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Abstract

Suppose that G is a �nite solvable group which has an irreducible
character � which vanishes on exactly one conjugacy class. Then we
show that G has a homomorphic image which is a nontrivial 2-transitive
permutation group. The latter groups have been classi�ed by Huppert.
We can also say more about the structure of G depending on whether �
is primitive or not.

Mathematics Subject Classi�cation 2000: 20C15 20D10 20B20

1



1 Introduction

Let � be an irreducible character of a �nite group G. A well-known theorem
of Burnside [9, page 40] shows that when � is nonlinear it takes the value 0
on at least one conjugacy class of G. Groups having an irreducible character
that vanishes on exactly one class were studied by Zhmud�in [11] (see also [1]).
Chillag [2, Lemma 2.4] has proved that if the restriction of � to the derived
group G0 is reducible and � vanishes on exactly one class of G, then G is a
Frobenius group with a complement of order 2 and an abelian odd-order kernel.
Our purpose in this paper is to show that, if an irreducible character � of a

�nite solvable group G vanishes on exactly one conjugacy class, then G has a
homomorphic image which is a nontrivial 2-transitive permutation group. The
latter groups have been classi�ed by Huppert: they have degree pd where p is
prime, and are subgroups of the extended a¢ ne group A�L(1; pd) except for six
exceptional degrees (see Remark 8 below). We can also say more about the
structure of G depending on whether � is primitive or not.

2 Main results

We shall initially assume that our character is faithful, and make the following
assumptions:

(*) G is a �nite group with a faithful irreducible character � which is 0 on
only one class which we denote by C. Furthermore, G has a chief factor
K=L which is an elementary abelian p-group of order pd such that the
restriction �K is irreducible, but �L is not.

Since � must be nonlinear, the latter condition clearly holds whenever G is
solvable, but for the present we shall not assume solvability.

Proposition 1 Suppose (*) holds. Then C = K n L, K = hCi and L is equal
to L0 := fu 2 G juC = Cg. In particular, C consists of p-elements (since L does
not contain a Sylow p-subgroup of K). Moreover, either:
(i) d is even, �L = pd=2� for some nontrivial linear character � of L, and

L = Z(G); or
(ii) �L = �1 + ::: + �pd is the sum of pd distinct G-conjugate irreducible

characters of L, and so � is imprimitive and pd j �(1).

Proof. Since �K is irreducible, the theorem of Burnside quoted above shows
that C � K. On the other hand, since �L is reducible, [1, Theorem 21.1] shows
that C \ L = ;. Hence C � K n L.
Now since K=L is an abelian chief factor, and �K is irreducible, it follows

from [9, (6.18)] that either (i) d is even, �L = pd=2� for some � 2 Irr(L); or (ii)
�L = �1 + :::+ �pd is the sum of pd distinct G-conjugate irreducible characters
�i. We shall consider these two cases separately.
In case (i) we note that, since C \ L = ;, the irreducible character � does

not take the value 0. Thus Burnside�s theorem implies that �(1) = 1. This
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implies that if � is a representation a¤ording �, then � is scalar on L. Since �
is assumed to be faithful, L is contained in the centre Z(G) of G. On the other
hand, for each z 2 Z(G), �(z) is a scalar of the form �1: Thus for each x 2 C we
have �(zx) = trace �(zx) = trace ��(x) = ��(x) = 0 and so zx 2 C. Therefore
z = (zx)x�1 2 hCi � K for all z 2 Z(G). This shows that Z(G) is a normal
subgroup of G satisfying L � Z(G) � K. Since K=L is a chief factor and �K
is a nonlinear irreducible character of K, we conclude that Z(G) = L. Finally,
since K=Z(G) is abelian, [9, (2.30)] shows that K n L = C.
In case (ii) �K is an irreducible constituent of (�1)K and so comparison

of degrees shows that �K = (�1)
K . Thus �K is 0 everywhere outside of the

normal subgroup L, and so K n L = C in this case as well.
Finally since jC [ f1gj > 1

2 jKj, therefore K = hCi. Finally, it is easily seen
that L0 is a normal subgroup of G, and that L0 � CC�1 and so L0 � K. Since
C = K n L is a union of cosets of L, we see that L � L0. On the other hand,
C * L0 since C is not a subgroup. Therefore L0 C G and L � L0 < K; hence
L0 = L as claimed.

Corollary 2 Under the hypothesis (*) every normal subgroup N of G either
contains K (when �N is irreducible) or is contained in L (when �N is reducible).
In particular, K=L is the unique chief factor such that �K is irreducible and �L
is reducible and K=L is the socle of G=L. Since K has a nonlinear irreducible
character, K is not abelian and so L 6= 1.

