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1 Introduction

We shall say that the Tits Alternative holds for a class of groups if each group in
the class is either solvable by …nite (that is, contains a solvable normal subgroup
of …nite index) or contains a free subgroup of rank at least 2. Free groups of
rank 2 contain free subgroups of countable rank, so in the second case there will
be of free subgroups of all …nite ranks.

The Tits Alternative is so called because it arises in a major theorem pub-
lished by J. Tits [20] in 1972:

TITS’ THEOREM Let G be a …nitely generated linear group over a
(commutative) …eld. Then eitherG is solvable by …nite orG contains a noncyclic
free subgroup. ¤

The object of the present paper is to give an exposition of a simpli…ed version
of Tits’ proof, and to discuss some of the rami…cations of Tits’ Theorem. In
what follows F will denote an arbitrary (commutative) …eld, and a linear group
of degree n over F will refer to a subgroup of GL(n;F ), or a group of linear
transformations of an n-dimensional vector space over F .

Acknowledgements The present paper is a major revision of [5] published
in 1972, which purports to give a proof of Tits’ Theorem but contains some very
serious ‡aws. I am indebted to several mathematicians, including B. Wehrfritz
and Ju.I. Merzljakov, who pointed out what now appear as embarrassingly el-
ementary errors, and I am particularly indebted to J. Hulse who in his corre-
spondence in 1974 insisted that I get it right. Why then should I publish this
revised version at this late date? The reasons are two-fold. Firstly, as far as
I know, except for the original paper of Tits the only places where the proof
of his theorem appears are in [14] and [23] both of which follow the original
proof quite closely. (Actually, only an outline of the proof appears in [23]). The
proof given below in Sects. 3-4 seems (at least to me) to be technically simpler,
partly because Tits is interested in proving a more general result and some of
the technicalities can be avoided for that reason. Since the theorem remains of
major interest, it seems worthwhile having an alternative approach to its proof.
Secondly, it seems worthwhile putting on record in Sect. 2 some of the work
which has arisen as a consequence of the theorem - its applications and some
generalizations which it has stimulated. The reference journal Citation Index
records over 60 citations to Tits’ original paper up to the end of 1987.
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2 Consequences of Tits’ Theorem

We shall describe some of the consequences of Tits’ Theorem and some attempts
to generalize it. Theorem 1 is in fact the original form in which Tits stated the
theorem in [20] and Theorems 2-4 are listed there as corollaries. (See Sect. 3
below for the de…nition of Solv(G) and a proof of Theorem 1.)

THEOREM 1 (Tits [20]) For any linear groupG, the factor groupG=Solv(G)
is locally …nite. If the characteristic of the underlying …eld is 0, then G=Solv(G)
is …nite, and so G is solvable by …nite. Moreover, in the latter case there is a
bound on the index jG : Solv(G)j depending only on the degree of G. ¤

The second theorem was announced in [25] but the proof there is faulty. A
group is noetherian if it satis…es the ascending chain condition on subgroups.
Theorems 3 and 4 are due to V.P. Platonov who gave earlier proofs independent
of Tits’ results.

THEOREM 2 Every noetherian linear group contains a polycyclic sub-
group of …nite index. ¤

THEOREM 3 (Platonov [18]) If‘ G is a linear group such that for some
d each …nitely generated subgroup can be generated by d elements, then G is
solvable by …nite. ¤

THEOREM 4 (Platonov [17]) A linear group is either solvable by …nite or
it generates the variety of all groups. ¤

For more details about the proofs of Platonov’s theorems see [23] Theorems
10.9 and 10.15.

