Mathematics and Statistics - Carleton University

[70.385 NOTES ON ERROR CORRECTING CODES]|

1 Introduction

Whenever information is transmitted (for example, by radio from a satellite or across telephone
lines) or stored (for example, on your computer’s hard disk or on a CD), there is the possibility that
the information will be corrupted so that what is received or read at a later time is not the same as
the original information. Error correcting codes can often minimize this problem, by enabling us
to reconstruct the correct information even after errors have occurred.

The basic idea of these codes is to use redundancy. This means that the information sent
is repeated in certain subtle ways. Everyday speech uses a great deal of redundancy. This is
illustrated by the fact that if you go to a noisy party you may still understand what someone is
saying even though you miss hearing many of the words. There is enough redundancy in English
(and other languages) that often a fraction of the words (or letters) is enough to convey the meaning.
Fr xmpl, t s pssbl t rd ths sntnc whr 1l th vwls r mssng.

REMARK Many computer files contain considerable redundancy. There are programs which can
recognize this redundancy and remove it (these compress the files), for example, files with extensions like
ZIP or GIF have been compressed in this way. It is sometimes possible to reduce the length of a file
considerably in such a way that the compressed files can later be uncompressed to their original form.
However, this natural redundancy is not useful for error correction because it fails to be present uniformly
through the files.

Do not confuse error correcting codes with codes used to conceal information. The latter are formally
called systems of encryption. For example, encryption is used to prevent an eavesdropper from reading
personal information transmitted over the Internet and for scrambling TV signals so that only subscribers
who have paid for a descrambler can receive them, as well as for preserving military and diplomatic secrets.
The design of secure encryption systems is called cryptography. Cryptography also involves some interesting
mathematics, but its object and methods are quite different from the objects and methods of error correction.

2 Error detecting codes

To clarify the discussion we shall describe our codes in the following way. A sender S wishes
to send a message to a receiver R. The message passes along a noisy channel which may corrupt
it by modifying it in various ways, and the message received may not be the message sent. S
therefore encodes the message before transmitting it, so that R will receive a (possibly corrupted)
encoded message. When an error correcting code is used R expects, even if the received message
is corrupted, to be able to decode the message and obtain the original message of S. In practice
there may be occasional cases where the message is so badly corrupted that it cannot be properly
decoded, but the code will be designed so that this happens very rarely.

We start our discussion with something which is a little simpler to describe than error
correcting codes. These are codes for error detection. They are designed to signal when an error
has occurred, but do not attempt to correct the error. In practice, if a message is transmitted
using an error detecting code and the receiver finds that there is an error in the transmission, then

the receiver must ask the sender to re-send the message. The situation can be diagrammatically
described by:

foriginal message] —y [message encoded| —s [message transmitted along noisy channel

—3 [encoded (possibly corrupted) message received | _ [decoding and error detection|

where the process is repeated for a given message string until no error is detected.

EXAMPLE 1 A commonly used error detection code is based on message strings consisting of seven
bits (0's and 1's), say biba...b;. The encoded string bibs...bg is obtained by adjoining an additonal
bit bg where bg is 0 or 1 according to whether the sum of the other digits is even or odd. In other
words, bg = by + ... + by (mod2). If exactly one of the eight bits is changed in transmission, then
the receiver will be able to recognize that an error has occurred because this relationship between the
bits no longer holds. However, if two errors (or any even number of errors) occur the receiver will
not realize that there has been an error. The added bit bg is called a check-sum bit.

REMARK In many situations it is reasonable to assume that multiple errors occur infrequently, and that
single errors occur much more often than multiple errors. Most codes are therefore designed to be able to
detect or correct when one (or a small number) or errors have occurred in a string of particular length. This
is the situation which we shall discuss here. Sometimes this is not a good assumption: there may be bursts
of errors which all come at once.

EXAMPLE 2 Another commonly used error correcting code is the code used for the ISBN (Inter-
national Standard Book Number) numbers which appear at the front of every book that is published.
This is a 10 digit number dyids...d1g which uniquely identifies the book. The first nine digit are from
{0,1,2,...,9} and the last digit is either from this set or is equal to X (which denotes 10). The last
digit is a check digit and is chosen so that

dio = 1dy + 2dy + ... + 9dg (mod 11) or, equivalently,
1di +2ds + ... +10d1o =0 (IIlOd 11)

The advantage of this particular error detecting code is that it (i) detects an error if exactly one
of the digits is wrong, (ii) detects an error if two of the digits has been interchanged, and (i) will
detect an error in many cases when two or more digits are incorrect.

