterization
The following characterization for graphs of inscribable type is due to Rivin.

Theorem 6.1. Let G be a 3-connected planar graph. Then G is of inscribable type if and

only if sys(G) has an inner point.

We first look at the history of this result. In 1992, Hodgson, Rivin, and Smith [26]
announced Theorem 6.1 and an algorithm that decides if a 3-connected planar graph
is of inscribable type having running time polynomial in the number of vertices. In a
series of papers that characterized compact and ideal convex polyhedra in hyperbolic
3-space, Rivin obtained Theorem 6.1 by observing (see [37]) that Theorem 6.1 is a conse-
quence of the fact that in the Klein model of hyperbolic space, an ideal convex hyperbolic

polyhedron is represented by a convex Euclidean polyhedron inscribed in a sphere in R3.

115
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A proof of the necessity part of Theorem 6.1 in the context of hyperbolic geometry
first appeared in [37]. In [39], Rivin gave a more elementary proof (still in the context of
hyperbolic geometry) and announced that a proof of the sufficiency part had also been
found. An existence proof of sufficiency eventually appeared in [40].

In [41], Rivin described a different proof for Theorem 6.1, using linear programming
techniques and results on Euclidean structures on simplicial surfaces ([38]). A polynomial-
time algorithm for finding an explicit description of a polytope inscribed in a sphere
realizing a graph of inscribable type based on solving a convex optimization problem was
implicit in the results.

The results in [38] and [41] are more general than what Theorem 6.1 encompasses.
In this section, we specialize Rivin’s proofs of some of his results and present a detailed
sketch of Rivin’s elementary proof of Theorem 6.1 using the language of the current thesis
without references to hyperbolic geometry or Euclidean structures on simplicial surfaces.

In some cases, more details have been added to the original argument.

We first derive a necessary and sufficient condition for a 3-connected planar graph G
to be of inscribable type.

Suppose G is of inscribable type. Pick a vertex of G and call it co. Let P be a
polytope inscribed in a sphere S such that G = G(P). Without loss of generality, assume
that G = G(P). Orient P in such a way that oo is at the north pole of S.

Perform a stereographic projection of S from oo onto the plane tangent to the south
pole of S. For every adjacent pair u,v € V(G), connect their images on the plane with a
straight line segment. (From now on, whenever the context is clear, we refer to the image
of a vertex v of G on the tangent plane simply as v.) It is not difficult to see that the
result is a straight-line drawing of G — oo satisfying the following properties:

1. uv ¢ 6(o00) is a boundary edge of the drawing of G — oo if and only if there is a
face cycle of G containing u,v, and oco. Furthermore, the boundary edges of the
drawing of G — oo enclose a convex region. (A cycle of a 3-connected planar graph
G is called a face cycle if it is the boundary of a face in a planar embedding of G.

Face cycles are well-defined since one can show using a theorem of Whitney [51]
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that they remain the same independent of the planar embedding.)

2. If u,v, w are in some face cycle of G containing oo, then in the drawing of G — oo,
they are collinear. (In fact, they lie on the line that is the image of the circle

circumscribing the facet of P whose extreme points are in the face cycle.)

3. The vertices on each face of the drawing of G — oo are concyclic (that is, they lie

on the same circle.)

4. If Cy and (5 are the circles circumscribing two abutting faces F; and F5 of the
drawing of G — oo, then no vertex on the boundary of F} lies in the interior of Cy
and no vertex on the boundary Fy lies in the interior of Cj.

Remark. Triangulating the interior faces of the drawing of G — oo will result in a

Delaunay triangulation.

Figure 6.1: A cube inscribed in a sphere

The figure on the left of Figure 6.1 shows a cube along with three circles circum-
scribing three of its facets. The figure on the right shows the result after performing the
stereographic projection and joining up pairs of end-vertices of edges. The straight-lines
and circles are the images of the circumscribing circles of all the facets.

Conversely, it is not difficult to see that if we can find a straight-line drawing of G — oo
satisfying the above properties, then G is of inscribable type.

We now capture all the conditions algebraically.
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Let G be a 3-connected planar graph with a distinguished vertex co. Let H be a
maximal planar graph having G as a spanning subgraph such that uwoo € E(H) for all
u € V(F) where F' is a face cycle of G containing oo.

Define F := {{u,v,w} C V(H)\{oo} : u, v, w are vertices on some face triangle of H}
and Z := V(H)\({oco} U N(00)).

Suppose G is of inscribable type. Then there is an planar embedding of H such that oo
is on the boundary, H — oo is a straight-line drawing, and, where B denotes the boundary
edges of H — 0o and 0y, ,, .}, denotes the value of the interior angle at vertex w on the
triangle containing the vertices u, v, w for each ordered pair ({u,v,w},w) € F x V(H),

the following conditions hold:

o 0> 07 o{u,u,w},u + H{u,v,w},v + H{u,v,w},w = r for all {u7 v, TU} € '7:7 and

Z g{u,v,w},u =27

vaw{u,v,wleF

for all uw € Z. These conditions come from the geometry of the drawing.

e if uoo is an edge not in G, then Z 0{uvwyu = ™ and if woo is an edge in
vaw:{u,v,w}leF
G, then Z 0 u,v,w}u < 7. These follow from the first two properties.
vaw:{u,v,weF

o If uv ¢ B is an edge not in G and w,w’ are the two vertices opposite to uv, then
0 uv,w)w t Ofuwwyw = ® This follows from the third property which requires

that u, v, w, w’ be concyclic.

o If uv ¢ B is an edge in G, then Of, , w}w + Ofuv,uw},w < 7. This follows from the
fourth property.

Summarizing the above conditions as follows, we see that if G is of inscribable type
and Ey = E(H)\E(G), then (CP;) (defined in Theorem 3.38) has a feasible solution
(6, %) such that > 0 and z. > 0 for all e ¢ Ey where Eg = E(H)\E(G). We call such
(6,z) a nice solution.

Remarkably, the converse is also true and a proof will be given below. Hence, Theo-

rem 6.1 follows immediately from Theorem 3.38.



6.1. RIVIN’S CHARACTERIZATION 119

Not every nice solution allows one to construct an equivalent straight-line drawing of
H — oo with the angles of the faces prescribed by the values of #. However, we shall show
that if the system has a nice solution, then it has one that permits such a drawing to be
made.

