
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Computing characters of groups with central subgroups

Vahid Dabbaghian and John D. Dixon

Abstract

The so-called Burnside-Dixon-Schneider (BDS) method currently used as the default method of
computing character tables in GAP for groups which are not solvable is often inefficient in dealing
with groups with large centres. If G is a finite group with centre Z and λ a linear character of Z,
then we describe a method of computing the set Irr(G,λ) of irreducible characters χ of G whose
restriction χZ is a multiple of λ. This modification of the BDS method involves only |Irr(G,λ)|
conjugacy classes of G and so is relatively fast. A generalization of the method can be applied
to computation of small sets of characters of groups with a solvable normal subgroup.

1. Introduction

Let G be a finite group with a central subgroup Z, and let Irr(G) and Irr(Z) denote the sets
of irreducible (ordinary) characters of G and Z, respectively. For each χ ∈ Irr(G) the restriction
χZ has the form χ(1)λ for some λ ∈ Irr(Z). If we define Irr(G,λ) := {χ ∈ Irr(G) | χZ = χ(1)λ},
then the sets Irr(G,λ) (λ ∈ Irr(Z)) form a partition of Irr(G) (see [6, Theorem 6.2]). We
consider the problem of computing the characters in Irr(G,λ); it turns out that these can be
computed independently for the different λ. This has two advantages over computing the full
character table. It allows us to compute selected characters for G without computing the full
character table, and even if we do need the full character table, the computation of Irr(G,λ)
for all λ can be more efficient than the so-called Burnside-Dixon-Schneider (BDS) method (see
[2] and [10]). The BDS method is the default method used in GAP [4] for groups which are not
solvable (see Section 71.14 of the GAP manual). The method described in the present paper is
a modification of the BDS method which takes advantage of certain structure in the group. In
many cases, the new method requires that fewer characters are computed explicitly since others
are easily derived from these. It also allows us to compute just a few irreducible characters at a
time, and then perhaps use alternative methods to construct further characters. Although GAP
already has the capability of doing this (see Section 71.17 of the GAP manual), the proposed
method allows us to be selective in the choice of which characters we compute.

The following is an outline of this paper. The next two sections provide details of the
computation of characters of central extensions as described above. We then make some brief
comments about how this approach can be adapted to compute characters of groups with an
abelian or, more generally, solvable normal subgroup using standard GAP functions. In the
last section of the paper we give some statistics about the performance of an implementation
of the algorithm (for central extensions) in GAP which indicate that the new method usually
computes the full character table faster whenever the centre is not very small.

Remark 1. In 1991 Fischer [3] introduced what is now called the method of Clifford or
Fischer matrices for computing the character tables of groups with normal subgroups (see [8,

2000 Mathematics Subject Classification 20C15 (primary), 20C40 (secondary).

The first author is partially supported by the NSERC Discovery Grant # 371974-2010.

JDD
Typewriter

JDD
Typewriter
Accepted for LMS Journal of Computation and Mathematics July 2013

JDD
Typewriter

Page 2 of 10 VAHID DABBAGHIAN AND JOHN D. DIXON

Section 3.8]). A search of the recent mathematical literature shows that this method has been
used successfully by a number of authors to compute the characters of some very large groups
(typically, the normal subgroup is abelian or at most nilpotent of class 2). For example, [9] has
calculated the character table of an extension of the second Conway group Co2 using a hybrid
of theoretical investigation and GAP computations. Another method which applies to certain
classes of extensions is given in [1]. Although these methods can be very powerful, their use
requires each case to be dealt with individually and, as yet, there seems no way to “automate”
the process. In 2006 Unger [11] published a general method for computing character tables
by inducing characters from p-elementary subgroups and then using the LLL lattice reduction
algorithm to find irreducible constituents of these composite characters. An implementation in
Magma [12] shows that Unger’s method can be very successful, especially for groups which are
nearly simple, and there are cases in which it can handle some significantly larger groups than
the BDS method.

