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Abstract

In an earlier paper the authors have classified the nonsolvable primi-
tive linear groups of prime degree over C. The present paper deals with
the classification of the nonsolvable imprimitive linear groups of prime
degree (equivalently, the irreducible monomial groups of prime degree). If
G is a monomial group of prime degree r, then there is a projection π of
G onto a transitive group H of permutation matrices with a kernel A con-
sisting of diagonal matrices. The transitive permutation groups of prime
degree are known, so the classification reduces to (i) determining the pos-
sible diagonal groups A for a given group H of permutation matrices; (ii)
describing the possible extensions which might occur for given A and H,
and (iii) determining when two of these extensions are conjugate in the
general linear group. We prove that for given nonsolvable H there is a
finite set Φ(r, H) of diagonal groups such that all monomial groups G with
π(G) = H can be determined in a simple way from the monomial groups
which are extensions of A ∈ Φ(r, H) by H, and calculate Φ(r, H) in many
cases. We also show how the problem of determining conjugacy in the
general case is reduced to solving this problem when A ∈ Φ(r, H). In gen-
eral, the results hold over any algebraically closed field with modifications
required in the case of a few small characteristics.

Mathematics Subject Classification 2000: 20H20
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1 Introduction

This paper is concerned with the problem of describing the finite imprimitive
linear groups of prime degree over an algebraically closed field. It complements
earlier work ([20] and [7]) describing the primitive linear groups of prime degree
over C. Since the degree is prime, the classification of imprimitive groups is
equivalent to classification of irreducible monomial groups (see below). Con-
siderable work has been done on classifying the solvable monomial groups of
prime degree; see [29], [28], [19] and [5], and related work [25], [10], [1] and [18].
Therefore in this paper we restrict ourselves to nonsolvable, imprimitive groups
of prime degree.

We now establish notation which will be used throughout the rest of the
paper. In all cases r will denote a prime and F will be an algebraically closed
field. Suppose that G is a finite nonsolvable imprimitive subgroup of GL(V )
where V is a vector space of dimension r over F . Because r is prime, the
definition of imprimitivity shows that there exists a basis e1, ..., er of V such
that G permutes the set of 1-dimensional subspaces Fe1, ..., F er transitively.
Over this basis the elements of G correspond to matrices from the monomial
group Mon(r, F ). We shall identify G with this group of monomial matrices and
V with the vector space F r of r-vectors over F , so e1, ..., er is just the standard
basis of F r. The elements of GL(r, F ) which permute the set {Fe1, ..., F er} of
1-dimensional subspaces are just the elements of Mon(r, F ), whilst the elements
which fix each of the subspaces Fei form the diagonal group D. The elements
of GL(r, F ) which map the set Ω := {e1, ..., er} into itself form the group S of
permutation matrices in Mon(r, F ). Note that S is isomorphic to the symmetric
group Sym(r), D is abelian, and Mon(r, F ) = DS. Finally we define Z to be
the group of scalar matrices, so Z is the centre of GL(r, F ).

We shall consider a further simplification. For each subgroup K of GL(r, F )
we define K0 := K ∩SL(r, F ). In particular, Z0 has order r when char(F ) 6= r
(otherwise it is 1). Clearly G0 is a finite irreducible nonsolvable subgroup of
Mon(r, F ) whenever G is. Since G ≤ G0Z, it is reasonable to restrict our
consideration to the case where G is contained in Mon(r, F )0.

We have a homomorphism π of Mon(r, F ) onto S defined by replacing every
nonzero entry in a monomial matrix by 1. The kernel of π is D. We note in
passing that if F has characteristic p > 0, then 1 is the only p-power root of 1
in F and so D contains no nontrivial p-elements.

We are interested in classifying groups up to conjugacy in GL(r, F ). If G
and G̃ are subgroups of Mon(r, F ), we write G ∼ G̃ if G is conjugate to G̃
in GL(r, F ), and write G ≈ G̃ if they are conjugate under some element of
Mon(r, F ).

In what follows we shall refer to the following hypothesis:

(H) G is a finite nonsolvable irreducible subgroup of Mon(r, F )0 where r is a
prime and F is an algebraically closed field. We define A(G) := D ∩ G,
H := π(G) and H1 as the stabilizer of e1 in H.

Since G is nonsolvable and irreducible, H must be nonsolvable and transitive,
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so H1 has index r in H. Conversely, given a transitive subgroup H of S, and a
finite subgroup A of D0 which is normalized by H we define

∆(A,H) :=
{
G ≤ Mon(r, F )0 |π(G) = H and A(G) = A

}
(we do not assume that the groups in ∆(A,H) are irreducible, but we shall see
later that in most cases they are).

Our problem is to classify (up to conjugacy in GL(r, F )) the groups G which
satisfy (H). This problem falls into three parts:

(I) Describe the permutation groups H which can arise for a specified prime r.

(II) Given a specific permutation group H of degree r, describe the possible
subgroups A of D0 which can occur as A(G) for some G.

(III) Given H and A, describe ∆(A,H) and find representatives of the ∼-
classes of groups in ∆(A,H).

Our main results on these questions are summarized below.

1.1 The possible factor groups H

Question (I) is easily answered using known results since H is transitive of prime
degree. Based on the classification of finite simple groups, we have:

Proposition 1.1 (see [9] or [6, page 99]) If H is a transitive nonsolvable sub-
group of Sym(r) where r is a prime (necessarily r ≥ 5), then H is 2-transitive
and one of the following holds:

(i) Alt(r) ≤ H ≤ Sym(r) with r ≥ 5;
(ii) r ≥ 5 has the form (qn − 1)/(q − 1) for some integer n ≥ 2 and some

prime power q, and PSL(n, q) ≤ H ≤ PΓL(n, q); or
(iii) (three exceptional cases) (r, H) = (11, PSL(2, 11)), (11,M11) or (23,M23).

Case (i) with r = 5 is subsumed in (ii) with (n, q) = (2, 4). The permutation
representation in (ii) refers to the action on the set of lines of the underlying
projective space. We can also consider the action on hyperplanes. For n > 2
these two representations are different, but the permutation groups they give
rise to are conjugate in Sym(r) since the stabilizer of a line is mapped into the
stabilizer of a hyperplane by a suitable outer automorphism (see Section 1.1.1
below).

For PSL(2, 11) in (iii) there are also two conjugacy classes of subgroups of
index 11, and hence two inequivalent permutation representations of degree 11.
However, again the two classes are merged under an outer isomorphism so, up
to conjugacy in Sym(r), the two representations have the same image. The
one-point stabilizers in the three exceptional cases are isomorphic to Alt(5),
Alt(6) · 2, and M22, respectively.

Since we are interested in classifying the possible G up to conjugacy, we can
assume that we have fixed arbitrarily one group H ≤ S for each permutation
isomorphism class. Then Proposition 1.1 enables us to partition the set Π of all
pairs (r, H) which arise for groups satisfying hypothesis (H) into three classes:
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Π1: all (r, H) with r ≥ 7 and H = Alt(r) or Sym(r);

Π2: all (r, H) with r ≥ 5, PSL(n, q) ≤ H ≤ PΓL(n, q) and r = (qn−1)/(q−1)
with the exception of (7, PSL(3, 2));

Π3: the exceptional cases (r, H) = (7, PSL(3, 2)), (11, PSL(2, 11)), (11,M11)
and (23,M23).

Although this has not been proved, it is conjectured that Π2 contains groups
of infinitely many prime degrees; for example, every Mersenne prime r occurs.
We shall see later why the pair (7, PSL(3, 2)) has been moved from class Π2 to
class Π3.

1.1.1 Permutation representation of PSL(n,q)

It helps to be a little more precise in identifying the permutation representation
of PSL(n, q) in class Π2. A simple number theoretic argument (see [7, Lemma
3.1]) shows that, if q = pa where p is prime, then the primality of r := (qn −
1)/(q − 1) implies that n is prime, n - q − 1 and a ≥ 1 is a power of n. If n = 2
then p = 2 and r is a Fermat prime.

In particular, since (n, q − 1) = 1, we have PGL(n, q) = PSL(n, q) ∼=
SL(n, q), and PΓL(n, q)/PSL(n, q) is cyclic of order a (a power of n) (see
[3, page xvi]). Thus we may assume that the elements of H are identified with
the matrices in SL(n, q). The action considered is the action of H on lines (=
1-dimensional subspaces of Fn

q ). Without loss in generality we may assume that
H1 is the subgroup fixing the line spanned by [1, 0, ..., 0]>. It consists of the
matrices of the form [

ξ w
0 y

]
where ξ ∈ F∗q , w is a 1 × (n − 1) block, and y ∈ GL(n − 1, q) has determi-
nant ξ−1. The outer automorphism of H defined by x 7→ (x−1)> (the inverse
transposed) maps H1 onto the stabilizer of a hyperplane (= (n−1)-dimensional
subspace). The outer automorphisms in PΓL(n, q) are obtained by applying
Galois automorphisms from Gal(Fq) to the entries of the matrices. The latter
group is cyclic of order a (and hence a power of n from above), and is generated
by the Frobenius mapping ξ 7→ ξp. Under these hypotheses, PΓL(n, q) splits
over PSL(n, q).

1.2 The possible subgroups A(G)

We now turn to question (II). Suppose that (r, H) ∈ Π is specified, and that
G satisfies hypothesis (H) with π(G) = H. Now G acts by conjugation on D
with A(G) acting trivially. Thus we can consider D as a ZH-module and we
shall refer to any subgroup of D which is a ZH-submodule as being an H-stable
subgroup. In particular, D0 and A(G) are H-stable.
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Conversely, if A is an H-stable subgroup of D0, then AH is a subgroup of
Mon(r, F ). If A is not contained in Z then Theorem 2.1 in Section 2 below
shows that (AH)0 is irreducible and hence satisfies hypothesis (H).

Thus to answer question (II) we must determine the lattice of finite H-stable
subgroups of D0. Since the Sylow subgroups of a finite H-stable group are also
H-stable, it is enough to consider the H-stable subgroups of prime power orders.

For each integer m > 0 we define the H-stable subgroups D(m) := {u ∈
D |um = 1} and D0(m) := D(m)0. Thus, if char(F ) - m, then D(m) is a direct
product of r cyclic groups of order m, and

∣∣D0 (m)
∣∣ = mr−1. (If p = char(F ),

then D contains no nontrivial p-subgroup.) Subgroups of the form D0(m) will
be called standard subgroups.

Some important homomorphisms are related to these standard subgroups.

Definition 1.2 For each x ∈ Mon(r, F ) we define ε(x) := det(π(x)); hence
ε(x) = ±1 depending on whether the permutation π(x) is even or odd. For each
integer m we define πm : Mon(r, F ) −→ Mon(r, F ) by πm(x) := ε(x)m−1x(m)

where x(m) is the matrix obtained from x by replacing each nonzero entry of
x by its mth power. For each subgroup K ≤ Mon(r, F )0 we define π̃m(K) :=
π−1

m (K) ∩Mon(r, F )0.

Lemma 1.3 Let m > 1. Then
(a) πm is a surjective homomorphism with kernel D(m);
(b) πm maps Mon(r, F )0 onto itself;
(c) D0(m) ≤ π̃m(K) for each K ≤ Mon(r, F )0 and π̃m(K)/D0(m) ∼= K.