Let G be a group which is generated by a …nite set S of generators, and let
°(m) denote the number of elements in G which can be written as a product
of at most m elements from S [ S¡1: Then we say G has polynomial growth
if, for some constant C > 0, °(m) < mC for all su¢ciently large m; and G
has exponential growth if, for some C > 1, °(m) > mC for all su¢ciently large
m. It is easy to show that these de…nitions do not depend on the choice of
the generating set S. Then a result of J. Milnor and J.A. Wolf ([24] p. 421)
together with Tits’ Theorem shows that each linear group has either polynomial
or exponential growth. It is easily shown that a …nitely generated group which
is nilpotent by …nite has polynomial growth. Using methods which generalize
those of [20], M.L. Gromov proved the much deeper converse which had been
conjectured by Wolf.

THEOREM 5 (Gromov [7]) Every …nitely generated group with polyno-
mial growth is nilpotent by …nite. ¤

For related papers on polynomial growth see [16] and [6]. ¤
G.A. Margulis and G.A. Soifer have also extended the techniques of [20].

One of their most striking results is the following.
THEOREM 6 (Margulis and Soifer [13]) A …nitely generated linear group

has a maximal subgroup of in…nite index if and only if it has a free subgroup of
rank 2. In the latter case the group has uncountably many maximal subgroups
of in…nite index. ¤

N.V. Ivanov [10] and J.D. McCarthy [15] have independently shown that the
Tits Alternative holds for a class of groups which arise in topology. S. Wagon
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[21] has shown how Tits’ Theorem is related to paradoxical decompositions (the
Banach-Tarski Theorem) and to amenable groups. For the latter topic see also
[2].

Very soon after Tits’ Theorem was published the question arose as to what
extent it might be generalized. In its original form, Tits’ Theorem states that
the Tits Alternative holds for …nitely generated subgroups of Aut(V ) where V
is a …nitely generated vector space over a commutative …eld. S. Bachmuth and
H.Y. Mochizuki [1] showed that the theorem remains true when V is replaced
by a …nitely generated group which it nilpotent by abelian; but B. Hartley [8]
gave examples to show that the Tits Alternative does not always hold when V
is replaced by a solvable group of derived length 3. A.I. Lichtman has written
a series of papers related to this subject for the case where V is a vector space
of …nite dimension over a skew …eld. In particular, he has given examples for
all possible characteristics to show that the Tits Alternative need not hold over
skew …elds even in dimension 1 (see [12] and [19]). In [9] B. Hartley and P.F.
Pickel consider the case of free subgroups in the unit group of an integral group
ring.

3 Some Basic Lemmas
Before turning to the proof of Tits’ Theorem we shall isolate some of the general
results on which the proof will be based.

LEMMA 1 (Zassenhaus and Mal’cev) If G is a linear group, then each
locally solvable subgroup is solvable. Hence G has a unique maximal normal
solvable subgroup (the solvable radical of G) which we shall denote by Solv(G).

Proof See [4] Theorem 6.2B or [23] Corollary 3.8. ¤
We shall need some elementary properties of the Zariski topology with ref-

erence to linear groups (see, for example, [4] Chapter 8 or [23] Chapters 5 and
14.

LEMMA 2 Let G be a subgroup of GL(n;F ). Then the connected com-
ponent G0 of 1 in the Zariski topology is a normal subgroup of …nite index in
G. Moreover, G0 is contained in every Zariski closed subgroup of …nite index in
G.

Proof See [4] Theorem 8.5 or [23] Lemmas 5.2 and 5.3. ¤
Remark If E is a …eld extension of F , then the topology induced on G ·

GL(n;F ) by the Zariski topology relative to E is the same as that induced by
the Zariski topology relative to F .

LEMMA 3 Let G be a subgroup of GL(n;F ) and H be a normal subgroup
of G. If H is closed in the Zariski topology, then for some integer m > 1 there
is a linear representation Á : G ! GL(m;F ) with kernel H. The mapping Á is
a rational mapping and so continuous in the Zariski topology.