2. Central extensions

We start by fixing the notation. Let G be a finite group with centre Z. Then Z acts on the
set C of G-conjugacy classes via right multiplication: C 7−→ Cz (C,Cz ∈ C and z ∈ Z). Let
C1 := {1} , C2, . . . , Cr be representatives of the corresponding Z-orbits and for each i define
hi := |Ci| and Zi := {z ∈ Z | Ciz = Ci} (the stabilizer of Ci in Z). Then the number k(G) of
G-conjugacy classes is equal to

∑r
i=1 |Z : Zi|.

On the other hand, consider the set Irr(G) of irreducible characters of G. If e is divisible by
the exponent of G and ω is a primitive eth root of 1 in C, then the values of the characters of
G all lie in Q(ω) and the Galois group Γ := Gal(Q(ω)/Q) acts on Irr(G) via χσ(x) := χ(x)σ

(σ ∈ Γ, χ, χσ ∈ Irr(G) and x ∈ G) and similarly for Irr(Z). As we noted in the introduction,
we can partition Irr(G) =

⋃
λ∈Irr(Z)Irr(G,λ), and it is clear that Irr(G,λ)σ = Irr(G,λσ) for all

σ ∈ Γ. In particular, if we know Irr(G,λ), then we can find Irr(G,λσ) immediately for each
Galois conjugate λσ.

Every finite multiplicative group of a field is cyclic and so Z/ kerλ is cyclic for each λ ∈ Irr(Z),
and the values of λ are the mth roots of 1 where m := |Z/ kerλ|; hence λ has exactly ϕ(m)
distinct Galois conjugates where ϕ(m) is the Euler phi-function. Since a cyclic group of order
m has exactly ϕ(m) faithful characters, this also shows that two characters λ, µ ∈ Irr(Z) have
the same kernel if and only if λ and µ are Galois conjugates.

Lemma 2.1. Let χ ∈ Irr(G,λ) and suppose that χ takes the value χi on Ci (i = 1, . . . , r).
If x ∈ Ciz for some z ∈ Z, then χ(x) = χiλ(z). Thus knowing the values χ on the classes
C1, . . . , Cr determines the value of χ on every class. Furthermore if the stabilizer Zi is not
contained in kerλ then χi = 0.

Proof. Let R be a representation of G which affords χ. Since R is irreducible, R(z) is a scalar
for each z ∈ Z, and since the restriction of χ to Z is equal to χ(1)λ, we have R(z) = λ(z)R(1).
Thus if x = uz where u ∈ Ci and z ∈ Z then R(x) = R(u)R(z) = λ(z)R(u), and hence χ(x) =
λ(z)χi as claimed. Moreover, if Zi � kerλ, then choose z ∈ Zi \ kerλ. Now Ciz = Ci but λ(z) 6=
1, so χiλ(z) = χ(x) = χi implies χi = 0.

COMPUTING CHARACTERS OF GROUPS Page 3 of 10

Lemma 2.2. Let K := {kerλ | λ ∈ Irr(Z)} and for each K ∈ K define mK to be the number
of i for which Zi ≤ K. Then the number k(G) of conjugacy classes of G equals∑

K∈K
ϕ(|Z : K|)mK .

Proof. Put J := {(i, λ) | Zi ≤ kerλ}. Since the number of λ with Zi ≤ kerλ is equal to
|Irr(Z/Zi)| = |Z : Zi|, we have

|J | =
∑

(i,λ)∈J

1 =

r∑
i=1

|Z : Zi| = k(G)

as noted at the beginning of this section. On the other hand, as we saw above there are
ϕ(|Z : K|) characters λ with kerλ = K for each K ∈ K, and so

|J | =
∑

λ∈Irr(Z)

mkerλ =
∑
K∈K

ϕ(|Z : K|)mK .

This proves the assertion.