Given a triangle ABC, recall that the sine law gives % = :22?2)) Equivalently,

log |AC| — log |AB| = logsin(£B) — logsin(ZC'). Hence, it is necessary that

-1
> (logsin(Bpu; viyy w)o0) = 08I (Of0: 01y a0 wiy) = 0
=0
where w € 7 and v, ...,v1_1 € V(G — 00) are such that {v;,v;41,w} € F and v;qw is
clockwise from v;w. (Indices are taken modulo /.)
In fact, these conditions together with the condition that # comes from a nice solution
to (C'P;) are sufficient for one to construct such a drawing.
We first prove a technical result similar to the result by Di Battista and Vismara [13]
for determining if there exists a straight-line drawing of a 3-connected planar graph with

prescribed face angles.

Lemma 6.2. Let G be a 2-connected plane graph obtained from a plane triangulation by
deleting a boundary vertex. Let T denote the set of interior vertices of G. Suppose each
pair ({u,v,w},u), where u,v, w are vertices on a face, is associated with a positive value

O u,vwyu- If 0 satisfies

Ouvwyu + Oupwro T Oupwyw = T {u,v,w} a verter set of a face

Zo{uﬂhw}ﬂl = 2r ueZl

Z e{u,u,w},u S T u ¢ z
-1
and Zlog SN (0, vrp1 w)vs) — 108SIN(Of0; vyt wdwiy, ) = 0 where w € T and vg, ..., v =
=0

vo € V(G) are such that {v;,vit1,w) € F and vip1w is clockwise from vyw for i =

0,...,1 — 1, then one can give a straight-line drawing of G with the angles of the faces
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having values prescribed by 6 while maintaining the same orientation of the faces as in

the given embedding of the plane graph G.

Proof. The proof is by induction on the cardinality of Z.

If |Z| = 0, it is a simple induction on |F| that the conditions allow us to complete a
straight-line drawing of G with angles prescribed by 6 that also maintains the orientation
of the faces.

Now, consider the case when |Z| > 1. Suppose the statement of the lemma holds for
graphs with fewer interior vertices. Let w € Z. First, complete a straight-line drawing D
of the wheel W formed by w and its neighbours with angles prescribed by # that maintains
the orientation of the corresponding faces in the planar embedding of G. Clearly, this
can always be done. Remove w (and the incident edges) from the drawing. We will be

left with a polygon P. Triangulate it using straight line segments.

Figure 6.2: Drawing the wheel

Obtain G’ from G by first removing w and then drawing in edges that correspond to
the line segments added to P, keeping the orientation of the faces as in the triangulation
of P.

Form ¢ from # as follows: Set Hf{um’v,}w, = Ofup,p'}, Where {u,v,v"} is not the
vertex-set of a face in D. Set Hf{umm,}’u, to the value of the angle at vertex v’ in the face
of the triangulation P having vertex-set {u,v,v’}. One can check that 6 satisfies the
conditions for G’ in the statement of the lemma. By the induction hypothesis, we can
obtain a straight-line drawing of G’ with the angles prescribed by #’ that maintains the

orientation of the faces.
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| N
N

G G'

Figure 6.3: An example of G and G’

Consider the part of this drawing that corresponds to the triangulation of P. Notice
that we can now replace that part by a properly-scaled copy of D to obtain a straight-line
drawing of G with the angles prescribed by @ that maintains the orientation of the faces.

This completes the induction. O

Theorem 6.3. If (0, %) is a nice solution to (CPy) such that

-1

Zlog Sin(g{“h“i+17w}7ui) —log Sin(g{”iy”i+17w}7ui+l) =0

=0
for all w € T and vy, ...,vi—1 € V(H — o) such that {v;,viz1,w) € F and viy w is
clockwise from v;w for i = 0,...,1— 1, then there is a straight-line drawing of H — oo with

the angles prescribed by the values of 6.
Proof. This follows immediately from the previous lemma. O

Remark. Rivin [38] proves an equivalent version of Theorem 6.3 using the notion of
holonomy. His argument is much shorter than the proof of Lemma 6.2. There may be a

shorter proof of Lemma 6.2 based on results in geometry.

We now show that if (C'P;) has a nice solution, then it has one that satisfies the

conditions of Theorem 6.3.

Define A := U{u7v7w}€]:{({u, v,wh,u), ({u,v,w},v), {u,v,w}, w)}.
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Define V(0) :=3 4c 4 foe“‘ log(sin s)ds.
Let Py (H,z) denote the set of solutions to the system

> Ouwwtw = k- zw ww€ BH)\I({oo}),
wi{u,v,wleF

O{M,U,w},u + H{U,U,w},v + g{u,v,w},w = k {u7 U, LU} € '7:7
8 > 0.

The rest of the section is devoted to showing that one can obtain such a nice solution
by minimizing V over Pr(H,z).
Remark. Rivin’s original proof considered maximizing Milnor’s formula for the volume of
an ideal simplex in hyperbolic 3-space V() = > 4 4 L(64) where L(z) is the Lobachevsky

function
L(z) = —/ log(2sin s)ds.
0

For more details, see [38].

We first establish the following:

Lemma 6.4. If P.(H,Z) contains a positive point for some given T with 0 < z < ke,

then V achieves its minimum on Pr(H,Z) at a positive point.
Before we give the proof, we need two technical results.
Lemma 6.5. Given a fized z € RPU) YV is convez on P.(H,z).

Proof. (Adapted from Theorem 2.1 in [38].)

It suffices to show that f(64,0p,0c) = foa“’ log (sin s)ds—}—foeB log (sin s) ds—l—foac log(sin s)ds
is convex on {(04,0p,0c) : 04+ 0 +6c ==, 64,0B,6c > 0}.

The Hessian of f at (84,0, 0c) is

cot(f4) 0 0

0 cot(fp) 0
0 0 —COt(éA —I—éB)
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One now needs to show that the matrix is positive definite on L = {(z, y, z) : z+y+z = 0}.
Every point v in L can be written as A;(1,0, —=1)4 X2(0, 1, —1) for some Ay and Ay. Hence,

vV2f(04,08,0c)vT = Xi(cot(Aa) — cot(f4 + 0g)) + A2(cot(6p) — cot(f4 + 0B))

—2)\1)\2(C0t(éA + éB))

1 2 ) -
= o)+ eoi(ay) (M T AT (Aacot(8a) + Ao cot(65))°).