Proof See [23] Theorem 6.4. ¤
LEMMA 4 (Wehrfritz) Suppose that G is a linear group over F and each

…nitely generated subgroup of G is solvable by …nite. Then G=Solv(G) is a
locally …nite linear group over F .
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Proof See [23] Lemma 2. Note that every periodic linear group is locally
…nite. ¤

LEMMA 5 (Jordan and Schur) Let G be a periodic linear group of degree
n over a …eld F of characteristic 0. Then G has a normal abelian subgroup A
whose index jG : Aj can be bounded by a function depending only on n.

Proof See [4] Theorem 9.5 or [23] Theorem 9.4. ¤
REMARK The proof of Theorem 1 in Sect. 2 now follows immediately from

Tits’ Theorem and Lemmas 3-5 because Solv(G) is a Zariski closed subgroup
of G.

The following is a modest generalization of a theorem of Schur. Compare
with Sect. 2 of [20].

LEMMA 6 Let G be a …nitely generated linear group and let H be a
subgroup . If each x 2 H has all of its eigenvalues roots of unity (so a suitable
power of x is unipotent), thenH has a normal subgroup of …nite index consisting
entirely of unipotent elements. In particular, if H is completely reducible, then
H is …nite.

Proof The proof of Theorem 9.2 in [4] shows that there exists an integer N
which depends only on G such that xN is unipotent for all x 2 H. Then the
Exercise following Corollary 2.8C of [4] shows that H has a normal subgroup of
…nite index consisting of unipotent elements. In particular, if H is completely
reducible then this subgroup is trivial by Theorem 2.8C of [4] and so H is …nite.
¤

LEMMA 7 (“Pingpong Lemma”) Let. G be a group acting on a set 
and let A and B be two subgroups. Suppose that there exist nonempty sets
¢;¡ µ  such that

1. ¢ \ ¡ = ;;

2. ¡a µ ¢ and ¢b µ ¡ for all nontrivial a 2 A and b 2 B;

3. for all a 2 A, ¢a \ ¢ 6= ;:

Then the subgroup hA;Bi generated by A and B is the free product A ¤B:
Proof It is enough to show that no product g = a1b1:::akbk (with k ¸ 1 and

nontrivial ai 2 A and bi 2 B) is equal to 1. Moreover, by 3. there exists ± 2 ¢
such that ±a1 2 ¢: Then 2. shows that ±g 2 ¡; and so 1. proves that g 6= 1. ¤

EXAMPLE. An interesting illustrative example of Lemma 7 is given in
the case where G := GL(2;C) acts on C2 and we de…ne

a :=

·
1 0
µ 1

¸
and b :=

·
1 µ
0 1

¸
:

TakeA := hai andB := hbi, ¡ := f(®;¯) j j®j < j¯jg and ¢ := f(®;¯) j j®j > j¯jg :
If jµj ¸ 2 then the hypotheses of the lemma hold and so ha; bi = A ¤B is a free
group of rank 2. (If jµj < 2 then ha; bi need not be free.) ¤
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4 Proof of Tits’ Theorem

We now turn to the proof of Tits’ Theorem, Through a series of propositions
we shall show that a …nitely generated linear group which is not solvable by
…nite must have a free subgroup of rank 2. At the end we shall link these
propositions together in a complete proof. In understanding the approach it is
helpful to recall that if G is a group with a normal subgroup N and two elements
Na and Nb generate a free subgroup of rank 2 in G=N , then the subgroup ha; bi
in G is also free of rank 2. Thus to show that G has a free subgroup of rank 2
it is enough to prove that some factor group has this property.

PROPOSITION 1 Let G · GL(n;F ) be a …nitely generated and com-
pletely reducible group which is connected in the Zariski topology. If G is not
solvable by …nite then there exists x 2 G0 with at least one eigenvalue which is
not a root of unity.