Proof. Statement (a) is clear (surjectivity follows from the fact that F
is algebraically closed), so consider (b). For each x ∈ Mon(r, F ), det(x) =
ε(x)δ where δ is the product of the nonzero entries in x and det(πm(x)) =
ε(x)r(m−1)+1δm = ε(x)mδm because r is odd. Thus det(πm(x)) = det(x)m.
In particular, πm maps Mon(r, F )0 into itself. Now suppose y ∈ Mon(r, F )0.
By (a) we can choose z ∈ Mon(r, F ) such that πm(z) = y. Then det(z)m =
det(y) = 1 and so defining u := diag(ω, 1, ..., 1) with ω = det(z)−1 we have
x := uz ∈ Mon(r, F )0 and πm(x) = 1. This shows that πm maps Mon(r, F )0

onto itself. This proves (b). Statement (c) now follows easily (apply πm to
π̃m(K)).

We call an H-stable subgroup of D0 basic if it does not contain any D0(m) 6=
1 and denote the set of finite basic H-stable subgroups of D0 by Φ(r, H). If
A is an H-stable subgroup of D0, then it is clear that πm(A) and π̃m(A) are
also H-stable since π ◦ πm = π. Each standard subgroup D0(m) has the form
π̃m(1), and more generally every finite H-stable subgroup of D0 can be written
in the form π̃m(A) for some m ≥ 1 and some A ∈ Φ(r, H). This representation
is unique if we restrict m to be relatively prime to char(F ) when the latter
is nonzero. Thus a knowledge of Φ(r, H) completely determines the lattice of
finite H-stable subgroups in D0. Since each A ∈ Φ(r, H) is a direct product of
its Sylow subgroups and these are all basic H-stable subgroups of prime power
orders, it is enough to know the set Φp(r, H) of basic H-stable p-subgroups for
each prime p. We shall see below (Theorem 1.5) that Φ(r, H) is always finite.
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Remark An alternative way to think about the lattice of finite H-stable sub-
groups is the following. Let H1 be the stabilizer in H of the point e1. Consider
the multiplicative group F ∗ of the field F as a ZH1-module with trivial action.
Then the permutation action of H is induced from this trivial module and so
D ∼= ZH⊗ZH1 F ∗. Consider the analogous induced ZH-module M := ZH⊗ZH1 Z
where Z is the (additive!) ZH1-module with the trivial action. Then M as a Z-
module is free of rank r = |H : H1|, and for each integer m ≥ 0 with char(F ) - m
we have D(m) ∼= M/mM as ZH-modules. Hence the lattice L(M) of nonzero
submodules of M determines the lattice of finite H-stable subgroups of D. How-
ever, L(M) is independent of the field F and seems an important object to study
in its own right.

For any integer m > 0 and prime p, πm induces a ZH-homomorphism of
D(mp) onto D(p) with kernel D(m). Therefore D(mp)/D(m) ∼= D(p) as ZH-
modules and similarly D0(mp)/D0(m) ∼= D0(p). If p = char(F ), then D(p) = 1,
but if p 6= char(F ), then D(p) ∼= FpH ⊗FpH1 Fp where Fp is the field with p
elements (with FpH1 acting trivially). Thus, when p 6= char(F ), the structure
of D0(mp)/D0(m) is determined by the structure of this induced module. The
latter is known and is described in the following proposition (adapted from [21]
for the case where the degree is prime using the remarks at the beginning of
Section 1.1.1).

Proposition 1.4 ([21]) Let H be a nonsolvable 2-transitive group of prime de-
gree r (see Proposition 1.1) with a one-point stabilizer H1. Let p be a prime and
set Bp := FpH ⊗FpH1 Fp. If p = r then Bp has a unique composition series of
the form 0 < Fp < B0

p < Bp where B0
p has codimension 1. On the other hand,

if p 6= r, then we have the FpH-module decomposition Bp = Fp ⊕ B0
p where B0

p

is irreducible except in the following cases:
(i) PSL(n, q) ≤ H ≤ PΓL(n, q) with n > 2, r = (qn − 1)/(q − 1) and p | q;
(ii) (r, H, p) = (11, PSL(2, 11), 3) or (23,M23, 2).

Remark The submodule structure of B0
p in (i) can be quite complicated (see

Section 3). In case (ii), when H = PSL(2, 11) the module B0
3 has a unique

proper nonzero submodule of dimension 5 (see [21, page 18]), and when H =
M23 the module B0

2 has a unique proper nonzero submodule of dimension 11
(see [16]).

This proposition leads to the following theorem which is proved in Section 2.

Theorem 1.5 Let (r, H) ∈ Π.
(a) Φp(r, H) = {1} for p 6= r except in the cases listed in (i) or (ii) of

Proposition 1.4.
(b) Φr(r, H) =

{
1, Z0

}
(c) Φp(r, H) is finite for all primes p, and hence Φ(r, H) is finite.
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1.3 The set of extensions ∆(A, H) of A by H

Given (r, H) ∈ Π and a finite H-stable subgroup A of D0, (III) asks for a
classification of the extensions in ∆(A,H). Define H̃ := {ε(x)x |x ∈ H} where
ε(x) = ±1 depending on whether the permutation x is even or odd. Then
H ∼= H̃ ≤ Mon(r, F )0 and π(H̃) = H. Thus G := AH̃ ∈ ∆(A,H), and so this
set of extensions is nonempty and contains at least one split extension.

In general we can prove the following criterion for splitting.

Theorem 1.6 Let G be a group which satisfies hypothesis (H) and put d :=
|H1 : H ′

1|. Then G splits over A(G) whenever |A(G)| is relatively prime to d.

The proof will be given at the end of Section 4.
There is an important relationship between the sets ∆(A,H) and ∆(π̃m(A),H)

which turns out to be critical in our analysis (we are indebted to V. Burichenko
who pointed this out to us).

Lemma 1.7 (V. Burichenko) Let H ≤ S be a transitive group, and suppose
that A and Ã are finite H-stable subgroups of D0 such that for some positive
integerm we have πm(Ã) = A.

(a) If G̃, K̃ ∈ ∆(Ã,H) and G̃ ≈ K̃, then πm(G̃), πm(K̃) ∈ ∆(A,H) and
πm(G̃) ≈ πm(K̃).

(b) If Ã := π̃m(A), then πm induces a bijection from ∆(Ã,H) onto ∆(A,H)
whose inverse is induced by π̃m. Moreover, if G̃, K̃ ∈ ∆(Ã,H) then G̃ ≈ K̃ if
and only if πm(G̃) ≈ πm(K̃)

Proof. (a) It is clear that πm maps ∆(Ã,H) into ∆(A,H) since πm(Ã) =
A, π = π ◦ πm and πm maps Mon(r, F )0 onto itself. Put πm(G̃) = G and
πm(K̃) = K. Since G̃ ≈ K̃, we have G̃ = a−1K̃a for some a ∈ Mon(r, F ). Thus
G = πm(a)−1Kπm(a) and so G ≈ K.

(b) As we saw in (a), πm maps ∆(Ã,H) into ∆(A,H). Now for each G ∈
∆(A,H), the inverse image G̃ := π̃m(G) ∈ ∆(Ã,H), and πm(G̃) = G. Since
every group in ∆(Ã,H) which maps onto G must be contained in this inverse
image and all groups in ∆(Ã,H) have the same order, this shows that G̃ is the
only group in ∆(Ã,H) which maps onto G. Hence πm induces a bijection and
the inverse of this bijection is induced by π̃m.

Now suppose that G̃, K̃ ∈ ∆(Ã,H) and put πm(G̃) = G and πm(K̃) = K.
We saw in (a) that G̃ ≈ K̃ implies that G ≈ K. Conversely, if G = b−1Kb for
some b ∈ Mon(r, F ), then G̃ = a−1K̃a for any a ∈ π̃(b) since G̃ = π̃m(G).

Since every H-stable subgroup is of the form π̃m(A) for some basic H-stable
subgroup A and some m ≥ 1, the lemma above reduces the problem of describ-
ing ∆(A,H) and its ≈-classes to the case where A is basic. As Lemma 2.1
below shows, the ∼-classes and ≈-classes of ∆(A,H) coincide whenever A is
noncentral.

At this point the reader might find it helpful to look at the final section of
this paper where our description of the extensions corresponding to a fixed pair
(r, H) ∈ Π is worked out in detail for particular cases.
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2 Some general results

Recall that Ω = {e1, ..., er} is the standard basis of the underlying vector
space F r so that the subspaces Fe1, ....F er are permuted under the action of
Mon(r, F ). We start with the following elementary result.

Lemma 2.1 (a) Let G be a subgroup of Mon(r, F )0 where r is a prime and F
is an algebraically closed field. Suppose that H := π(G) is a transitive group
and A(G) := G ∩ D is not a group of scalars. Then G is irreducible (and so
satisfies hypothesis (H) if H is nonsolvable).

(b) Suppose that G and G̃ are two groups which satisfy hypothesis (H) and
A(G) and A(G̃) are both nonscalar. If G and G̃ are conjugate in GL(r, F ) then
they are also conjugate in Mon(r, F ).

Remark As we shall see in Section 5 both conclusions may be false when
theabelian normal subgroup is scalar.

Proof. (a) There exist r one-dimensional representations λi of A(G) defined
by xei = λi(x)ei for all x ∈ A(G). Consider the equivalence relation ρ on Ω
defined by ei ρ ej ⇔ λi = λj . This relation is invariant under H. Since H
is transitive on Ω and r is prime, the ρ-equivalence classes must all have the
same size and so either the λi are distinct or all equal. The latter is impossible
since A(G) is nonscalar, and so λi 6= λj whenever i 6= j. This implies that
Fe1, ..., F er are the only minimal A(G)-invariant subspaces of F r. Thus any
nonzero G-invariant subspace contains some Fei and so contains them all by
the transitivity of H. This shows that G is irreducible.

(b) Choose c ∈ GL(r, F ) such that c−1Gc = G̃. Then c−1A(G)c = A(G̃)
because A(G) and A(G̃) are the unique maximal normal abelian subgroups of
G and G̃, respectively. As we saw in (a), Fe1, ..., F er are the unique minimal
invariant subspaces for both A(G) and A(G̃). Hence c must permute this set of
subspaces and so c ∈ Mon(r, F ).

If G is a subgroup of Mon(r, F ) such that H := π(G) is transitive (but not
necessarily nonsolvable), then G permutes the set of 1-dimensional subspaces
Fe1, ..., F er transitively. Let Gi be the subgroup (of index r in G) which fixes
the space Fei, so Hi := π(Gi) is the stabilizer of ei in H. Then we have a
representation λi of degree 1 for Gi defined by xei = λi(x)ei for all x ∈ Gi.
Note that the kernel of λi contains G′

1. Since λi(Gi) is a finite subgroup of the
multiplicative group F ∗ of the field, λi(Gi) is cyclic, and so |λi(Gi)| divides the
exponent of Gi/G′

i.

Lemma 2.2 Let G be a subgroup of Mon(r, F ) such that H := π(G) is tran-
sitive and let d be the exponent of the group G1/G′

1. Then G is conjugate in
Mon(r, F ) to a group K such that K contains an r-cycle from S and the nonzero
entries of every element of K are all dth roots of 1 in F .