The last quantity is strictly greater than zero provided that cot(f4) + cot(fg) > 0.
Recall that 0 < 84+6p < 7. If 4,65 < 5, we are done. Otherwise, assume that 64 >
Z. Hence, I > m—04 > fp and we obtain cot(f4)+cot(fp) = — cot(mr —84)+cot(6g) > 0

since cot(z) is a strictly decreasing function on (0, 7). O

Lemma 6.6. Let 7 € RFU) be such that 0 < 7 < ke. Suppose Pi(H,z) has a pos-
itwe point. If B € P(H,z) is not positive, then there exists {u,v,w} € F such that

(5{u,u,w},u7 B{u,u,w},m ﬁ{u,u,w},w) = (07 S, k— S) fOT some s > 0.

Proof. (Adapted from Lemma 6.11 in [38].)
Suppose no such {u, v, w} exists. Since S is not positive, there must exist A € A such

that B4 = 0. It follows that there exists {u, v, w} € F such that

(ﬁ{u,u,w}ﬂu ﬁ{u,v,w},m B{u,u,w},w) = (07 07 k) .

If uv € B, we have 7,, = k and 80 ayy y,),u = 0 for all @ € P(H, z), contradicting that
P(H, z) has a positive point. Hence, uv ¢ BU §({o0}).

Denote the face with vertex-set {u,v,w} by Tp. Let w’ be such that {u,v,w'} €
F. Then By pwyw = 0 and either By, ;i) v OF By vwy,e €quals k. Without loss of
generality, assume that it is the former. Denote the face with vertex set {u, v, w'} by T7.
As above, we must have uw’ ¢ B. Therefore there exists v’ such that {u, v, w'} € F.

Since F is finite, it is not difficult to see that there exists, without loss of generality,
a sequence Ty, ..., T; with Ty = 17 such that T; and T;4q are face triangles that share a

common edge, Z.; = k where e; denotes the edge incident with the faces T; and T4,
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and for each Tj, By (1,),, = k for some u € V(T;). Without loss of generality, assume that

To, ..., Ty form the vertex sequence of a cycle in the planar dual of H — {oc}.

Let ¢ be a positive point in Py (H,z). Clearly, Z Z Cv(T:),u = lk. But Ziei =

1=0 ueV (T;)
lk. For each z' denote the vertices opposite el by u; and v;. Let ' € V(To)NV(T1)NV (T3).
-1 -1
Then 0 = Z > cv WY T = Z > vy — DSV v (T)w) >
1=0 ueV (T, =0 1=0 ueV (T;) =0

O

Cvimyw > 0, Wthh 1s a contradiction.

Proof of Lemma 6.4. (Adapted from Theorem 6.10 in [38] with some more details and

a minor correction.)

Since V is continuous and Pr(H, ) is compact, V achieves its minimum on P, (H, Z).
Since V is convex on P, (H, z) by Lemma 6.5, it suffices to show that the minimum is not

achieved at a point in Pr(H,z) that is not positive.

Let B be a point that is not positive and a be a positive point in Py (H,Z). Define
f@) :=V(B+t(a—B)). We shall show that if ¢ > 0 is sufficiently small, then f(¢) < f(0).

By the Mean-Value Theorem, if £ > 0, then there exists ¢ € (0,¢) such that

f(&) = f(0) =tf'(C).

Let B={AcA:Bs=nr}tand Z={Z € A: 5z =0}. Let 2" C Z be such that
for any ({u,v,w},w) € Z’, neither By 4 w}u NOT Bluvw),v €quals zero. Since § is a not

positive point, Z is non-empty. It follows from Lemma 6.6 that Z’ is non-empty.

Consider ({u,v, w}, w) € B. Clearly, By vw}u = Blupw},e = 0. Let Ay, Ay, and As



6.1. RIVIN’S CHARACTERIZATION 125
denote ({u, v, w},u), ({u,v,w},v),and ({u, v, w},w), respectively. Then

> (ap - Bp)log(sin(Bp + ((an — Bp)))

De{A;,4,,43}
— a, log(sin(Can, )) + @, log(sin(Car,)

T — aua, — sy — ) log(sin(r + C(r — s, — ay — 1))

= o, log(sin(Cau,) + ap log(sin(Caray)) — (aa, + asy) log(sin(C(an +aa,)))
— sin(Cay, ) >4, sin(Caa,) XAy

= log <sin<c<aA1 T %))) (sin@ml T %))) |

Clearly, we can pick €y, w},» > 0 small enough such that this last quantity is less than

zero for all positive ¢ < €(y 4 w},w- Hence, if £ < min ep, then
1V b BEB

F1O <Y aalog(sin(Can)) + Y (@a—Ba)log(sin(Ba + ((aa - Ba))).

AeZ’ AeA\(BUZ)

If A\(BUZ) =10, let € = 1. Otherwise, let ¢ = Ae,ir\l%guz)(min(ﬁA’ m—P4)). Observe

that if ¢ < m, then (g4 — Ba)log(sin(Ba + ((as — B4))) < 7|log(sin(€'/2))]| for all
Ae A\(BU Z). Hence, if t < min(znﬁe—;an,gléréeB),

F(O < 3 aslog(sin(Can)) + |A\(BU 2)]| log(sin(€/2) .
AeZ!
Since log(sin s) — —oo as s — 0, we see that we can pick € such thatif 0 < ( <t < ¢,
then f'(¢) < 0. It follows that f(¢) = f(0) +tf'({) < f(0) as desired. O

By Theorem 3.38, if z € # SEP(H) is such that Z(A) > 27 for all A € C(H), then
P.(H, z) has a positive point. Let § be the unique minimizer of ¥ promised by Lemma 6.4.
Note that § > 0 and (6, ) is a feasible solution to (CPy).

Since the minimizer @ of V is positive, we see that there is an open ball containing
the minimizer on which V is continuously differentiable. By the principle of lagrange
multipliers, we see that there exist fi and A such that log(sin(é{u7v7w}7w)) = fluw + 5\{"70@}.
So for each {u,v,w} € F, log(sin(é{u7v7w}7u)) - log(sin(é{u7u7w}7u)) = flpw — fow-
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It follows that if w, vy, ..., vy = vg are such that {v;, vi41, w) € F and v,y w is clockwise

from v;w, then

-1 -1
Zlog(Sin(O{Ui7Ui+l7117}71%')) - log(Sin(O{Ui7Ui+l7w}7vi+1)) = Zﬂvin — How = 0.

Hence, there exists a straight-line drawing of H — oo with angles of the faces prescribed

by the values of 6.

6.2 Some classes of graphs of inscribable type

By Theorem 6.1, many results on the existence of inner points when restricted to the class
of 3-connected planar graphs immediately give results on graphs of inscribable type. For
instance, Theorem 4.10 says that every 4-connected planar graph is of inscribable type
(Dillencourt and Smith [16]). In this section, we look at some more classes of graphs of

inscribable type that have rather simple descriptions.