Now let ci :=
∑
u∈Ci

u (i = 1, 2, . . . , r) be the class sums in C[G] of our representative
conjugacy classes. The other class sums in C[G] are of the form ciz where z ∈ Z (we have
ciz = ciz

′ ⇐⇒ z, z′ lie in the same Zi-coset). Define νijk,z to be the number of pairs
(x, y) ∈ Ci × Cj such that xy = zw for some specified z ∈ Z and specified w ∈ Ck (this is
independent of the choice of w and depends only on the Zk-coset to which z belongs). Then
for any choice of transversals Ti of Zi in Z (i = 1, . . . , r) the familiar formula for multiplication
of class sums [6, Theorem (2.4)] takes the form

cicj =

r∑
k=1

(∑
z∈Tk

νijk,zz

)
ck for all i, j. (2.1)

The number of triples (x, y, w) ∈ Ci × Cj × Ck such that xy = zw for specified z ∈ Z is
νijk,zhk. Since xy = zw ⇐⇒ x−1w = z−1y, this shows that νijk,zhk = νi′kj,z−1hj where Ci′

is the class consisting of the inverses of the elements in Ci. For i, k, j ∈ {1, 2, . . . , r} we define
µikj by the condition hjµikj = hk

∑
z∈Tk

νijk,zλ(z) and so µijk =
∑
z∈Tj

νi′jk,z−1λ(z).

Proposition 2.3. Fix λ ∈ Irr(Z) and suppose that the classes C1, . . . , Cr have been
ordered so that Zi ≤ kerλ for 1 ≤ i ≤ m and Zi � kerλ for m+ 1 ≤ i ≤ r (in terms of Lemma
2.2, m = mkerλ). Now for i = 1, . . . ,m define Mi as the m×m matrix [µijk]

m
j,k=1. Then

(a) For each χ ∈ Irr(G,λ) the row vector

vχ := (χ1, χ2, . . . , χm)

is a left eigenvector for Mi with eigenvalue hiχi/χ1 (i = 1, . . . ,m);
(b) The eigenvectors vχ (χ ∈ Irr(G,λ)) are linearly independent and, up to scalar multiples,

are the only common eigenvectors of M1, . . . ,Mm;
(c) Irr(G,λ) consists of exactly m characters, and Lemma 2.1 shows that the values of these

characters are completely determined by the vectors vχ.

Proof. Suppose that χ ∈ Irr(G,λ) is afforded by the representation R. Then R(ci) is the
scalar (hiχi/χ1)R(1), so applying R to both sides of the equation (2.1) and using Lemma 2.1

Page 4 of 10 VAHID DABBAGHIAN AND JOHN D. DIXON

we obtain

hiχihjχj = χ1

(∑
z∈Tk

νijk,zλ(z)

)
hkχk = χ1

m∑
k=1

µikjhjχk

which immediately gives (a).
Lemma 2.1 also shows that χ is completely determined by the values in the vector vχ

and shows how to write down all the values of χ once we know vχ. Any linear dependence
between the vectors vχ (χ ∈ Irr(G,λ)) implies the corresponding linear dependence between
the characters. Since the characters in Irr(G,λ) are linearly independent, the vχ must also be
linearly independent. In particular |Irr(G,λ)| ≤ m (= mkerλ).

As we noted at the beginning of this section, if K := kerλ then λ has exactly ϕ(|Z : K|)
Galois conjugates and these are the only characters in Irr(Z) which have K as their kernel.
Thus with the notation of Lemma 2.2 the inequality |Irr(G,λ)| ≤ mkerλ shows that

|Irr(G)| =
∑

λ∈Irr(Z)

|Irr(G,λ)| ≤
∑

λ∈Irr(Z)

mkerλ =
∑
K∈K

ϕ(|Z : K|)mK . (2.2)

By Lemma 2.2 the right hand side of (2.2) is equal to k(G) (= |Irr(G)|) so the inequality in
(2.2) is an equality. Thus we must have |Irr(G,λ)| = mkerλ for each λ. This proves (c).

