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STRONG INVOLUTIONS IN FINITE SPECIAL LINEAR
GROUPS OF ODD CHARACTERISTIC

JOHN D. DIXON, CHERYL E. PRAEGER, AND ÁKOS SERESS

Abstract. Let t be an involution in GL(n, q) whose fixed point
space E+ has dimension k between n/3 and 2n/3. For each g ∈
GL(n, q) such that ttg has even order, 〈ttg〉 contains a unique in-
volution z(g) which commutes with t. We prove that, with prob-
ability at least c/ log n (for some c > 0), the restriction z(g)|E+

is
an involution on E+ with fixed point space of dimension between
k/3 and 2k/3. This result has implications in the analysis of the
complexity of recognition algorithms for finite classical groups in
odd characteristic. We discuss how similar results for involutions
in other finite classical groups would solve a major open problem
in our understanding of the complexity of constructing involution
centralisers in those groups.

1. Introduction

The 2001 paper of Altseimer and Borovik [1] marked a break-through
in computational group theory by using involution centralisers to dis-
tinguish between the simple Lie type groups PSp(2n, q) and Ω(2n +
1, q), with q odd. These are groups which share many properties, such
as having the same order, and they had proved difficult to distinguish
computationally. The paper [1] inspired the work of Parker and Wil-
son [11] who demonstrated that involution-centraliser methods could
be used for solving several problems previously believed to be compu-
tationally difficult, and gave complexity analyses for methods to con-
struct involutions and their centralisers in quasisimple Lie type groups
in odd characteristic. These methods were based on Bray’s algorithm
[2] for constructing involution centralisers in finite groups. Our aim is
to improve the analysis given by Parker and Wilson of Bray’s algorithm
in the case of finite special linear groups in odd characteristic. This is
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part of a program to improve the complexity analyses of a number of
algorithms for computing with Lie type groups. In particular, we focus
on its application in the recognition algorithm for special linear groups
of Leedham-Green and O’Brien in [7]. In the rest of this section we
give a brief overview of these applications to set the scene for our main
result Theorem 1.1, and to pose some open problems.

1.1. Algorithmic backgrond. Leedham-Green and O’Brien [7] de-
scribe and analyse an algorithm which constructs a ‘standard generat-
ing set’ for a finite classical group G = SX(n, q) (q odd) in its natural
representation. Here (abusing the notation in [7] slightly) SX is one
of SL, SU, Sp, SOε, or Ωε, where ε ∈ {+,−, ◦}. In [7, Section 3] the
authors define a standard generating set for SX (see especially [7, Ta-
ble 1] for all groups except those of type Ωε, and [7, Lemmas 3.2-3.4]
for those of type Ωε). The algorithm is recursive in the sense that it
finds a certain direct decomposition Vm ⊕ Vn−m of the underlying n-
dimensional vector space, where dim(Vm) = m, n

3
≤ m ≤ 2n

3
and the

decomposition is orthogonal if SX 6= SL. It then constructs classical
groups acting on each of Vm and Vn−m and finds standard generators
for them recursively. The algorithm concludes by ‘patching together’
these standard generating sets for the subgroups to obtain standard
generators for G.

The key challenge is to obtain an appropriate direct decomposition
Vm⊕ Vn−m and construct the classical subgroups acting on each direct
summand. This is done in [7] by finding an involution t ∈ G with ±1-
eigenspaces of suitable dimensions m,n − m, then constructing (the
second derived subgroup of) its centraliser CG(t), and extracting the
central ‘factors’ of CG(t) induced on the eigenspaces of t.

The analysis given in [7] is based on the construction of O(n) ran-
dom elements at several stages in the algorithm (see [7, bottom of page
835]). O’Brien mentioned in private communication to the second and
third authors, probably in 2008, that the practical performance of the
algorithm was much faster than the analysis in [7] suggested. He won-
dered whether the number of random elements required may be much
smaller than a multiple of n.

We briefly discuss the steps in the algorithm in [7] where it was esti-
mated, in [7], that O(n) random elements might be needed. We high-
light where subsequent improvements on these estimates are available,
and where more work is still needed. Our comments, in particular,
refer to improvements on the complexity analysis in [11] for finding
involution centralisers in finite classical groups in odd characteristic.
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Step 1. Finding the involution t. An involution t ∈ G with ±1-
eigenspaces having dimensions in the interval [n

3
, 2n

3
] is said to be a

strong involution. Involutions are constructed in [7] by finding an el-
ement g ∈ G of even order, by random selection, and computing the
involution g|g|/2. For any g ∈ G, let us write inv(g) for the involution
obtained from g in this way (and set inv(g) = I if g has odd order). By
[7, Theorem 8.12], examination of a constant multiple of n random ele-
ments suffices to find, with high probability, an even ordered element g
such that inv(g) is a strong involution. This estimate was improved by
Lübeck, Niemeyer and the second author in [8, Theorem 1.1] to show
that only O(log n) random elements were needed for this step.

Step 2. Finding CG(t): Bray’s algorithm. This is the critical step and
uses ideas of John Bray ([2, Section 2], see also [11, Theorem 10]). Let
g ∈ G, and note that D := 〈t, tg〉 is a dihedral group. Bray observed
that, if the product ttg has odd order 2s + 1, then g(ttg)s commutes

with t; while if ttg has even order, then both inv(ttg) and inv(ttg
−1

)
commute with t, as they are the central involutions in the dihedral
groups D,Dg−1

, respectively. Moreover, if g is (nearly) uniformly dis-
tributed among the elements of G for which ttg has odd order (the
‘odd case’), then Richard Parker showed that g(ttg)s is (nearly) uni-
formly distributed among the elements of CG(t) (see [2, Theorem 3.1]
or [11, Theorem 11]). On the other hand, if g is uniformly distributed
among the elements of G for which ttg has even order (the ‘even case’),

then each of inv(ttg) and inv(ttg
−1

) is uniformly distributed among
the elements of the CG(t)-conjugacy class containing it. (Note that if
x = inv(ttg) is obtained precisely for the elements g ∈ {g1, . . . , gN}
then, for y ∈ CG(t), xy = inv(ttg) precisely for g ∈ {gy1 , . . . , g

y
N}.)

Although involutions in CG(t) obtained from the even case are ‘grate-
fully accepted’ and used in implementations of Bray’s algorithm, com-
plexity analyses up to the present have been unable to take them into
account because of their relatively poor randomisation properties (see
for example [6, Section 3], [7, Theorem 12.3], or [11, Theorem 2]). In-
deed, Parker and Wilson [11, Theorem 2] prove that, for a uniformly
distributed random element g ∈ G, the product ttg has odd order (that
is, the ‘odd case’ occurs) with probability at least c/n for some constant
c. Hence O(n) random elements suffice to obtain, with high probabil-
ity, a random element of CG(t). This result underpins the analyses in
[6, 7] which use the estimate of O(n) random elements for this step of
their algorithms.

A series of computer experiments conducted by the third author
indicated that the even case does indeed occur much more frequently
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than the odd case. Moreover when t is a strong involution, then fairly
often an element z = inv(ttg) obtained in CG(t) in the even case induces
a balanced involution on each eigenspace of t, that is to say, there
are constants α, β satisfying 0 < α < β < 1 such that, if the ±1-
eigenspace E±(t) of t has dimension k, then the involution induced by
z on E±(t) has fixed-point space of dimension in the range [αk, βk].
Such an involution in a k-dimensional classical group is said to be
(α, β)-balanced. The major result Theorem 1.1 of [12] is critical for
the analysis of Bray’s algorithm for balanced involution centralisers:
namely, consider H = SY(k, q) (q odd) in its natural representation,
where SY is one of SL, SU, Sp or SOε. Then, for given α, β such that
0 < α < 1

2
< β < 1, there is an explicitly computable constant c =

c(α, β) such that, with probability at least 1−q−k, H will be generated
by a sequence (x1, . . . , xc) of (α, β)-balanced involutions of H such that
each xi is random and uniformly distributed in its H-conjugacy class.

Since elements z ∈ CG(t) constructed from the even case of Bray’s al-
gorithm possess this randomisation property, it follows that, with high
probability, a constant number of such elements z, which are in addition
(α, β)-balanced on the t-eigenspaces, will generate (the second derived
subgroup of) CG(t). Given this result, the missing link in the program
to improve the analysis of Bray’s algorithm for strong involutions is
therefore a more realistic estimate for the number of random elements
needed to produce an element z in the ‘even case’ such that, in addition,
z induces an (α, β)-balanced involution on a t-eigenspace. Our main
result Theorem 1.1 addresses this problem in the case (α, β) = (1

3
, 2

3
)

for special linear groups. Theorem 1.1 implies that, for a strong invo-
lution t in G = SL(n, q), only O(log n) random elements are required
to obtain a strong involution in the induced action on a t-eigenspace,
and hence on average only O(log n) elements are required in Bray’s
algorithm to construct the second derived subgroup of CG(t).

Theorem 1.1. [Main Theorem] There exist positive constants κ and n0

such that the following is true. Suppose that n ≥ n0, that t is a strong
involution in GL(n, q), and that g is a uniformly distributed random
element of GL(n, q). Let z(g) := inv(ttg) (recalling that inv(ttg) := I
if |ttg| is odd), and let z(g)ε be the restriction of z(g) to the eigenspace
Eε(t) ( ε = + or −). Then

(i) z(g)+ is a strong involution with probability at least κ/ log n; and
(ii) z(g)− is a strong involution with probability at least κ/ log n.

Remark 1.2. (a) The proof shows that we can take n0 = 700 and κ =
0.0002 but we believe that these constants are far from best possible.
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(b) We comment on the reason for considering elements t, g in
GL(n, q) rather than SL(n, q). Our aim is to construct the centraliser of
an involution t. In the discussion above we consider products ttg (where
g is random in GL(n, q)). Such products always have determinant 1
(since t and tg have the same determinant ±1) and so these products
lie in SL(n, q), and hence the involutions we construct z = inv(ttg) also
lie SL(n, q). However, the restrictions z+ and z− may or may not lie in
the special linear groups on the eigenspaces E+(t) and E−(t) respec-
tively, and the groups induced by the centraliser of t on these spaces
are general linear groups. Thus recursively we must consider elements
t, g in general linear groups.

To complete a similar improvement of this step of Bray’s algorithm
for the other classical groups we need an analogue of Theorem 1.1 for
them.

Problem 1.3. Prove an analogue of Theorem 1.1 with a similar bound
for the other classical groups.

Step 3. Extracting the ‘factors’ of CG(t). This step is discussed and
analysed in [7, Section 11]. A linear transformation x on a space V
over Fq is called a ppd-element if there is an x-invariant subspace U
of V such that: (i) x is irreducible on U ; (ii) e := dimU > 1

2
dimV ;

and (iii) the order of x is divisible by a primitive prime divisor (ppd)
of qe − 1 (that is, a prime divisor r of qe − 1 such that r - qi − 1 for all
i < e). The basic idea in Step 3 is to find elements x ∈ CG(t) such that
the induced action of some power xs on one of the eigenspaces, E+(t)
or E−(t), is a ppd-element, and such that xs fixes the other eigenspace
pointwise.

The analysis is based on the theory of ppd-elements developed in
[5, 9, 10], and shows that O(log log n) random elements from CG(t)
are sufficient to find, with high probability, suitable ppd-elements to
construct the factors (see [7, Theorem 11.10] and other results in [7,
Sections 13 and 14] for small dimensions).

Thus application of Theorem 1.1 reduces, for SL(n, q), estimates of
the number of random elements required for the algorithms in [6, 7, 11]
from O(n) to O(log n). A solution to Problem 1.3 would yield the same
improvement for the other classical groups.