6.2.1 k-regular graphs

As an r-regular (simple) planar graph must have r < 5, Theorem 4.11 gives us the next

result.

Theorem 6.7. Let G be a (2k + 1)-edge-connected (2k + 1)-regular planar graph where
k € {1,2}. Then G is of inscribable type if and only if it is more-than-1-tough or is a

brace.

Remark. The case when k& = 1 was previously obtained by Dillencourt and Smith [15].

However, a 5-regular planar graph cannot be a brace because it cannot be bipartite.

Hence, we have the following:

Theorem 6.8. A 5-edge-connected 5-reqular planar graph is of inscribable type if and

only if it is more-than-1-tough.
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Note that the graph of the icosahedron (a platonic solid that can be inscribed in a
sphere) is a 5-edge-connected, 5-regular graph that is of inscribable type.

Figure 6.4: Planar dual of a 5-edge-connected 5-regular plane graph

Figure 6.4 shows the planar dual of a 5-edge-connected 5-regular plane graph G that
is not of inscribable type. (Note that removing from G the vertices corresponding to fi,
f2, and the exterior face will result in three components.)

With regards to 4-regular planar graphs, Eppstein [19] raised the following question:
Is a more-than-1-tough 4-regular planar graph of inscribable type? The answer is in the

negative as the next result shows.

Figure 6.5: A more-than-1-tough 3-connected 4-regular planar graph
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Proposition 6.9. The graph G in Figure 6.5 is more-than-1-tough and is not of inscrib-
able type.

Proof. Since e € SEP(G), G is feasible and has no useless edge.

Let ) = {1,3,5,7,11}, T) = S U {17}, S; = {2,4,6,8,12), T, = S, U {18},
Ss = {9,10,15,21,22}, T3 = S5 U {16}, Sy = {13,14,20,24,25}, Ty = S, U {19},
Ss = {27,30,31,32,36), Ts = S5 U {26}, Ss = {28, 33,34,35,37}, Ts = Ss U {29}.

One can check that the only non-trivial cuts of cardinality four are 6(S;) and 6(T;),

t=1,...,6. They are the only possible non-trivial constricted cuts.

Let z and y be such that

1 if v e {16,17,18,19,26,29}
Zo=1{ 2 ifve{0,23,38)

0 otherwise,

and

1 if Ae {8(51),...,6(S6),8(T1), ..., 6(Ts)}

0 otherwise.

Clearly, (y,2) is a solution to sys'(G) with ZueV(G) Zy = ZAeC(G) ya. By Lemma 4.2,
8(S;) and 6(T;), i = 1,...,6 are constricted. Hence, sys(G) does not have an inner point.
By Theorem 6.1, G is not of inscribable type.

Suppose G is not more-than-1-tough. Since G is 1-tough and 4-regular, there exists
an independent set B C V(G) such that w(G — B) = |B| = m for some integer m > 2.
Let Ry, ..., R, be the vertex-sets of the components of G — B. Without loss of generality,
assume that §(Ry), ..., §(Ry) are non-trivial cuts and §(Ry41), ..., 6(R,,) are trivial cuts. It
is easy to see that |R;| = 1for i =14 1,...,m. Since G is non-bipartite, [ > 1. Let z and

y be such that
1 ifveB

Zy =49 —1 if{v}e€{Ri1,...., R}

0 otherwise,
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and

1 if A€ {§(Ry),...,0(R)}

0 otherwise.

Then, (y,2) is a solution to sys’(G) with EueV(G) Zy = ZAeC(G) ya. By Lemma 4.2,
§(R;) is comstricted for i = 1,...,1. Hence, §(R;) € US_,{8(S;),8(T;)} fori=1,...,1.

By symmetry, we may assume that at least one of ys(s,) and ys(7,) is positive.

Suppose Y55,y > 0. f V(G)\S1 = R; for some i € {1, ...,1}, then we must have z, = 1
for all w € {1,3,7,11}. This contradicts that B is an independent set. Hence, S; = R;
for some i € {1,...,1}. It follows that zy = z;7 = Zz33 = 1. But this means that 16 € R;
and 26 € R; for some 7,5 € {1,...,m}. It is not difficult to see that we must have 7 # j.
Thus, 0 > Zig + z2g — E{IG,QG}GA y4 = 0, which is a contradiction.

Now, suppose ys(1;) > 0 and ys(s,) = 0. Clearly, we must have 71 = R; for some
i € {1,...,1}. It follows that z14 = Z96 = 1. Hence, 16,26 € B. But this contradicts that
B is an independent set.

It follows that such a set B could not exist. Hence, G is more-than-1-tough. O

Remark. The graph in Figure 6.5 is derived from the graph constructed by Dillencourt
and Smith [15] as an example of a more-than-1-tough graph that is not of inscribable

type. Their graph appears in Figure 6.9 below.

We do not yet have a characterization of 3-connected 4-regular planar graphs of in-
scribable type using graph-theoretical terms. However, we do have a sufficient condition

for such a graph to be of inscribable type.

Theorem 6.10. Let G = (V, E) be a 3-connected 4-reqular planar graph. If each non-
trivial 4-edge cut is a matching of G, then G is of inscribable type.

The proof makes use of the following simple lemma that appeared in Griinbaum [25].

The proof of the lemma is included here for the sake of completeness.

Lemma 6.11. Let G = (V,E) be a connected simple plane graph without vertices of

degree two. Then there are at least eight degree-three vertices and degree-three faces in
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total.

Proof. Let f denote the number of faces. Let n; denote the number of vertices of degree
t. Let f; denote the number of faces having 7 edges on its boundary. Observe that
Yisging = 2|E| = Y .o4ifi. By Euler’s formula, |V| — |E| 4+ f = 2. Hence, 8 =
42:_1»23 n; —4|E|+ 421»2;, < n3 + f3, as desired. O

Proof of Theorem 6.10. Since je¢ € SEP(G), G is feasible and has no useless edge.
Suppose G is not of inscribable type. Then G must have a non-trivial constricted cut. By

Lemma 4.8, there exist § € Ri(G) and 2 € RY feasible for D(G) such that Z Ja =
AEC(G)
Zv, A(7) = {A € C(G) : g4 > 0} is non-crossing, and §4 > 0 for some A € C(G).

veV
Since \A(7) is non-crossing, by Lemma 3.5, there exists a nested family S of subsets of V'

containing exactly one shore of each cut in A(7).