Finally the m linearly independent vectors vχ (χ ∈ Irr(G,λ)) form a basis of Cm and consist
of common left eigenvectors for M1, . . . ,Mm. For any two different vectors, say vχ and vθ,
there exists at least one i for which the eigenvalues hiχi/χ(1) and hiθi/θ(1) are different.
Hence, up to scalar multiples, vχ (χ ∈ Irr(G,λ)) are the only common eigenvectors for the
matrices M1, . . . ,Mm. This proves (b) and completes the proof of the proposition.

3. Implementation

(A) We implemented the process described in Proposition 2.3 using the methods of [10].
With the notation of Proposition 2.3 fix λ and put m = mkerλ. Let V = Cm be the vector
space spanned by the vectors vχ (χ ∈ Irr(G,λ)). Each subspace of V which is spanned by a
subset of the vχ is called a character subspace. By Proposition 2.3(a) each character subspace
U is invariant under Mi for i = 1, . . . ,m and the eigenspaces of Mi in its action on U are also

character subspaces. If V =

s⊕
j=1

Uj is a direct sum of nonzero character subspaces and at least

one Uj has dimension > 1, then we can find an index i such that this Uj decomposes properly
into eigenspaces under Mi. In this way we can successively refine the direct decomposition of
V until we obtain a sum of character spaces of dimension 1. The bases of these subspaces are
then just scalar multiples of the vχ. All these computations will be done, not over C, but over
a finite prime field as described in [2] and [10].

(B) The most expensive part of the process is the computation of the entries of Mi since
this involves identifying the conjugacy classes of G to which products of pairs of elements of
G belong. Minor modifications of the arguments used in [10] prove the following facts which
enable us to reduce the number of these computations.

(1) The first column of Mi (corresponding to the class {1}) has only one nonzero entry,
namely, the ith entry is equal to hi. {Proof: µij1 =

∑
z∈Tj

νi′j1,z−1λ(z) where we can
assume Tj ∩ Zj = {1}. Now νi′j1,z−1 is the number of pairs (x, y) ∈ Ci × Cj such that
x−1y = z−1. This number is hi if i = j and z ∈ Zi and is 0 otherwise. Thus µij1 = 0 if
i 6= j and µii1 =

∑
z∈Zi∩Ti

hiλ(z) = hi.}

COMPUTING CHARACTERS OF GROUPS Page 5 of 10

(2) Suppose that U is a nonzero character subspace with a basis u1, . . . , us in echelon form
(the leading 1 for u1 occurs in the first place since U contains some vχ). Then U splits into
two or more eigenspaces underMi if and only if at least one of the vectors u2Mi, . . . , usMi

has its first entry nonzero. By property 1 this is equivalent to saying that U splits under
Mi if and only if at least one of the vectors u2, . . . , us has its ith entry nonzero.

(3) If U does split under Mi then we can compute basis vectors for the distinct eigenspaces of
Mi in its action on U from a knowledge of the columns k1, . . . , ks of Mi where k1, . . . , ks
are the positions of the leading 1 for the basis vectors u1, . . . , us.

Property 2 can be used to choose a value of i which maximizes the number of Ut which
decompose under Mi and property 3 means that we only have to compute part of Mi in order
to carry out the decompositions. However, as [10] shows, when Ut has dimension 2 we can
usually avoid computations of the entries of Mi by using a combinatorial splitting of Ut. We
used a simplified version of Schneider’s method which is described in (E) below.