The rest of the paper is devoted to proving Theorem 1.1. We discuss
aspects of dihedral subgroups of GL(n, q) in Section 2, some prelimi-
nary inequalities in Section 3, estimates related to coefficients in various
power series in Section 4, and we complete the proof of Theorem 1.1
in Section 5.
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1.2. Outline of the proof of the Main Theorem. The remainder
of the paper consists of the proof of Theorem 1.1. As an aid to the
reader we outline the steps involved.

Throughout the paper q denotes a power of an odd prime.

The proof begins with an analysis of dihedral subgroups 〈t, y〉 of
GL(n, q), where t2 = I and t−1yt = y−1 (Section 2). We are partic-
ularly concerned with the case where y has even order, and we use
inv(y) to denote the involution in 〈y〉. It turns out (Remark 2.6) that
the analysis is significantly easier in the case where the characteristic
polynomial cy(X) of y lies in the set Π(n, q), namely, when cy(X) has no
repeated roots and neither 1 nor −1 is a root of cy(X) (Definition 2.4).
In particular, polynomials cy(X) with this property are separable, and
admit a factorisation (1) as a product of pairwise distinct ∗-irreducible
polynomials (a monic polynomial is ∗-irreducible if it is either a self-
conjugate irreducible polynomial or a product of two distinct conjugate
irreducible polynomials). The set of pairs (t, y) with cy(X) ∈ Π(n, q) is
denoted by ∆(n, q); note that Π(n, q) and ∆(n, q) are non-empty only
when n is even (Definition 2.5). When cy(X) ∈ Π(n, q), the separability
of cy(X) implies that the elements of GL(n, q) with characteristic poly-
nomial cy(X) lie in a single conjugacy class. Both the size of the class,
and the type of the involution inv(y) associated with (t, y) ∈ ∆(n, q),
are determined by cy(X) (Lemma 2.8 and Corollary 2.15).

Corollary 2.12 explains how the 2-part of the multiplicative order
of the roots of a ∗-irreducible polynomial is related to the 2-part of
the degree of the polynomial, and this provides an important way to
estimate the number of pairs (t, y) ∈ ∆(n, q) for which the involution
inv(y) has a particular type.

Most of the paper is an analysis of pairs (t, y) ∈ ∆(n, q). Only in the
final Section 5 do we relax this condition and consider a more general
situation (Definition 5.2).

Controlling the proportion of eigenvalues of y whose orders have
maximal 2-part enables us to control the dimensions of the eigenspaces
of inv(y). We estimate the probability of finding suitable involutions
inv(y) through a careful analysis of various generating functions. First
we consider a generating function related to the sets ∆(n, q), namely

R(q, u) :=
∑∞

n=0 r(2n, q)u
n, where r(2n, q) := |∆(2n,q)|

|GL(2n,q| (recall ∆(n, q) =

∅ when n is odd). It is known ([13, Section 5]) that

R(q, u) =
1

1 + u/(q − 1)

∞∏
n=1

(
1 +

un

qn − 1

)N(q,n)
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where N(q, n) denotes the number of monic irreducible polynomials
of degree n over Fq. For each n, there is a factor 1 + un/(qn − 1)
corresponding to each of these N(q, n) polynomials (in the case of n = 1
one of these factors is cancelled by the initial factor (1 +u/(q− 1))−1).
In order to estimate the distribution of the type of inv(y), as (t, y) runs
over ∆(2n, q), we use the related quantities

Rb(q, u) =
1

1 + u/(q − 1)

∏
2b+1-n

(
1 +

un

qn − 1

)N(q,n)

for b = 1, 2, . . . . These are the corresponding generating functions for

the numbers rb(2n, q) := |∆b(2n,q)|
|GL(2n,q)| (see (5)). In the infinite product for

Rb(q, u), the monic irreducible polynomials which correspond to the
factors are limited to those of degree not divisible by 2b+1. We also
need to consider a certain subset of monic irreducble polynomials for
which the degree is divisible by 2b+1 but not by 2b+2. We do this via
the additional function

G0
b(q, u) :=

∏
m odd

(
1 +

u2bm

q2bm − 1

)N0(q,2b+1m)

where N0(q, 2b+1m) is defined just before Corollary 2.12; in particu-
lar N0(q, 2b+1m) ≤ N(q, 2b+1m). Then, as discussed in Remark 2.16,
|GL(2k, q)| times the coefficient of ukz` in Rb(q, u)G0

b(q, uz) provides a
lower bound for the number of pairs (t, y) ∈ ∆(2k, q) such that inv(y) is
of type (2k− 2`, 2`). This bound is simplified by introducing a further
generating function Fb(q, u) in (7).

In Section 4, we compute bounds on the coefficients r(2n, q) and
rb(2n, q), and on the coefficients of Fb(q, u) (Lemma 4.1, Lemma 4.5
and Lemma 4.6). These estimates are used in Section 5.

In the final Section 5 we complete the proof of Theorem 1.1. We be-
gin by estimating the number |J(2m, q;α, β)| of pairs (t, y) ∈ ∆(2m, q)
such that inv(y) is (α, β)-balanced (Lemma 5.1). However, this is not
enough since Theorem 1.1 refers to the restrictions of inv(y) to the
eigenspaces E+(t) and E−(t) of t. To analyse these restrictions we must
consider a more general situation where the underlying space V is a di-
rect sum V1 ⊕ V2 of 〈t, y〉-invariant subspaces such that t|V1 = y|V1 = I
and (t|V2 , y|V2) ∈ ∆(2k, q) for some k ≤ m (see Definition 5.2). The
final arguments show that there are sufficiently many pairs (t, tg) with
g ∈ GL(2n, q) and y = ttg in this more general situation such that
conclusions (i) and (ii) of Theorem 1.1 are satisfied.
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2. Dihedral subgroups of GL(n, q)

We only consider fields of odd characteristic, and in the rest of this
paper q will denote a power of an odd prime.

An involution in GL(n, q) is an element t such that t2 = 1. We
consider the identity map I as the ‘trivial’ involution, and if the order
|t| = 2, we call t ‘proper’. For an involution t ∈ GL(n, q), the un-
derlying vector space V := Fnq is a direct sum of the eigenspaces of t,
namely V = E+(t)⊕E−(t), where t acts as the identity I on E+(t) and
as −I on E−(t). If the dimensions of these eigenspaces are n+ and n−,
respectively, then we say that t is of type (n+, n−). Two involutions are
of the same type if and only if they are conjugate in GL(n, q) so, apart
from the trivial involution which has type (n, 0), there are n conjugacy
classes of (proper) involutions.

Given 0 ≤ α < β ≤ 1 we say, as in Section 1, that an involution of
type (n+, n−) in GL(n, q) is (α, β)-balanced if α ≤ n+/n ≤ β, and we
say that a (1

3
, 2

3
)-balanced involution is strong.

An element y ∈ GL(n, q) is called self-conjugate if y and y−1 are
conjugate in GL(n, q). For any polynomial f(X) ∈ Fq[X] with no
roots equal to 0, we define the conjugate (monic) polynomial f ∗(X) :=
f(0)−1Xdeg ff(X−1), where deg f is the degree of f(X), and we call
f(X) self-conjugate if f(X) = f ∗(X) (this can only happen if f(X)
is monic). We define the characteristic polynomial of an element y ∈
GL(n, q) as c(X) := det(XI−y), so c(X) is always monic. Note that y
is self-conjugate if and only if its characteristic polynomial c(X) is self-
conjugate. The self-conjugate polynomials of degree 1 are X + 1 and
X − 1. Since a finite field is perfect, each irreducible polynomial over
Fq is separable, that is to say, it has no repeated roots in its splitting
field. In particular, it is clear that the roots of an irreducible self-
conjugate polynomial of degree greater than 1 come in pairs α, α−1,
and so irreducible self-conjugate polynomials of degree greater than 1
have even degree (see, for example [4, Lemma 1.3.15 (c)]).

A dihedral subgroup D of GL(n, q) is a subgroup generated by two
elements t, y such that t2 = I and t−1yt = tyt = y−1. Note that also
(ty)2 = I. Conversely, if t and t′ are involutions and we define y := tt′,
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then t−1yt = y−1 and 〈t, t′〉 = 〈t, y〉 is a dihedral group. We allow the
trivial case where t = I. In the nontrivial case where t is a proper
involution, |D| = 2m where m is the order of the normal subgroup 〈y〉.

Lemma 2.1. Let D = 〈t, y〉 be an irreducible dihedral subgroup of
GL(n, q) with t2 = I and t−1yt = y−1, and let c(X) be the characteristic
polynomial of y.

(1) If n = 1, then D is cyclic and the only possibilities are: (t, y) =
(I, I), (I,−I), (−I, I) or (−I,−I).

(2) If n > 1, then n is even, and one of the following holds:
(a) 〈y〉 is an irreducible subgroup of GL(n, q) and c(X) is an

irreducible self-conjugate polynomial of degree n;
(b) 〈y〉 is a reducible subgroup and the underlying vector space

is a direct sum of two 〈y〉-irreducible subspaces; c(X) is
a product c1(X)c∗1(X) where c1(X) and c∗1(X) are monic
irreducible polynomials of degree n/2.

Proof. Note that y is self-conjugate, since y is conjugate to y−1. The
case n = 1 is clear since GL(1, q) ∼= Zq−1, so all dihedral subgroups are
cyclic and have orders at most 2. Suppose now that n > 1.

Let V be the underlying vector space. Since q is odd and D is
irreducible on V , the normal subgroup H := 〈y〉 is completely reducible
by Clifford’s theorem. Let W be an irreducible H-subspace. Then Wt
is also an irreducible H-subspace because Wty = Wy−1t = Wt. Since
W + Wt is invariant under both y and t, and V is irreducible under
D, we have V = W + Wt. On the other hand W is an irreducible H-
subspace, so the H-subspace W ∩Wt = W or {0}. Thus either V = W
or V = W ⊕Wt. The characteristic polynomial c(X) is self-conjugate
since y is.

If V = W then V is H-irreducible and so c(X) is irreducible. This
proves part 2(a).

If V = W ⊕ Wt then let c1(X) (respectively, c2(X)) be the char-
acteristic polynomial of y restricted to W (respectively, Wt). These
polynomials are irreducible of degree n/2 because W and Wt are irre-
ducible H-subspaces of dimension n/2. Since c2(X) is irreducible, it is
the minimal polynomial of y acting on Wt. However, Wtc1(y−1)yn/2 =
Wc1(y)tyn/2 = 0 and so c2(X) divides c1(0)−1Xn/2c1(X−1) = c∗1(X).
Since c∗1(X) and c2(X) are both monic of degree n/2, we conclude that
c2(X) = c∗1(X). This proves part 2(b). �

We can say more. Summarizing [13, Lemmas 2.2 and 2.4] we have
the following information, which we state without proof.
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Lemma 2.2. Suppose that y is a self-conjugate element of order m in
GL(n, q), where n is even, and let c(X) be its characteristic polynomial.

(i) If c(X) is irreducible then m | (qn/2 + 1) and y is inverted by
precisely qn/2 + 1 involutions in GL(n, q).

(ii) If c(X) = c1(X)c∗1(X), for a monic irreducible polynomial c1(X)
such that c1(X) 6= c∗1(X), then m | (qn/2 − 1) and y is inverted
by precisely qn/2 − 1 involutions in GL(n, q).

Moreover, in both cases each involution inverting y is of type (n
2
, n

2
).

Remark 2.3. The claim in Lemma 2.2 (ii) that m | (qn/2 − 1) follows
from the fact that the roots of the irreducible polynomials c1(X) and
c∗1(X) lie in the group F∗

qn/2 . These roots are the eigenvalues of y and

so have order m.