Since G is feasible, G[S] is connected for all S € §. Choose T' € § such that there

@O
CREPRGE

Figure 6.6: Setsin S

exists a proper subset of T that is in § and for any proper subset R of T that is in &,
there is no proper subset of R that is in §. If no such T exists, let T = V.

Let 8’ ={S € §: S C T}. Observe that all the elements in §" are mutually disjoint.
Consider the graph H obtained from G[T] by shrinking each S € §'. It is connected,
planar, and has exactly four vertices of degree three and no vertex of degree two. By
Lemma 6.11, H has a triangle and therefore is non-bipartite.

Now consider any S € §’. Observe that 2, + 2, = 0 for all uv € E such that u,v € S.
By Lemma 6.11, G[S] contains a triangle since it is a connected (simple) planar graph
with exactly four vertices of degree 3 with no vertex of degree two. Hence, 2, = 0 for all

v € S. But yss) > 0. Hence, the set of pseudo-vertices in H is independent. In addition,
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if v is a neighbour of a pseudo-vertex in H, then 2, > 0. Since G has no useless edge, by
Lemma 4.2, 2, + 2, = 0 for all uv € E such that u,v € T and uv ¢ §(S) forall S € §'. It
follows that if v € T is not a pseudo-vertex in H, then 2, # 0 since H is connected. Let
X ={veT:%, >0} Then, X is an independent set in G[T].

Now, let Y be the set containing all the vertices v € T such that Z, < 0 and the
pseudo-vertices. Clearly, Y is an independent set in H. Hence, H is a bipartite with

bipartition (X,Y), which is impossible. The result follows. O

Figure 6.7: A 4-regular planar graph of inscribable type that is not 4-connected

Let R4 denote the class of graphs described in the previous theorem. Not all graphs
in R4 are 4-connected. Figure 6.7 shows a 3-connected (but not 4-connected) 4-regular
planar graph that has no non-trivial 4-edge cut. Observe that the class R4 is closed under
splicing. In other words, if G,H € R4 and u € V(G) and v € V(H) then splicing G and
H with respect to v and v in such a way that planarity is preserved will result in a graph
that is in R4. Hence, one can construct all the graphs in R4 starting from the ones that
have no non-trivial 4-edge cuts.

Note that the analog of Theorem 6.10 does not hold if the graph is not required to be
planar. More precisely, there exists a 3-connected 4-regular graph G whose non-trivial
4-edge cuts are matchings of G but sys(G) does not have an inner point. The graph
depicted in Figure 6.8 is such a graph. Note that it is not more-than-1-tough and it
has a non-trivial constricted cut. However, every non-trivial 4-edge cut of the graph is a
matching. One might ask what happens if we restrict our attention to more-than-1-tough

4-regular graphs. We do not know the answer and so we have the following problem:
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Figure 6.8: A 3-connected 4-regular graph whose subtour-elimination polytope has no
inner points

Problem 6.12. Let G be a more-than-1-tough 4-reqular graph. If every non-trivial 4-edge

cut of G is a matching, must sys(G) have an inner point?

6.2.2 Maximal planar graphs

In this subsection, we look at some conditions for a maximal planar graph to be of

inscribable type.

Theorem 6.13. A mazimal planar graph is of inscribable type if and only if it has no

useless edge.

Proof. This is a restatement of Corollary 4.13. U

Theorem 6.14. Let G be 3-connected and planar. If G is of inscribable type, then it is
a spanning subgraph of a mazimal planar graph that is of inscribable type. If G is not of
inscribable type, then it is a spanning subgraph of a mazimal planar graph that is not of

inscribable type.

Proof. Suppose G is of inscribable type. We may assume that G is non-bipartite. (In-
deed, if G is bipartite, then G must have two even cycles of length at least four. By
Proposition 4.16, we can add two chords to G, one to each cycle, in such a way that the
resulting graph is non-bipartite and of inscribable type.) Since G is non-bipartite, we

can keep applying Proposition 4.14 until we obtain a maximal planar graph of inscribable

type.
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Now, suppose G is not of inscribable type. By Theorem 6.1, it suffices to show that
G is a spanning subgraph of a maximal planar graph H such that sys(H) has no inner
points.

If G is infeasible, then the result follows from Theorem 3.9. If GG is feasible, then the

result follows from Theorem 4.9. O

Theorem 6.14 suggests that understanding maximal planar graphs is invaluable in the

study of graphs of inscribable type.

Remark. Figure 6.9 shows two more-than-1-tough graphs given in [15] that are not of
inscribable type. The graph depicted on the right is a spanning subgraph of the one
depicted on the left.

Figure 6.9: Two more-than-1-tough graphs that are not of inscribable type

Jucovi¢ and Sevec [30] proved the following:

Theorem 6.15. A plane triangulation is of inscribable type if it is obtained from the

plane graph depicted in Figure 6.10 by successiwvely applying the transformations 7 and
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Ty depicted in Figure 6.11.

Figure 6.10: Bipyramid

\
v m n
/
H u
\Y
m n
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W
Usv m n
U, W non-adjacent

Figure 6.11: Transformations

We give an improvement of Theorem 6.15 using the results we have established.

Theorem 6.16. Let G be of inscribable type. Suppose G has a degree-three verter w whose
neighbours m,n, and v are pairwise adjacent. Suppose u # w is a common neighbour of
m and n, G1 and G2 are such that G; is either K4 or a j4-connected planar graph for

1=1,2, and GNGy =Ty and GNGy =T, where Ty is the triangle with vertices v, w, m
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and Ty is the triangle with vertices v, w,n. Then GUG1 UGy and (G—mn+uw)UG; UG
are of inscribable type. (See Figure 6.11.)

Proof. It suffices to show that sys(GU Gy U G3) and sys((G — mn + uw) U G; U G3) have
inner points.

Let ¢ € {1,2}. If G, is a K4, then clearly sys(G;) has an inner point and there exists
z € SEP(G,) such that z. = 5 = 1 for any two edges e, f € E(G;), If G, is 4-connected,
sys(G;) has an inner point by Theorem 4.10. By Theorem 2.1 there exists z € SEP(G;)
such that z, = z; = 1 for any two edges e, f € E(G;).

Let G' = G — mn. By Proposition 4.17, sys(G’) has an inner point. Hence, by
Proposition 4.22 and Corollary 4.20, sys(G' U G; U G3) has an inner point.