Various kinds of more elaborate check sums are used for computer files, and can detect when
a file has become corrupted by a physical defect in a chip or a disc, or the file has been affected by
a virus.

3 Error correcting codes

Although error detecting codes are useful, it is often better to have codes which can automat-
ically correct themselves. There is a wide literature on error correcting codes. We shall only be
looking at some elementary examples.

In what follows we shall make the following assumptions which are quite realistic in many
cases.

e We shall assume that our messages (or data) consist of strings of bits (denoted as 0's and
1’s). We shall suppose that these strings are broken up into blocks of fixed length, say m. A
message (or file of data) will usually consist of a great many of these blocks. For example, for
a text, such as the manuscript for these notes, each letter and punctuation symbol is translated
into a special sequence of eight bits according to a scheme called the ASCII character set, and
the manuscript is stored on my computer as this string of bits.

e Our codes will be constructed by taking each of these blocks and adding k check bits to obtain
a new block of total length n := m + k. These new blocks will be called codewords, and the
m original bits in each block are called the message bits or information bits. An encoded
message will usually consist of many of these codewords, but it will be enough to deal with
each codeword separately. The check bits are the redundancy which we are adding, and this
redundancy will be used for error correction.

e We shall assume that the errors which occur when the codewords are transmitted are bit errors:
some of the bits may change (from 0 to 1 or from 1 to 0) but the number of bits does not
change. We shall also assume that the errors which occur will generally occur one at a time
(not in bursts). More particularly, for some chosen value of d, we shall suppose that with
high probability at most d of the n bits of a codeword received are in error, and ignore the
possibility that more than d errors occur (see the Remark below). For example, if d = 1, then
we shall be designing our code so that it can correct a codeword if a single error occurs in it;
the correction scheme may fail in the event that more than one error occurs.

REMARK Consider the (possibly corrupted) codewords which are received. In the absence of “bursts” of
errors, it is often reasonable to suppose that for each bit there is the same (small) probability p that an error
has occurred in transmission, and that the probability that one particular bit is incorrect is independent
of the probability of another particular bit being wrong. In this situation the number of bit errors in a
particular codeword is given by the binomial distribution. Suppose that the probability of an error in each
particular bit is p. Then the probability that we have k errors in a codeword of length n is py := (})p"(1—p)*
for k=0,1,...,n.

For example, if on the average there is one bit error in every 10000 bits, then the probability of a
particular bit being in error is p = 1/10000 = 0.0001. If the codewords have length n = 10, then we find
that po = (')p°(1—p)'® = 0.9990004..., p1 = (})p'(1—p)® = 0.0009991..., p> = (*))p*(1—p)* = 0.0000004...
and the other p; are negligible. Thus, if w codewords are transmitted, then the probability that all of the
received words each have at most one error is (po+p1)* = 0.9999995%. For example, if our message consists
of w = 10° codewords, then this probability is 0.95. In other words, in this situation, about 95% of the
time a single error correcting code will succeed in correcting all of the 10° codewords.

EXAMPLE 3 A very simple example of a code is a repetition code. In this code the first bit is the
only information bit, and all the other bits (check bits) are equal to this first bit. For example, if
n = 2, then there are the two codewords: 00 and 11. This code will detect one error, but it is not
able to correct an error; if you receive 01 then you know that an error has occurred (since 01 is not
a codeword), but you cannot tell which bit is wrong. A better situation occurs whenn =3 (m =1
and k = 2). Again there are only two codewords: 000 and 111, but in this case if a single error
occurs you can not only recognize the error but also see what the correct codeword is (so d = 1).
More generally, for any d > 1 with n = 2d + 1 and the two codewords 000...0 and 111...1 we can
correct up to d errors for any d > 1.

The repetition code shows that it is possible to design codes which can correct any number
of errors through simple repetition of the message. However, these codes are not very efficient. To
encode a message using the repetition code of length n each block of length m = 1 in the original
message is replaced by a block of length n, so that the message which is transmitted is n times as
long as the original message.

