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Abstract

We give a new short proof of a theorem relating solutions of a system of
polynomial equations to the eigenvalues of the multiplication operators on
the quotient ring, in the case when the quotient ring is finite-dimensional.

Everyone is familiar with the representation of a curve in the plane using
an algebraic equation such as X2 + Y 2 = 1. Algebraic geometers have learned
that it is more convenient to represent these curves in the equivalent form of
solutions (or zeros) of polynomials. In the case above, the circle is simply the set
of (λ, µ) which are zeros of X2+Y 2−1. Similarly the simultaneous zeros of sev-
eral polynomials represent the points of intersection of all of the corresponding
curves. The solution of a system of polynomial equations is a natural extension
of the problem of solving linear equations, and arises, for example, in the La-
grange multiplier method when the constraints and the function to be optimized
are algebraic. Our particular aim is to prove the theorem below (Theorem 4)
which gives a description of the common zeros of a system of polynomials. It is
interesting in itself because it combines various important concepts and results
from a standard undergraduate curriculum: ideals, quotient rings, homomor-
phism theorems, commuting linear operators and their common eigenvectors.
Although the theorem is not new (see [2], [4] and [3]) and is quite elementary,
we cannot find it in undergraduate text books.
If K is any field and f1, . . . , fn are polynomials in the ring K[X,Y ], then it

is convenient to consider the ideal J = 〈f1, . . . , fn〉 generated by these polyno-
mials. The set of common zeros in K2 of f1, . . . , fn is clearly the same as the
set of common zeros for all the polynomials in J so we can forget about the
particular polynomials chosen to generate J and simply think about the ideal
J itself. We shall refer to these zeros briefly as the zeros of J . An important
advantage of approaching the problem of the set of common zeros of polynomi-
als (= intersection of curves) in this way is that we can take advantage of the
structure of the ring K[X,Y ] rather than simply dealing with a subset of K2.
At the same time, we should not lose sight of the geometric interpretation of
the theorems which arise.
In what follows, we shall restrict ourselves to the case of two variables, but

at the end of this note we shall point out how all the results can be generalized
to the case of m variables X1, . . . , Xm.
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To fix notation, consider a finite list of polynomials f1, . . . , fn in A :=
K[X,Y ]. Let J be the ideal in A which they generate and let S ⊆ K2 be
the set of all solutions to f1(X,Y ) = 0, . . . , fn(X,Y ) = 0. We shall consider
the relationship between S, J and the quotient ring R := A/J . Note that the
rings A and R are vector spaces over K. Whereas A is infinite-dimensional as a
vector space, its quotient R could have finite dimension over K. We are looking
for a description of S in the case where R is finite dimensional.
The special case where J = A (dimKR = 0) occurs exactly when 1 ∈ J and

in this case S = ∅. However, S may be empty even when J is a proper ideal. In
what follows you might find it helpful to keep in mind the following example:
f1 = X + Y − 3 and f2 = X2 + Y 2 − 1 with K = R or C. In this case one can
check that we have S = ∅ when K = R (this is obvious from the geometry of the
two curves) whilst |S| = 2 when K = C. On the other hand, one can show that
for every field dimKR = 2 (for example, show 1 + J , X + J is a basis for R).

Proposition 1. We have dimKR <∞ if and only if J contains nonzero poly-
nomials p(X) and q(Y ) (each depending on a single variable).

Proof. If R is finite-dimensional then the set of monomials {Xi|i ≥ 0} is linearly
dependent in the quotient ring and thus there exists a non-zero polynomial
p(X) ∈ J . Likewise, there is a non-zero polynomial q(Y ) ∈ J . To prove the
converse, note that a polynomial p(X) ∈ J may be viewed as a reduction rule
in the quotient ring R and and this allows one to reduce any power of X to a
linear combination of {Xi} with i < deg(p). Then R is spanned by a finite set
{XiY j |i < deg(p), j < deg(q)} and is finite-dimensional.

Corollary 2. If dimKR <∞ then S is finite.

Proof. Let p(X), q(Y ) be non-zero polynomials in J . Denote by P the set of
roots of p(X) and by Q the set of roots of q(Y ). Since every polynomial in the
ideal J vanishes at every point in S, we conclude that S is contained in the
finite set P ×Q ⊂ K2.

The converse of the corollary is false in general. For example, if K = R
and we take J =

〈
X2 + 1

〉
, then S = ∅ (there are no possible values for the

first coordinate of a zero of J). On the other hand, dimRR is infinite by the
proposition since J contains no nonzero polynomial q(Y ) depending only on Y .
A similar example can be constructed whenever K is not algebraically closed,
but it turns out that this is the only obstruction.

Proposition 3. If K is algebraically closed, and S is finite, then dimKR <∞.

Proof. The polynomial ring K[X,Y ] in two variables can be embedded in the
ring K(X)[Y ] of polynomials in Y over the field K(X) of rational functions in X.
Note that K(X)[Y ] is a principal ideal domain. Consider the ideal J generated
by f1, . . . , fn in the ring K(X)[Y ]. Every ideal in K(X)[Y ] is principal, so let
g = Y d + ad−1(X)Y

d−1 + . . . + a0(X) be the monic generator of J . Let us
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show that d = 0 and so g = 1. Since J = 〈g〉, we have fk = ghk, where
hk =

∑mk

j=0 cjk(X)Y
j , k = 1, . . . , n. There are infinitely many values α ∈ K for

which the denominators of the rational functions ai(X), cjk(X) do not vanish.
If d > 0, then for each such α there exists a root β ∈ K of the polynomial
Y d + ad−1(α)Y

d−1 + . . .+ a0(α). Then each fk vanishes at (α, β), which would
give us infinitely many zeros of J . Thus, the monic polynomial g is the constant
polynomial 1. Since g ∈ J , we can write 1 = f1u1 + . . . + fnun for some
uj ∈ K(X)[Y ]. Multiplying both sides of this equality by the denominators of
all coeffi cients of uj , for j = 1, . . . , n, we construct a non-zero polynomial p(X)
which belongs to J . Analogously, J contains a non-zero polynomial q(Y ). By
Proposition 1, R is finite-dimensional.

