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Abstract

The probability that a random pair of elements from the alternating group An

generates all of An is shown to have an asymptotic expansion of the form 1¡1/n¡
1/n2¡4/n3¡23/n4¡171/n5¡ ... . This same asymptotic expansion is valid for the
probability that a random pair of elements from the symmetric group Sn generates
either An or Sn. Similar results hold for the case of r generators (r > 2).
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1 Introduction
In [5] I proved that the probability that a random pair of elements from the symmetric
group Sn will generate either Sn or An is at least 1 ¡ 2/(log log n)2 for large enough n.
This estimate was improved by Bovey and Williamson [3] to 1 ¡ exp(¡p

log n). Finally
Babai [1] showed that the probability has the asymptotic form 1¡ 1/n+O(1/n2). Unlike
the earlier estimates, the proof of Babai�s result uses the classi�cation of �nite simple
groups.

Babai�s result depends on two elementary results from [5], namely: the probability
tn that a pair of elements in Sn generates a transitive group is 1 ¡ 1/n + O(1/n2); and
the probability that a pair of elements generates a transitive, imprimitive group of Sn is
· n2¡n/4. Using the classi�cation, he shows that the probability that a pair of elements
generates a primitive subgroup of Sn di¤erent from An or Sn is < n

p
n/n! for all su¢ciently

large n. Thus the probability that a pair of elements of Sn generates a transitive group
but does not generate either Sn or An is O(n2¡n/4 + n

p
n/n!) = O(n¡k) for all k.
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The object of the present paper is to show that there is an asymptotic series of the
form tn » 1 +

P
ck/n

k so that

tn = 1 + c1/n+ c2/n
2 + ...+ cm/nm +O(1/nm+1) for m = 1, 2, ... .

By what we have just said, the same asymptotic series is valid for the probability that a
pair of elements of Sn generates either An or Sn. We shall also show that this asymptotic
series is valid for the probability that a pair of elements in An generates An.

More precisely, we shall prove the following.

Theorem 1 The probability tn that a random pair of elements from Sn generates a tran-
sitive group has an asymptotic series of the form described above. The �rst few terms
are

tn » 1¡ 1

n
¡ 1

n2
¡ 4

n3
¡ 23

n4
¡ 171

n5
¡ 1542

n6
¡ ... .

The same asymptotic series is valid for the probability that the subgroup generated by a
random pair of elements from Sn is either An or Sn.

Theorem 2 If an is the number of pairs (x, y) 2 An £ An which generate a transitive
subgroup of An and sn is the number of pairs (x, y) 2 Sn £ Sn which generate a transitive
subgroup of Sn, then sn ¡ 4an = (¡1)n3 ¢ (n ¡ 1)! for all n ¸ 1. Thus for n ¸ 2
the probability 4an/(n!)

2 that a random pair of elements from An generates a transitive
subgroup is equal to tn § 3/(n ¢ n!). Hence the probability that a random pair of elements
from An generates An has the same asymptotic expansion as given above for tn.

Remark 3 The sequence ftng also appears in other contexts. Peter Cameron has pointed
out to me that a theorem of M. Hall shows that the number N(n, 2) of subgroups of index
n in a free group of rank 2 is equal to n!ntn (see (1) below and [6]). On the other
hand, a result of Comtet [4] (quoted in [8, page 48] and [7, Example 7.4]) implies that
n!ntn = cn+1 for all n ¸ 1 where cn is the number of �indecomposable� permutations in
Sn (in this context x 2 Sn is called indecomposable if there is no positive integer m < n
such that x maps f1, 2, ..., mg into itself).

We shall discuss a generalisation to more than two generators at the end of this paper.

2 Lattice of Young subgroups
In the present section we shall prove Theorem 2. Consider the set P of all (set) partitions
of f1, 2, ..., ng. If ¦ = f§1, ...§kg is a partition with k parts then, as usual, we de�ne the
Young subgroup Y (¦) as the subgroup of Sn consisting of all elements which map each of
the parts §i into itself. The set of Young subgroups of Sn is a lattice, and we de�ne an
ordering on P by writing ¦ ¸ ¦0 when Y (¦) · Y (¦0). Under this ordering the greatest
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element of P is ¦1 := ff1g , f2g , ..., fngg and the least element is ¦0 := ff1, 2, ..., ngg.
Consider the Möbius function µ on P (see, for example, [8, Section 3.7]), and write µ(¦)
in place of µ(¦0,¦). By de�nition, µ(¦0) = 1 and

P
¦0·¦ µ(¦0) = 0 for all ¦ > ¦0.

Example 3.10.4 of [8] shows that µ(¦) = (¡1)k+1(k ¡ 1)! whenever ¦ has k parts.
Now let fA(¦) (respectively fS(¦)) be the number of pairs (x, y) of elements from An

(respectively, Sn) such that the parts of ¦ are the orbits of the group hx, yi generated by
x and y. Similarly let gA(¦) and gS(¦), respectively, be the number of pairs for which
the parts of ¦ are invariant under hx, yi; that is, for which x, y 2 Y (¦). Every Young
subgroup Y (¦) except for the trivial group Y (¦1) contains an odd permutation and so
we have

gA(¦) =
1

4
jY (¦)j2 = 1

4
gS(¦) for ¦ 6= ¦1 and gA(¦1) = gS(¦1) = 1.

We also have
gA(¦) =

X

¦0¸¦
fA(¦

0) and gS(¦) =
X

¦0¸¦
fS(¦

0).