Proof Since G is completely reducible, so is the derived group G0 by Clif-
ford’s Theorem. Thus by Lemma 6 it is enough to show that G0 is in…nite. Put
C := CG(G0): Then C=(C \ G0) »= CG0=G0 · G=G0, and so C is metabelian.
Since G=C can be embedded in Aut(G0), the hypothesis on G shows that G0

must be in…nite. ¤
The …rst major step in the proof of Tits’ Theorem is to construct a suitable

normed …eld over which G has a representation. Let E0 denote the prime
sub…eld of F and let E be the sub…eld of F generated by all entries from a set
of matrices which generate G; thus G · GL(n;E) and E is …nitely generated
over E0. The following proposition shows how we can extend E to a locally
compact normed …eld K; jj in an appropriate way.

PROPOSITION 2 Suppose that » 2 E is not a root of unity. Then there
exists an extension K of E with a norm jj (= multiplicative valuation) such that
j»j 6= 1 and K; jj is a locally compact normed …eld.

Proof Since E is …nitely generated over E0 there is a …nite transcendence
basis T for E over E0 and E is of …nite degree over E0(T ).

Case 1 : charE = p > 0:
Put D := E0[T ] and let P be the ideal generated by T in D: Then

there is a unique valuation jj0 on E0(T ) such that if ® 2 D then j®j0 = 2¡1

when ® 2 P i n P i+1 for all i ¸ 0. Since E has …nite degree over E0(T ), this
norm can be extended to a norm jj1 on E; and then to the completion Ê; jj of
E; jj1 (see [[3] Chapter 2). The completion is a locally compact normed …eld

since for each ¯ in Ê; U :=
n
® 2 Ê j j®¡ ¯j · 1

o
is a compact neighbourhood

of ¯ (see [3] pp. 49-50).
Case 2 : charE = 0:

In this case we may take E0 = Q, and we shall show that there is an
embedding Á of E into a locally compact normed …eld L; jj with jÁ(»)j 6= 1: This
will give an extension K »= L of E with the required properties.

If » is transcendental over E0 then we can take » 2 T . Since C has
in…nite transcendental degree over Q, there exists an embedding Á0 of E0(T )
into C such that Á0(») is a transcendental element of C of absolute value > 1.
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Since C is algebraically closed, and [E : E0(T )] < 1, this embedding can be
extended to an embedding Á of E into L := C which satis…es the required
conditions (with the usual norm).

Thus we may suppose that » is algebraic over E0 = Q and let m(X) be
its (monic) minimal polynomial over Q. Since » is not a root of unity, m(X)
is not a cyclotomic polynomial. In particular, if all the coe¢cients of m(X)
are integers then Kronecker’s Theorem shows that m(X) has a root ´ 2 C
of absolute value > 1 (see [3] p.72). In this case, we consider …rst the Q-
embedding Á0 of E0(») into C with Á0(») = ´; extend this to an embedding Á1
of E0(T1 [ f»g) where T1 is a transcendence basis for E over E0(»), and …nally
to an embedding Á of E into C (see [11] Chapter VII §2). We can then take
L = C with the usual absolute value to satisfy our conditions.

This leaves the case where the minimal polynomial m(X) of » has a
nonintegral coe¢cient. Let p be a prime dividing the denominator of such a
coe¢cient, and let Qp; jj0 be the p-adic completion of the rationals. Let L1 be
a splitting …eld of m(X) over Qp, and let jj1 be the (unique) extension of the
norm jj0 to L1: Since jj1 is non-archimedean, and at least one of the elementary
symmetric functions of the roots ofm(X) in L1 has norm > 1, therefore j´j1 > 1
for at least one root ´ of m(X): Now let Á0 be the Q-embedding of E0(») into
L1 with Á0(») = ´. Since Qp is uncountable it has in…nite transcendence degree
over Q, and so there is an embedding Á1 of E0(T1 [ f»g) into L1 where T1 is
a transcendence basis of E over E0(»). This embedding can be extended to
an embedding Á of E into some …nite extension L of L1, and the norm on L1
can be extended (uniquely) to a norm jj on L: The normed …eld L is locally
compact because it is a …nite extension of the locally compact …eld Qp; jj0 (see
[3] pp. 49-50). Since jÁ(»)j = j´j > 1; the construction is completed in this case
as well. ¤