(C) This reduction of V to a direct sum of 1-dimensional character subspaces only gives
scalar multiples of the vectors vχ. To recover vχ from a nonzero scalar multiple, say y = θvχ,
we proceed as follows. Let y = (η1, . . . , ηm). Since C1 = {1} by hypothesis, we know that η1 =
θχ1 6= 0 and can assume that y has been normalized so that η1 = 1, so θ = 1/χ1. Now, using
the fact that |χ(xz)| = |χiλ(z)| = |χi| for all x ∈ Ci and z ∈ Z, and that χi = 0 for all i > m,
we obtain the value of θ from the calculation

m∑
i=1

|Z : Zi|hiηiηi′ = θ2
m∑
i=1

|Z : Zi|hiχiχi′ = θ2
∑
x∈G

χ(x)χ(x−1) = θ2 |G|

All these computations are done over a finite field GF (p) (with p a suitable prime) in the way
described in [2] and [10]. The fact that the coefficients µijk in the present case are cyclotomic
integers rather than ordinary integers does not change the computation significantly, assuming
that we have chosen p such that the exponent e of G divides p− 1 (this ensures that GF (p)
contains a primitive eth root of 1).

(D) Calculating the entries of Mi is significantly speeded up using the following lemma which
refines an idea used in the current implementation of the BDS method in GAP which is based
on the thesis of Hulpke [5]. A referee has pointed out that Hulpke states that he found that
the use of double cosets did not seem to be advantageous except for larger classes (see [5, Sec.
2.5.4]), but that does not seem to be true in our situation. This may be a result of the increased
memory now available.

Define Ki := NG(xiZ) for i = 1, . . . , r (so Ki/Z = CG/Z(xiZ)). We have |Ki : CG(xi)| = |Zi|
since xi has |Zi| G-conjugates in xiZ.

Lemma 3.1. Suppose that i, k ≤ m and let T be a transversal for the set of (Ki,Kk)-double
cosets in G. For each t ∈ T we have t−1xitxk ∈ Cjtzt for some jt and some zt ∈ Z (zt is only
determined up to a factor from Zjt , but this will not matter since we shall only be interested
in the value of λ(zt) which is uniquely determined when jt ≤ m). Then

(i) u−1xiuxk ∈ CjtZiZkzt for all u ∈ KitKk;
(ii) for each j ≤ m we have

|CG(xi)|µijk =
∑′

t
|KitKk|λ(zt)

where the sum is over all t ∈ T with jt = j.

Proof. (i) First note that if a ∈ Ki then a−1xia = xiz for some z ∈ Z by the definition of
Ki; it follows that z stabilizes Ci and so z ∈ Zi. Write u = atb with a ∈ Ki and b ∈ Kk. Then

u−1xiuxk = b−1(t−1a−1xiat)(bxkb
−1)b ∈ b−1(t−1xiZit)(xkZk)b ⊆ CjtZiZkzt.

Page 6 of 10 VAHID DABBAGHIAN AND JOHN D. DIXON

(ii) We have

|CG(xi)| |CG(xk)| cick =
∑
v∈G

v−1

(∑
u∈G

u−1xiuxk

)
v

=
∑
t∈T

∑
v∈G

v−1

(∑
u∈KitKk

u−1xiuxk

)
v.

Now
∑
v∈G v

−1
(∑

u∈KitKk
u−1xiuxk

)
v lies in the centre of C[G] and (i) shows that it has

the form btcjtzt, say, where bt ∈ C[ZiZk] and where the sum of the coefficients of bt is
|G| |KitKk| /hjt . Since the class sums are linearly independent we conclude from equation
(2.1) that

|CG(xi)| |CG(xk)|
∑
z∈Tj

νikj,zλ(z) =
∑′

t
λ(btzt)

where the right hand sum is over all t ∈ T with jt = j. Since ZiZk ≤ kerλ by the definition of
m, λ(bt) = |G| |KitKk| /hj and so

|CG(xi)| |CG(xk)| (hk/hj)µijk = (|G| /hj)
∑′

t
|KitKk|λ(zt).

The result now follows.

(E) [10] describes a fast combinatorial method of splitting 2-dimensional character spaces.
We use a modified version. On the space of class functions over a field F whose characteristic
does not divide |G| we define the inner product [λ, µ] := (1/ |G|)

∑
x∈G λ(x)µ(x−1). Note that

this is not quite the same as the usual inner product on the class functions over C since it is
symmetric and bilinear, not skew symmetric and sesquilinear. Recall that in considering class
functions we assume that the first class is {1}.