The two aims in designing an error correcting code are

e t0 be able to correct any d of errors which may occur in codewords of given length n (in general,
we should like d to be as large as possible, but often d = 1 is satisfactory); and

e to encode the message economically in the sense that the rate m/n = m/(m + k) is as large
as possible (it is always < 1).

Unfortunately, these two objectives are mutually incompatible. If we want to correct more errors
per codeword, then we need more check bits and fewer information bits; this will decrease the rate
m/n. A well-designed code is a compromise being able to correct multiple errors and having a code
with a good rate. The choice of design depends on how many errors we anticipate and the lowest
rate that we can tolerate.

REMARK Your favourite musical CD is a storage device for a binary file containing more than 10'° bits.
About one third of the information on the disc is non-audio information which is used to process the music
before you hear it, and to ensure that the sound is virtually perfect. The data is stored in codewords of
length 588. Only 192 bits of each codeword contain the audio information and 64 of the bits are check bits.
This enables a very high level of error correction, and explains why even a badly mistreated CD may still
sound fine. (How much do you have to scratch your CD before it sounds bad?) [Ref. K.C. Pohlmann,
“Principles of Digital Audio” (2nd. ed.), Howard W. Sams, 1989.]

4 Linear codes

In order to be able to apply algebraic techniques to our design of codes we shall represent the
bit values 0 and 1 of our codewords as elements of the field Z, = {0,1}. Recall that in Z, arithmetic
is done “modulo 2”7, so addition and multiplication are defined by:

0+0=1+1=0,04+1=140=1 and 0:0=0-1=1-0=0,1-1=1

Now (Z2)™ is the vector space of dimension n over the field Z, consisting of all n-tuples (rows)
from Zs. We shall find it convenient to use notations like [0,1,0,0] and 0100 interchangeably to
represent vectors from these spaces.

The error correcting codes described above consist of codewords of the following form. Each
codeword has m information bits, say by, ..., by, and k check bits, say b,;11, ..., by+x Where the check
bits depend in some way on the information bits and have been introduced to enable us to correct
the codeword if one or more error occurs. In principle, the check bits could be any functions of
the information bits (or each other), but in practice it has turned out to be simplest to design good
codes where each check bit is a sum (in Z»!) of one or more of the information bits. Note that the
number of codewords is equal to the number of distinct message strings by bs...by,, namely 2.

EXAMPLE 4 Consider the case where m = 3 and k = 3 where we define by = by + bs, bs = by + b3
and bg = bz + by. This code has eight (= 2°) codewords:

000000 001011 010110 011101
100101 101110 110011 111000

A little study should convince you that this code can correct single errors. In other words, if only
one bit is changed in one of these codewords then from the corrupted codeword you can decide what
the correct word was. Later we shall give a systematic way to do this. Note that this code has rate
3/6=1/2.

The set C' of codewords in the last example forms a vector subspace of (Z2)6 . The easiest
way to see this is to note that C' is just the set of all solutions of the set of homogeneous linear
equations by = by + bs, bs = by + b3 and bg = bz + b; which define the code. Indeed there is a natural
basis for the vector space C' chosen so that the information bits form the standard basis for (Zs)®
This leads to the following definition.

Definition A systematic (n, m)-linear code of length n is a subspace C of dimension m in (Z2)"
which has a basis vy, ..., vy with the property that the first m entries of v; are all 0's except that the
jth entry is 1. We call the m x n matriz G with rows vy, ..., v, the generating matrix for C.

EXAMPLE 5 For the code C defined in Example J we construct the generating matriz as follows.
Since m = 3, we consider the three messages 100, 010 and 001 corresponding to the standard basis
for (ZZ)S. These are encoded, respectively, by adding check bits to get the codewords: 100101,
010110 and 001011. The generating matriz for C is therefore

1 001 01

G=]101 0110
0 01 011
Now for any message [b1,ba, bs] we have
1 00101
[bl,b27b3]G= [bl,bz,bg] 0]. 0].]. 0
0 01 011
= [b1, b2, b3, (b1 + b2), (b2 + b3), (b1 + b3)]

which is clearly the code word corresponding to [b1, b, bs]. Thus multiplying by the generating matriz
gives precisely the same codewords as those described earlier in terms of check bits (Example 4)

In general, if C is a systematic (n,m)-code with generating matrix G, then G can be written
in block form G = [I, A | where I, is the m x m identity matrix and A is some m x (n — m)