From now on K will denote a locally compact …eld with norm jj :
PROPOSITION 3 Suppose that G · GL(n;K) has an element x whose

eigenvalues ¸1; ¸2; :::; ¸n in K satisfy

j¸1j = j¸2j = ::: = j¸rj > j¸r+1j ¸ :: ¸ j¸nj

Then there is a representation ½ : G! GL(
¡
n
r

¢
;K) such that ½(x) has a unique

(simple) eigenvalue of maximum norm. Moreover, if G is connected in the
Zariski topology, then so is ½(G):

Proof Le e1 = (10 :::: 0); :::; en = (0 0 ::: 1) be the standard basis of Kn:
Without loss in generality we may assume (by replacing G be a conjugate group
if necessary) that x is in Jordan form so that for each i; eix = ¸iei or ¸iei+ei¡1:

Consider the exterior algebra E :=
V
Kn: If we de…ne e¢ := ei1 ^ ei2 ^

:::^ eis for each subset ¢ := fi1; i2; :::; isg of f1; 2; :::; ng with i1 < i2 < ::: < is,
then the set of all e¢ forms a K-basis for E. Moreover, G acts linearly on E
in a natural way, and the subspace V of E spanned by the e¢ with j¢j = r
is a G-invariant subspace of dimension

¡
n
r

¢
. The action of G on this subspace

therefore gives a representation ½ of G of this dimension. We now show that x
has a unique eigenvalue of maximum norm in its action on V .
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We de…ne a partial ordering on the r-subsets of f1; 2; ::; ng by

¢ · ¡ when ¢ = fi1; i2; :::; irg and ¡ = fj1; j2; :::; jrg with it · jt for all t

Then from the action of x on Kn we see that

e¢x = ¸¢e¢ +
X

®¡e¡ (1)

where ¸¢ :=
Q
i2¢ ¸i and the sum in (1) is over certain ¡ < ¢ with ®¡ 2 K:

In particular, if © := f1; 2; :::; rg then e©x = ¸©e© since there are no ¡ < ©;
thus ¸© is an eigenvalue for x: One the other hand, suppose that ¹ is an
eigenvalue for x with an eigenvalue v which is not a scalar multiple of e©: Write
v =

P
¯¡e¡ and choose ¢ maximal in the partial ordering such that ¯¢ 6= 0:

Then (1) shows that vx = ¹v implies that ¹ = ¸¢; and so j¹j = j¸¢j < j¸©j
by the de…nition of r. Hence x has ¸© as it unique eigenvalue of maximum
norm. Finally, since ½ is a rational mapping it is continuous under the Zariski
topology, and so maps connected sets onto connected sets. ¤

If x 2 GL(m;K) then the eigenvalues ¸1; ¸2; :::; ¸m of x lie in a …nite
extension K1 of K. Since K; jj is locally compact, it is complete ([3] p. 50), and
so there is a unique extension jj1 of jj to K1, and the norms j¸ij1 (i = 1; 2; :::;m)
are independent of the choice of K1: We say that ¸i is a dominant eigenvalue
for x if j¸ij1 > j¸jj1 for all j 6= i.

PROPOSITION 4 Suppose that G · GL(m;K) is irreducible and con-
nected in the Zariski topology. If G has an element x whose eigenvalues lie in
K and with a dominant eigenvalue, then it contains an element x0 such that
both x0 and x¡10 have dominant eigenvalues.

Proof Let the eigenvalues of x be ¸1; ¸2; :::; ¸m with j¸1j > j¸2j ¸ ::: ¸ j¸mj:
Without loss in generality we may assume that x is in Jordan form:

x =

2
6664

¸1 0 ¢ ¢ ¢ 0
0 ¸2 ¢ ¢ ¢ 0
...

. . .
...