Proof. Because H is transitive we can choose z ∈ G such that z0 := π(z)
is an r-cycle. Conjugating if necessary by a permutation matrix we can assume
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z0 corresponds to the permutation (1 2 ... r ) and z = diag(α1, ..., αr)z0. Since
det(z) = 1 a simple calculation shows that:

diag(β1, β2, ..., βr)−1 z diag(β1, β2, ..., βr) = z0

where βi = aiαi+1...αr (for i = 1, ..., r). Thus, there exists c ∈ Mon(r, F ) such
that z0 := c−1zc ∈ S. We claim that the nonzero entries of all matrices in
K := c−1Gc are dth roots of 1.

Now suppose that x ∈ K and that xei = ζej for some i and j. We have to
show that ζd = 1. Since z0 is an r-cycle we can choose an integer l such that
zl
0ej = ei and then zl

0xei = ζei. Thus with the notation above, ζ ∈ λi(Ki) and
so the order of ζ divides the exponent of Ki/K ′

i. Since the subgroups K1, ...,Kr

are conjugate in K by the transitivity of H and K1/K ′
1
∼= G1/G′

1, the result
follows.

As a simple application of the last two lemmas we have the following useful
criteria for splitting.

Theorem 2.3 Suppose that G is a group satisfying hypothesis (H). Then:
(a) G splits over the Sylow r-subgroup Ar of A(G) and every pair of com-

plements of Ar in G are conjugate in Mon(r, F );
(b) If A(G) = ArD

0(m) for some m ≥ 1 where m is relatively prime to
|H1 : H ′

1|, then G splits over A(G).

Proof. (a) The previous lemma shows that without loss in generality we
can assume that G contains an r-cycle z from S. Note that 〈z〉 is a Sylow
r-subgroup of H. Hence, if R is a Sylow r-subgroup of G containing z, then
R = Ar(R∩S) where R∩S = 〈z〉 and so R splits over Ar. Therefore Gaschütz’
theorem (see, for example, [13, page 121]) shows that G splits over Ar.

Next, let Dr be the Sylow r-subgroup of the infinite group D. If L is another
complement of Ar in R, then L is a complement of D0

r in D0
r 〈z〉. Since L = 〈w〉

for some w for which π(w) = z and the nonzero entries of w are r-power roots
of 1, the calculation in the proof of Lemma 2.2 shows that w is conjugate to
z under some element c in Dr. Multiplying by a suitable scalar and using the
fact that F is algebraically closed we can replace c by an element in D0

r . Since
D0

r 〈z〉 is a Sylow r-subgroup of D0
rG and the complements of D0

r in D0
r 〈z〉 are

conjugate in D0
r 〈z〉, the second part of Gaschütz’ theorem shows that every

complement of D0
r in D0

rG is conjugate to 〈z〉 in D0
rG. Hence the complements

of Ar in G are conjugate in Mon(r, F ).
(b) G splits over Ar by part (a), so it is enough to prove (b) when A(G) =

D0(m). Since H1/H ′
1
∼= G1/G′

1A(G), the exponent of G1/G′
1 divides mk where

k := |H1 : H ′
1|. Hence by Lemma 2.2 we can assume that the nonzero entries in

the matrices in G are all (mk)th roots of 1. However G ∼= πk(G) since A(G) ∩
D(k) = 1 by hypothesis, and the nonzero entries in the matrices in πk(G) are all
mth roots of 1. In general, K := πk(G) need not lie in SL(r, F ). However, K0 ≥
D0(m), and so

∣∣K : K0
∣∣ clearly divides |H1 : H ′

1| = k. Thus
∣∣K : K0

∣∣ is relatively
prime to m. Now Gaschütz’ theorem shows that if K0 splits over A(K0) (=
D0(m)), then K (and hence G) also splits over D0(m). Thus (replacing G by
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K0) it is enough to prove the result in the case that the nonzero entries in the
matrices in G are all mth roots of 1.

Now H̃ := {ε(x)x |x ∈ H} = πm(G) is isomorphic to H and lies in ∆(1,H).
Hence D0(m)H̃ and G both lie in ∆(D0(m),H) and are mapped onto the same
group H̃ in ∆(1,H) by πm. Thus Lemma 1.7 shows that G = D0(m)H̃ which
gives the required splitting.

We now turn to a proof of Theorem 1.5 in the introduction. We begin with
a lemma.

Lemma 2.4 If A is an H-stable subgroup of D0(pk+1) then AD0(pk)/D0(pk) '
πp(A)D0(pk−1)/D0(pk−1) as H-modules. Moreover, if AD0(pk) = D0(pk+1)
then A = D0(pk+1).

Proof. The first statement follows at once from consideration of the H-
homomorphism A → D0(pk)/D0(pk−1) defined by u 7→ πp(u)D0(pk−1).

To prove the second statement we use induction on k. The statement is
trivially true for k = 0, so suppose k > 0. Now applying πp to both sides
of AD0(pk) = D0(pk+1) gives πp(A)D0(pk−1) = D0(pk). Thus A ≥ πp(A) =
D0(pk) by the inductive hypothesis. Hence A = AD0(pk) = D0(pk+1) as re-
quired.

2.1 Proof of Theorem 1.5

(a) Suppose that p 6= r and assume that the exceptional cases (i) and (ii) of
Proposition 1.4 do not hold. We have to show that every H-stable p-subgroup is
of the form π̃pk(1). Let A be any H-stable p-subgroup of D0, and assume that
A ≤ D0(pk+1) but A � D0(pk). Since D0(pk+1)/D0(pk) ∼= B0

p is irreducible by
Proposition 1.4, therefore AD0(pk) = D0(pk+1). Now Lemma 2.4 shows that
A = D0(pk+1) = π̃pk+1(1). Hence Φp(r, H) = {1} as required.

(b) Now consider the case p = r. A simple calculation shows that π̃rk(Z0) =
D1(rk) := ZD(rk) ∩ D0(rk+1) and

∣∣D1(rk)
∣∣ = r

∣∣D0(rk)
∣∣ (recall that Z is the

group of scalars). Thus to prove (b) it is enough to show that if A is an H-stable
r-subgroup of D0 such that A ≤ D0(rk+1) but A � D0(rk) then either A =
D0(rk+1) or D1(rk). If A = D0(rk+1), we are finished. Otherwise, we know
from Proposition 1.4 that B0

r has only one proper nonzero submodule. Since
D0(rk+1)/D0(rk) ' B0

r , this shows that AD0(rk) = D1(rk).
To complete the proof we must show that

AD0(rk) = D1(rk) implies that A = D1(rk) (1)

for all k. This is trivial if k = 0 so consider the case k = 1. Choose u ∈
D1(r) \ D0(r) lying in A. Then u has order r2 and determinant 1, so u is
not scalar. Hence u has two diagonal entries, say the ith and jth which are
not equal. Since H is 2-transitive by Proposition 1.1, we can choose x ∈ H
which maps i into j and fixes some l. Now v := x−1u−1xu ∈ A is not scalar
so v /∈ D1(1). On the other hand, since H centralizes D1(r)/D0(r), we have
v ∈ D0(r)∩A. Since D0(r) ∼= B0

r , Proposition 1.4 shows that D1(1) is the only
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proper nontrivial H-stable subgroup of D0(r). But v /∈ D1(1), so D0(r) ≤ A
and hence A = AD0(r) = D1(r) as required. This proves the case k = 1.

Finally we use induction to prove the case k ≥ 2. We are given that
AD0(rk) = D1(rk). Applying πr to both sides gives πr(A)D0(rk−1) = D1(rk−1),
and then induction shows that D1(rk−1) = πr(A) and hence D0(rk−1) ≤ A.
Thus D1(r) = πrk−1(A) ∼= A/D0(rk−1). Since A ≤ D1(rk), a comparison of
orders shows that A = D1(rk).

(c) We want to show that Φ(r, H) is always finite and so, in principle, we
always have a simple description of the finite H-stable subgroups. In practice,
it may be difficult to determine what this set is. Since each basic subgroup is a
direct product of its Sylow subgroups which are also basic, and Φp(r, H) = {1}
for all but at most one prime other than r, it is enough to prove that Φp(r, H)
is finite for each prime p.

Let A be a finite H-stable p-subgroup of D0. We shall say that A has height
k if A ≤ D0(pk) but A � D0(pk−1). If A has height k, then we have a series of
H-stable subgroups

A = Ak ≥ Ak−1 ≥ ... ≥ A0 = 1 with Ai := A ∩D0(pi) for each i. (2)

It follows from Lemma 2.4 that the factors Ai/Ai−1
∼= Ui where Ui is a sub-

module of B0
p and

Uk ≤ Uk−1 ≤ ... ≤ U1 (3)

The H-stable p-subgroup A will be called U -homogeneous if each of the Ui is
isomorphic to U . We note that A/A1

∼= πp(A) ≤ Ak−1. Thus, when A is U -
homogeneous, a comparison of orders shows that πp(A) = Ak−1. The key step
in the proof that Φp(r, H) is finite is the following result.

Lemma 2.5 Let p 6= char(F ) be a prime and suppose that pe is the largest
power of p dividing |H|. Then for each proper nonzero submodule U of B0

p the
height of every U -homogeneous H-stable p-subgroup is bounded by 2e.

Proof. Let Dp denote the ring of p-adic integers and Qp the field of p-adic
numbers. Consider the DpH-module M := (Dp)r where the action of H on M is
via matrix multiplication. This module has a submodule M0 (of codimension 1)
consisting of all vectors whose components sum to 0, and thus M is isomorphic
to the DpH-module induced from the trivial DpH1-module. Since char(Dp) = 0
and H is 2-transitive, M ⊗Qp has only two proper nonzero submodules and so
M0 ⊗Qp is (absolutely) irreducible (see [13, page 597]).

Let A be a U -homogeneous H-stable p-subgroup of height k. Let ζ be a
primitive pkth root of 1 in F . Then

(m1, ...,mr) 7→ diag(ζm1 , ..., ζmr )

defines a DpH-homomorphism of M0 onto D0(pk) with kernel pkM0 (note that
ζm is well-defined for m ∈ Dp because ζ is a p-power root of 1). Let V be
the inverse image of A under this homomorphism. Since piM0 is the inverse
image of D0(pk−i) for i = 0, 1, ..., k, therefore (V ∩ piM0)/(V ∩ pi+1M0) ∼=
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Ak−i/Ak−i−1
∼= U for i = 0, 1, ..., k − 1. Now choose u1, ..., ur−1 in M0 such

that ui + pM0 (i = 1, ..., r − 1) is a basis for the vector space M0/pM0 with
the first d, say, of the elements lying in V such that ui + pM0 (i = 1, ..., d)
is a basis for (V + pM0)/pM0 (∼= U). Since V/pkM0 is U -homogeneous, the
elements ui + pkM0 (i = 1, ..., d) generate all of V/pkM0. Since Dp is local,
Nakayama’s lemma shows that u1, ..., ur−1 generate M0 as a Dp-module. Since
M0 is irreducible, Theorem 76.11 of [4] (together with the remarks following
Theorem 75.19) now show that k ≤ 2e as claimed.