1 01
matrix. (In the previous example A= 1 1 0 |.).
011

As Example 5 illustrates, the generating matrix enables us to encode message strings by a
simple matrix multiplication. If the message is the vector [by,ba, ..., by], then the corresponding
codeword is [by, be, ..., by]JG. Because of the special form of G we find that this product is a vector
of the form [b1,ba, ..., b, bmt1, .-, bp] ; SO the first m components are the same as the components
of the message vector and the remaining components are linear combinations of b1, ba, ..., b, with
coefficients (0 or 1) determined by the entries in A. In other words, by, ba, ..., by, are the information
bits in the codeword and b, 41, ..., b, are check bits. A number of vectors in a systematic (n,m)-
linear code C' is equal to the number of ways in which the m information bits can be chosen, so
|C| = 2™.

REMARK It is possible to define general (n,m)-linear codes where, by definition, every subspace C of

dimension m in (Z3)" is an (n,m)-linear code. For such general linear codes, a generating matrix G is
simply any m X n matrix with entries in Z whose rows form a basis for the subspace C. However, in what
follows we shall restrict our attention to systematic codes where we have chosen the generating matrix for
C in the echelon reduced form described above.

5 Limitations of Decoding

In the last section we discussed systematic codes and how to use the generating matrix to encode
a message string. We now turn to the problem of decoding. This is more complicated because we
want our decoding scheme to decode not only correctly transmitted codewords, but also codewords
which have been corrupted (in up to d bits if our code is designed to correct up to d errors). We
first consider some of the natural limitations which occur. To do this it is helpful to use a suitable
“distance” function.

Definition We define the Hamming distance between to vectors u,v in (Z2)"™ to be equal to the
number of components in u which differ from the corresponding component in v. This distance is
denoted d(u,v). The weight of a vector u is simply the number of nonzero components of u and is
written wit(u).

Tt is easily seen that wt(u) = d(u,0) (where 0 denotes the vector with all components 0) and
that d(u,v) = d(v,u) = wt(u — v).

EXAMPLE 6 In (Z2)° we have wt(01001) = wt(11000) = 2 and d(01101,10001) = wt(11100) = 3
(note that 01101 — 10001 = 11100 as vectors over Zz).

A useful property of the Hamming distance is that d(u,v) < d(u,w) + d(w,v) for all u,v,w
(this is called the triangle inequality - can you see why?). Indeed, if u and v differ in their ith
components, then either u and w differ in their ¢th components or w and v differ in their ith
components. Hence the number of components where u and v differ is not greater than the number
where u and w differ plus the number where w and v differ.

We can now state a criterion which allows us to calculate the maximum number of errors
which a particular linear code can correct.

Theorem 1 Let C be an (n,m)-linear code, and let d be the largest integer such that wt(v) > 2d+1
for all nonzero vectors v in C. Then

(a) there is a decoding scheme which can correct up to d errors in a code word; and

(b) there is no decoding scheme which can consistently correct more than d errors.

PROOF. (a) We define our decoder D as a function which applies to every vector w € (Z5)" to
give a vector D(w) € C. The vector D(w) is defined to be the codeword u such that the Hamming
distance d(D(w), u) is as small as possible (if this distance is achieved by more than one codeword
u then we pick one of these codewords). Now suppose that a codeword v is transmitted and the
received word is w. If at most d errors occurred, then d(v,w) < d.

We claim that D(w) = v and so D gives an accurate decoding. To prove this we have to show
that d(w,v) < d(w,u) for every u # v in C. Suppose, on the contrary that there exists some u # v
in C such that d(w,u) < d(w,v). Then the triangle inequality shows that

wit(u —v) = d(u,v) < d(u,w) + d(w,v) = d(u,w) + d(v,w) < 2d(v,w) < 2d.

Since C is a subspace of (Z2)", and u,v are distinct elements of C, therefore u — v is a nonzero
element of C. Since we have shown that wt(u — v) < 2d, this contradicts the choice of the integer
d. Thus D(w) = v. This shows that D will correctly decode received words which contain up to d
errors.