Recall that a polynomial is separable if it has no multiple roots in its
splitting field. We will study the following set of separable polynomials.

Definition 2.4. Let Π(n, q) be the set of all separable self-conjugate
(monic) polynomials f(X) ∈ Fq[X] with no root equal to 0, 1 or −1.
Note that each f(X) ∈ Π(n, q) can be factorised uniquely into pairwise
distinct factors over Fq
(1) f(X) = f1(X) . . . fk(X)

where each fi(X) is a monic self-conjugate polynomial which is either
(i) irreducible, or (ii) a product gi(X)g∗i (X) of monic irreducible poly-
nomials over Fq with gi(X) 6= g∗i (X). We call (1) the ∗-factorization of
f(X) and we say that the fi(X) are ∗-irreducibles. In particular, since
X−1 and X+1 do not divide f(X), each fi(X) has even degree. Thus
Π(n, q) is nonempty only for even n.

An element y ∈ GL(n, q) is called separable if its characteristic poly-
nomial is separable; in [13] such elements are called regular semisimple.

Definition 2.5. Define ∆(n, q) to be the set of pairs (t, y), with t ∈
GL(n, q) and y ∈ SL(n, q), such that t2 = 1, t−1yt = y−1, and the
characteristic polynomial of y lies in Π(n, q). Equivalently these are
the pairs (t, y) which generate a dihedral group for which y is separable
and self-conjugate, and no eigenvalue of y equals 1 or −1.

If c(X) is the characteristic polynomial for y and its ∗-factorization
is c(X) = c1(X) . . . ck(X), as in (1), then the underlying space for
GL(n, q) has a unique decomposition V =

⊕
i Vi into irreducible 〈t, y〉-

invariant subspaces such that the restriction y|Vi has characteristic poly-
nomial ci(X), for each i. Again ∆(n, q) is nonempty only for even n
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and the involution t must be of type (n/2, n/2) (apply Lemma 2.2 to
each of the restrictions t|Vi).

If (t, y) ∈ ∆(n, q), then ty is also an involution and (ty, y) ∈ ∆(n, q).
Thus t and ty are both involutions of type (n/2, n/2) and so are con-
jugate in GL(n, q). Hence y = t(ty) = ttg for some g ∈ GL(n, q). In
particular y ∈ SL(n, q) because det t = det tg = (−1)n/2.

Remark 2.6. In the rest of this paper we concentrate on dihedral
groups generated by pairs from ∆(n, q) (as in Definition 2.5) and closely
related dihedral groups. This restriction means that our lower bounds
in the Main Theorem will be weaker than they otherwise would be,
but the separability of y significantly simplifies the analysis. The re-
striction that y is separable is only expected to have a modest effect on
our estimates since the proportion of elements in GL(n, q) which are
separable is asymptotic to 1− 1/q as n→∞ (proved independently in
[3, 14], see also [4, page 2]).

Definition 2.7. Let y ∈ GL(n, q) have order m. If m is even then
inv(y) := ym/2 denotes the unique nontrivial involution in 〈y〉; and if
m is odd we define inv(y) := I, the trivial involution. Note that if
(t, y) ∈ ∆(2n, q) then m > 2 and inv(y) generates the centre of the
dihedral group 〈t, y〉.

The following result is a key observation on how to recognize the
type of inv(y) from the ∗-factorization of the characteristic polynomial
of y.

Lemma 2.8. Let (t, y) ∈ ∆(2n, q) and suppose that y has even order
2kh ( k ≥ 1 and h odd) and inv(y) has type (n+, n−). Let c(X) be the
characteristic polynomial for y, let Γ be the set of eigenvalues of y whose
multiplicative order is divisible by 2k, and let c0(X) :=

∏
ξ∈Γ(X − ξ).

Then n− = deg c0 = |Γ|, and c0(X) is the product of all ∗-irreducible
factors of c(X) whose roots lie in Γ.

Proof. Let Λ be the set of all eigenvalues of y over a splitting field
for y (recall that y is separable by the definition of ∆(2n, q)). Now

inv(y) = y2k−1h so the eigenvalues of inv(y) are precisely the elements

ξ2k−1h (ξ ∈ Λ). The latter eigenvalues are all equal to ±1, and the

result follows since ξ ∈ Γ if and only if ξ2k−1h = −1. �

2.1. Monic irreducible polynomials. By elementary Galois theory
the Galois group of Fqn over Fq is cyclic of order n and is generated by
the Frobenius automorphism ψ : ξ 7−→ ξq. Any orbit under the action
of 〈ψ〉 on F∗qn consists of the roots of a monic irreducible polynomial
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of degree d, say, where d | n. Conversely if d | n then any monic
irreducible polynomial of degree d over Fq splits into d distinct linear
factors over Fqn . For each d | n, this gives a bijection between the
set of orbits of length d for 〈ψ〉 and the set of all monic irreducible
polynomials over Fq with d distinct nonzero roots. Hence if N(q, d)
denotes the number of monic irreducible polynomials of degree d over
Fq, and with nonzero roots, then

qn − 1 =
∑
d|n

dN(q, d).

Thus by the Möbius inversion formula we have the well known formula

(2) N(q, n) =
1

n

∑
d|n

µ(d)(qn/d − 1)

where µ is the Möbius function (see [4, p. 22]). For n > 1 the right
hand sum is also equal to

∑
d|n µ(d)qn/d since

∑
d|n µ(d) = 0 when

n > 1. See, for example [4, Lemma 1.3.10].

Lemma 2.9. Let q be an odd prime power. Then

(i) N(q, n) = 1
n

{
(qn − 1)− θ2(qn/2 − 1)− η(q, n)

}
where θ2 is 1 if

n is even and 0 if n is odd, and 0 ≤ η(q, n) ≤ 5
4
(qn/3 − 1);

(ii)
(
qn − 2qn/2

)
/n < N(q, n) ≤ (qn − 1)/n for all n ≥ 1, and

N(q, n) > 0.956(qn − 1)/n for n ≥ 5;
(iii) N(q, n+ 1) > N(q, n) for all n ≥ 1;
(iv) N(q, n)/(qn − 1) ≥ N(3, n)/(3n − 1) for all n ≥ 1.

Proof. (i) By (2), nN(q, n) =
∑

d|n µ(d)(qn/d − 1) where the Möbius

function µ takes values ±1 and 0. Since N(q, 1) = q− 1, part (i) holds
for n = 1 with η(q, n) = 0. If n = ps > 1 is a power of a prime p, then
nN(q, n) = (qn − 1) − (qn/p − 1), and since µ(p) = −1, the assertion
holds with η(q, n) = 0 when p = 2, and η(q, n) = qn/p − 1 when p is
odd.

Thus suppose that n is not a power of a prime and let p be the least
odd prime dividing n. Put m := n/p. Since n is not a prime power we
have m ≥ 2 and

nN(q, n) = (qn − 1)− θ2(qn/2 − 1)− (qm − 1) + δ

where
δ :=

∑
d|n, d>p

µ(d)(qn/d − 1).

We claim that |δ| ≤ (qm − 1)/4. Since m ≤ n/3 this will complete the
proof of part (i).
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The values of n/d in the sum for δ are distinct integers in the range
[1,m−1]. Suppose first that there is no divisor d such that n/d = m−1.
Then

|δ| ≤
m−1∑
k=2

(qm−k − 1) < (qm − 1)
∞∑
k=2

q−k =
qm − 1

q(q − 1)
.

Since 1/q(q − 1) < 1/4 for q ≥ 3 the claim is proved in this case.
On the other hand, suppose that there exists a divisor d of n such

that n/d = m−1. Then pm = n = d(m−1) and gcd(m,m−1) = 1, so
(m− 1) | p. This shows that m = 2 or p+ 1 and so n = 2p or p(p+ 1).
By hypothesis p is the smallest odd prime dividing n, so in the latter
case p+ 1 must be a power of 2. Thus in either case n = 2sp for some
s ≥ 1. Therefore nN(q, n) = (qn−1)−(qn/2−1)−(qm−1)+(qm/2−1)
and so δ = qm/2 − 1 = (qm − 1)/(qm/2 + 1). Since m ≥ 2 and q ≥ 3 we
conclude that |δ| ≤ (qm − 1)/4. This completes the proof of part (i).

(ii) Now η(q, n) ≤ qn/2 for n ≥ 1 by part (i) (see the first para-
graph of the proof of part (i) for n a prime power), so that (qn −
2qn/2)/n < N(q, n) ≤ (qn−1)/n. On the other hand, since qn−2qn/2 =
qn
(
1− 2q−n/2

)
> 0.956qn for q ≥ 3 and n ≥ 7 the second inequality in

(ii) now follows for all n ≥ 7 and can be verified directly for n = 5 and
6 (it is false for q = 3 and n = 2, 3, 4).

(iii) This is easily verified for n ≤ 4. For n ≥ 5 it follows from (ii)
because 0.956(qn+1 − 1)/(n+ 1) > (qn − 1)/n.

(iv) The result is trivially true if n = 1. If n > 1 and n is a power
of a prime p, then nN(q, n) = qn − qn/p and the inequality can be
verified directly. So suppose that n is divisible by at least two primes,
and let p < p′ be the two smallest primes dividing n. Then nN(q, n) =
qn−qn/p−βnqn/p

′
where |1− βn| <

∑∞
k=1 q

−k since |µ(d)| ≤ 1 for each d.
Now

∑∞
k=1 q

−k = 1/(q− 1) ≤ 1/2 for all q ≥ 3, and so 1/2 < βn < 3/2.
Thus nN(q, n)/(qn−1) > (qn−qn/p)/(qn−1)−(3/2)qn/p

′
/(qn−1) for all

q ≥ 3 whenever n is not a prime power. Similarly nN(3, n)/(3n− 1) <
(3n−3n/p)/(3n−1)− (1/2)3n/p

′
/(3n−1) and so the required inequality

is easily verified. �

2.2. Powers of 2. For pairs (t, y) ∈ ∆(n, q) (as in Definition 2.5),
we are concerned with the powers of 2 which divide the order of y ∈
SL(n, q). Recall that q is odd and ∆(n, q) is nonempty only when n is
even. We use the following notation.

Notation 2.10. For arbitrary n and odd q, let 2eq(n) denote the largest
power of 2 which divides qn − 1, that is, the 2-part (qn − 1)2 = 2eq(n).
The following are easily verified.
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(1) If n = 2kh with k ≥ 0 and h odd, then eq(n) = eq(2
k) since

qn − 1 = (q2k − 1)(q2k(h−1) + · · ·+ 1), and q and h are odd.
(2) eq(2) > eq(1) ≥ 1 and eq(2) ≥ 3 since q2 ≡ 1 (mod 8) for odd q.

(3) For k > 1 we have eq(2
k) = 1 + eq(2

k−1), since q2k − 1 =

(q2k−1−1)(q2k−1
+1) and q2k−1 ≡ 1 (mod 8). Therefore eq(2

k) =
k − 1 + eq(2) ≥ k + 2 for k ≥ 1.

Suppose that f(X) ∈ Fq[X] is non-constant and let K be its splitting
field. We define

(1) ω(f) to be the order of the (cyclic) subgroup of K∗ generated
by the roots of f(X), and

(2) ω2(f) to be the largest power of 2 which divides ω(f).

If f(X) is irreducible, then all its roots have the same multiplicative
order which is equal to ω(f), and we note that ω(f) = ω(f ∗) since the
roots of f ∗(X) are the inverses of roots of f(X).