Since µ(¦1) = (¡1)n+1(n¡1)!, the Möbius inversion formula [8, Propositon 3.7.1] now
shows that

sn = fS(¦0) =
X

¦

µ(¦)gS(¦) = 4
X

¦

µ(¦)gA(¦)¡ 3µ(¦1) ¢ 1

= 4fA(¦0)¡ 3µ(¦1) = 4an + (¡1)n3(n ¡ 1)!

as claimed.

3 Asymptotic expansion
It remains to prove Theorem 1 and obtain an asymptotic expansion for tn = sn/(n!)

2. It is
possible that this can be done with a careful analysis of the series fS(¦0) =

P
¦ µ(¦)gS(¦)

since the size of the terms decreases rapidly: the largest are those when ¦ has the shapes
[1, n ¡ 1], [2, n ¡ 2], [12, n ¡ 2], ...; but the argument seems to require considerable care.
We therefore approach the problem from a di¤erent direction using a generating function
for tn which was derived in [5]. Consider the formal power series

E(X) :=
1X

n=0

n!Xn and T (X) :=
1X

n=1

n!tnX
n.

Then Section 2 of [5] shows that E(X) = expT (X) and so

T (X) = logE(X). (1)

We shall apply a theorem of Bender [2, Theorem 2] (quoted in [7, Theorem 7.3]):
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Theorem 4 (E.A. Bender) Consider formal power series A(X) :=
P1

n=1 anX
n and

F (X, Y ) where F (X, Y ) is analytic in some neighbourhood of (0, 0). De�ne B(X) :=
F (X, A(X)) =

P1
n=0 bnX

n, say. Let D(X) := FY (X,A(X)) =
P1

n=0 dnX
n, say, where

FY (X, Y ) is the partial derivative of F with respect to Y .
Now, suppose that all an 6= 0 and that for some integer r ¸ 1 we have: (i) an¡1/an ! 0

as n ! 1; and (ii)
Pn¡r

k=r jakan¡kj = O(an¡r) as n ! 1. Then

bn =
r¡1X

k=0

dkan¡k +O(an¡r).

Using the identity (1) we take A(X) = E(X) ¡ 1, F (X, Y ) = log(1 + Y ), D(X) =
1/E(X) and B(X) = T (X) in Bender�s theorem. Then condition (i) is clearly satis�ed
and (ii) holds for every integer r ¸ 1 since for n > 2r

n¡rX

k=r

k!(n ¡ k)! · 2r!(n ¡ r)! + (n ¡ 2r ¡ 1)(r + 1)!(n ¡ r ¡ 1)! < f2r! + (r + 1)!g (n ¡ r)!.

Thus we get

n!tn =
r¡1X

k=0

dk(n ¡ k)! +O((n ¡ r)!)

and hence

tn = 1 +
r¡1X

k=1

dk

[n]k
+O(n¡r)

where [n]k = n(n ¡ 1)...(n ¡ k + 1). The Stirling numbers S(m,k) of the second kind
satisfy the identity

1X

m=k

S(m,k)Xm =
Xk

(1¡ X)(1¡ 2X)...(1¡ kX)

where the series converges for jXj < 1 (see [8, page 34]). Thus for n ¸ k > 0 we have

1

[n]k
=

1

nk(1¡ 1/n)(1¡ 2/n)...(1¡ (k ¡ 1)/n) =
1X

m=k¡1
S(m,k ¡ 1) 1

nm+1
.

This shows that tn has an asymptotic expansion of the form 1 +
P1

k=1 ckn
¡k where ck =Pk¡1

i=1 S(k ¡1, i)di+1 since S(m, 0) = 0 for m = 0. To compute the numerical values of the
coe¢cients we can use a computer algebra system such as Maple to obtain

D(X) = 1/E(X) = 1¡ X ¡ X2 ¡ 3X3 ¡ 13X4 ¡ 71X5 ¡ 461X6 ¡ 3447X7 ¡ ...

and then

tn » 1¡ 1

[n]1
¡ 1

[n]2
¡ 3

[n]3
¡ 13

[n]4
¡ 71

[n]5
¡ 461

[n]6
¡ ...

» 1¡ 1

n
¡ 1

n2
¡ 4

n3
¡ 23

n4
¡ 171

n5
¡ 1542

n6
¡ ... .
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4 Generalization to more than two generators
In view of the theorem of M. Hall mentioned in Remark 3 there is some interest in
extending the analysis for tn to the case of r generators where r ¸ 2. Let tn(r) be
the probability that r elements of Sn generate a transitive group (so tn = tn(2)). A
simple argument similar to that in Section 2 of [5] shows that the generating function
Tr(X) :=

P1
n=1(n!)

r¡1tn(r)Xn satis�es the equation

Tr(X) = logEr(X)

where Er(X) :=
P1

n=0(n!)
r¡1Xn. Now, following the same path as we did in the previous

section, an application of Bender�s theorem leads to

tn(r) » 1 +
1X

k=1

dk(r)

([n]k)r¡1

where the coe¢cients dk(r) are given by 1/Er(X) =
P1

k=0 dk(r)X
k. For example, we �nd

that
1/E3(X) = 1¡ X ¡ 3X2 ¡ 29X3 ¡ 499X4 ¡ 13101X5 ¡ ...

so

tn(3) » 1¡ 1

[n]21
¡ 3

[n]22
¡ 29

[n]23
¡ 499

[n]24
¡ 13101

[n]25
...

» 1¡ 1

n2
¡ 3

n4
¡ 6

n5
¡ ... .
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