Lemma 3.2. Suppose that V is a 2-dimensional F -space with an orthogonal basis ξ :=
χ/χ(1), η := θ/θ(1) where χ and θ are irreducible characters and define e := 1/χ(1)2 and
f := 1/θ(1)2. Let v1, v2 be a basis of V in echelon form (so v1 is 1 on {1} and v2 is 0 on {1}).
Define cij := [vi, vj] for i, j ∈ {1, 2} and ∆ := c11c22 − c212. Then

χ(1)2 + θ(1)2 = c22/∆.

Proof. Write v1 and v2 in terms of the basis ξ, η. Since ξ and η both take the value 1 on {1}
we see that v1 = αξ + (1− α)η and v2 = β(ξ − η) for some α, β ∈ F . Then c11 = α2e+ (1−
α)2f , c12 = αβe− (1− α)βf and c22 = β2(e+ f). A short calculation shows that ∆ = β2ef
and so c22/∆ = 1/e+ 1/f as claimed.

We use this lemma to determine candidate values for e and f (F is the prime field of size p).
It is known that the degree d of an irreducible character of a group G divides n := |G : Z(G)|
and that d2 ≤ n. The number of divisors of n is very small compared with the size of n once
n is not too small and so the chance that there will be more than one pair {a, b} of divisors
of n such that a2 + b2 = c22/∆ is also small. If there is a unique pair, then we take e = 1/a2

and f = 1/b2. In the case where there is more than one pair we revert to the longer splitting
method via the Mi matrices (for each of the groups listed in Tables 1 and 2 fewer than 7% of
the integers which can be written as the sum of two squares a2 + b2 with a, b dividing n and
a2 ≤ b2 ≤ n do not have a unique representation in this form).

COMPUTING CHARACTERS OF GROUPS Page 7 of 10

Once e and f are determined, we can obtain β from β2 = c22/(e+ f) and then α = (c12/β +
f)/(e+ f) (taking −β in place of β corresponds to interchanging χ and θ). Now χ = v1 + (1−
α)β−1v2 and θ = v1 − αβ−1v2.

(F) As we noted above, once we have computed the characters in Irr(G,λ) for one character
λ ∈ Irr(Z), the characters in the sets Irr(G,µ) where µ is a Galois conjugate of λ are
simply Galois conjugates of the characters in Irr(G,λ) and so require very little additional
computation.

4. Solvable normal subgroups

The technique in the previous sections can be used to compute characters in more
general situations. Suppose that A is a normal abelian subgroup of G. Then G acts
on the set Irr(A) of irreducible (ordinary) characters λ of A via λx(a) := λ(xax−1)
(x ∈ G, a ∈ A, λ, λx ∈ Irr(A)). For each G-orbit Λ in Irr(A) we define Irr(G,Λ) :={
χ ∈ Irr(G) | χA is an integer multiple of

∑
λ∈Λ λ

}
; the sets Irr(G,Λ) form a partition of

Irr(G) (see [6, Theorem 6.2]). We choose λ ∈ Λ and consider the stabilizer

H := {x ∈ G | λx = λ}

(the inertial group of λ). Then |G : H| = |Λ| and {λ} is an H-orbit in Irr(A). Theorem 6.11
of [6] shows that the induction mapping ψ 7→ ψG is a bijection of Irr(H,λ) onto Irr(G,Λ). On
the other hand, A/ kerλ is cyclic of the same order as λ, kerλ is a normal subgroup of H, and
Ā := A/ kerλ is contained in the centre of H̄ := H/ kerλ. Since the characters Irr(H,λ) can be
derived from the characters Irr(H̄, λ̄) via λ(a) = λ̄(a+ kerλ), the characters in Irr(H,λ) can
be computed as in the previous section and then induced to give the characters in Irr(G,Λ).