Lemma 2.11. Let Pn be the set of monic irreducible polynomials f(X)
of degree n over Fq (q odd) with nonzero roots (so |Pn| = N(q, n)).
Then

(i) ω2(f) ≤ 2eq(n) for all f(X) ∈ Pn, and
(ii) ω2(f) = 2eq(n) for at least 1

2
N(q, n) of the f(X) ∈ Pn.

In the special case where n = 2k we have ω2(f) = 2eq(n) for exactly qn−1
2n

of the f(X) ∈ Pn.

Proof. Put e := eq(n) and write qn − 1 = 2e` where ` is odd by defi-
nition. The multiplicative group G := F∗qn of the field Fqn is cyclic of
order qn − 1 and so has even order. Let ξ be a generator of G. Then
ζ := ξ` is an element of order 2e and 〈ζ〉 is the set of all 2-elements of
G. Let H be the unique subgroup of index 2 in G. Then H consists of
all elements of the form ξm where m is even. Also Hζ consists of the
elements of the form ξm where m is odd, and is the set of all elements
of G with 2-part of order 2e.

Let Ω be the set of elements of Fqn of degree n over Fq. These
elements are the roots of the polynomials in Pn, and so part (i) follows
from the fact that Ω ⊂ G. Also nN(q, n) = |Ω| since each irreducible
polynomial of degree n has n roots in Ω. By definition, Ω consists of
those elements of Fqn which do not lie in any proper subfield of Fqn
containing Fq.

We now claim that η ∈ Ω ∩ H implies that ηζ ∈ Ω ∩ Hζ. Indeed
η ∈ Ω ∩H implies that Fqn is the smallest extension of Fq containing
both the 2-part η2 and the 2′-part η2′ of η. Since η ∈ H, 〈η2〉 is
a proper subgroup of 〈ζ〉 and so 〈ηζ〉 = 〈η2′ , η2ζ〉 ≥ 〈η2′ , η2〉 = 〈η〉
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and therefore Fqn is the smallest extension of Fq containing ηζ, so
ηζ ∈ Ω. Thus ηζ ∈ Ω ∩Hζ as claimed. It follows from this claim that
|Ω ∩Hζ| ≥ |Ω ∩H|, and therefore

2 |Ω ∩Hζ| ≥ |(Ω ∩H) ∪ (Ω ∩Hζ)| = |Ω| = nN(q, n).

Since Ω ∩ Hζ is the set of elements of degree n over Fq whose orders
are divisible by 2e the assertion in (ii) follows.

Finally, suppose that n is a 2-power, say 2k. We claim that all the
elements in the cosetHζ are roots of irreducible polynomials of degree n
over Fq. Since |Hζ| = 1

2
(qn−1) this will show that there are 1

2
(qn−1)/n

polynomials f(X) ∈ Pn with ω2(f) = 2eq(n). The claim is trivially true
for k = 0 since Hζ is the set of roots of highest 2-part order for linear
polynomials. For k ≥ 1 the field Fqn has a unique maximal subfield
Fqn/2 containing Fq. Thus if α ∈ Fqn then α has degree n over Fq if and

only if α /∈ Fqn/2 . Since
∣∣∣F∗qn : F∗

qn/2

∣∣∣ = qn/2 + 1 is even, H ≥ F∗
qn/2 and

so the claim follows for k ≥ 1 as well. �

We define N0(q, 2n) to be the the number of monic ∗-irreducible
self-conjugate polynomials of degree 2n whose roots have multiplicative
orders divisible by 2eq(n) (with eq(n) as in Notation 2.10).

Corollary 2.12. Suppose that n is even (and q is odd) and put e :=
eq(n). Let Γ1 be the set of monic self-conjugate irreducible polynomi-
als of degree 2n over Fq, and let Γ2 be the set of monic self-conjugate
∗-irreducible polynomials of the form g(X)g∗(X) with g(X) monic ir-
reducible of degree n over Fq and g(X) 6= g∗(X). Then

(i) for each f(X) ∈ Γ1, we have ω2(f) < 2e;
(ii) for each f(X) = g(X)g∗(X) ∈ Γ2, the 2-part order satisfies

ω2(f) = ω2(g) ≤ 2e, and at least 1
4
N(q, n) of the polynomials f(X) ∈ Γ2

have ω2(f) = 2e; moreover if n is a power of 2 then there are exactly
qn−1

4n
such polynomials with ω2(f) = 2e.

(iii) For n even, N0(q, 2n) ≥ 1
4
N(q, n), and in the special case where

n is a power of 2 we have N0(q, n) = qn−1
4n

.

Remark 2.13. We shall only need the case where n is even, but we
note that the result is more complicated when n is odd. For example, if
n is odd and q ≡ 3 (mod 4), then eq(n) = 1. In this case ω2(f) ≤ 21 for
all f(X) ∈ Γ2, but there are polynomials f(X) ∈ Γ1 with ω2(f) ≥ 22.

Proof. Since n is even, e ≥ eq(2) > 1. If f(X) ∈ Γ1 then ω(f) | (qn+1)
by Lemma 2.2. Since n is even and q is odd, qn ≡ 1 (mod 4) and so
ω2(f) ≤ (qn + 1)2 = 2 < 2e. Hence part (i) is proved.
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By Lemma 2.11, all monic irreducible polynomials g(X) of degree n
over Fq have ω2(g) ≤ 2e. Also, as observed in Notation 2.10, ω(g) =
ω(g∗), and hence if f(X) = g(X)g∗(X) and g(X) 6= g∗(X), then ω(f) =
ω(g) and ω2(f) = ω2(g). This proves the first assertion of part (ii).

To prove the rest of part (ii), let g(X) be monic and irreducible
of degree n with ω2(g) = 2e. If g(X) = g∗(X) then, since n is
even, it follows from Lemma 2.2 (i) that ω(g) | (qn/2 + 1) and since
(qn− 1)/(qn/2 + 1) = qn/2− 1 is even, ω2(g) < 2e, which is a contradic-
tion. Thus all g(X) with ω2(g) = 2e satisfy g(X) 6= g∗(X). Moreover
Lemma 2.11 implies that ω2(g) = 2e holds for at least 1

2
N(q, n) of the

monic irreducible degree n polynomials g(X), and if n is a power of 2
then equality holds for exactly qn−1

2n
of them. Since each polynomial

f(X) = g(X)g∗(X) ∈ Γ2 with ω2(f) = 2e corresponds to two such
polynomials, g(X) and g∗(X), we obtain the rest of part (ii).

In particular we have shown that each monic ∗-irreducible self-con-
jugate polynomial f(X) of degree 2n with ω2(f) = 2e is of the form
g(X)g∗(X) where g(X) 6= g∗(X). Thus part (iii) follows from parts (i)
and (ii). �

2.3. Generating series.

Notation 2.14. Let P be the set of all power series in z with real
coefficients. If f(z) :=

∑
n≥0 fnz

n we write [zn]f(z) to denote the
coefficient fn of zn. Moreover, if g(z) :=

∑
n≥0 gnz

n, then

we write f(z)� g(z) if fn ≤ gn for all n.

The relation� is a partial ordering on P with the following properties.

(1) f1(z) � g1(z) and f2(z) � g2(z) imply that f1(z) + f2(z) �
g1(z) + g2(z). If we also have 0 � f2(z) then f1(z)f2(z) �
g1(z)f2(z).

(2) Since the power series for the exponential function exp(z) has
positive coefficients, it also follows that 0� f1(z)� g1(z) and
f1(0) = g1(0) = 0 together imply that exp(f1(z))� exp(g1(z)).

(3) If f(z) =
∑
fnz

n then we write |f | (z) :=
∑
|fn| zn. We have

|f + g| (z) � |f | (z) + |g| (z), and if h(z) := f(z)g(z), then by
the definition of the product, |h| (z)� |f | (z) |g| (z).

(4) If we set f (n)(z) := (f(z))n then by induction, using parts (1)
and (3),

∣∣f (n)
∣∣ (z)� (|f | (z))n, for each integer n ≥ 0.

(5) If g(z) = exp(f(z)) and f(0) = 0, then by part (4),

|g|(z)�
∑
k≥0

(|f (k)|(z)/k!)� exp(|f |(z)).
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Recall the sets ∆(2n, q) from Definition 2.5, and set

r(2n, q) :=
|∆(2n, q)|
|GL(2n, q)|

, for n ≥ 1, and r(0, q) = 1.

In [13, Section 5], a product is computed which gives the generating
function R(q, u) :=

∑∞
n=0 r(2n, q)u

n. We describe this as follows. De-
fine the series

(3) G0(q, u) :=
1

1 + u/(q − 1)

∏
m odd

(
1 +

um

qm − 1

)N(q,m)

and for a positive integer b, define

(4) Gb(q, u) :=
∏
m odd

(
1 +

u2bm

q2bm − 1

)N(q,2bm)

.

It is shown in [13, Section 5] that R(q, u) =
∏∞

b=0Gb(q, u) (the extra
factor for G0(q, u) arises from the equation in [13, Lemma 5.1]).

We writeGb(q, u) =
∑

n≥0 gb(2n, q)u
n, so that the coefficient gb(2n, q)

is [un]Gb(q, u). By [13, Section 5], the quantity [un]Gb(q, u) |GL(2n, q)|,
that is to say, gb(2n, q) × |GL(2n, q)|, is equal to the number of pairs
(t, y) ∈ ∆(2n, q) for which the degree of each factor in the ∗-factorizat-
ion of the characteristic polynomial for y has the form 2bh for some
odd h.

We define ∆b(2n, q) to be the set of pairs (t, y) in ∆(2n, q) such that
every factor in the ∗-factorization of the characterisitic polynomial for

y has degree not divisible by 2b+1 and put rb(2n, q) := |∆b(2n,q)|
|GL(2n,q)| . It

follows by arguments similar to those in [13, Section 5], that

(5) Rb(q, u) :=
b−1∏
k=0

Gk(q, u) is equal to
∞∑
n=0

rb(2n, q)u
n.

Note that all the roots of a ∗-irreducible polynomial have the same or-
der, and recall the definition of eq(n) in Notation 2.10, and of N0(q, 2n)
just before Corollary 2.12. The next result, Corollary 2.15, is stated
without proof: the first assertion follows from [13, Lemma 5.1] (since
we will have n > 1), while the other assertions follow from Corollary
2.12 (since the set P∗2n defined there is the union Γ1 ∪ Γ2 of the sets
Γ1,Γ2 defined in Corollary 2.12).

Corollary 2.15. Let n = 2bm, where b ≥ 1 and m is odd, and let
P∗2n be the set of all monic, self-conjugate ∗-irreducible polynomials of
degree 2n over Fq. Further let P0

2n ⊆ P∗2n such that P0
2n comprises those
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polynomials whose roots have multiplicative order with 2-part equal to
2eq(n) = 2eq(2b). Then

(i) |P∗2n| = N(q, n);
(ii) N0(q, 2n) = |P0

2n| ≥ 1
4
N(q, n) (and N0(q, 2n) = 1

4n
(qn − 1) if n

is a power of 2); and
(iii) each root of a polynomial in P∗2n \P0

2n has order with 2-part less

than 2eq(2b).

Remark 2.16. For b ≥ 1, we ‘truncate’ the infinite product defined
by (4) by removing some of the factors. We set

(6) G0
b(q, u) :=

∏
m odd

(
1 +

u2bm

q2bm − 1

)N0(q,2b+1m)

.

Then [uk]G0
b(q, u) |GL(2k, q)| is equal to the number of pairs (t, y) ∈

∆(2k, q) such that the ∗-irreducible factors of the characterisitic poly-
nomial for y all lie in

⋃
m oddP0

2b+1m
(compare the arguments in [13,

Section 5]). Note in particular that, if G0
b(q, u) =

∑
k≥0 g

0
b (2k, q)u

k,

then whenever k > 0 and g0
b (2k, q) 6= 0, the integer k is divisible by 2b.