Remark 3 Both cases (i) and (ii) in Proposition 1 can actually occur. The
group SL(2; 3) has three primitive characters of degree 2 which satisfy (*) (case
(i) with jKj = 8 and jLj = 2 for each character), and S4 has an imprimitive
character of degree 3 which satis�es (*) (case (ii) with jKj = 12 and jLj = 4).

Proposition 4 Suppose that the hypothesis (*) and case (i) of Proposition 1
hold. Then L = Z(G) has order p, K is an extraspecial p-group and � is
primitive.

Proof. Let z 2 L. Then for any x 2 C we have zx 2 C and so zx = y�1xy
for some y 2 G. Since K=L is an elementary abelian p-group, zpxp = (zx)p =
y�1xpy = xp, and so zp = 1. Thus L is of exponent p. Since L = Z(G) is
represented faithfully as a group of scalar matrices by a representation a¤ording
�, it follows that L is cyclic and hence jLj = p. Because K is nonabelian,
K 0 = �(K) = L = Z(K) and so K is an extraspecial p-group.
We �nally show that � is primitive. Indeed, otherwise there is a maximal

subgroup H in G and  2 Irr(H) such that � =  G. The formula for an
induced character shows that  G is 0 on each conjugacy class disjoint from
H. As is well-known every proper subgroup of a �nite group is disjoint from
some conjugacy class, and so we conclude that C is the unique class such that
C \H = ;. By Proposition 1 this implies that H \K � L. Thus K � H, and
so G = HK by the maximality of H. Hence

�(1) =  G(1) � jG : Hj = jK : H \Kj � jK : Lj = pd:
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Since �(1) = pd=2, we obtain a contradiction. Thus � is primitive.

Proposition 5 Suppose that the hypothesis (*) and case (ii) of Proposition 1
hold (so � is imprimitive). Then there exists a subgroup M of index pd in G
such that � =  G for some  2 Irr(M), G =MK and M \K = L = coreG(M).

Proof. As noted in the proof of Proposition 1 �L is a sum of pd distinct
irreducible constituents �i. Because �K is irreducible, these constituents areK-
conjugates (as well as G-conjugates): LetM := IG(�1) be the inertial subgroup
�xing the constituent �1. Then jG :M j = pd and G = MK because K acts
transitively on the set of �i. Clearly L � M: Since jK : Lj = pd = jG :M j =
jK :M \Kj, we conclude that M \ K = L: On the other hand, since  G is
0 on any class which does not intersect M , the hypothesis on � shows that
C = G n

S
y2G y

�1My. Now u 2 coreG(M) =
T
y2G y

�1My and x 2 C implies
that ux does not lie in any y�1My, and hence ux 2 C. Thus with the notation
of Proposition 1, coreG(M) � L0 = L. Since L is a normal subgroup contained
in M , the reverse inequality is also true and so coreG(M) = L.
The proof of the next result requires a theorem of Isaacs [10, Theorem 2]

which states:

Let H be a �nite group with centre Z and K be a normal subgroup of H
with Z = Z(K). Suppose that H centralizes K=Z and jHom(K=Z;Z)j �
jK=Zj. Then H=Z = K=Z � CH(K)=Z.

Proposition 6 Under the hypothesis (*) the centralizer CG(K=L) equals K.

Proof. If � is primitive, then Proposition 4 shows that the hypotheses of
Isaacs�theorem are satis�ed forH := CG(K=L) (the condition jHom(K=Z;Z)j �
jK=Zj is trivial since the irreducibility of �H implies that Z is cyclic). Also,
since �K is irreducible, CG(K) = Z(G) = L, and so Isaacs�theorem shows that
H=L = K=L� CH(K)=L = K=L as required.
If � is imprimitive, then using the notation of Proposition 5 we can show

that M \ H = L where H := CG(K=L): Indeed, it is clear from Proposition
5 that L � M \H. To prove the reverse inequality suppose that u 2 M \H.
Then for each x 2 K we have xu = yux for some y 2 L. Choose i such that
�x1 = �i. Then �ui = �xu1 = �yux1 = �x1 = �i. Hence u �xes �x1 and hence lies
in x�1Mx. Since this is true for all x 2 K, it follows from Proposition 5 that
u 2 coreG(M) = L. Thus M \H = L as claimed. Finally H = H \MK =
(H \M)K = LK = K as required.

Corollary 7 Under the hypothesis (*) G acts transitively by conjugation on the
nontrivial elements of the vector space K=L and the kernel of this action is K.
Thus G=K is isomorphic to a subgroup of GL(d; p) which is transitive on the
nonzero elements of the underlying vector space.