0 0 ¸m

3
7775

with all entries above the main diagonal equal to 0: If charK = p > 0 then xp
k

is diagonal for suitably large k, so in this case we may replace x by a power of
itself and assume that x is diagonal. We now de…ne r as the integer ¸ 0 such
that r+1 is the dimension of the largest Jordan block for an eigenvalue ¸i with
j¸ij = j¸mj (a minimal eigenvalue); so r = 0 when charK > 0:

If ¹ 6= 0, then for each integer s the sth power of a k £ k Jordan block
with eigenvalue ¹ is given by

2
6666664

¹ 0 ¢ ¢ ¢ 0 0
1 ¹ ¢ ¢ ¢ 0 0
...

. . .
. . .

...
...

0 0
. . . ¹ 0

0 0 ¢ ¢ ¢ 1 ¹

3
7777775

s

=

2
6666664

°o 0 ¢ ¢ ¢ 0 0
°1 °0 ¢ ¢ ¢ 0 0
...

. . .
. . .

...
...

°k¡2
. . .

. . . °0 0
°k¡1 °k¡2 ¢ ¢ ¢ °1 °0

3
7777775
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where °j =
¡
s
j

¢
¹s¡j: Thus, if we de…ne wd := d¡r¸dmx

¡d for d = 1; 2; ::: then
the nonzero entries of wd have the form

d¡r¸dm

µ¡d
j

¶
¸¡d¡ji (2)

where j · r when j¸ij = j¸mj : By the choice of r there is at least one i with
j¸ij = j¸mj where there is an entry in (2) with j = r; and the norm of this
entry tends to the nonzero limit j¸mj¡r =r! as d ! 1. On the other hand,
for su¢ciently large d; all entries of wd have norm · j¸mj¡r whenever j > r
because j¸ij ¸ j¸mj in (2) (remember that r = 0 when charK > 0:): Since K
is locally compact and complete, this means that there is a subsequence fwdkg
which converges to some matrix w 6= 0 over K.

Consider the set

S := f(u; v) 2 G£G j the (1; 1)th entry of uwv is 0g

Clearly S is a closed subset of G£G in the Zariski topology. We claim that S is
a proper subset. Suppose on the contrary that S = G£G; and so euwve> = 0
for all u; v 2 G where e := (1 0 ::: 0) 2 Km and e> is its transpose. Since w 6= 0,
there exists f 2 Km such that fw 6= 0. Now since G is irreducible, there are
K-linear combinations a and b of matrices in G such that ea = f and (fw)b = e.
But then 0 = eawbe> = (fwb)e> = ee> = 1 gives a contradiction. Hence S is a
proper Zariski closed subset ofG£G. Similarly, S¡1 :=

©
(u¡1; v¡1) j (u; v) 2 S

ª

is also a proper Zariski closed subset of G £ G. Since G is connected in the
Zariski topology by hypothesis, G£G is also connected and so it cannot be the
union of two proper closed subsets (see [23] Lemma 14.3). Thus there exist
y; z 2 G such that (y¡1; z) 62 S [ S¡1, and so both y¡1wz and ywz¡1 have
nonzero entries, say ¹1 and ¹2, in the (1; 1)th position. Now de…ne

fd := d¡r¸dm¸
¡d
1 x

dy¡1x¡dz = (¸¡d1 x
d)y¡1wdz

gd := d¡r¸dm¸
¡d
1 xdyx¡dz¡1 = (¸¡d1 xd)ywdz

¡1

Since ¸1 is the dominant eigenvalue of x

¸¡d1 x
d !

2
6664

1 0 ¢ ¢ ¢ 0
0 0 ¢ ¢ ¢ 0
...

...
. . .