We can now complete the proof that Φp(r, H) is finite for each prime p.
Suppose the contrary. Then there are basic p-subgroups of arbitrarily large
height. Since B0

p is finite, it follows from the series (2) and (3) that there exists
a proper nonzero submodule U of B0

p and a basic p-subgroup A such that for
some s and t with t − s > 2e we have Ui

∼= U for i = s + 1, s + 2, ..., t. But
now πps(At) is a U -homogenous basic p-subgroup of height t− s > 2e and this
is impossible by the previous lemma.

3 H-stable p-subgroups when H = PSL(n, q) and
p | q

Suppose that G satisfies the hypothesis (H) and p 6= r. Then Theorem 1.5(a)
shows that the H-stable p-subgroups are all standard except when either PSL(n, q) ≤
H ≤ PΓL(n, q), r = (qn− 1)/(q− 1) and p | q, or (r, H, p) = (11, PSL(2, 11), 3)
or (23,M23, 2). We shall consider the latter exceptions in Section 6.3.

We shall start by considering the problem of describing the PSL(n, q)-stable
p-subgroups when p | q. However, we shall see below (Corollary 3.8) that these
p-subgroups remain stable under H whenever PSL(n, q) < H ≤ PΓL(n, q), and
so the same description is valid for H-stable p-subgroups in the more general
case.

Recall that primality of r implies that (n, q − 1) = 1 and so PSL(n, q) ∼=
PGL(n, q) ∼= SL(n, q) (see the Remark following Proposition 1.1).

3.1 The structure of Bp

Unless stated otherwise, the results in this subsection are valid whenever H =
SL(n, q) and q = pa for some prime p and integer a ≥ 1 (without the restriction
that (qn − 1)/(q − 1) is prime). As we shall see in Corollary 3.8 below, under
hypothesis (H) our results will apply more generally to all H with PSL(n, q) ≤
H ≤ PΓL(n, q).

The lattice of H-stable p-subgroups is largely determined by the structure of
the FpH-module Bp := FpH⊗FpH1 Fp induced from the trivial module Fp for the
stabilizer H1 of a line (in other words, Bp is the permutation module of H acting
on the set of lines). We could also consider the corresponding module induced
from the trivial module for the stabilizer of a hyperplane; the two modules are
dual and have the same submodule lattice.
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The composition factors of Bp for p > 2 were determined in [31]. More
recently, a complete description of the submodules of Bp was determined in [2].
We recall these results here and interpret them for our problem.

Let V be the natural FqL-module where L := GL(n, q) and q = pa. It is
convenient to extend the scalars to the algebraic closure E of Fq. Let X be the
polynomial ring E[x1, . . . , xn] and let Xp := X/〈xp

1, . . . , x
p
n〉 be the quotient over

the ideal generated by p-th powers of x1, . . . , xn. We identify V ⊗ E with the
space of linear polynomials

V ⊗ E := {a1x1 + · · ·+ anxn | a1, . . . , an ∈ E}

The action of L on V ⊗E extends to X in a natural way and, since 〈xp
1, . . . , x

p
n〉

is an L-invariant ideal, this action is inherited by Xp. Let X(i) be the image
in Xp of the space of the homogeneous polynomials of degree i in X (the space
of “truncated polynomials of degree i”). Thus X(i) is an EL-module and it is
clear that X(i) 6= 0 for i = 0, 1, ..., n(p − 1). In particular, X(n(p − 1)) is a
1-dimensional space spanned by xp−1

1 · · ·xp−1
n . If p = 2 then X(i) is just the

i-th exterior power of the natural module. The following is known (recall that
the term “infinitesimally irreducible” means that the SL(n, q)-module remains
irreducible under restriction to SL(n, p)).

Lemma 3.1 (see [30]) For each i ≤ n(p − 1), X(i) is an infinitesimally irre-
ducible ESL(n, q)-module and X(i) and X(n(p− 1)− i) are dual. If n > 2 then
the X(i) are nonisomorphic except for the pair X(0) ∼= X(n(p− 1)).

C.W. Curtis and R. Steinberg have shown how to use the modules X(i) to
construct a family of irreducible EL-modules as follows. Let σ be the Frobenius
automorphism of E (so σ(α) = αp for α ∈ E). We can extend σ in a natural
way to an automorphism of GL(n, q) which we also denote by σ. Let Fr X(i)
denote the σ-twist of X(i) (the module is the same space but the action of L is
twisted by applying σ). Then:

Lemma 3.2 (see [27, Theorems 41 and 43]) Let q = pa. Then for all a-tuples
(i1, .. , ia) with 0 ≤ i1, . . . , ia < n(p− 1) the EL-modules

X(i1, . . . , ia) := X(i1)⊗ Fr X(i2)⊗ · · · ⊗ Fra−1 X(ia)

are irreducible and pairwise inequivalent.

Theorem 3.3 (see [31, Theorem 1.6])Let q = pa. Then the EL-irreducible
constituents of Bp ⊗ E are precisely the modules of the form X(i1, ..., ia) where
i1 + i2p + ... + iapa−1 ≡ 0 (mod q − 1).

This result was extended by Bardoe and Sin [2] who give a complete deter-
mination of the EL-submodules of Bp ⊗ E as follows.

Consider the set H consisting of all a-tuples (s0, ..., sa−1) of integers which
for all j satisfy: (i) 1 ≤ sj ≤ n − 1; and (ii) 0 ≤ psj+1 − sj ≤ (p − 1)n (taking
subscripts modulo a). Define a partial ordering � on H by: (s′0, ..., s

′
a−1) �
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(s0, ..., sa−1) ⇔ s′j ≤ sj for all j. An order ideal of (H,�) is a subset I of
H such that (s0, ..., sa−1) ∈ I and (s′0, ..., s

′
a−1) � (s0, ..., sa−1) implies that

(s′0, ..., s
′
a−1) ∈ I. For each (s0, ..., sa−1) ∈ H we define L(s0, ..., sa−1) :=

X(i1, ..., ia) where ij := psj − sj−1 (taking subscripts modulo a). (A simple
combinatorial argument shows that the a-tuples (i1, ..., ia) which can be derived
in this way are precisely those which satisfy the criterion in Theorem 3.3).

Let B̃p denote the permutation module for GL(n, q) acting on the set of
(qn−1)/(q−1) lines. As before we can write B̃p = E⊕B̃0

p and we are interested
in the structure of the submodule B̃0

p .

Theorem 3.4 (see [2, Theorem A]) The EGL(n, q)-module B̃0
p is multiplicity-

free (and so has only a finite number of submodules) and its composition factors
are L(s0, ..., sa−1) where (s0, ..., sa−1) ∈ H. If the composition factors of a
submodule M of B̃0

p are parametrized by the set HM , then HM is an order ideal
of (H,�). The mapping M 7→ HM defines a lattice isomorphism M 7→ HM

from the lattice of submodules of B̃0
p to the lattice of order ideals of (H,�).

The submodule L(0, ..., 0) is the submodule E of dimension 1 with trivial
action which is a direct summand of B̃p. Note that the centre of GL(n, q) acts
trivially on B̃p, so the latter can be considered as an EPGL(n, q)-module.

We now assume that PSL(n, q) ∼= PGL(n, q) (which holds in the case we are
interested in) and so B̃p is an EH-module. In order to go from the submodules
of B̃p to the FpH-submodules of Bp we use the following well-known result (see,
for instance, [4, Theorem 70.15]).

Lemma 3.5 Let M be an irreducible FpH-module. Then the irreducible EH-
constituents of M ⊗E have multiplicity 1 and are conjugate to each other under
automorphisms from 〈σ〉 extended to GL(M ⊗ E).

Thus X(i1, . . . , ia) is an FpH-module if and only if it is fixed by Fr. In
general, X(i1, . . . , ia) is a constituent of M⊗E for some irreducible FpH-module
M , and M ⊗E is equal to the sum of pairwise distinct EH-modules of the form
FrjX(i1, ..., ia).

The definition of X(i1, . . . , ia) shows that Fr X(i1, . . . , ia) = X(ia, i1 . . . , ia−1)
(a cyclic permutation). Thus X(i1, . . . , ia) and X(j1, . . . , ja) are EH-components
of the same irreducible FpH-module if and only if (i1, . . . , ia) and (j1, . . . , ja) dif-
fer only by a cyclic permutation. In particular, X(i1, . . . , ia) is an FpH-module
if and only if i1 = · · · = ia.

Let [s0, . . . , sa−1] be the class of all elements in H which are cyclic permu-
tations of (s0, . . . , sa−1). Examining the definition of L(s0, ..., sa−1) above we
obtain:

Theorem 3.6 Suppose hypothesis (H) holds and that H = PSL(n, q) where
r := (qn−1)/(q−1) is prime and q = pa. Then the irreducible FpH-constituents
of B0

p are parametrized by the classes [s0, . . . , sa−1] where (s0, . . . , sa−1) ∈ H.
The lattice of FpH-submodules of B0

p is isomorphic to the lattice of order ideals
of H which consist of unions of these classes.
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Corollary 3.7 The socle of B0
p is X((p− 1)(n− 1), ..., (p− 1)(n− 1)) and the

head (= cosocle) is X(p − 1, ..., p − 1). These are dual by Lemma 3.1. When
n = 2, H has only one element, so B0

p is irreducible (as is well known).

If we had considered the permutation module acting on the set of hyper-
planes, then the head and socle would be interchanged.

It follows from the Section 1.1.1 that under hypothesis (H) PΓL(n, q) is the
extension of PSL(n, q) by Γ where Γ is the group of automorphisms induced by
field automorphisms of Fq. Since each FpPSL(n, q)-submodule of B0

p is invariant
under Fr this gives the following useful result.

Corollary 3.8 Every FpPSL(n, q)-submodule of B0
p is also an FpPΓL(n, q)-

submodule, and so every finite PSL(n, q)-stable p-subgroup of D0 is PΓL(n, q)-
stable.

Example 3.9 Theorem 3.6 shows that if a = 1 then the FpH-submodules of
B0

p form a chain (this was observed earlier in [22]). However, in general, when
a > 1 and n > 1 the lattice of FpH-submodules of B0

p need not form a chain.
For example, if (n, q) = (3, 24), then we get the lattice

[1122]
↗ ↘

[1111] → [1112] [1222] → [2222]
↘ ↗

[1212]

(the sizes of the modules increases from left to right). Of course, in this case
r := (qn − 1)/(q − 1) is not prime. The smallest example where r is prime and
the lattice is not a chain occurs when (n, q) = (3, 29) and r = 262657.