More generally if G has a solvable normal subgroup S, then a similar process allows us to
compute various subsets of irreducible characters of G. Let S = S0 > S1 > · · · > Sl = 1 be the
derived series for S. For each χ ∈ Irr(G) consider the least t such that St ≤ kerχ. If t > 0 then
Ā := St−1/St is a normal abelian subgroup of Ḡ := G/St and χ is essentially a character of Ḡ
whose restriction to Ā is nontrivial. If χĀ has an irreducible constituent λ and Λ is the Ḡ-orbit
in Irr(Ā) containing λ, then χ ∈ Irr(Ḡ,Λ) and the problem has been reduced to the case of a
normal abelian subgroup.

We can define a partition of the set Irr(G) into parts which are indexed by t ∈ {0, 1, . . . , l}
where χ is in the tth part if t is the least integer such that St ≤ kerχ. If t > 0 then the tth part
can be further partitioned into subsets of the form Irr(G,Λ) where Λ is a G-orbit of nontrivial
characters in Irr(St−1/St). The characters in each of the parts of this refined partition can be
computed independently of the characters in the other parts.

5. Runtimes

We have implemented the algorithm described in Section 2 in GAP. Tables 1 and 2 give
the execution times for GAP to compute the character tables of groups G with centre Z. The
computations recorded in these tables were carried out using a permutation representation of
the group. Each row of the tables lists the structure of G followed by the orders of G and Z, the
degree of the permutation representation and the number of classes of G. The column headed
T gives the time (in seconds) taken by the new program to compute all irreducible characters
of G whilst the last column gives the time T ∗ taken by the current GAP implementation of the
BDS method to calculate these characters. The notation “-” in the T ∗ column means that after
a long enough time the system failed to compute the character table. The times are the cpu
times (processor times) in seconds for an Apple G5 with dual 2.8 GHz Quad-Core processors
and 4 GB ram. Computer code of the current implementation in GAP of the BDS method is

Page 8 of 10 VAHID DABBAGHIAN AND JOHN D. DIXON

Table 1. Examples of runtimes

G |G| |Z| Degree Classes T T ∗

GL(2, 7) 2016 6 48 48 1 1

GU(2, 7) 2688 8 128 64 1 1

GL(2, 11) 13200 10 120 120 1 5

GU(2, 11) 15840 12 288 144 2 9

GL(2, 17) 78336 16 288 288 10 106

GU(2, 23) 291456 24 1152 576 46 10654

12.M22 5322240 12 31680 109 562 -

(((C5 × C5 × C5 × C5) : A5) : C5) : C2 375000 5 25 506 10 105

C6 × (((C6 × C6 × C6 × C6) : A5) : C2) 933120 6 30 918 42 193

listed in the file ctblgrp.gi in the GAP subdirectory lib. For an overview of the functions
available in GAP for computing characters, see Chapter 71 of the GAP manual.

In Table 1 the last two groups are transitive permutation groups of degrees 25 and 30,
respectively, taken from the library of GAP. In Table 2 the groups are taken from the library of
perfect groups in GAP. The perfect groups in this library are parametrized by pairs [size, index]
where index runs over 1 . . . num(size) and num(size) is the number of perfect groups of that
size. Our sample of perfect groups was obtained by choosing all perfect groups [size, index]
with index = 1 for which |Z| > 5. The notation in the first column of Table 2 is provided by
GAP and describes the perfect group in accordance with [7]. In almost all cases for the groups
considered, the new method is faster (sometimes much faster) than the method currently used.
There are two anomalies which stand out in Table 2 (the groups of orders 552960 and 933120)
where the old method is 3 to 5 times faster; we have not been able to explain why these two
cases occur.