...
0 0 ¢ ¢ ¢ 0

3
7775 as d ! 1

Therefore, since fwdkg converges to w, we conclude that ffdkg and fgdkg con-
verge to matrices whose …rst rows are of the form (¹1 ¤ ::: ¤) and (¹2 ¤ ::: ¤),
respectively, and whose other entries are all 0. Thus for in…nitely many inte-
gers d; the matrices fd and gd will have dominant eigenvalues (approximately ¹1
and ¹2 respectively). Choose such a value of d and put x0 := xdy¡1x¡dz 2 G.
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Then x0 is a scalar multiple of fd and x¡10 is a scalar multiple of z¡1gdz; so
both x0 and x¡10 have dominant eigenvalues as required. ¤

PROPOSITION 5 Let G · GL(n;K) be an irreducible group of degree
n > 1 which is connected in the Zariski topology. Suppose that G has an
element x such that x and x¡1 both have dominant eigenvalues. Then for some
conjugate y = b¡1xb of x in G there exists an integer k ¸ 1 such that


xk; yk

®

is a free subgroup of rank 2.
Proof Let ¸ and ¹ be the dominant eigenvalues of x and x¡1; respectively,

and let u1 and u2 be the corresponding eigenvectors; so u1x = ¸u1 and u2x =
¹¡1u2: Put U1 := Ku1, U2 :=Ku2 and let U3 be the x-invariant subspace such
that Kn = U1 © U2 © U3: To simplify notation we shall write U 01 := U2 + U3,
U 02 := U1 + U3 and U 03 := U1 + U2.

We shall use the “Pingpong Lemma” (Lemma 7) to prove the propo-
sition. In our particular case we shall have A :=


xk

®
, B :=


b¡1xkb

®
and

¡ = ¢b. The hypothesis of the lemma then simplify to:
(i) ¢ \ ¢b = ;;
(ii) (¢b [ ¢b¡1)xkr µ ¢ for all integers r 6= 0; and
(iii) ¢xkr \ ¢ 6= ; for all integers r 6= 0:

In order to satisfy (ii) we shall choose ¢ as a neighbourhood of (U1[U2)nf0g ;
and use the fact that U1 and U2 are “attracting” subspaces under positive powers
of x and x¡1; respectively.

We begin by …nding b. First note that for any pair of subspaces V1 and
V2 or Kn the set

L(V1; V2) := fz 2 G jV1z \ V2 6= 0g

is Zariski-closed in G. Indeed, …x bases for V1 and V2. Then z 2 L(V1; V2) ,
a certain matrix has rank less than (dimV1 +dimV2); and this latter condition
is equivalent to the entries in z satisfying a set of (determinantal) polynomial
conditions. In particular, the sets L(Ui; U 0i), L(U

0
i ; Ui) and L(Ui; Ui) for i = 1; 2

are closed subsets ofG and are all proper subsets ofG (in the latter cases because
of the irreducibility of G). Since G is connected in the Zariski topology, it is
not a union of a …nite number of proper closed subsets (see [23] Lemma 14.3).
Thus there exists b 2 G which lies in none of these subsets and hence satis…es

(Uib [ Uib¡1) \ (Ui [ U 0i) = ; for i = 1; 2 (3)

We now de…ne ¢. Since K is a locally compact normed …eld we can de-
…ne a norm k k on Kn (take k(®1 ®2 ::: ®n)k := max(j®1j ; j®2j ; :::; j®nj), for
example) to make Kn; k k a locally compact normed space over K. The
conditions (3) show that the set fu1; u2g is disjoint from S := U3 [ U 01b [
U 01b

¡1 [U 02b [U 02b¡1: Every subspace of Kn is closed in the norm topology, so
there exists a compact neighbourhood N0 of fu1; u2g with N0 \ S = ;. Put
W0 := f®u j® 2 K;u 2 N0g ; so W0 \ S = ;: We claim that W0 is also closed
in the norm topology. Indeed, suppose that f®iwig is a sequence in W0 (with
®i 2 K and wi 2 N0) converging to a point v in Kn; we must show that v 2W0:
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Since N0 is compact, we can assume (by dropping to a subsequence if necessary)
that fwig converges to some point w 2 N0: Now w 6= 0 because 0 =2 N0; and by
considering a component where w is nonzero we can see that f®ig also converges
to some limit ® 2 K. Hence v = ®w 2 W0 as required, and so we have shown
that W0 is closed. Since W0 \ fu1; u2g b µ W0 \ S = ;, there exists a compact
neighbourhood N of fu1; u2g such that N µ N0 and W0 \Nb = ;. Finally put

¢ := f®u j® 2 K;u 2 N and ® 6= 0g

Since ¢ µ W0 we have ¢ \ ¢b = ; which is condition (i) above, and condition
(iii) is satis…ed because u1 2 ¢.