The module X(j1, . . . , ja) has dimension equal to
∏a

k=1 dim X(jk). In [15]
(or [14, Chap. VIII, Theorem 2.10]) it is shown that dim X(j) is the coefficient
of tj in the product (1 + t + t2 + · · · + tp−1)n.(Another formula for dim X(jk)
can be found in Bardoe and Sin [2, Corollary 2.1].) When j < p this coefficient
is equal to

(
n+j−1

j

)
. In particular, dim X(p− 1) = (n + p− 2))!/(p− 1)!(n− 1)!

and so

dim X(p− 1, . . . , p− 1) = {(n + p− 2))!/(p− 1)!(n− 1)!}a

Since the modules X(p− 1, . . . , p− 1) and X((n− 1)(p− 1), . . . , (n− 1)(p− 1))
are dual, their dimensions are equal. This implies:

Proposition 3.10 Suppose hypothesis (H) holds, and H = PSL(n, q) with r =
(qn− 1)/(q− 1) and q = pa. If the Sylow p-subgroup of A(G) is nontrivial, then
G contains a unique minimal normal p-subgroup K. The order of K is pk where
k := ((n + p− 2))!)a/(p− 1)!(n− 1)!)a and so |A(G)| is a multiple of pk.
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Proof. By hypothesis A(G) ∩ D0(p) 6= 1 and it contains every minimal
normal p-subgroup of G. On the other hand, Bp = Fp ⊕ B0

p (see Proposition
1.4) and D0(p) ∼= B0

p as H-modules. Since B0
p has a unique minimal normal

submodule isomorphic to M := X((p−1)(n−1), ..., (p−1)(n−1)) by Corollary
3.7, we conclude that A(G)∩D0(p) contains a unique minimal normal subgroup
K of G corresponding to M . The order of K is pk where k = dim M and this
was calculated above.

3.2 H-stable p-subgroups

Now assume that (r, H) ∈ Π2 with PSL(n, q) ≤ H ≤ PΓL(n, q) and q = pa. To
avoid the trivial case assume that p 6= char(F ). Corollary 3.8 shows that the
lattice of H-stable p-subgroups of D0 is the same as the lattice of PSL(n, q)-
stable p-subgroups, so without loss in generality we can take H = PSL(n, q).

Every finite H-stable p-subgroup A has a series of the form (2) and (3) where
the Ui are submodules of B0

p , but as we saw in Section 2.1 not every series of
this form can occur. In general we have not been able to characterise the basic
H-stable p-subgroups in this case, but some special cases can be dealt with.
For example, when n = 2, we must have p = 2 and r is a Fermat prime by the
remarks following Proposition 1.1. In this case B0

r is irreducible (see Corollary
3.7) and the argument given in Section 2.1 shows that Φ2(r, H) = {1}.

4 Computations with cohomology groups

Let A be an abelian group and H be a finite group acting on A (determining
a homomorphism of H into Aut(A)). Let K be the corresponding semidirect
product. The specified action of H on A defines A as a ZH-module.

Recall that, with this action of ZH on the module A, the zeroth cohomology
group H0(H,A) is the subgroup of A consisting of the fixed points of H (in other
words, the centralizer of H in A). The first cohomology group H1(H,A) is in
bijective correspondence with the set of K-conjugacy classes of complements of
A in K, and H1(H,A) = 0 if and only if all complements of A are conjugate in K
(see, for example, [8, Chap. 17, Prop. 33]). Similarly, the second cohomology
group H2(H,A) determines the number of extensions of A by H under this
action, and H2(H,A) = 0 if and only if every extension of A by H with the
given action splits (see, [8, Chap. 17, Theorem 36]).

In the present section we shall be interested in computing certain cohomology
groups related to our problem. For convenience we list some standard results
from cohomology theory (see, for example, [8, Section 17.2]).

Lemma 4.1 Let H be a finite group and V be a ZH-module.
(a) If V = V1 ⊕ V2 is a direct sum of ZH-modules, then Hi(H,V ) =

Hi(H,V1)⊕Hi(H,V2).
(b) (Shapiro’s Lemma) Let K be a subgroup of H. Consider the mod-

ule V ⊗ZK ZH obtained by inducing V up to H. Then Hi(H,V ⊗ZK ZH) ∼=
Hi(K, V ).
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(c) Let h = |H|. If hV = V , then Hi(H,V ) = 0 for all i ≥ 0.
(d) If H acts trivially on V , then H1(H,V ) = Hom(H,V ).
(e) Suppose that 0 → U → V → W → 0 is an exact sequence of ZH-modules.

Then we have an exact sequence

0 → H0(H,U) → H0(H,V ) → H0(H,W ) → H1(H,U) →
H1(H,V ) → H1(H,W ) → H2(H,U) → H2(H,V ) → H2(H,W ) → ...

Remark In particular, we shall use (b) (Shapiro’s Lemma) in the following
situation. Suppose that hypothesis (H) holds and consider Zk := Z/kZ as an
ZH1-module with the trivial action. Then the induced ZH-module is isomorphic
to D(k) with the conjugation action of H. Hence Hi(H,D(k)) ∼= Hi(H1, Zk).

Theorem 4.2 (see [17]) Let H = SL(n, q) where q = pa for a prime p, and
put M := X(i1, ..., ia). Then H1(H,M) = 0 unless one of the following holds:

(i) a ≥ 2 and M = FrjX((n−1)(p−1)−1, 1, 0, ..., 0) or FrjX(p, n(p−1)−
1, 0, ..., 0) for some j.

(ii) a ≥ 1, p = 3 and (n, M) = (3, F rjX(3, 0, ..., 0)) or (4, F rjX(4, 0, ..., 0))
for some j.

(iii) a = 1, p = 2 and (n, M) = (3, X(1)), (3, X(2)) or (4, X(2)).

Corollary 4.3 Suppose that r := (qn−1)/(q−1) is prime. Then H1(H,M) = 0
for every composition factor M of Bp ⊗ E unless H = SL(3, 2) and M = X(1)
or X(2).

Proof. We have to show that the exceptional modules in the theorem do
not occur as composition factors of Bp ⊗ E unless H = SL(3, 2).

First suppose that one of the modules in (i) occurs. As we noted in Section
3.1 the action of Fr on X(i1, ..., ia) induces a cyclic permutation of the indices.
Hence, by Theorem 3.3, if FrjX((n− 1)(p− 1)− 1, 1, 0, ..., 0) is a constituent of
Bp⊗E then pj((n−1)(p−1)−1)+pj+1 ≡ 0 (mod q−1). This implies that q−1
divides n(p− 1)pj . Since q = pa > p in this case and (n, q − 1) = 1, we have a
contradiction. Thus FrjX((n − 1)(p − 1) − 1, 1, 0, ..., 0) is not a constituent of
Bp ⊗ E.

Similarly, FrjX(p, n(p − 1) − 1, 0, ..., 0) and FrjX(3, 0, ..., 0) (for p = 3)
cannot be constituents of Bp ⊗ E, and so the modules in case (ii) do not occur.

Finally in case (iii) the condition that r is prime eliminates the possibility
that a = 1, p = 2 and n = 4.

Lemma 4.4 Suppose that hypothesis (H) holds. Then, for each prime p 6=
char(F ), the commutator group

[
D0(p),H

]
equals D0(p). Hence if L is an

H-invariant proper subgroup of D0(p) then D0(p)/L is not centralized by H.

Proof. Let ω be a nontrivial pth root of 1 in F . Then using the 2-transitivity
of H we can find x ∈ H such that x maps u = diag(ω, ω−1, 1, ..., 1) onto
x−1ux = diag(1, ω−1, ω, 1, ..., 1). Hence ux−1u−1x = diag(ω, 1, ω−1, ..., 1) lies
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in
[
D0(p),H

]
. Since the latter is H-invariant and H is 2-transitive, a simple

argument now show that every element from D0(p) lies in
[
D0(p),H

]
.

The second statement follows since if L is an H-invariant subgroup of D0(p)
such that D0(p)/L is centralized by H, then

[
D0(p),H

]
≤ L and so L = D0(p)

from what we have just shown.

Proposition 4.5 Suppose that (r, H) ∈ Π3 and (p,H, r) = (3, PSL(2, 11), 11)
or (2,M23, 23). Let L be the unique proper nontrivial submodule of B0

p (see the
Remark following Proposition 1.4). Then H1(H,L) = 0.

Proof. By Lemma 4.1 and the Remark which follows it we have H1(H,Bp) ∼=
H1(H1, Zp) = Hom(H1, Zp). Since H1

∼= A5 and M22 in the two cases, we have
H ′

1 = H1 and so Hom(H1, Zp) = 0. Now Proposition 1.4 and part (a) of Lemma
4.1 show that H1(H,B0

p) = 0. In each case B0
p/L is an irreducible ZH-module.

Since the centralizer of H in B0
p/L is a ZH-submodule, Lemma 4.4 shows that

the centralizer must be trivial. In other words, H0(H,B0
p/L) = 0. Finally

applying part (e) of Lemma 4.1 to the exact sequence

0 → L → B0
p → B0

p/L → 0

gives the exact sequence 0 = H0(H,B0
p/L) → H1(H,L) → H1(H,B0

p) = 0, and
so H1(H,L) = 0.

4.1 Calculation of 2-cohomology

Suppose that (r, H) ∈ Π2 with H = PSL(n, q) and A is an H-stable subgroup
of D0. Then problem (III) in the introduction asks for a description of the
groups in ∆(A,H). This is a problem in group extensions and as such is related
to the second cohomology group H2(H,A) although, since we have additional
conditions on G ∈ ∆(A,H), not all abstract extensions may give suitable G.
Since |H1 : H

′

1| = q − 1, we know from 2.3 and Theorem 1.5 that when A is a
p-subgroup, G splits over A unless either p | q − 1 or p | q.

In this section we shall eliminate one of these possibilities by showing that
H2(H,A) = 0 unless p | q − 1. This shows that the only cases where ∆(A,H)
can contain nonsplit extensions is when p | q − 1.

We use the following notation. If L is a finite group and U is a ZL-module,
then UL denotes the submodule consisting of the points in U fixed by L (so
UL ∼= H0(L, U)).

Lemma 4.6 (a) (see [23, Theorem 11.5]) Let N be a normal subgroup of a
group K and let A be a ZK-module. Suppose that Hi(N,A) = 0 for all i with
1 ≤ i < j. Then the following sequence is exact:

0 → Hj(K/N,AN ) → Hj(K, A) → (4)

Hj(N,A)K → Hj+1(K/N,AN ) → Hj+1(K, A)

In particular, this sequence is always exact when j = 1.
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(b) (see [8, Section 17.2]) If A is a Zk-module with trivial action, then for
all i > 0:

Hi(Zk, A) =
{
{a ∈ A | ka = 0} if i is odd

A/kA if i is even

(c) (see [24, Lemma 7.64]) Suppose that K is a perfect group, and consider
Zp as a ZK-module with trivial action. Then H2(K, Zp) 6= 0 (that is, there
exist nonsplit central extensions of Zp by K) if and only if p divides the order
of the Schur multiplier M(K) of K.

Lemma 4.7 (a) Suppose that N is a normal subgroup of a group K and A
is a ZK-module with trivial action. If N is perfect and H2(N,A) = 0, then
H2(K/N,A) ∼= H2(K, A).

(b) For each prime p we have H2(GL(m, q), Zp) = Z(q−1,p) except possibly
in the cases (m, q, p) = (2, 2, 2), (2, 3, 2), (2, 4, 2), (2, 9, 3), (3, 2, 2), (3, 3, 3),
(3, 4, 2), or (4, 2, 2).

Proof. (a) By Lemma 4.1(d) we have H1(N,A) = Hom(N,A) and so
H1(N,A) = 0 because N is perfect. Now by (4) with j = 2 we have the exact
sequence

0 → H2(K/N,AN ) → H2(K, A) → H2(N,A)K

Since K acts trivially on A and H2(N,A) = 0, therefore H2(K/N,A) ∼=
H2(K, A).