Since G’ U Gy U G5 is non-bipartite, the result follows from Proposition 4.14. O

Jackson and Yu [29] described a decomposition of a plane triangulation G as follows.
For each separating triangle T, G can be separated into two graphs G, and G5 such that
G = GLUGy, Gy NGy = T. Note that for i = 1,2, G; has at least four vertices and
G; is a plane triangulation having T as a face. T is called a marker triangle in Gy and
G5. The procedure is iterated for both G and G5 until one obtains a collection of plane
triangulations S each of which has no separating triangles. The graphs in S are called
pieces of G. Define a new graph D whose vertices are the pieces in S and in which two
pieces are joined by an edge if they have a marker triangle in common. As Jackson and
Yu remarked, it follows from the decomposition theory developed by Cunningham and
Edmonds [11] that D is a tree and also that the set of pieces S and the tree D are uniquely
defined by G. D is called the decomposition tree of G. They showed the following.

Theorem 6.17. Let G be a 3-connected plane triangulation whose decomposition tree D
has mazimum degree at most three. Let H be a piece of G corresponding to a verter of D
of degree at most two and T be a face triangle of both H and G with V(T) = {u, v, w}.

Then G has a Hamiltonian circuit through uwv and uvw.

Using the above theorem, we obtain the next result.
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Theorem 6.18. Let G be a 3-connected plane triangulation. If the decomposition tree D

of G has mazimum degree at most three, then G is of inscribable type.

Proof. The proofis by induction on |V (D)|. If D has only one vertex, then either G = K4
or G is 4-connected. Clearly, K4 is of inscribable type. If G is 4-connected, then G is of
inscribable type by Theorem 4.10.

Assume that D has at least two vertices. Let H be a piece having degree one. Let T be
the marker triangle in H. Let V/(T') = {u, v, w}. Note that H = K4 or H is 4-connected.
Let G' =G — (V(H)\V(T)). By the induction hypothesis, G’ is of inscribable type. By
Theorem 6.17, there is a Hamiltonian circuit of G’ through uw and vw. Hence, sys(G’)
has an inner point Z such that Z,, + Tuw + Tww > 1. By Lemma 4.19, we see that G is

of inscribable type. O

Decomposition tree

Figure 6.12: Two graphs having isomorphic decomposition trees

It is in general not possible to determine if a plane triangulation is of inscribable type
just by considering the decomposition tree. The decomposition trees of the two graphs
depicted in Figure 6.12 are isomorphic. However, the graph on the left is of inscribable

type while the other is not.

6.3 A refinement of Wagner’s Theorem

The main result in this section does not rely on the tools developed earlier. Nevertheless,

it provides some insights on the structure of maximal planar graphs of inscribable type.
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Given a maximal planar (or plane) graph G, if 77 and T; are two triangles such that
V(Ty) ={=,y,z}, V(T2) = {z,y,w}, and wz ¢ E(G), we call the operation of removing
the edge zy and adding the edge wz a diagonal flip.

Wagner [50] showed that given two maximal plane graphs with n vertices, one can be
obtained from the other by performing a finite sequence of diagonal flips. Dewdney [12]
subsequently extended the result to torus graphs. Similar results on other kinds of surfaces
can be found in [7], [8], [9], and [31].

In this section, we show the following:

Theorem 6.19. Let G1 and G5 be two mazimal planar graphs of inscribable type having
verter set V. If |V| > 4, then there exists a sequence of mazimal planar graphs Hy =
G1,Hy,...,Hy_1, H, = G5 such that H; is of inscribable type for 1 = 0, ...,k and H; can
be obtained from H;_, via a diagonal flip for 1 =1, ..., k.

Given z € R” and r > 0, let B(Z,r) denote the set {z € R" || z — Z ||< r}. We
denote the boundary of a set S C R” by bd(S) and the unit sphere in R by S"1.
It is easy to see that the extreme points of a simplicial polytope can be “perturbed”

without changing its combinatorial type. The next result is immediate.

Proposition 6.20. Let G be a mazimal planar graph of inscribable type having vertex
set {v1, ..., vn}. Suppose {u',...,u"} € S? are such that G = G(conv({u!,...,u"}) with u’
corresponding to v; for i = 1,...,n. Then there exists € > 0 such that if w' € S?N B(u',¢)

fori=1,...,n, then G = G(conv({w', ..., w"}) with w' corresponding to v; fori =1,...,n.

In this section, let P be a 3-dimensional simplicial polytope inscribed in S? and U be
the set of extreme points of P.

Let F(P) denote the set of facets of P. For each F' € F(P),let apz+bry+crz < dp
be an inequality that induces F. Let S(P) = {(z,y,2) € S? : apz + bpy + cpz # dF
for all F € F(P)}. Define the function ¢p : S(P) — 27(P) as follows: For any point
(z,y,2) € S(P), ¢p(z,y, z) is the maximal A C F(P) such that arZ + bry + crz < dp
for all F € A. Let ®(P) denote the range of ¢p. For each A € &(P), let S4 denote the
pre-image of A. Then S4 = {(=,y,2) € S : apz + bpy + cpz < dp for all F € A} and
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the elements of the set {S4 : A € ®(P)} partition S(P). We now establish a series of

technical lemmas.

Proposition 6.21. If p € S(P), then @ = conv(U U {p}) is simplicial.

Proof. Suppose there exists a facet of () that contains at least four extreme points of @),

say p', p?, p°, and p*. Let az 4 by + cz < d be an inequality that induces this facet.

Without loss of generality, assume that p* # p for i = 1,2, 3. Note that az+by+cz < d
is a valid inequality for P. As p', p?, and p> are non-collinear in P and lie on the plane
defined by az + by + cz = d, we see that az + by + cz < d induces a facet of P. Hence,
ax + by + cz < d is a scalar multiple of apz + bry + crz < dp for some F € F(P) that
contains p', p?, and p3. As P is simplicial, we must have p* = p. So p lies on the plane

defined by arz + bpy 4+ cpz = dF, contradicting that p € S(P). O

The next result seems to be well-known but a reference could not be found. For the

sake of completeness, a proof is given here.

Lemma 6.22. Let Q be a full-dimensional simplicial polytope and {v°, ...,v"} be the set
of extreme points of Q. If v° and v™ are not adjacent in Q, then there exists X € (0,1)
such that Av® + (1 — X)v™ € conv({v!,...,v""1}).

Proof. Consider the following linear programming problem:

minimize 0
(LP) subject to — (W) Ta+d = 0
—(v")Ta +d = 0

(vi)Ta—d. > 0 1=1,...,n—1
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The dual of (LP) is

maxmize 0

(DLP) subject to  ag+ a, — Z oa; =0

n—1

—apr? — a,v" + Zaivi =0
=1

a; >0 1=1,..,n—-1

As (DLP) has an optimal solution at a; = 0 for all ¢ = 0, ..., n, every feasible solution to
(LP) is optimal.