Therefore ak` := [uk][z`]Rb(q, u)G0
b(q, uz) |GL(2k, q)| is equal to the

number of pairs (t, y) ∈ ∆(2k, q) such that the characteristic polyno-
mial cy(X) for y has the form cy(X) = b1(X)b2(X), where

(i) b1(X) is the product of the ∗-irreducible factors of cy(X) which
lie in

⋃
m oddP0

2b+1m
and deg b1(X) = 2`; and

(ii) each ∗-irreducible factor of b2(X) has degree not divisible by
2b+1.

Applying Lemma 2.8, it follows from (i) and (ii) that

(iii) if ` > 0 then inv(y) is of type (2k − 2`, 2`)

We do not know the value of N0(q, 2n) so rather than calculate
G0
b(q, u) it is simpler to compute

(7)

Fb(q, u) :=

(
1 +

u2b

q2b − 1

) q2
b
−1

2b+2 ∏
m odd, m>1

(
1 +

u2bm

q2bm − 1

)d 14N(q,2bm)e
.

Since N0(q, 2b+1) = 2−b−2(q2b − 1) the exponents in (7) are all positive
integers. Thus the coefficients of Fb(q, u) are nonnegative and Corollary
2.12 (iii) (or Corollary 2.15 (ii)) shows that 0� Fb(q, u)� G0

b(q, u).
We emphasise that [un]Fb(q, u) |GL(2n, q)| is at most the number of

pairs (t, y) in ∆(2n, q) such that for each ∗-irreducible factor of cy(X),

its roots have multiplicative order with 2-part at least 2eq(2b).
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3. Inequalities

In what follows we shall use a number of simple inequalities which
we collect here.

Lemma 3.1. Let M,N, a, b be positive real numbers such that M ≥ N
and a ≤ b, and suppose that Ma ≥ Nb. Then

(i) [zn](1 + bz)N ≤ [zn](1 + az)M ≤ [zn] exp(aMz) for all n ≤ N ;
and

(ii) if M and N are integers, then as power series in z we have
(1 + bz)N � (1 + az)M � exp(aMz).

Proof. For n ≥ 0 the coefficients of zn in the three series in part (i) are

1

n!

n−1∏
i=0

(Nb− ib) ≤ 1

n!

n−1∏
i=0

(Ma− ia) ≤ (Ma)n

n!

for n ≤ N . These inequalities hold for all n ≥ 0 when M and N are
integers. �

Corollary 3.2. For each positive real number λ such that λN(3,m)
and λN(q,m) are integers,

(1 +
um

3m − 1
)λN(3,m) � (1 +

um

qm − 1
)λN(q,m) � exp

(
λN(q,m)

qm − 1
um
)
.

Proof. Follows from the previous lemma and Lemma 2.9 (iv). �

Lemma 3.3. For positive a, n and M such that n < M ,

[zn](1 + az)M ≥ (aM)n

n!
exp

(
− n2

2(M − n)

)
.

Hence

[zm](1+az)M ≥ [zm] exp

(
− n2

2(M − n)

)
exp(aMz) for m = 0, 1, . . . , n.

Proof. The inequality is trivial if n = 0 or 1, so suppose that 1 < n <

M . Now [zn](1 + az)M = (aM)n

n!

∏n−1
j=1 (1 − j/M). On the other hand

since log(1− ξ) ≥ −ξ/(1− ξ) for 0 ≤ ξ < 1 we have

log
n−1∏
j=1

(1− j/M) ≥ −
n−1∑
j=1

j

M − j
≥ −1

M − n

n−1∑
j=1

j > − n2

2(M − n)

since −1/(M − j) ≥ −1/(M − n) for all j < n. The final inequality in

the statement of the lemma follows because − m2

2(M−m)
decreases as m

increases. �
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Lemma 3.4. Let f(z) =
∑
fnz

n be a power series such that f0 = 0
and suppose that, for some positive constants α and β with 1

2
α+β ≤ 1,

we have |fn| ≤ αβn−1 for all n ≥ 1. Then, setting g(z) := exp f(z) =∑
gnz

n, we have |gn| ≤ α(1
2
α + β)n−1 for all n ≥ 1.

Proof. Note that αz/(1 − βz) =
∑∞

n=1 αβ
n−1zn. Thus, by hypothesis,∑

|fn| zn � αz/(1−βz). Since g(z) = exp f(z) and f(0) = 0 we have,
by Notation 2.14 (5),

∑
|gn| zn � exp (

∑
|fn| zn). Then for all n ≥ 1,

|gn| ≤ [zn] exp

(
αz

1− βz

)
=

n∑
k=1

αk

k!

[
zn−k

]
(1− βz)−k.

Now
( −k
n−k

)
= (−1)n−k

(
n−1
k−1

)
and 1/k! ≤ 1/2k−1, for all k ≥ 1, so

|gn| ≤
n∑
k=1

αk

k!

(
−k
n− k

)
(−β)n−k =

n∑
k=1

αk

k!

(
n− 1

k − 1

)
βn−k

≤ α
n∑
k=1

αk−1

2k−1

(
n− 1

k − 1

)
βn−k = α(

1

2
α + β)n−1

as required. �

The following corollary to Lemma 3.4 will be useful.

Corollary 3.5.

1 +
αz

1− βz
� exp(

αz

1− βz
)� 1 +

αz

1−
(

1
2
α + β

)
z

Proof. In Lemma 3.4 we may take f(z) = αz/(1−βz) =
∑∞

n=1 αβ
n−1zn,

and we see that f(z) = |f |(z). If g(z) = exp f(z), then also g(z) =
|g|(z). Thus Lemma 3.4 implies that g(z) � 1 + αz

1−( 1
2
α+β)z

. We also

have 1 + f(z)� exp f(z). �

Lemma 3.6. Let α > 0 and consider

f(z) :=

(
1 + z

1− z

)α
=
∞∑
n=0

fnz
n, say.

Then fn > 0 for all n and fn ≥ 2αn−1 for all odd values of n.

Proof. Note that f0 = 1. Since log f(z) = α log 1+z
1−z we have (1 −

z2)f ′(z) = 2αf(z). Comparing coefficients of zn−1 in the last equality
we get, since f0 = 1,

f1 = 2α and nfn − (n− 2)fn−2 = 2αfn−1 for n ≥ 2.
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Thus

fn =
2α

n
fn−1 + (1− 2

n
)fn−2 for n ≥ 2.

It is now clear that: (i) fn > 0 for all n ≥ 0; and (ii) fn > (1− 2
n
)fn−2

for all n ≥ 2. Finally induction on n shows that fn ≥ 2α
n

for all odd
n. �

Remark 3.7. For the function f(z) in Lemma 3.6, f2 = 2α2 and in
general, for n even, fn is a polynomial function in α which is divisible
by α2. As a consequence, when α is small, the coefficients of even
powers of z in f(z) are much smaller than neighbouring coefficients for
the odd powers.

Lemma 3.8. If 0 < a < c then∑
a≤k≤c
k odd

1

k
≥ 1

2
log(

c

a
)− 1

a
.

Proof. For each non-negative integer ` we have

1/(2`+ 1) ≥ 1

2

∫ 2`+3

2`+1

x−1dx.

Set `0 := d(a− 1)/2e and `1 := b(c− 1)/2c. Then (since `1 ≥ (c−2)/2)
the sum in question is equal to

`1∑
`=`0

1

2`+ 1
≥ 1

2

∫ 2`1+3

2`0+1

x−1dx ≥ 1

2

∫ c

2`0+1

x−1dx

=
1

2
log(

c

a
)− 1

2
log

(
2`0 + 1

a

)
.

Since (2`o + 1)/a = 1 + (2`0 + 1− a)/a < 1 + 2/a we have

1

2
log

(
2`0 + 1

a

)
<

1

2
log(1 +

2

a
) <

1

2
· 2

a
=

1

a

so the required inequality follows. �

4. Estimates of coefficients

4.1. Coefficients of R(q, u). We write R(q, u) =
∑

n≥0 r(2n, q)u
n so

that r(2n, q) = [un]R(q, u). It is shown in [13, Lemma 5.2] that r(2n, q)
converges to (1−q−1)2 as n→∞ at an exponential rate. Our objective
here is to obtain an explicit lower bound for the size of r(2n, q) which
is valid for all n.

Recall that R(q, u) =
∏∞

b=0Gb(q, u), as noted after (4). From this
and Corollary 3.2, it follows that R(3, u) � R(q, u) for every odd
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prime power q. It is therefore sufficient to find a lower bound for the
coefficients of R(3, u). We use an alternative form for R(q, u) derived
in the proof of [13, Lemma 5.2], namely,

(8) R(q, u) =
(1− u/q)

(1− u)(1 + u/(q − 1))

∞∏
n=1

(
1− un(un − 1)

qn(qn − 1)

)N(q,n)

.

Direct computations show that the values of r(2n, 3) = [un]R(3, u),
for n = 0, . . . , 11, (rounded to four decimal places) are given by

0 1 2 3 4 5
1.0000 0.5000 0.3750 0.4952 0.4257 0.4497

6 7 8 9 10 11
0.4440 0.4443 0.4446 0.4443 0.4445 0.4444

Lemma 4.1. The coefficients of R(3, q) satisfy r(0, 3) = 1, r(2, 3) =
0.5000, r(4, 3) = 0.3750, r(6, 3) = 0.4952, r(8, 3) = 0.4257, and for
n > 4, 0.4346 < r(2n, 3) < 0.4543.

Proof. The values of r(2n, 3) = [un]R(3, u) for 0 ≤ n ≤ 4, and the
bounds on r(2n, 3) for 5 ≤ n ≤ 11, follow from the table above. For
clarity in our analysis to bound r(2n, 3) for n ≥ 12, we start by looking
more generally at R(q, u) and specialize to q = 3 at the end. We can
write R(q, u) in the form

R(q, u) = A(q, u)B(q, u)

where

A(q, u) :=
(1− u/q)

(1− u)(1 + u/(q − 1))
=
∑
n≥0

anu
n, say

and B(q, u) =
∑

n≥0 bnu
n is the product of the remaining factors. We

see that

A(q, u) =

(
1− 1

q

)2
1

1− u
+

1

q

(
2− 1

q

)
1

1 + (q − 1)−1u

and so

(9) an =

(
1− 1

q

)2

+ (−1)n
2q − 1

q2(q − 1)n
for all n.

On the other hand the absolute value of the coefficient of un in(
1− um(um − 1)

qm(qm − 1)

)N(q,m)
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is bounded above by the corresponding coefficient in(
1 +

um(um + 1)

qm(qm − 1)

)N(q,m)

�
(

1 +
um(um + 1)

qm(qm − 1)

)⌊
qm−1

m

⌋

� exp

(
um(um + 1)

mqm

)
where the latter inequalities come from Lemma 2.9 and Lemma 3.1.
Thus

|B| (q, u)�
∞∏
m=1

exp

(
um(um + 1)

mqm

)

= exp

(
∞∑
m=1

um

mqm

)
exp

(
∞∑
m=1

u2m

mqm

)
which equals (1− u

q
)−1(1− u2

q
)−1 since log(1 + x) = −

∑
m≥1(−x)m/m

for |x| < 1. Since(
1− u

q

)−1(
1− u2

q

)−1

=
q

q − 1

{
1 + q−1u

1− q−1u2
− q−1

1− q−1u

}
we see that

[un]

((
1− u

q

)−1(
1− u2

q

)−1
)

=

{
q
q−1

q−n/2 − 1
q−1

q−n for n even
√
q

q−1
q−n/2 − 1

q−1
q−n for n odd

.