COMPUTING CHARACTERS OF GROUPS Page 9 of 10

Table 2. Examples of runtimes for perfect groups

G |G| |Z| Degree Classes T T ∗

A6 31 × 21 2160 6 98 31 1 1

A5(24E (21 A× 21)) C 21 7680 8 76 48 1 1

A7 31 × 21 15120 6 285 40 1 2

A5(24E (21A× 21 A)) C (21 × 21) 15360 16 128 84 1 5

A5 21 × 34
′
E 31 29160 6 42 87 3 3

A5 21 × (24E (21A× 21 A)) C (21 × 21) 30720 32 152 164 3 15

A6 31 × 24E 21 34560 6 30 61 1 1

A6 21 × (24E 21A) C 21 46080 8 144 68 2 5

A6 31 × (24E 21A) C 21 69120 12 82 89 3 4

A5 21 × 53E 51 75000 10 49 149 5 9

(A5 ×A6 31) 21 129600 6 103 155 3 10

A6 31 × 21 × (24E 21A) C 21 138240 24 162 172 5 29

A7 31 × 21 × 24 241920 6 301 73 8 17

L2(8) 26E (21 × 21 × 21) 258048 8 336 94 51 146

(A5 ×A6 31) 22 259200 12 122 279 6 26

A5# 28 52 384000 8 125 144 37 66

(A5 ×A5)# 27 460800 8 88 216 10 16

L2(8) N (26E (21 × 21 × 21 A)) C 21 516096 16 400 166 95 176

A6 31 × (24 × 24) 21 552960 6 46 154 56 18

A5# 27 34 622080 8 81 348 53 82

(L3(2)×A6 31) 22 725760 12 114 341 18 84

L3(2) 21 × 36 C 31 734832 6 2203 93 102 974

A5# 29 52 768000 16 177 256 40 163

(A6 ×A6) 31 21 777600 6 104 217 9 20

(A5 ×A7 31) 21 907200 6 290 200 13 30

A5 21 × (24
′
C 21) 34 C 31 933120 6 267 107 27 6

A5# 27 53 960000 8 106 368 93 340

A7 31 × 21 × 26 967680 6 511 136 29 51

Page 10 of 10 COMPUTING CHARACTERS OF GROUPS

Acknowledgement. We wish to thank two anonymous referees who made detailed com-
ments and suggestions on earlier versions of this paper. These have resulted in significant
improvements in both the program and the paper.

References

1. T. Breuer, Computing character tables of groups of type M.G.A, LMS J. Comput. Math. 14 (2011) 173–178.
2. J.D. Dixon, High speed computation of group characters, Numer. Math. 10 (1967) 446–450.
3. B. Fischer, Clifford-matrices in “Representation Theory of Finite Groups and Finite-dimensional Algebras

(Bielefeld 1991)”, Birkhäuser, Basel, 1991 (pp. 1–16).
4. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.5.5 (2012).

(http://www.gap-system.org).
5. J. A. Hulpke, “Zur Berechnung von Charaktertafeln”, Diplomarbeit im Fach Mathematik an der Rheinisch-

Westfälischen Technischen Hochschule, Aachen, 1993.
6. I.M. Isaacs, “Character Theory of Finite Groups”, Academic Press, New York, 1976.
7. D.F. Holt and W. Plesken, Perfect Groups, Clarendon Press. Oxford, 1989.
8. K. Lux and H. Pahlings, “Representations of Groups: a computational approach”, Cambridge Univ. Press,

Cambridge, 2010.
9. H. Pahlings, The character table of 21+22

+ .Co2, J. Algebra 315 (2007) 301–323.
10. G.J.A. Schneider, Dixon’s character table algorithm revisited, J. Symbolic Comput. 9 (1990) 601–606.
11. W.R. Unger, Computing the character table of a finite group, J. Symbolic Comput. 41 (2006) 847–862.
12. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: the user language, J. Symbolic

Comput., 24 (1997) 235–265.

Vahid Dabbaghian
MoCSSy Program
The IRMACS Centre
Simon Fraser University
Burnaby, BC V5A 1S6
Canada

vdabbagh@sfu.ca

John D. Dixon
School of Mathematics and Statistics
Carleton Unversity
Ottawa, ON K1S 5B6
Canada

jdixon@math.carleton.ca