(b) First assume that (m, q) 6= (2, 2) or (2, 3). Put K := GL(m, q) and
N := SL(m, q). Then N is perfect (including the case m = 1) and its Schur
multiplier has order h where h = 1 except in the following cases: (m, q, h) =
(2, 4, 2), (2, 9, 3), (3, 2, 2), (3, 3, 3), (3, 4, 16) and (4, 2, 2) (see, [26] and [27]). By
Lemma 4.6(c) H2(N, Zp) = 0 except when p | h. On the other hand, K/N
∼= Zq−1. Therefore part (a) of this lemma and Lemma 4.6(b) show that, if p - h,
then H2(GL(n, q), Zp) = H2(Zq−1, Zp) = Z(q−1,p).

This leaves the two cases where (m, q) = (2, 2) or (2, 3). In the former case
GL(2, 2) ∼= S3 which easily implies H2(GL(2, 2), Zp) = 0 (= Z(2−1,p)) for p 6= 2.
Similarly, GL(2, 3) is an extension of a normal subgroup of order 8 by S3 and
so again H2(GL(2, 3), Zp) = 0 (= Z(3−1,p)) if p 6= 2.

Proposition 4.8 Suppose that (r, H) ∈ Π2 with H = PSL(n, q). Assume that
p is a prime with p - q. Then H2(H,Bp) = Z(q−1,p) unless (n, q, r, p) =
(3, 3, 13, 2).

Proof. By Shapiro’s Lemma (see Lemma 4.1) and the definition of Bp

we know that H2(H,Bp) = H2(H1, Zp) where H1 acts trivially on Zp. Since
H = SL(n, q) when r is prime, the structure of the point stabilizer H1 is well-
known: H1 has a normal unipotent subgroup N of order qn−1 and H1/N ∼=
GL(n − 1, q). Since p - q, we have |N |Zp = Zp, and so Lemma 4.1(c) shows
that H1(N, Zp) = H2(N, Zp) = 0. Now equation (4) with K = H1, A = Zp and
j = 2 gives the exact sequence

0 → H2(H1/N, ZN
p ) → H2(H1, Zp) → 0
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Since H1 acts trivially on Zp, ZN
p = Zp and so H2(H,Bp) ∼= H2(H1, Zp) ∼=

H2(K, Zp) where K = H1/N ∼= GL(n − 1, q).Applying Lemma 4.7(b) we con-
clude that H2(H,Bp) = Z(q−1,p) for all primes p with the seven listed possible
exceptions.

Since p - q by assumption, none of the cases (n− 1, q, p) = (2, 4, 2), (2, 9, 3),
(3, 2, 2), (3, 4, 2) or (4, 2, 2) occurs. This leaves the single possible exception:
(n− 1, q, p) = (2, 3, 2) as stated.

Theorem 4.9 Suppose that (r, H) ∈ Π2 with H = PSL(n, q). If q is a power
of the prime p, then H1(H,A) = H2(H,A) = 0 for every finite H-stable p-
subgroup A of D0. Thus every G ∈ ∆(A,H) splits over A and every pair of
complements are conjugate in G.

Proof. We have A ≤ D0(pk) and so every H-composition factor of A is
isomorphic to an irreducible constituent of B0

p .
We first prove that H1(H,A) = 0 by induction on the number of H-composition

factors of A under the hypothesis that every H-composition factor of A is iso-
morphic to an irreducible constituent of B0

p . If A is an irreducible FpH-module,
then it is a direct sum of irreducible EH-submodules and so Lemma 4.3 and
Lemma 4.1(a) show that H1(H,A) = 0 (note that every EH-module is also a
ZH-module). Now in general, if A has more than one H-composition factor,
then we can choose C as a maximal H-stable subgroup of A and apply Lemma
4.1(e) to obtain the exact sequence

H1(H,C) → H1(H,A) → H1(H,A/C)

Since the first and last term are 0 by induction, we have H1(H,A) = 0 and the
induction step is proved. This shows that H1(H,A) = 0 for all A such that
every H-composition factor of A is isomorphic to an irreducible constituent of
B0

p .
We next prove by induction on k that H2(H,D0(pk)) = 0 for every k ≥ 0.

The result is trivial for k = 0, so suppose k > 0. Then Lemma 4.1(e) and the
exact sequence 0 → D0(pk−1) → D0(pk) → B0

p → 0 show that

H2(H,D0(pk−1)) → H2(H,D0(pk)) → H2(H,B0
p)

is also exact. The last term of this sequence is 0 by Proposition 4.8 and
the first term is 0 by the induction hypothesis. Thus induction shows that
H2(H,D0(pk)) = 0 as required.

Finally, consider any H-stable subgroup A. Then A < D0(pk) for some k,
and so Lemma 4.1(e) gives the exact sequence

H1(H,D0(pk)/A) → H2(H,A) → H2(H,D0(pk))

where the first and last terms are 0 from what we have just proved. Hence
H2(H,A) = 0.
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4.2 Proof of Theorem 1.6

Theorem 1.6 claims that when G satisfies hypothesis (H) and d := |H1 : H ′
1| is

relatively prime to |A(G)|, then G splits over A(G). We already know this in the
special case where A(G) is the direct product of an r-subgroup and a standard
subgroup (see Theorem 2.3).

We first prove the theorem when A := A(G) is a basic subgroup for H. Since
we always have splitting over the Sylow r-subgroup of A, it is enough to consider
the case where A is basic and (|A| , rd) = 1. Now Theorem 1.5 shows that A = 1
except when: (a) (r, H) ∈ Π2 with PSL(n, q) ≤ H ≤ PΓL(n, q) and A is a
p-group with p | q, or (b) (r, H) = (11, PSL(2, 11)) or (23,M23). However, in
case (a) we have splitting by Theorem 4.9. On the other hand, splitting can be
proved for the basic subgroups in case (b) by direct computations (see Section
6.3). This proves the theorem when A is basic.

The general case now follows. Every H-stable subgroup has the form Ã =
π̃m(A) where A is basic and char(F ) - m. The hypothesis (|Ã|, d) = 1 implies
that (|A| , d) = 1 and (m, d) = 1. Now G ∈ ∆(Ã,H) implies that πm(G) ∼=
G/D0(m) lies in ∆(A,H) and hence splits over A ∼= Ã/D0(m). Thus there
exists K ∈ ∆(D0(m),H) such that G = ÃK and Ã∩K = D0(m). Now K splits
over D0(m) by Theorem 2.3, and this gives a splitting for G over Ã.

5 The set ∆(1, H)

In the present section we consider the groups in ∆(1,H) for (r, H) ∈ Π.
We wish to classify the groups in ∆(1,H) up to conjugacy in GL(r, F ) (∼-

equivalence) and also up to conjugacy in Mon(r, F ) (≈-equivalence). The latter
classification is required in order to apply Lemma 1.7.

For each G ∈ ∆(1,H), the restriction of π to G defines an isomorphism of
G onto H, so we can attach to G a uniquely determined representation ρ of H
defined by π(ρ(x)) = x for all x ∈ H.

Lemma 5.1 Let G, G̃ ∈ ∆(1,H) with corresponding representations ρ and σ,
respectively. Then

(a) G ∼ G̃ if and only if for some automorphism α of H and some c ∈
GL(r, F ) we have ρ(x) = c−1σ(α(x))c for all x ∈ H.

(b) G ≈ G̃ if and only if for some automorphism α of H such that α(H1) =
H1 and some c ∈ Mon(r, F ) we have ρ(x) = c−1σ(α(x))c for all x ∈ H.

Proof. Since G = Im ρ and G̃ = Im σ it is clear that the conditions are
sufficient for conjugacy in both cases. We consider the necessity of these condi-
tions.

(a) If G = c−1G̃c for some c ∈ GL(r, F ), then α(x) := π(cρ(x)c−1) is an
automorphism of H with the required property since σ ◦ π is the identity on G̃.

(b) Now suppose that G = c−1
0 G̃c0 for some c0 ∈ Mon(r, F ). Since the

monomial group permutes the subspaces Fe1, F e2, ...F er, there exists i such
that c0ei is a scalar multiple of e1. Since H is transitive, there exists y ∈ H
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such that c1 := ρ(y) maps e1 onto ei. Then c := c0c1 ∈ Mon(r, F ) fixes Fe1.
Now G = c−1G̃c and c−1σ(H1)c = ρ(H1). Thus defining the automorphism α
by α(x) := π(cρ(x)c−1) as in (a) we find that α(H1) = H1 as required.

Now suppose that G ∈ ∆(1,H) and let ρ be the corresponding repre-
sentation of H. Since ρ(H1) maps Fe1 into itself, we have homomorphism
λρ ∈ Hom(H1, F

∗) defined by λρ(x)e1 := ρ(x)e1 for all x ∈ H1. The represen-
tation λH

ρ induced from λρ on H1 up to H is equivalent to ρ (see [4, Theorem
(50.2)] for the case of a general field).

This leads to the following criterion.

Lemma 5.2 Suppose G, G̃ ∈ ∆(1,H) and the corresponding representations of
H are ρ and σ. Then G ≈ G̃ if and only if there is an automorphism α of H
such that α(H1) = H1 and λρ = λσ ◦ α.

Proof. First suppose that G ≈ G̃. Then, as was shown in part (b) of the
previous lemma, there exists an automorphism α of H such that α(H1) = H1

and c ∈ Mon(r, F ) which maps Fe1 into itself such that ρ(x) = c−1σ(α(x))c for
all x ∈ H. In particular, if x ∈ H1, then α(x) ∈ H1 and so

λρ(x)e1 = ρ(x)e1 = c−1σ(α(x))ce1 = c−1λσ(α(x))e1 = λσ(α(x))e1

Hence λρ(x) = λσ(α(x)) for all x ∈ H1 as required.
Conversely, suppose such an automorphism α exists. We claim that there

exists a monomial matrix c such that ρ(x) = c−1σ(α(x))c for all x ∈ H and so
G = c−1G̃c. First consider the case where α is the identity, and hence λρ = λσ.
Let t1, ..., tr be a set of left coset representatives of H1 in H with tie1 = ei

for each i. Since π(ρ(x)) = π(σ(x)) = x for all x ∈ H, there exist nonzero
scalars ηi and ζi such that ρ(ti)e1 = ηiei and σ(ti)e1 = ζiei for each i. Let
c := diag(γ1, ..., γr) be a diagonal matrix whose entries we shall choose later.
Now for each x ∈ H and each i there exists j such that xei = ej and then
t−1
j xti ∈ H1. Hence

c−1σ(x)cei = c−1σ(tj)σ(t−1
j xti)σ(t−1

i )γiei

= γiζ
−1
i c−1σ(tj)λσ(t−1

j xti)e1

= γiζ
−1
i ζjγ

−1
j λσ(t−1

j xti)ej

Similarly ρ(x)ei = η−1
i ηj . Hence if we define γi = ζiη

−1
i for each i, and use the

fact that λρ = λσ we get ρ(x)ei = c−1σ(x)cei for all i and so ρ(x) = c−1σ(x)c
as required.