Thus we conclude that

(10) |bn| ≤ βq−n/2 for all n where β := q/(q − 1).

We now specialize to q = 3. By (9) we can write an = α + cn
where α = 4

9
and cn = (−1)n 5

9
2−n for all n and by (10) we have

|bn| ≤ β ·3−n/2 = 3
2
·3−n/2 for n ≥ 1. Thus for all n ≥ 1 we have, noting

that b0 = 1,

r(2n, 3) =
n∑
k=0

an−kbk = α + vn + wn

where α = αb0, vn := α
∑n

k=1 bk and wn :=
∑n

k=0 cn−kbk. Now the
inequality (10) implies that B(3, u) converges for all |u| < 31/2, and
since each of the factors for B(3, u) takes the value 1 at u = 1, we have,
1 = B(3, 1) =

∑∞
n=0 bn. Since b0 = 1 we have

∑n
k=1 bk = −

∑∞
k=n+1 bk

so

|vn| =

∣∣∣∣∣α
∞∑

k=n+1

bk

∣∣∣∣∣ ≤ αβ

∞∑
k=n+1

3−k/2 =
αβ3−(n+1)/2

1− 3−1/2
< 0.92 · 3−n/2.
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On the other hand

|wn| ≤
5

9
β

n∑
k=0

2−n+k · 3−k/2 =
5

9
β · 2−n

n∑
k=0

(2/
√

3)k

<
5

9
β · 2−n (2/

√
3)n+1

2/
√

3− 1
≤ 6.23 · 3−n/2.

Thus

|r(2n, 3)− α| < 7.15 · 3−n/2 for all n.

In particular this shows that 0.4346 < r(2n, 3) < 0.4543 for all n ≥ 12,
completing the proof of the lemma. �

The function R(q, u) was shown in [13, Equation (9)] to be express-
ible as

R(q, u) =
1

1 + u/(q − 1)

∏
m≥1

(
1 +

um

qm − 1

)N(q,m)

and it follows from the definitions of Gb(q, u) and Rb(q, u) in (3), (4),
and (5), that

Rb(q, u) =
1

1 + u/(q − 1)

∏
m2≤2b−1

(
1 +

um

qm − 1

)N(q,m)

where m2 denotes the highest power of 2 dividing m. Thus, if we define,
for a positive integer b,

(11) Tb(q, u) :=
∞∏
m=1

(
1 +

u2bm

q2bm − 1

)N(q,2bm)

, .

then Rb(q, u) = R(q, u)Tb(q, u)−1.

4.2. Coefficients of Tb(q, u)−1. Temporarily we fix a value of b and
define d := 2b, U := ud and Q := qd. We are going to bound the
coefficients tn := [Un]T (U) of the power series T (U) where

(12) 1− T (U) :=
∞∏
m=1

(
1 +

Um

Qm − 1

)−N(q,dm)

= Tb(q, u)−1.

Lemma 4.2. Assume that d ≥ 8 and define

W (U) := − log (1− T (U)) +
1

d
log(1− U).

Then, for |u| < 1, W (U) =
∑

n≥0wnU
n, where w0 = 0, and |wn| <

2.28d−1n−1(Q− 1)−n/2 for all n ≥ 1.
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Proof. Since N(q,md) < qmd/md, by Lemma 2.9 (ii), it follows from
[4, Lemma 1.3.1] that 1 − T (U) converges absolutely and uniformly
for |u| < 1. Thus W (U) also converges absolutely and uniformly for
|U | < 1, and since log(1− z) = −

∑∞
k=1 z

k/k for |z| < 1 we have

W (U) =
∞∑
m=1

{
N(q,md) log

(
1 +

Um

Qm − 1

)
− Um

md

}
= W1(U) +W2(U)

where

W1(U) :=
∞∑
m=1

{
N(q,md)

Um

Qm − 1
− Um

md

}
=
∞∑
n=1

w1,nU
n, say

and

W2(U) :=
∞∑
m=1

∞∑
k=2

(−1)k+1N(q,md)
Umk

k(Qm − 1)k
=
∞∑
n=2

w2,nU
n, say.

Since d is even and Q = qd, Lemma 2.9 (i) shows that

N(q,md)
Um

Qm − 1
=
Um

md
− Um

md(Qm/2 + 1)
− η(q,md)

Um

md(Qm − 1)

where 0 ≤ η(q,md) ≤ 5
4
(Qm/3 − 1). Since Q ≥ 38 we have, for all

n ≥ 1,

|w1,n| =
∣∣∣∣ 1

nd(Qn/2 + 1)
+

η(q, nd)

nd(Qn − 1)

∣∣∣∣
≤ 1

nd(Qn/2 + 1)

{
1 +

5

4

Qn/3 − 1

Qn/2 − 1

}
<

1.277Q−n/2

nd
.

On the other hand, Lemma 2.9 shows that N(q,md) ≤ (Qm−1)/md
so

|w2,n| ≤
∑

m|n, m<n

1

nd(Qm − 1)n/m−1
≤

∑
1≤m≤n/2

1

nd(Qm − 1)n/m−1
.

Since ∑
1≤m≤n/2

(Qm − 1)−n/m+1 ≤
∑

1≤m≤n/2

(Q− 1)−n+m

= (Q− 1)−dn/2e
∑

0≤k≤(n−2)/2

(Q− 1)−k

we have

|w2,n| <
1

nd
(Q− 1)−n/2

(
1− (Q− 1)−1

)−1 ≤ 1.0002(Q− 1)−n/2

nd
.
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Hence

|wn| ≤ |w1n|+ |w2n| <
2.28(Q− 1)−n/2

nd

for all n ≥ 1 as required. �

Corollary 4.3. Under the assumptions of Lemma 4.2, the coefficients
of E(U) := exp(−W (U))− 1 =

∑∞
n=1 enU

n satisfy |en| ≤ 2.28
1.14+d

γn, for

all n ≥ 1, where γ := (1 + 1.14d−1)(Q − 1)−1/2. In particular, for all
d ≥ 8 and q ≥ 3, we have γ ≤ 0.0142 and d |e1| < 0.03.

Proof. Lemma 4.2 shows that |wn| ≤ 2.28d−1(Q − 1)−n/2 for all n ≥
1. Applying Lemma 3.4 to −W (U), with β = (Q − 1)−1/2 and α =
2.28d−1β, proves the first assertion (noting that γ = 1

2
α + β < 1). In

particular, if d ≥ 8 and q ≥ 3, then γ ≤ 0.0142, and if n = 1, then
d |e1| ≤ 2.28d

1.14+d
γ = 2.28(Q− 1)−1/2 ≤ 2.28(38− 1)−1/2 which is less than

0.03. �

Recall that Tb(q, u)−1 = 1 − T (U) where T (U) =
∑∞

k=1 tkU
k, see

(12). From the product formula for Tb(q, u) in (11) we see that t1 =
N(q,d)
qd−1

. Let h(U) =
∑∞

k=1 hkU
k, say, be the series for 1 − (1− U)1/d.

It follows from the definition of W (U) in Lemma 4.2, and of E(U) in
Corollary 4.3, that

(13) 1− T (U) = (1− U)1/d(1 + E(U)) = (1− h(U)) (1 + E(U)).

Now for k ≥ 1 we have

hk := −
(

1/d

k

)
(−1)k =

1

dk

k−1∏
i=1

(
1− 1

di

)
.

In particular dh1 = 1. For k ≥ 2, since 1 − ξ > exp
(
− ξ

1−ξ

)
for

0 ≤ ξ < 1,

1 ≥ dkhk > exp

(
−

k−1∑
i=1

1

di− 1

)
(14)

> exp

(
−1

d− 1

k−1∑
i=1

1

i

)
> exp

(
−(1 + log k)

d− 1

)
.

We use this to estimate the values of the coefficients tk.

Lemma 4.4. Suppose that d ≥ 8. Then 0.58 < dktk < 1.02 for k ≥ 1,
whenever dk ≤ ed/2.
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Proof. Suppose that k ≥ 1 and dk ≤ ed/2. Then d/2 ≥ log dk ≥ log k+
log 8 > log k + 2, so by (14), log(dkhk) > −(d/2 − 1)/(d − 1) ≥ −0.5.
Thus 1 ≥ dkhk > 0.60 for all k ≥ 1.

On the other hand equation (13) shows that for all k ≥ 1 we have

tk = hk − ek +
∑k−1

i=1 ek−ihi. Thus Corollary 4.3 gives

|tk − hk| ≤ |ek|+
k−1∑
i=1

|ek−i|
di
≤ 2.28

1.14 + d

{
γk +

1

d

k−1∑
i=1

1

i
γk−i

}
for k ≥ 1

where γ := (1 + 1.14d−1)(1− q−d)−1/2q−d/2 < 1.143q−d/2.
If k = 1 then, by equation (13), t1 = N(q, d)/(qd − 1) = (qd −

qd/2)/d(qd − 1) since d is a power of 2. Because qd ≥ 38, this implies

that t1 lies between d−1 and 0.9878d−1. Since h1 =
(

1/d
1

)
= d−1, this

shows that |t1 − h1| ≤ 0.0122d−1. On the other hand, if k ≥ 2, then
1/i ≤ (k − i)/(k − 1) for all i with 1 ≤ i ≤ k − 1 and so

k−1∑
i=1

1

i
γk−i ≤ 1

k − 1

k−1∑
i=1

(k − i)γk−i < 1

k − 1

∞∑
i=1

iγi =
γ

(k − 1)(1− γ)2
.

Since we are assuming that dk ≤ ed/2 and d ≥ 8 we have dkγ ≤
1.143(e/q)d/2 < 0.78 and so for k ≥ 2 we have

|tk − hk| ≤
2.28

1.14 + d

{
γk +

γ

d(k − 1)(1− γ)2

}
<

2.28γ

d2k

{
kdγ +

k

(k − 1)(1− γ)2

}
< 6.5γd−2k−1.

Since 6.5γd−1 < 6.5 × 0.0142 × 0.125 < 0.02 we have |tk − hk| <
0.02d−1k−1 for all k ≥ 1. We showed at the beginning of the proof
that 0.60 < dkhk ≤ 1 so we conclude that 0.58 < dktk < 1.02 for all
k ≥ 1 as required. �

4.3. Coefficients of Rb(q, u). We have Rb(q, u) = R(q, u)Tb(q, u)−1

where Tb(q, u)−1 = 1 − T (U) = 1 −
∑∞

k=1 tku
dk, see (5), (11), (12).

By Lemma 4.4 we know that 0.58 < tkdk < 1.02 for all k ≥ 1. Recall
that Rb(q, u) =

∑∞
n=0 rb(2n, q)u

n and R(q, u) =
∑∞

n=0 r(2n, q)u
n, where

r(0, 3) = 1 > r(2n, 3) for all n ≥ 1 and 0.4346 ≤ r(2n, 3) ≤ 0.4543, for
all n ≥ 4 (see Lemma 4.1).

Lemma 4.5. Let b ≥ 3 and d = 2b. Then rb(2n, q) > 0.2029 for all
odd q and all n ≤ ed/2.

Proof. First note that it follows from Corollary 3.2 that Rb(3, u) �
Rb(q, u) for all odd q. Therefore rb(2n, q) ≥ rb(2n, 3) so it is enough to
prove the lemma for q = 3. Thus from now on assume that q = 3.
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Also note that Rb−1(3, u) � Rb(3, u) since by (5) the latter is a
product of the former with a power series with nonnegative coefficients
and constant coefficient 1, so rb−1(2n, 3) ≤ rb(2n, 3) for all n.