Remark 8 Huppert [8, Chapter XII Theorem 7.3] has classi�ed all solvable sub-
groups S of GL(d; p) which are transitive on the nonzero vectors of the underly-
ing vector space. Apart from six exceptional cases (where pd = 32; 52; 72; 112; 232
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or 34), the underlying vector space can be identi�ed with the Galois �eld GF (pd)
in such a way that S is a subgroup of the group �L(1; pd) consisting of all trans-
formations of the form � 7! ��t where � is a nonzero element of the �eld and
t is an automorphism of the �eld. The group �L(1; pd) is metacyclic of order
(pd � 1)d. A classi�cation for nonsolvable groups has been carried out by Her-
ing [5], [6]. It is considerably more complicated to state and prove, but among
other things it shows that such groups have only a single nonsolvable composition
factor (a summary is given in [8, page 386]).

Since the latter half of hypothesis (*) is certainly satis�ed in a solvable group,
we can specialize to solvable groups and drop the condition that � is faithful to
obtain the following theorem .

Theorem 9 Let G be a �nite solvable group which has an irreducible character
� which takes the value 0 on only one conjugacy class C. Let K := hCi : Then:
(a) K = G(k) for some k � 0.
(b) There is a unique normal subgroup L of G such that K=L is a chief

factor of G and K n L = C (we set jK : Lj = pd).
(c) G=K acts transitively on the set (K=L)# of nontrivial elements of the

vector space K=L and so is one of the groups classi�ed by Huppert.
(d) If � is primitive, then K= ker� is an extraspecial group of order pd+1

with centre L= ker�.
(e) If � is imprimitive, then G=L is a 2-transitive Frobenius group of degree

pd.

Remark 10 We also note that (c) and Huppert�s classi�cation show that the
integer k in (a) is bounded. Indeed, since �L(1; pd) is metacyclic, k = 1 or 2
except in the six exceptional cases. Computations using GAP [4] show that in
the remaining cases k � 4.

Proof. (a) Let k be the largest integer such that K � G(k): By Corollary 2
we know that the restriction �G(k+1) is reducible, and so G(k+1) � L. Therefore
G(k+1) � L < K � G(k), and so G(k) � CG(K=L). Hence K = G(k) by
Proposition 6:
(b), (c) and (d) follow from Proposition 1, Corollary 7 and Proposition 4.
(e) Let M be the subgroup de�ned in Proposition 5. Since � is induced

from a character on M , its restriction �M must be reducible, and so [1, page
145] shows that

2 � [�M ; �M ] � 1 +
jC nM j
jM j = 1 +

jCj
jM j

Hence jCj � jM j : Since G = MK and G=K acts transitively on (K=L)# we
conclude using Proposition 5 that

jKj
jLj � 1 = pd � 1 � jG : Kj = jM :M \Kj = jM : Lj � jCj

jLj
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However, jCj = jLj = pd � 1 by Proposition 1, so equality must hold throughout.
Thus jM : Lj = pd � 1. Hence M=L acts regularly on (K=L)# and so G=L =
(M=L)(K=L) is a 2-transitive Frobenius group.

Remark 11 Not all groups having an irreducible character which takes 0 on
a single conjugacy class satisfy the second half of hypothesis (*). For exam-
ple, the Atlas [3] shows that A5 has three characters with this property and its
central cover 2 � A5 also has three. The group L2(7) has two characters with
the required property and each of the groups L2(2k) (k = 3; 4; :::) appears to
have one such character (of degree 2k). It would be interesting to know if these
were the only simple groups with this property, or whether a group with such a
character can have more than one nonabelian composition factor (see Remark
8). Another question which can be asked is what can be said about the kernel
of such a character; evidently this kernel is contained in the normal subgroup
L0 := fu 2 G juC = Cg.

References

[1] Ya. G. Berkovich and E.M. Zhmud�, Characters of Finite Groups. Part
(2), Vol. 181, Mathematical Monographs, Amer. Math. Soc., Rhode Island,
1999.

[2] D. Chillag, On zeros of characters of �nite groups, Proc. Amer. Math. Soc.
127 (1999) 977-983.

[3] J.H. Conway et al, Atlas of Finite Simple Groups, Clarendon Press, Oxford,
1985.

[4] The GAP Group, GAP�Groups, Algorithms and Programming, Version
4.4.4 (2005) (http://www.gap-system.org).

[5] Ch. Hering, Transitive linear groups and linear groups which contain irre-
ducible subgroups of prime order, Geometriae Dedicata 2 (1974), 425�460.

[6] Ch. Hering, Transitive linear groups and linear groups which contain irre-
ducible subgroups of prime order II, J. Algebra 93 (1985) 151�164.

[7] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.

[8] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin,
1982.

[9] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York,
1976

[10] I.M. Isaacs, Character degrees and derived length of a solvable group,
Canad. J. Math. 27 (1975) 146-151.

[11] E.M. Zhmud�, On �nite groups having an irreducible complex character
with one class of zeros, Soviet Math. Dokl. 20 (1979) 795-797.

6