Since v° and v™ are not adjacent in @, there does not exist a valid inequality a”v > b
for Q such that a”v® = aTv™ = b and a’v' > b for all i = 1,...,n — 1. By strict

complementarity, (DLP) has an optimal solution & such that &; > 0 for some j €

{1,...,n — 1}. Observe that at least one of &y and &, must be positive. Without loss of
generality, assume that ag > 0. If a,, < 0, then v¥ = 0‘1 vl 4 a" Lyn=l 4 =%nyn Thus
v? € conv({v!,...,v"}), Contradicting that v¥ is an extreme point of Q. Hence o > 0.

Letd:d0—|-@n:zl L ;. Then 20004 Snpn = Syl 4 .. —}—a" Lyn~1. Letting A = 22,
we have AvY + (1 — A)v™ € conv({v!, ..., 1}). -

Proposition 6.23. Let p = (z,4,2) € S?\U be such that apz + bpy + cpz = dp for at
most one F € F(P). If Q = conv(U U{p}), then for any p' € U, p and p' are adjacent
in Q if and only if there exists F € F(P) such that p' € F and apZ 4 bpy + crz > df.
Moreover, if u,v € U are not both adjacent to p in Q, then v and v are adjacent in Q if

and only if they are adjacent in P.

Proof. Suppose that there exists F' € F(P) such that p’ € F and apZ + bry + crz > dp.
Let g(A) = Ap+(1—A)p’. Clearly, ¢(X) ¢ P forall A € (0,1). Hence, ¢()) ¢ conv(U\{p'})
for all A € (0,1). By Lemma 6.22, p and p’ are adjacent in Q.

Conversely, suppose that for any F € F(P) such that p’ € F, we have arpz + bpy +
crz <dp. Let B={F € F(P):p € F} and p' = (2',y/,2'). Note that apz’ + bry’ +
crpz’ < dp for all F ¢ B and that apZ + bpy + cpz = dp for at most one F € B. If
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arZ + bpy + crz < dp for all F € B, then for sufficiently small € > 0, p=p' + ¢(p — p')
satisfies apz + bpy + cpz < dp for all F € F(P). Hence, p is in the interior of P C Q
and so p and p’ cannot be adjacent in . If F’ is the only element in B such that
ap'Z + bpy + ¢piZ = dps, then for sufficiently small € > 0, p = p' + €(p — p') satisfies
apt + bpy + ¢z = dpr and apz + bpy + cpz < dp for all F # F'. Hence, p is in the
relative interior of F’. Since F' C @, p and p’ cannot be adjacent in (). This proves the
first part of the proposition.

For the second part, let u,v € U, not both adjacent to p in Q.

Clearly, if v and v are adjacent in @), then they are adjacent in P.

Conversely, if u and v are adjacent in P, then there exist Fy, F; € F(P) such that u
and v satisfy ap;z + by + crz < dp, © = 1,2 with equality. If p violates one of these
inequalities, then by the first part of the proposition, p will be adjacent to both u and
v, contradicting our assumption. Thus, p satisfies both inequalities and therefore they

induce distinct facets of ). As u, v are in both facets, they must be adjacent in . [

Corollary 6.24. Let A€ ®(P),pe Sy, W ={p€ U :p€ F for some F € F(P)\A}.
If Q = conv(UU{p}), then, for any p' € U, p is adjacent to p’ in Q if and only if p' € W.
Moreover, if u,v € U are not both adjacent to p in Q, then v and v are adjacent in Q if

and only if they are adjacent in P.
Proof. Follows immediately from Proposition 6.23. U

Observe that S?\S(P) provides an embedding of some planar multi-graph, H, on
S2. The set of points in each face of the embedding is S4 for some A € ®(P). For
A B e ®(P), A# B, we say Sa and Sg are adjacent if and only if their corresponding

faces are adjacent.

Theorem 6.25. Let pg € Sy and pg € Sg where S4 and S are adjacent. Let Py =
conv(UUA{pa}) and Pg = conv(U U {pg}). Foriec {A,B}, let G; denote the graph with
vertex set V.= {vo} UU such that for all u,v € U, uv € E(G;) if and only if u,v are
adjacent in P; and for all u € U, vou € E(G;) if and only if p;,u are adjacent in P;.
Then G 4 can be obtained from Gg via a diagonal flip.
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Before we proceed to the proof, we remark that G 4 remains the same for any p4 € S4.

(Similarly for Gg.)

Proof. By Proposition 6.21, both P4 and Pg are simplicial. Let ¥ = bd(S.4) N bd(Sg)
and F € F(P) be such that ¥ is in the plane defined by azz +bpy +cpz = dp. Let p be
a point in the relative interior of ¥ and p’, ¢, ¢’ € U denote the extreme points of P in F.

Without loss of generality, we may assume that apz+bpy+cpz < dgpfor all (z,y, 2) €
Saand apz 4+ bpy + cpz > di for all (z,y,z) € Sg. By Corollary 6.24, pp is adjacent to
p', ¢, and q.

Let @) = conv(U U {p}). Observe that the inequality azz + bpy + c5z < dj induces
a facet of Q. By Radon’s Theorem, {p,p’, ¢, ¢’} can be partitioned into two sets A and
A’ such that conv(A) Nconv(A4’) # 0. Since p, P/, ¢, and ¢’ are extreme points of @, we
must have |A4| = |A/| = 2. Without loss of generality, we may assume that A = {p, ¢} and
A" ={p',q'}. Hence, p and ¢ are adjacent to both p’ and ¢’ in @ with p, ¢ non-adjacent
and p’, ¢’ non-adjacent in Q.

Claim: Let i € {A,B}. If F # F, then for any p € S;, p satisfies apz+bpy+crz < dp
strictly if and only if p does.

From the way p is chosen, it is clear that there exists € > 0 such that for any w €
B(p,€), p satisfies apz + bry + crz < dp if and only if w does. Now, p € bd(S;) implies
that there exists w’ € B(p,€)NS;. Hence, p satisfies apz + by + cpz < dp if and only if
w’ does. The claim now follows from the definition of S;.

We now establish a series of facts.
(i) If v € U, then p4 is adjacent to v in P4 if and only if p is adjacent to v in Q.
(ii) If v € U\{¢}, then pp is adjacent to v in Pg if and only if p is adjacent to v in Q.