Finally suppose that λρ = λσ ◦ α for some automorphism α of H such that
α(H1) = H1. Then α can be induced by conjugation by some element c0 ∈ S (see
[6, Theorem 4.2B]). In particular, c0e1 = e1. Thus π(σ(α(x)) = α(x) = c0xc−1

0

for all x ∈ H and so we can define a representation φ of H into Mon(r, F )0 by

φ(x) := c−1
0 σ(α(x))c0 for all x ∈ H
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Note that π(φ(x)) = x for all x ∈ H and, if x ∈ H1, we have

φ(x)e1 = σ(α(x))e1 = λσ(α(x))e1 = λρ(x)e1

Thus λφ = λρ, and so by the special case above there exists a diagonal matrix
c1 such that ρ(x) = c−1

1 φ(x)c1 for all x in H. Putting c = c0c1 we obtain
ρ(x) = c−1σ(α(x))c for all x. This completes the proof.

5.1 Representations of H = PSL(n, q)

Now consider the case where (r, H) ∈ Π2 with H = PSL(n, q) where q = pa.
In this case H1/H ′

1 is a cyclic group of order q− 1 (by definition of Π2 we have
excluded the case (n, q) = (3, 2) where the order is 2).

The permutation action of H is on lines in the underlying vector space Fn
q

and without loss in generality we may assume that H1 is the stabilizer of the line
spanned by the vector (1, 0, ..., 0)>. Hence the elements of H1 are the matrices
in SL(n, q) (= PSL(n, q)) of the form[

ξ w
0 y

]
where ξ ∈ F∗q , w is a 1×(n−1) matrix and y ∈ GL(n−1, q) with det y = ξ−1. For
each of the possible groups SL(n, q) we choose one particular element z ∈ H1

as follows. If n = 2 then z = diag(ζ, ζ−1) where ζ generates the cyclic group
F∗q . If n ≥ 3 then we choose a block diagonal matrix z = diag(ζ, y) where ζ
generates F∗q and y ∈ GL(n− 1, q) has determinant ζ−1 and has no eigenvalues
in Fq. For example, the matrix y can be taken to be the companion matrix of
a polynomial of the form Xn−1 + βX + (−1)n−1ζ−1 where β ∈ Fq is chosen so
that this polynomial does not vanish for any of the q − 1 nonzero values from
Fq. Note that in both cases H1 = H ′

1 〈z〉.
Let Γ be the cyclic group of order a consisting of the automorphisms of H

which are induced by the field automorphisms Gal(Fq); specifically Γ is gener-
ated by γ where γ(x) is obtained by replacing each entry of x by its pth power.
Under our hypothesis (H) we know that H = PSL(n, q) = PGL(n, q). There-
fore, when n = 2, Out(H) = Γ and, when n > 2, Out(H) is a semidirect product
of Γ by a group 〈τ〉 of order 2 where τ(x) := (x−1)T is the inverse transpose
(see, for example, [3]). Note that Γ ∼= PΓL(n, q)/PGL(n, q).

We can now determine when two monomial representations of H of degree
r are equivalent (in GL(r, F )).

Lemma 5.3 Suppose that (r, H) ∈ Π2 with H = PSL(n, q) and assume that
char(F ) - q. Define z as above. Suppose that λ, µ ∈ Hom(H1, F

∗).
(a) If λ is different from 1H1 , then λH is an irreducible representation of H.

(As is well known, (1H1)
H is always reducible.)

(b) The following statements are equivalent:
(i) λH is equivalent to µH ;
(ii) λ(z) = µ(z) (if n > 2) or λ(z) = µ(z) or µ(z)−1 (if n = 2);
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(iii) λ = µ (if n > 2) or λ = µ or µ−1 (if n = 2).
(c) The representation λH ◦ τ is equivalent to (λ−1)H .

Proof. (a) If n > 2 then [12, Theorem 9.1.4] shows that λH is irreducible
for each nontrivial λ ∈ Hom(H1, F

∗). When n = 2 we know that q is a power
of 2 and that PGL(2, q) = PSL(2, q). Hence [12, Theorem 9.1.2] shows that
λH is irreducible in this case too. (In both cases the proofs of these results use
the fact that char(F ) - q.)

(b) The equivalence is trivial if λ and µ are both 1H1 so we can assume λH is
irreducible. First suppose that n > 2. In this case the choice of z ensures that z
has a single fixed point and hence, by the definition of an induced representation,
the traces of the matrices λH(x) and µH(x) equal λ(x) and µ(x), respectively.
Thus (i) implies λ(z) = trace λH(z) = trace µH(z) = µ(z) which is (ii). Next
since H1 = H ′

1 〈z〉 and H ′
1 is contained in the kernels of λ and µ, therefore

λ(z) = µ(z) implies (iii). Finally (iii) trivially implies (i).
Now suppose that n = 2. In this case z has exactly two fixed points, and

again the definition of induced representation shows that the traces of λH(z)
and µH(z) are λ(z) + λ(z)−1 and µ(z) + µ(z)−1, respectively. Hence (i) implies
that these two traces are equal, and that implies λ(z) = µ(z) or µ(z)−1 which
is (ii). The proof that (ii) implies (iii) is the same as in the case n > 2. Finally,
a simple matrix calculation using the rational form shows that every element in
SL(2, q) is conjugate to its inverse. Thus, if λ = µ or µ−1, then trace λH(x) =
trace µH(x) = trace (µ−1)H(x) for all x ∈ H. Since λH is irreducible, this
implies that λH is equivalent to µH (see, for example, [14, Theorem 1.11] for
the case where char(F ) > 0).

With the notation above we define two groups Γ1 and Γ2 of permutations
on Hom(H1, F

∗) as follows. The group Γ1 is generated by the mapping λ 7→ λp

and Γ2 is generated by λ 7→ λp and λ 7→ λ−1. (Note that H1/H ′
1 is cyclic of

order q − 1. Hence the order of Hom(H1, F
∗) divides q − 1 and so is relatively

prime to p.)

Proposition 5.4 Suppose that (r, H) ∈ Π2 with H = PSL(n, q) and q = pa.
Assume that char(F ) 6= p.

(a) If n > 2 then the ≈-conjugacy classes in ∆(1,H) are in bijective cor-
respondence with the orbits of Hom(H1, F

∗) under Γ1, and the ∼-conjugacy
classes are in bijective correspondence with the orbits of Hom(H1, F

∗) under
the group Γ2.

(b) If n = 2 then the ≈-conjugacy classes and ∼-conjugacy classes in ∆(1,H)
coincide and are in bijective correspondence with the orbits of Hom(H1, F

∗)
under the group Γ2.

Proof. We are going to use Lemma 5.2 and Lemma 5.3. Since H is 2-
transitive, H1 is maximal in H and hence its own normalizer. Thus the only
inner automorphisms α of H with α(H1) = H1 are those induced by elements
of H1. For these automorphisms we have λ ◦ α = λ for the class functions
λ ∈ Hom(H1, F

∗). Thus in applying Lemma 5.2 we can restrict ourselves to
outer automorphisms.
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As we noted above, if n > 2, then Out(H) is the semidirect product Γ 〈τ〉.
The group Γ fixes H1 and τ maps H1 onto the stabilizer of a hyperplane
which is not conjugate to H1 in H. Thus Lemma 5.2 shows that the Mon-
conjugacy classes in ∆(1,H) are in bijective correspondence with the orbits of
Hom(H1, F

∗) under the mapping λ 7→ λ◦γ = λp; that is, the orbits of Γ1. This
proves the first part of (a). Now the second part of (b) follows using Lemma
5.1(a) and Lemma 5.3(c).

If n = 2, then Out(H) = Γ and a similar argument using Lemma 5.3(c) shows
that the ≈-conjugacy classes in ∆(1,H) are in bijective correspondence with the
orbits of Γ1 acting on the set of sets of the form

{
λ, λ−1

}
with λ ∈ Hom(H1, F

∗).
By Lemma 5.3(c) these orbits correspond bijectively to the orbits of Γ2 on
Hom(H1, F

∗).

Corollary 5.5 Assume that char(F ) - p(q − 1) (in particular, this holds if
char(F ) = 0).

(a) If n > 2 there are

1
a

a−1∑
i=0

(pi − 1, pa − 1)

≈-conjugacy classes in ∆(1,H). If q = 2 the single ≈-conjugacy class is also a
∼-conjugacy class, but when q > 2 there are

1
2a

a−1∑
i=0

(
(pi − 1, pa − 1) + (pi + 1, pa − 1)

)
∼-conjugacy classes in ∆(1,H).

(b) If n = 2 there are

1
2a

a−1∑
i=0

(
(pi − 1, pa − 1) + (pi + 1, pa − 1)

)
≈-conjugacy classes in ∆(1,H) and each of these is also a ∼-conjugacy class.

Proof. By the hypothesis on F , Hom(H1, F
∗) is cyclic of order q−1 = pa−1.

The elements in Γ1 are the permutations λ 7→ λpi

(i = 0, 1, ..., a − 1) and the
number of λ fixed by λ 7→ λpi

is clearly (pi − 1, pa − 1). For q = 2, Γ1 = Γ2,
but for q > 2 the group Γ2 has a additional elements, namely λ 7→ λ−pi

(i =
0, 1, ..., a− 1) and the permutation λ 7→ λ−pi

has (pi + 1, pa − 1) fixed point on
Hom(H1, F

∗). Applying the “Burnside Lemma” to count orbits now yields the
formulae above.

6 Describing conjugacy classes of extensions for
(r, H) ∈ Π

Let (r, H) ∈ Π. We shall describe here how to construct a complete family of
representatives of the ∼-conjugacy classes of groups G which satisfy hypothesis
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(H) with π(G) = H in terms of the basic subgroups in Φ(r, H). For the classes
Π1 and Π3 we can list the basic subgroups completely and so obtain a complete
description of the extensions G. For the class Π2 we do not have a complete
description of the basic subgroups, but we can give a partial description.

By definition of the basic subgroups, every H-stable subgroup is uniquely of
the form Ã = π̃m(A) with A ∈ Φ(r, H) and m ≥ 1 not divisible by char(F ) (see
Section 1.2). Lemma 1.7 shows that if we can find a complete set of representa-
tives for the ≈-conjugacy classes in ∆(A,H) for A ∈ Φ(r, H), then application
of π̃m(A) gives a complete set of representatives for the ≈-conjugacy classes in
∆(π̃m(A),H) and (for m > 1 and char(F ) - m), these are also a set of repre-
sentatives for the ∼-classes (Lemma 2.1). It is only for the sets ∆(1,H) and
∆(Z0,H), that we have to distinguish between the ≈-classes and the ∼-classes.
Lemma 2.1 also shows that the groups in ∆(A,H) are irreducible (and so sat-
isfy hypothesis (H)) unless A ≤ Z0. Again we must examine the representatives
in ∆(1,H) and ∆(Z0,H) separately to distinguish those which are irreducible.
Note that, if K1, ..,Ks is a set of representatives for the ≈-classes (respectively,
∼-classes) in ∆(A,H), then Z0K1, ..., Z

0Ks is a set of representatives for the
corresponding classes in ∆(Z0A,H)

In most cases the characteristic of the field does not affect the result. How-
ever, exceptions arise when char(F ) = p and p = r or cases (i) or (ii) in Propo-
sition 1.4 occur. In these exceptional cases, Φp(r, H) = {1} because D0 contains
no nontrivial p-subgroups, and there may then be fewer basic subgroups. We
shall only deal with the generic case below, and leave the modifications required
for the exceptional cases to the reader.