The values of r3(2n, 3) for n = 0, 1, ..., 23 are given (reading left to
right across row 1, then row 2, and so on) by

1.0000 0.5000 0.3750 0.4952 0.4257 0.4497
0.4440 0.4443 0.3211 0.3826 0.3982 0.3833
0.3919 0.3889 0.3896 0.3896 0.3347 0.3622
0.3690 0.3624 0.3662 0.3649 0.3652 0.3652

so rb(2n, 3) ≥ r3(2n, 3) > 0.2029 for b ≥ 3 and n < 24.

Claim: To prove that rb(2n, 3) > 0.2029 for all b ≥ 3 and all n ≤ ed/2

(noting that d = 2b), it is enough to prove this inequality for n satisfying
3d ≤ n ≤ ed/2.

If b = 3 the claim holds since the cases n < 3d are covered by the
table above. Suppose now that b > 3 and that we have proved, for all
integers b′ ∈ [3, b], that rb′(2n, 3) > 0.2029 for all n such that 3d′ ≤
n ≤ ed

′/2, where d′ = 2b
′
. Then by our observation above, rb(2n, 3) ≥

rb′(2n, 3) > 0.2029, for all n in the interval [3d′, ed
′/2]. Moreover, for

each b′ ≥ 4, we have 3d′ ≤ ed
′/4, and so the interval [3d′, ed

′/2] contains
the upper end-point ed

′/4 of the interval corresponding to b′−1, so that
the union of all of these intervals, together with the interval [0, 23] is
equal to [0, ed/2]. This proves the claim.

Thus we seek a proof that rb(2n, 3) > 0.2029 for 3d ≤ n < ed/2,
where d = 2b. Since Rb(3, u) = R(3, u)(1 − T (U)) where U := ud and
T (U) =

∑
tkU

k we have

rb(2n, 3) = r(2n, 3)−
∑

1≤k≤k0

r(2(n− kd), 3)tk

where k0 := bn/dc ≥ 3 since we are assuming that n ≥ 3d. If k < k0

then n−kd ≥ d ≥ 8, and so, by Lemma 4.1, r(2n, 3) ≥ 0.4346 for n ≥ d;
r(2(n− k0d), 3) ≤ 1; and r(2(n− kd), 3) ≤ 0.4543 for k = 1, ..., k0 − 1.
Since kdtk ≤ 1.02 for all k by Lemma 4.4, and since 3d ≤ n ≤ ed/2 by
hypothesis, we have

rb(2n, 3) ≥ 0.4346− 1.02

d

{
1

k0

+ 0.4543
∑

1≤k≤k0−1

1

k

}

≥ 0.4346− 1.02

d

{
1

k0

+ 0.4543 (log k0 + 1)

}
.
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However log k0 + 1 ≤ log(n/d) + 1 ≤ log n − log d + 1 ≤ log n − 1 ≤
d/2 − 1, by the hypothesis on n, and 1/k0 ≤ 1/3 < 0.4543. Therefore
rb(2n, 3) ≥ 0.4346− 1.02× 0.4543/2 > 0.2029 as required. �

4.4. Coefficients of Fb(q, u). We shall continue to assume that b ≥ 3,
d := 2b ≥ 8, U = ud and Q = qd with q odd. With this notation (7)
becomes

Fb(q, u) =

(
1 +

U

Q− 1

) 1
4

(Q−1)/d ∏
m odd, m>1

(
1 +

Um

Qm − 1

)d 14N(q,md)e

= Fb(U), say. If we write Fb(q, u) =
∑

n≥0 fb(2n, q)u
n, then fb(2n, q) 6=

0 implies that n = 2bk for some integer k and fb(2n, q) = [Uk]Fb(U).
Recall that, since 0 � Fb(q, u) � G0

b(q, u) (see equations (6) and
(7)), the entry [un]Fb(q, u) |GL(2n, q)| is a lower bound on the number
of pairs (t, y) in ∆(2n, q) such that the 2-part of the order of each
eigenvalue of y is at least 2eq(d).

Lemma 4.6. Assume b ≥ 3, so d = 2b ≥ 8. Then [Uk]Fb(U) ≥
0.2117d−1k−1 for all odd k with kd ≤ ed/2.

Proof. Fix an odd integer k such that log kd ≤ d/2. To compute
[Uk]Fb(U) it is enough to know, for each m, and for all ` ≤ k

m
, the values

of [Um`]
(

1 + Um

Qm−1

)d 14N(q,md)e
. Now k ≤ 1

d
ed/2 < 1

d
qd/2 < 1

4d
(qd−2qd/2)

because qd/2 − 2 > 4, and so k < 1
4
N(q, d) ≤ 1

4
N(q,md) for all m ≥ 1,

by Lemma 2.9 (ii). By Lemma 3.3 (applied with z = Um, a = 1
Qm−1

,

n = `, and M =
⌈

1
4
N(q,md)

⌉
),

[Um`]

(
1 +

Um

Qm − 1

)d 14N(q,md)e

≥ [Um`] exp

(
− 2`2

N(q,md)− 4`

)
exp

(
N(q,md)

4(Qm − 1)
Um

)
for all ` ≤ k/m. As ` increases in the range 0 ≤ ` < 1

4
N(q,md), the

value of −2`2/(N(q,md)−4`) decreases. Also for the exceptional factor

with m = 1 in the definition of Fb(q, u) the exponent Q−1
4d
≥ N(q,d)

4d
, so

the above lower bound holds in this case also. Thus [Uk]Fb(U) ≥
ck[U

k]H(U) where

ck :=
∏
m odd

exp

(
−2(k/m)2

N(q,md)− 4k/m

)
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and

H(U) :=
∏
m odd

exp

(
N(q,md)Um

4(Qm − 1)

)
.

We first estimate ck. By Lemma 2.9(ii), N(q,md)− 4k/m ≥ (Qm −
2Qm/2 − 4kd)/md. However Q = qd ≥ 38 and 4kdQ−1 ≤ 4ed/2q−d ≤
0.0333 so

Qm − 2Qm/2 − 4kd ≥ Qm(1− 2Q−1/2 − 4kdQ−1) ≥ 0.942Qm.

This implies that

ck ≥ exp

(
−
∑
m odd

2(k/m)2

0.942Qm/md

)
≥ exp

(
−2.124k2d

Q

∞∑
`=0

Q−2`

)
≥ exp(−2.13k2dQ−1)

(the sum of powers of Q is very close to 1). Since 2.13k2dQ−1 ≤
2.13d−1edq−d ≤ 0.121 we conclude that ck ≥ 0.886.

Next consider H(U). Lemma 2.9(ii) shows that mdN(q,md) ≥
0.956(Qm − 1) and so

N(q,md)

4(Qm − 1)
≥ 0.239

md
for m ≥ 1.

Set 2α = 0.239d−1. Since exp (2α
∑

m odd U
m/m) =

(
1+U
1−U

)α
we have

H(U)�
(

1 + U

1− U

)α
.

Finally using Lemma 3.6 we conclude that

[Uk]Fb(U) ≥ ck[U
k]H(U) ≥ ck[U

k]

(
1 + U

1− U

)α
≥ 0.886× 2α

k
> 0.2117

1

dk

for all odd k with kd ≤ ed/2 as claimed. �

5. Proof of the Main Theorem

In this section we complete the proof of Theorem 1.1. We begin
with some preliminary lemmas. Suppose that 0 ≤ α < β ≤ 1, and
let J(2m, q;α, β) be the set of all (t, y) ∈ ∆(2m, q) for which inv(y) is
(α, β)-balanced. Set

(15) j(2m, q;α, β) := |J(2m, q;α, β)| / |GL(2m, q)| .
If c(X) ∈ Π(2m, q) is the characteristic polynomial for y and c0(X) is
as in Lemma 2.8, then Lemma 2.8 shows that inv(y) is (α, β)-balanced
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⇐⇒ 2m(1−β) ≤ deg c0(X) ≤ 2m(1−α). Our discussion following (6)
shows that we may obtain a lower bound for j(2m, q;α, β) by summing,
over b ≥ 1, the coefficient of umz` in the power series Rb(q, u)Fb(q, uz),
provided that we only consider those terms corresponding to values
of ` in the range [m(1 − β),m(1 − α)] (and we recall that non-zero
summands in Fb(q, uz) =

∑
`≥0 fb(2`, q)(uz)` occur only if 2b divides

`). Thus, for a fixed value of m, we have

(16) j(2m, q;α, β) ≥ [um]
∞∑
b=1

Rb(q, u)Fb(q, u;m(1− β),m(1− α))

where Fb(q, u;m(1 − β),m(1 − α)) is the truncated power series ob-

tained from Fb(q, u) =
∑∞

k=0 fb(2
b+1k, q)u2bk by keeping only the terms

fb(2
b+1k, q)u2bk for which m(1− β) ≤ 2bk ≤ m(1− α).

Lemma 5.1. Let b ≥ 3 and d := 2b. Then for all α and β with
0 ≤ α < β < 1 and positive integers m ≤ ed/2, we have

j(2m, q;α, β) ≥ 0.02147

d

(
log

(
1− α
1− β

)
− 2d

m(1− β)

)
.

Proof. By Lemma 4.6, for all odd k such that dk ≤ ed/2, we have
fb(2dk, q) ≥ 0.2117/dk, with fb(2dk, q) as above. Set a := m(1 − α)
and c := m(1− β), and consider the sum s of the coefficients of terms
of degree between c and a in Fb(q, u):

s =
∑

c/d≤k≤a/d

fb(2dk, q) ≥
∑

c/d≤k≤a/d
k odd

0.2117

dk

≥ 0.2117

2d

(
log
(a
c

)
− 2d

c

)
by Lemma 3.8. Since [un]Rb(q, u) ≥ 0.2029 for all n ≤ ed/2, by Lemma
4.5, it follows from (16) that j(2m, q;α, β) ≥ 0.2029 s, so the result
follows. �

Let V be the underlying space for GL(n, q) and let Ks be the con-
jugacy class of involutions in GL(n, q) of type (s, n− s). Assume that
s ≥ n/2 and set h := 2s−n. Let Ω be the set of all pairs (V1, V2) of sub-
spaces of V such that V = V1⊕V2 with dimV1 = h and dimV2 = n−h
(= 2(n− s)). Recall that for an involution t we write E+(t) and E−(t)
to denote the eigenspaces for eigenvalues +1 and −1, respectively.

Definition 5.2. For 0 ≤ α < β < 1, let L(n, s, q;α, β) be the set of
pairs (t, t′) ∈ Ks ×Ks such that:

(i) V1 := E+(t) ∩ E+(t′) has dimension h = 2s− n.
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(ii) There exists a 〈t, t′〉-invariant subspace V2 of dimension n − h
such that (t|V2 , tt

′
|V2) ∈ ∆(n− h, q) (see Definition 2.5).

(iii) inv(tt′|V2) is (α, β)-balanced.

Note that for any (t, t′) ∈ L(n, s, q;α, β) we have:
(iv) t|V1 = t′|V1 = I by (i).

(v) Let Σ1 be the class of all 〈t, t′〉-modules whose composition fac-
tors all have dimension 1, and let Σ2 be the class of such modules,
with all composition factors of dimension at least 2. It follows from
Definition 2.5 that V1 and V2 are the maximal 〈t, t′〉-submodules of V
lying in Σ1 (respectively Σ2). In particular V1 and V2 are uniquely
determined and V1 ∩ V2 = 0. The hypotheses on the dimensions show
that V = V1 ⊕ V2.