(iii) If w,v € U are not both adjacent to p4 in P4, then they are adjacent in P4 if and
only if they are adjacent in Q.

(iv) If u,v € U, are not both adjacent to pg in Pg, then they are adjacent in Pg if and
only if they are adjacent in Q.
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(v) p’ and ¢’ are adjacent in P4 and are non-adjacent in Pg.

(vi) Let ¢ € {A, B}. Consider u,v € U, both adjacent to p; and {u, v} # {p', ¢'}. If they

are adjacent in F;, then they are adjacent in Q.

Proof of (i): By the claim, for any F' € F(P), p satisfies apz + bry + cpz > dp if and
only if p4 does. The result follows from Proposition 6.23.

Proof of (ii): Suppose v ¢ F. By Proposition 6.23, p is adjacent to v if and only
if there exists F' € F(P) such that v € F and p satisfies arpz + bpy + crz > dr. By
Corollary 6.24, pg is adjacent to v if and only if there exists F' € F(P) such that v € F
and pp satisfies apz + bpy + cpz > dp. By the claim, for any F € F(P) with F £ F, p
satisfies apz + bpy + cpz > dp if and only if pg does. Since v ¢ F, it follows that v is
adjacent to p in @) if and only if v is adjacent to pg in Pg.

Now suppose v € F. Then v € {p’,¢'}. Since p is adjacent to p’ and ¢ in Q and pg
is adjacent to p’ and ¢’ in Pg, the result follows.

Proof of (iii): By (i), » and v are not both adjacent to p in . By Proposition 6.23,
u and v are adjacent in @) if and only if they are adjacent in P. Since, by Corollary 6.24,
u and v are adjacent in P4 if and only if they are adjacent in P, the result follows.

Proof of (iv): First, observe that u and v cannot be both adjacent to p in (. Indeed,
if ¢ € {u, v}, then pis not adjacent to both u and v in @ since p is not adjacent to ¢. If
q ¢ {u,v}, then by (ii), » and v are not both adjacent to p. The result now follows from
Proposition 6.23 and Corollary 6.24.

Proof of (v): Clearly, p’ and ¢’ are adjacent in P4 since F is also a facet of P4 con-
taining p’ and ¢'. Let F’ be the other facet of P that contains p’ and ¢'. If p’ and ¢’ are
adjacent in Pg, then they must be in a facet of Pg that is also a facet of P. Since F cannot
be a facet of Pg, such a facet must be F’. Hence, pg satisfies aprz + bpry + cprz < dp
strictly. By the claim, p also satisfies ap/z + by + cprz < dpr strictly. Hence, F' is
also a facet of Q). Since F’ has only three extreme points of (), we see that p’ and ¢’ are
adjacent in ), which is a contradiction. Thus, p’ and ¢’ must be non-adjacent in Pg.

Proof of (vi): Let & and &; denote the inequalities that induce the two facets of P,

that contain both u and v. As each facet of P; has only three extreme points, p; must
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satisfy one of these two inequalities strictly, say &;. Since the facet induced by &; con-
tains only extreme points from U, we see that &£ induces a facet of P, say F’'. Hence,
p; satisfies apx + by + cgr < dp strictly, As {u,v} # {p',¢'}, F' # F and so by the
claim, p also satisfies the inequality strictly. It follows that u and v are two of the three
extreme points of ) in the facet induced by apiz + bpy + cprz < dpr. Hence, u and v

are adjacent in Q).

Now, let G be the graph having vertex set V' such that for all u,v € U, uwv € E(G)
if and only if u,v are adjacent in @ and for all w € U, vou € E(G) if and only if p,u
are adjacent in . Then, in any planar embedding of G, vg, p’, ¢/, ¢ lie on the same face.
Hence, G+ p'¢’ and G + voq are planar. Using facts (i)—(vi), we see that G 4 is a spanning
subgraph of G + p'¢’ and Gg is a spanning subgraph of G + vgq. Since G4 and Gpg
are maximal planar graphs, we must have G = G4 — p'¢’ = G — voq. The result now

follows. O

Proof of Theorem 6.19. Let the elements of V be vy,...,v,. Let U = {p' € S?:
i € {1,...,n}} be such that no four points in Uy are coplanar and G(conv(U;)) = G,
with p* corresponding to v;. (This is possible by Proposition 6.20.) Let U; = {¢' €
S?2 :4 € {1,..,n}} be such that no four points in U, are coplanar, U, N U; = ), and
G(conv(Us)) & G4 with p' corresponding to v;.

Let € > 0. For i € {1,..n}, denote the set S* N B(q’,¢) by B;. Assume that € is
sufficiently small so that U, B,NU; = 0 and BN B; = ( for any 7,5 € {1,...,n}, i # j.

We perform the following algorithm:
o Let QY = conv(U;) and Goo = G1.
e Set L = (GQ?).

o fori=1,...,n,set f(i) = p'.

e fori=1,...,ndo

= Let U= {f(1),.... fF(n) \f(9).



144 CHAPTER 6. INSCRIBING A POLYTOPE IN A SPHERE

Let P = conv(U). (Note that P is 3-dimensional and simplicial.)

Let A € ®(P) be such that f(i) € S4.

Pick p’ € B; such that p’ € Sg for some B € ®(P) and no four points in
UU{p'} are coplanar.

Identify a sequence Ag = A, Ay,..., Ay, = B such that 4; € ®(P) for j =
1,...,ki—1and A;, A4, are adjacent for j =0,...,k; — 1.

— for j=1,...,k — 1, pick a point r/ € Sa;

— Let rki = p/.

for j=1,...,k; do
* Set f(i) =r.
% Let Q7 = conv({f(1), ..., f(n)})
* Let GQ{ be the graph having vertex set V' such that GQ? x G(QZ) with
f(1) corresponding to v; for I =1, ..., n.
*x Append GQ{_‘ to L.

— Let Q?-I—l = Qfl (Note that no four extreme points of Qfl are coplanar.)

By Theorem 6.25, GQ{“ can be obtained from GQ{ via a diagonal flip for j = 0, ..., k;—
1,72 =1,...,n. Hence, for any two successive graphs in L, one can be obtained from the
other via a diagonal flip.

At the end of the algorithm, we have f(i) € B; for ¢ = 1, ..., n. By Proposition 6.20,
if € is sufficiently small, the last graph in L (i.e. GQI:L”) is G3. Since the first graph in L
is G1 and all the graphs in L are of inscribable type, the result follows.
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