6.1 Extensions for (r, H) ∈ Π1

In this case H = Alt(r) or Sym(r) and r ≥ 7. Theorem 1.5 shows that
Φ(r, H) = {1, Z0}. If H = Alt(r), then H1 = H ′

1 and so Lemma 5.1 shows
that H is a representative of the unique ≈-class (and hence unique ∼-class) in
∆(1,H). Theorem 2.3 shows that the groups in ∆(Z0,H) split over Z0, and so
Z0H represents the unique≈-class in ∆(Z0,H). Now a complete set of represen-
tatives of the ∼-classes of groups G satisfying hypothesis (H) with H = Alt(r)
is given by π̃m(H), π̃m(Z0H) as m ranges over the integers > 1 which are not
divisible by char(F ) (the groups H and Z0H have been omitted since they are
reducible).

If H = Sym(r), then there are two nonconjugate groups isomorphic to H
in Mon(r, F ), namely, S and S̃ := {ε(x)x |x ∈ S} (see Section 1.3). However,
of these only S̃ lies in Mon(r, F )0 and so again there is a single ≈-class in
∆(1,H). Similarly Z0S̃ represents the unique ≈-class in ∆(Z0,H). A complete
set of representatives of the ∼-classes of groups G satisfying hypothesis (H) with
H = Sym(r) is given by π̃m(S̃), π̃m(Z0S̃) as m ranges over the integers > 1
which are not divisible by char(F ).
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6.2 Extensions for (r, H) ∈ Π2

In this case PSL(n, q) ≤ H ≤ PΓL(n, q) with q = pa and Theorem 1.5 shows
that

Φ(r, H) =
{
A,Z0A |A ∈ Φp(r, H)

}
We do not have a complete description of Φp(r, H), although Sections 2.1 and 3
give considerable information. In general, we have a complete description of the
basic subgroups of height 1 but do not know whether there are basic subgroups
of greater height. However, apart from this we have enough information to
complete our description of the extensions by H.

To simplify the explanation we assume that H = PSL(n, q).

Lemma 6.1 Let λi ∈ Hom(H1, F
∗) be chosen so that Ki := λH

i (H) (i =
1, ..., d) is a set of distinct representatives for the ≈-conjugacy classes in ∆(1,H).
If q is a power of the prime p, and A is a finite H-stable p-group then AK1, ..., AKd

is a set of distinct representatives for the ≈-conjugacy classes in ∆(A,H).

Proof. We first show that these groups lie in distinct classes. Indeed,
suppose that A ≤ D0(pk), say, and choose m such that m ≡ 1 (mod q − 1) and
m ≡ 0 (mod pk). If AKi ≈ AKj , then πm(AKi) ≈ πm(AKj). But for each
x ∈ H we have πm(λH

i (x)) = (λm
i )H(x) = λH

i (x) because λi has order dividing
q − 1. Hence πm(AKi) = Ki and similarly πm(AKj) = Kj . Thus AKi 6≈ AKj

unless i = j.
We now show that for each G ∈ ∆(A,H) we have G ≈ AKi for some i.

Indeed, we know that G splits over A by Theorem 4.9, and so G = AK where
K ∈ ∆(1,H). Then, for some i and some c ∈ Mon(r, F ), we have Ki = c−1Kc.
Applying π we obtain H = π(c)−1Hπ(c) and so π(c) lies in the normalizer N
of H in S. By [6, Theorem 4.2B] we know that conjugation by N induces the
group of all automorphisms of H which permute the point stabilizers amongst
themselves (in this case the stabilizers of lines). As we have seen before, these
automorphisms form the group PΓL(n, q). However, we know that PΓL(n, q)
leaves every H-stable subgroup invariant (Corollary 3.8). Since c ∈ DN this
shows that c−1AKc = c−1Ac · c−1Kc = AKi as required.

On the other hand if AK1, ..., AKd is a set of distinct representatives for the
≈-conjugacy classes in ∆(A,H), then it is readily seen that Z0AK1, ..., Z

0AKd

is a set of distinct representatives for the ≈-conjugacy classes in ∆(Z0A,H).
Thus we obtain a complete set of representatives of the extensions of basic
subgroups by H. This leads as above to a complete description of a set of
representatives of the form π̃m(A) and π̃m(Z0A) for the extensions of the other
H-stable subgroups. The final step is to remove any groups Ki or Z0Ki which
are reducible, and to drop some Ki or Z0Ki when their ∼-classes contain more
than one ≈-class.

6.3 Extensions for (r, H) ∈ Π3

In this case (r, H) = (7, PSL(3, 2)), (11, PSL(2, 11)), (11,M11) and (23,M23).
We shall deal with these one by one.
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6.3.1 (r, H) = (7, PSL(3, 2))

As Theorem 1.5 shows, Φp(7, PSL(3, 2)) = {1} except for p = 7 and p =
2. Proposition 1.4 shows that B0

2 has only one nonzero proper submodule
and this has dimension 3. Corresponding to this submodule we have A ∈
Φ2(7, PSL(3, 2)) of order 23 as the only basic subgroup of height 1. Computa-
tions using GAP [11] showed that there were no basic 2-subgroups of height ≥ 2
and hence Φ2(7, PSL(3, 2)) = {1, A}. We outline these computations. We can
do the computations over a field of characteristic 0 (or any other characteristic
6= 2 or 7).

As a permutation group

PSL(3, 2) = 〈(1, 2, 3, 4, 5, 6, 7), (2, 3)(4, 7)〉

The split extension D0(22)H is constructed as a subgroup 〈z, y, u〉 of Mon(r, F )
where the matrices z and y in S correspond to the two generators of PSL(3, 2)
and u := diag(i,−i, 1, 1, 1, 1, 1) ∈ D0(22). The subgroups of D0(22) which are
normal in D0(22)H are precisely the H-stable subgroups of D0(22). GAP shows
that D0(22) contains four normal subgroups which are orders 1, 23, 26 and 212,
respectively, and may be identified as 1, A, D0(2) and D0(22). The group
A consists of the cyclic transformations of v := diag(−1,−1,−1, 1, 1,−1, 1)
together with the identity. Since there are no basic H-stable 2-subgroups of
height 2 there can be none of greater height (see Section 2.1). Thus Φ(7,H) =
{1, Z0, A, Z0A}.

Next we consider ∆(1,H). Since H1/H ′
1 has order 2, there are two inequiv-

alent monomial representations of degree 7. This gives rise to two ≈-classes
(which are also ∼-classes) of subgroups in ∆(1,H) with representatives H and
K, say, where H is reducible but K is not. We can take K as the subgroup
generated by z and diag(−1, 1, 1,−1, 1,−1,−1)y. Now ∆(A,H) contains the
split extension AH (= AK in this case). Using GAP we can find a complete set
of representatives of the ≈-classes in ∆(A,H) as follows.

Let z, y and v be matrices defined above. To find representatives of the
≈-classes in ∆(A,H) it is enough to consider the groups G in ∆(A,H) which
contain z (see Lemma 2.2). Since π2(G) ∈ ∆(1,H) we may also assume that
π2(G) = H or K. Since the closure of 〈v〉 under conjugation by H equals A,
therefore G has the form 〈z, wy, v〉 with w ∈ D0(4) such that π2(w) = 1 or
π2(w) = diag(−1, 1, 1,−1, 1,−1,−1). Indeed, it is clearly enough to restrict w
to a set of coset representatives of A: in the former case we can take w ranging
over the subgroup

C := 〈diag(−1,−1, 1, 1, 1, 1, 1), diag(1, 1,−1,−1, 1, 1, 1), diag(1, 1, 1, 1,−1,−1, 1)〉

and in the latter case w ranges over Cw0 where w0 = diag(i, 1, 1, i, 1, i, i). Using
GAP we tested these sixteen possibilities and found that only two gave groups
of order 23 · 168. The two groups obtained were the split extension AH and the
group

G := 〈z, diag(1, 1, 1, 1,−1,−1, 1)y, v〉
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It is obvious that π(G) = π(H) = H = 〈z, y〉 and GAP verifies that both
have order 23 · |H|. Since there is only one H-stable subgroup of order 23, we
conclude that A = A(G) = A(K). On the other hand, GAP shows that G
contains an element of order 8 but AH does not. Hence G is not isomorphic to
AH and so is a nonsplit extension of A (the action of the factor group on A is
the same in both cases). Thus ∆(A,H) has exactly two ≈-classes, and AH and
G are representatives of these classes.

The remaining calculations are similar to those in the previous subsections.
This is the only case where we have a nonsplit extension of a basic subgroup.

6.3.2 (r, H) = (11, PSL(2, 11))

We know that in this case the orders of the basic subgroups are only divisible by
r and 3 (see Theorem 1.5) and that there is a basic subgroup A of order 35 corre-
sponding to the nonzero proper submodule of B0

3 . A calculation similar to that
done for PSL(3, 2) shows that in this case there is no basic 3-subgroup of height
2 and hence none of greater height. Thus Φ(11, PSL(2, 11)) =

{
1, Z0, A, Z0A

}
.

Since H1
∼= Alt(5) is perfect, ∆(1,H) has a single ≈-class (which is also the

only ∼-class) and we can take H as a representative of this class. To find rep-
resentatives of the distinct ≈-classes in ∆(A,H) it is enough to consider the
groups G ∈ ∆(A,H) such that π3(G) = H. A calculation similar to that done
for PSL(3, 2) shows that there is only one G with this property (which is neces-
sarily equal to AH). Thus there is a single ≈-class in ∆(A,H). The remaining
calculations are similar to those in the preceding subsections.

6.3.3 (r, H) = (11,M11)

In this case Theorem 1.5 shows that Φ(11,M11) =
{
1, Z0

}
. It is enough there-

fore to find representatives of the ≈-classes and ∼-classes in ∆(1,H). Since
H1

∼= Alt(6) · 2 there are two monomial representations of H of degree 11. The
images of these representations can be taken as H and K, say, where H is re-
ducible but K is not. Hence H and K are representatives of the two ≈-classes
and these are also the ∼-classes in ∆(1,H). The remaining calculations are
similar to the preceding sections.

6.3.4 (r, H) = (23,M23)

In this case Theorem 1.5 shows that the orders of the basic subgroups are only
divisible by the primes r and 2 and the Remark following Proposition 1.4 shows
that there is one basic 2-subgroup of level 1, say A, and this group has order
211. A calculation similar to that done for PSL(3, 2) now shows that H has no
basic 2-subgroups of higher levels. Hence Φ(23,M23) =

{
1, Z0, A, Z0A

}
. Since

H1 is perfect, there is a single ≈-class in ∆(1,H) and we may take H as a
representative. To find representatives for the ≈-classes in ∆(A,H) it is enough
to consider the groups G such that π2(G) = H. A calculation similar to that
done for PSL(3, 2) (but requiring more care since the group is much larger),
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shows that there is only one such group which is necessarily the split extension
AH. Thus ∆(A,H) consists of a single ≈-class and AH is a representative of
this class. The remaining calculations are similar to those above.
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