(vi) If W is a 〈t, t′〉-invariant subspace of V2, then dimW is even, say
2k, and the involutions t|W and t′|W are both of type (k, k), by Lemma

2.2 and the definition of ∆(n− h, q).
Define `(n, s, q;α, β) := |L(n, s, q;α, β)| / |Ks|2 (the proportion of

pairs in Ks ×Ks which lie in L(n, s, q;α, β)). Set

ϕ(k, q) :=
k∏
i=1

(1− q−i) = q−k
2 |GL(k, q)|

for k ≥ 1 and let ϕ(0, q) = 1.

Lemma 5.3. If h := 2s− n is nonnegative, then

`(n, s, q;α, β) = θ(n, s, q)j(n− h, q;α, β),

where j(n− h, q;α, β) is as in (15) and

θ(n, s, q) =
ϕ(n− s, q)2ϕ(s, q)2

ϕ(n, q)ϕ(h, q)
.

Proof. For each pair (V1, V2) ∈ Ω, and each pair (t2, y2) ∈ ∆(n − h, q)
acting on V2 such that inv(y2) is (α, β)-balanced, there is a unique pair
(t, t′) of involutions in GL(n, q) such that t|V2 = t2, t′|V2 = t2y2, and

t|V1 = t′|V1 = I. Moreover, since each of t2 and t2y2 conjugates y2 to its

inverse, each is of type (1
2
(n − h), 1

2
(n − h)) by Lemma 2.2. It follows

from Definition 5.2 that (t, t′) ∈ L(n, s, q;α, β).
Conversely, for each (t, t′) ∈ L(n, s, q;α, β), relative to V1, V2 as

in Definition 5.2, the pair (t|V2 , tt
′
|V2) ∈ ∆(n − h, q). Hence we have

|L(n, s, q;α, β)| = |Ω| × |J(n− h, q;α, β)|. Since

j(n− h, q;α, β) = |J(n− h, q;α, β)| / |GL(n− h, q)|
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we conclude that `(n, s, q;α, β) = θ(n, s, q)j(n − h, q;α, β), where
θ(n, s, q) = |Ω| |GL(n− h, q)| / |Ks|2. Finally

|Ω| = |GL(n, q)|
|GL(h, q)| |GL(n− h, q)|

and |Ks| =
|GL(n, q)|

|GL(s, q)| |GL(n− s, q)|
so we obtain the value of θ(n, s, q) given in the statement. �

Remark 5.4. We have 1 ≥ ϕ(k, q) > ϕ(∞, q) := limk→∞ ϕ(k, q) and it
is easily seen that ϕ(k, q) = ϕ(∞, q) +O(q−k−1). For small odd values
of q ≤ 9, the values of ϕ(∞, q), correct to 5 decimal places, are given
in the table below.

q 3 5 7 9
ϕ(∞, q) 0.56013 0.76033 0.83680 0.87656

More precisely, by [12, Lemma 3.1] and its proof, ϕ(n, q) ≥ 1 − q−1 −
q−2 + q−n−1, for all n and all q, so ϕ(∞, q) ≥ 1 − q−1 − q−2 for all q.
Since ϕ(n− s, q) ≥ ϕ(n, q) and ϕ(h, q) ≤ 1 we have

θ(n, s, q) ≥ ϕ(n− s, q)ϕ(s, q)2 > ϕ(∞, q)3 > 0.175.

Proof of the Main Theorem. Let t be a strong involution in GL(n, q).
Then t is (1/3, 2/3)-balanced and so is of type (s, n−s) with 1/3 ≤ s ≤
2/3. We claim that it is enough to consider the case where s ≥ n/2.
Indeed, if s < n/2, then −t is a strong involution of type (n−s, s) with
n − s > n/2 and since (−t)(−tg) = ttg the value of z(g) := inv(ttg) is
unchanged. Thus by replacing t by −t where necessary, we assume for
the rest of this proof that s ≥ n/2 and 0 ≤ h := 2s− n ≤ n/3.

First consider the proof of (i). Let Ks be the conjugacy class of t in
GL(n, q), that is, the set of involutions of type (s, n − s), and let π+

be the probability that, for a random g ∈ GL(n, q), the restriction of
inv(ttg) to E+(t) is (1/3, 2/3)-balanced. Now π+ is independent of the
choice of t in Ks. A straightforward counting argument shows that π+

is equal to the proportion of (t, t′) ∈ Ks ×Ks such that:

(*) the restriction of inv(tt′) to E+(t) is (1/3, 2/3)-balanced.

We shall prove via the following two steps that there exist positive
absolute constants κ and n0 such that π+ > κ/ log n for all n ≥ n0.

(a) First we find specific α, β (depending on n and s) such that (*)
holds for (t, t′) whenever (t, t′) ∈ L(n, s, q;α, β). It will then follow that

π+ ≥ |L(n, s, q;α, β)| / |Ks|2 = `(n, s, q;α, β).

(b) Secondly, for these specific α, β, we find absolute constants κ and
n0 such that `(n, s, q;α, β) ≥ κ/ log n for all n ≥ n0.
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We begin with the proof of (a). Let 0 ≤ α < β < 1 be constants
which will be determined later and suppose that (t, t′) ∈ L(n, s, q;α, β).
Set D := 〈t, t′〉, z := inv(tt′) and let (V1, V2) be the associated pair
of subspaces as in Definition 5.2. The following table illustrates the
relationships between the subspaces E+(t), E−(t) and the subspaces
V1, V2+ := V2 ∩ E+(z) and V2− := V2 ∩ E−(z):

E+(t) E−(t) V
V1 h 0 h
V2+ k k 2k
V2− ` ` 2`
V 1

2
(n+ h) 1

2
(n− h)

where each integer entry is the dimension of the intersection of the
subspaces at the heads of the row and column of the entry (k and ` are
so far undetermined). Recall that h = 2s − n so s = 1

2
(n + h). Since

V2+ and V2− are D-invariant subspaces of V2 it follows from condition
(vi) (after Definition 5.2) that they have even dimensions, say 2k, 2`,
and that dim(E+(t) ∩ V2ε) = 1

2
dim(V2ε), for ε = ±. Note that E+(t)

and E−(t) are invariant under z since z is in the centre of the group
D, but they are not invariant under tt′ except in the trivial case where
s = h = n. The dimensions k and ` depend on (t, t′). Since (t, t′) ∈
L(n, s, q;α, β) the involution z|V2 is (α, β)-balanced by definition; that
is to say, E+(z|V2) = E+(z) ∩ V2 = V2+ satisfies

α ≤ dim(V2+)

dim(V2)
=

2k

2(k + `)
=

k

k + `
≤ β.

On the other hand for z|E+(t) to be (1/3, 2/3)-balanced, we require
E+(z|E+(t)) = E+(z) ∩ E+(t) = V1 ⊕ (V2+ ∩ E+(t)) to have dimension
satisfying 1/3 ≤ dim(E+(z|E+(t)))/ dim(E+(t)) ≤ 2/3, that is to say,
1/3 ≤ (h+ k)/(h+ k + `) ≤ 2/3.

Now define γ := (n+ h)/(n− h) and note that, since t is (1/3, 2/3)-
balanced and we are assuming that h ≥ 0, we have 0 ≤ h ≤ n/3 and
so 1 ≤ γ ≤ 2.

Set α := max

{
0, 1− 2

3
γ

}
and β := 1− 1

3
γ

and note that 0 ≤ α < β ≤ 2/3 for all γ ∈ [1, 2]. We claim that, for
these values of α and β, z|E+(t) is (1/3, 2/3)-balanced whenever z|V2 is
(α, β)-balanced.
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Note that h + k + ` = s = 1
2
(n + h) and k + ` = 1

2
(n− h). Suppose

that z|V2 is (α, β)-balanced. Then

1

3
γ = 1− β ≤ 1− k

k + `
=

`

k + `
=

2`

n− h
=

2`γ

n+ h
≤ 1− α ≤ 2

3
γ.

This implies that 1
3
≤ 2`/(n + h) ≤ 2

3
. On the other hand this last

inequality is equivalent to 1
3
≤ 1−2`/(n+h) = (h+k)/(h+k+ `) ≤ 2

3

which shows that z|E+(t) is (1/3, 2/3)-balanced. This proves step (a).

We now find κ and n0 for which step (b) is true. Suppose that n > e4,
or equivalently, that n > 54. Then there exists a unique b ≥ 4 such that
2b−2 < log n ≤ 2b−1, or equivalently, setting d := 2b, ed/4 < n ≤ ed/2.

We start by proving Theorem 1.1 (i). Lemma 5.1 shows that

j(n− h, q;α, β) ≥ 0.02147

d

(
log

(
1− α
1− β

)
− 4d

(n− h)(1− β)

)
.

Using the definitions of α, β and γ we have (n−h)(1−β) = 1
3
γ(n−h) =

1
3
(n+ h) ≥ 1

3
n and

1− α
1− β

=

{
2 if 1 ≤ γ ≤ 3/2

3/γ if 3/2 ≤ γ ≤ 2.

Since log ((1− α)/(1− β)) ≥ log 3/2 > 0.4054 and 1/{(n−h)(1−β)} ≥
3/n we have

j(n− h, q;α, β) ≥ 0.02147

d

(
0.4054− 12d

n

)
= ζ1(n, d), say.

Elementary calculus shows that ζ1(n, d) log n increases with n, for d > 0
and n ≥ 3. First consider the case where b = 4 and d = 24 (in
this case 54 = be4c < n ≤ 2980 = be8c). Since ζ1(700, 16) log 700 =
0.001152 . . . , we have ζ1(n, 16) log n > 0.001152 for all n ≥ 700. On
the other hand, when b ≥ 5, d := 2b and ed/4 < n ≤ ed/2, we have
d/n < e−d/4d ≤ 32e−8 < 0.01074 and log n > d/4. Thus ζ1(n, d) log n >
0.02147

d
(0.4054− 12 · 0.01074)d

4
= 0.00148 . . . in this case. Hence j(n−

h, q;α, β) > 0.001152
logn

holds for all n ≥ 700. Finally, we have, applying

Lemma 5.3 and Remark 5.4,

π+ ≥ `(n, s, q;α, β) = θ(n, s, q)j(n− h, q, α, β)

≥ 0.175× 0.001152

log n
>

0.0002

log n

for all n ≥ 700. This proves (i).
The proof of Theorem 1.1 (ii) is similar. In this case we we can

take α = 1/3 and β = 2/3 since the table shows that z|V2 is an
involution of type (2k, 2`) and z|E−(t) of type (k, `) so the former is
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(1/3, 2/3)-balanced exactly when the latter is. A similar estimate for
j(n− h, q; 1/3, 2/3) shows that, for all n ≥ n0 = 700, and d chosen as
the power of 2 such that ed/4 < n ≤ ed/2, we have

j(n− h, q; 1/3, 2/3) ≥ 0.02147

d
(log 2− 18d

n
) = ζ2(n, d), say.

Again we find that ζ2(700, 16) log 700 = 0.00247 . . . and conclude that
ζ2(n, 16) log n > 0.00247 for n ≥ 700. Furthermore an argument similar
to the one above shows that when b ≥ 5 and ed/4 ≤ n ≤ ed/2 then
ζ2(n, d) log n > 0.02147

d
(0.6931 − 18 × 0.01074)d

4
= 0.00268 . . . . Hence

for all n ≥ 700 we have

j(n− h, q; 1/3, 2/3) >
0.00247

log n

and so

π− ≥ `(n, s, q; 1/3, 2/3) >
0.175× 0.00247

log n
>

0.0002

log n
.

This proves (ii) and completes the proof of Theorem 1.1 with κ :=
0.0002 and n0 := 700. �
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[12] Cheryl E. Praeger and Ákos Seress. Probabilistic generation of finite classical
groups in odd characteristic by involutions. J. Group Theory 14 (2011), 521–
545.
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