We now study the properties of the quotient ring R in the case that dimKR <
∞. We define two (commuting) linear transformations TX and TY of R into itself
by: TX(u(X,Y ) + J) := Xu(X,Y ) + J and TY (u(X,Y ) + J) := Y u(X,Y ) + J
(because J is an ideal, XJ , Y J ⊆ J , and so TX and TY are well defined).
Our main result describes the zeros of J in terms of the eigenvalues and

common eigenvectors of TX and TY .

Theorem 4. ([4]) Suppose that dimKR <∞. Then (λ, µ) is a zero of J if and
only if there is a nonzero vector v ∈ R such that TXv = λv and TY v = µv.

Proof. By Proposition 1 there exist nonzero single variable polynomials p(X)
and q(Y ) in J . Suppose (λ, µ) ∈ S. Then p(λ) = 0 and q(µ) = 0, so p(X) =
(X − λ)rp1(X) and q(Y ) = (Y − µ)sq1(Y ) for some r, s > 0 where p1(λ) 6= 0
and q1(µ) 6= 0. Furthermore, u(X,Y ) := p1(X)q1(Y ) 6∈ J since it does not
vanish on (λ, µ), but (X −λ)ru(X,Y ), (Y −µ)su(X,Y ) ∈ J . Thus, there exists
v(X,Y ) := (X−λ)r1(Y −µ)s1u(X,Y ) with 0 ≤ r1 < r and 0 ≤ s1 < s such that
v(X,Y ) 6∈ J but (X−λ)v(X,Y ) ∈ J and (Y −µ)v(X,Y ) ∈ J . Now v(X,Y )+J
is the required common eigenvector. Conversely, let v(X,Y ) + J be a common
eigenvector for TX and TY with eigenvalues λ and µ. We want to show that
(λ, µ) ∈ S, that is, that J ⊆ M := 〈X − λ, Y − µ〉 (M is simply the ideal
consisting of all polynomials for which (λ, µ) is a zero). We proceed as follow.
For each p(X,Y ) ∈ A we can use the division algorithm to divide by X − λ
and obtain p(X,Y ) = a(X,Y )(X − λ) + r(Y ) for some polynomials a(X,Y ),
r(Y ) ∈ A. Now we can divide by Y −µ to obtain r(Y ) = b(Y )(Y −µ)+s where
b(Y ), s ∈ A and the remainder s is a constant. Evaluating at (λ, µ) shows
that s = r(µ) = p(λ, µ). Thus, we see that for each p(X,Y ) in A there exist
a(X,Y ), b(Y ) ∈ A such that p(X,Y ) = a(X,Y )(X−λ)+ b(Y )(Y −µ)+p(λ, µ).
Hence A = M +K and so dimK(A/M) ≤ 1. Thus, if J 6⊆ M , then A = J +M
since J + M is a K-subspace of A containing M . But v(X,Y )M ⊆ J since
v(X,Y )(X − λ) and v(X,Y )(Y − µ) lie in J by the choice of v(X,Y ). Hence
J 6⊆ M implies v(X,Y ) ∈ v(X,Y )J + v(X,Y )M ⊆ J contrary to the fact that
an eigenvector is non-zero.

More generally, if p(X,Y ) ∈ K[X,Y ] and Tp denotes the linear operator on
R obtained by multiplication by p(X,Y ), then the eigenvalues of Tp are given
by p(λ, µ) for (λ, µ) ∈ S.
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Corollary 5. |S| ≤ dimKR.

This corollary follows from the fact that the eigenvectors corresponding to
distinct eigenvalues are linearly independent.
It is well-known that two commuting operators on a finite-dimensional space

over an algebraically closed field have a common eigenvector (provided that the
dimension of the vector space is non-zero). As a consequence we get the following

Corollary 6. If K is algebraically closed, and 1 ≤ dimKR <∞, then J has at
least one zero.

Remark 7. What happens if we have more than two variables? There are obvious
generalizations of the first proposition, the theorem and their corollaries to
polynomial rings K[X1, . . . , Xm] in any (finite) number of variables. A little
thought shows that they can be proved using natural generalizations of those
proofs given above.
It is also true that Proposition 3 generalizes to polynomial rings of m vari-

ables (over an algebraically closed field!), but the proof above which depends on
the fact that a polynomial ring in one variable over a field is a principal ideal
ring does not seem to generalize. A proof of the general proposition instead
requires Hilbert’s Nullstellensatz which is less elementary. Recently Arrondo
[1] has given an elegant proof of the Nullstellensatz which makes that theorem
within reach of an undergraduate algebra course.

In order to carry out explicit calculations with Theorem 4, one has to work
out a Gröbner basis of the ideal J or a border basis of J [5]. A computational
alternative to this theorem is the elimination theory (see e.g., [6]), however
Theorem 4 is much more attractive aesthetically. It is a convenient stepping
stone towards computational algebra and algebraic geometry.

Acknowledgments. The authors thank Ken Small for his suggestion to write
this note.
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