It remains to choose k ¸ 1 so that condition (ii) is satis…ed. First note
that since U1 is the eigenspace for the dominant eigenvalue ¸ of x; therefore
¸¡kuxk ! 0 as k ! 1 for all u 2 U 01: Thus if v 2 Kn is written in the form

v = ®1u1 + ®2u2 + u3 with ®1; ®2 2 K and u3 2 U3

then ¸¡kvxk ! ®1u1 as k ! 1: Similarly, ¹¡kvx¡k ! ®2u2 as k ! 1. In
particular, ®1 and ®2 are nonzero if v 2 Nb[Nb¡1 because the latter is disjoint
from U 01[U 02. Now ¢ is a neighbourhood of ®1u1 and ®2u2 when ®1 and ®2 are
nonzero, and Nb [Nb¡1 is compact. Thus there exists an integer k ¸ 1 such
that l ¸ k implies that ¸¡lvxl 2 ¢ and ¹¡lvx¡l 2 ¢ for all v 2 Nb [Nb¡1:
Then (¢b[¢b¡1)xkr µ ¢ for all integers r 6= 0 which shows that condition (ii)
is satis…ed. Hence for these choices of b;¢ and k the hypotheses of Lemma 7
are satis…ed and so


xk; b¡1xkb

®
is a free subgroup of rank 2 as required. ¤

The proof of Tits’ Theorem is now completed as follows. Let G be a
subgroup of GL(n;F ) which is …nitely generated and is not solvable by …nite.
Without loss in generality we may assume that the matrices in G are lower
triangular block matrices of the form

x =

2
6664

x1 0 ¢ ¢ ¢ 0
¤ x2 ¢ ¢ ¢ 0
...

...
. . .

...
¤ ¤ ¢ ¢ ¢ xh

3
7775

where the representations x 7! xi are irreducible over F . Since G is not solvable
by …nite, at least one of the irreducible constituents G1 of G is not solvable by
…nite, and so neither is the connected component G2 := G0

1 by Lemma 2. Since
G1 is a homomorphic image of G; the remark at the beginning of this section
shows that it is enough to prove that G2 contains a free subgroup of rank 2:
By Cli¤ord’s Theorem G2 is a completely reducible subgroup of the irreducible
group G1: Moreover, G2 is …nitely generated since G1 is …nitely generated and
jG1 : G2j is …nite by Lemma 2. Since G2 is connected in the Zariski topology,
Proposition 1 shows that there exists x 2 G02 with at least one eigenvalue not a
root of unity. Thus Propositions 2 and 3 show that there is a locally compact
normed …eld K; and a representation ½ : G2 ! GL(m;K) such that ½(x) has a

10



dominant eigenvalue, and that G3 := ½(G2) is Zariski connected. Without loss
in generality we may suppose that G3 is in lower block triangular form where
the diagonal blocks correspond to the irreducible constituents of G3: Let G4

denote the irreducible constituent in which ½(x) has its dominant eigenvalue.
Then G4 is a continuous homomorphic image of G3 under the Zariski topology,
and so it is also Zariski connected, as well as being irreducible as a linear group.
Moreover the degree of G4 is > 1 since the image of ½(x) in G4 lies in G04 and is
nontrivial. Now Proposition 4 shows that G4 contains an element x0 such that
both x0 and x¡10 have dominant eigenvalues. Finally Proposition 5 shows that
G4 (and hence G) contains a free subgroup of rank 2:
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