(b) On the other hand, the hypothesis on d shows that there exists a nonzero code word u
such that d(u,0) = wt(u) < 2d + 2. If we change d + 1 of the 1's in u to 0's then we obtain a
vector w such that d(u,w) = d + 1, and d(0,w) = wt(w) < d+ 1. Thus w could be the received
word when the codeword u is transmitted and d + 1 bit errors occur in transmission, and it also
could be the received word when the code word 0 is transmitted and wt(w) < d + 1 errors occur in
transmission. Since there is no way for the receiver to distinguish between these two possibilities
when w is received, there is no decoding scheme which can consistently correct up to d+ 1 errors. m

EXAMPLE 7 Consider the code C in Example 4. The minimum weight of every nonzero code-
word is 3, and so the theorem above shows that C' can be used to correct single errors, but cannot
consistently correct double errors. For example, if the receiver receives the word 000011 this word
differs the codeword 001011 in one bit, and from each of the codewords 000000 and 110011 in two
bits. If the receiver only knows that at most two bits are in error, there is no way to decide which
of these three codewords was transmitted. On the other hand, if it is assumed that at most one bit
is in error, then 000011 should be decoded as 001011.

The following theorem gives an upper bound on the number m of information bits which a code
of length n can have if it is able to correct single, double or multiple errors.

Theorem 2 Suppose that C is an (n,m)-linear code. Then
(a) if C can correct all single errors, then 1+ n < 2"~™;
(b) if C can correct both single and double errors, then 1 +n + (3) <27 ™
(c) if C can correct up to d errors, then 1+n + (3) + ... + (g) <2

PROOF. An (n,m)-code C consists of 2™ vectors from the vector space (Z3)™ which contains a
total of 2™ vectors.

(a) We are supposing that C can correct single errors. For each codeword v there are exactly
1+n vectors w such that d(v, w) < 1, namely, v itself and the n vectors obtained by changing exactly
one of the n components of v. Call this set of vectors By (v). Since C can correct single errors,
then it is necessary that none of the vectors w lies in more than one of the sets By(v). Therefore
Bj(u) N By (v) = () whenever u and v are distinct codewords. Since each |By(v)| = 1+ n, and there
are only 2" vectors altogether, this shows that

2" > " [Bi(v)| = (1+n)[C| = (1+n)2™
veC

and so 2™ ™ > 1 + n as required.

(b) Now suppose that C can detect both single and double errors. Then we can correctly decode
any codeword v after it has been corrupted to a vector w where d(v,w) < 2. Let By(v) be the set
of w satistying d(v,w) < 2. Then Bs(v) contains v, the n vectors obtained from v by changing
exactly one of its components and the (g‘) vectors obtained from v by changing exactly two of its
components. Hence |B2(v)] = 1 +n + (). Again, because C can correct all single and double
errors, we must have By (u) N By (v) = @ whenever u and v are distinct codewords. Thus, as before,

we get
2" >3 " |By(v |—1+n+(>)|C’| (1+n+(Z))2m

veC

and the result follows.
(¢) The proof of the general result is similar. =

The following table illustrates the bounds of Theorem 2 for single and double error correcting
codes. For example, if n = 10, then part (a) of the theorem shows that 11 < 2!°~™ and so the
number m of information bits is at most 6 (11 < 21976 but 11 £ 219-7). This gives the entry 6 in
the table for single errors under n = 10 and shows that the maximum rate for a code of length 10
which corrects single errors is < 6/10. We note that Theorem 2 does not guarantee the existence
of a code of length 10 with this rate. One of the challenges of coding theory is to design codes with
the best possible rate for a given length and given error correcting capabilities

n 314567891011 |12
singleerrors | 1|12 (3|44 |5| 6 | 7|8
doubleerrors | O |0 |1 (1]2|2]|3| 4 4 5

Bounds on m for single and double error correction

6 Decoding a systematic linear code

The proof of Theorem 1(a) describes, in principle, the best way to decode: if w is the received
word, then we should decode w by D(w) where D(w) is a codeword v such that d(v,w) is as small
as possible. Commonly, however, a code may contain a great many codewords (|C| = 2™ where m
is the number of information bits), and in such cases it is not very efficient to decode by searching

through the set of all code words to find one which minimizes the Hamming distance. A more
effective way of decoding a systematic linear code is described in this section.

Recall that a systematic (n,m)-code C' can be described by an m X n generating matrix G
of the form [I,,, A] where the block I,,, represents the m x m identity matrix and A is an m x (n —m)
matrix representing the sums involved in the (n—m) check bits (see the paragraph following Example

5). Consider the n x m matrix H of the form I A . Then

A

In_m

GH = [I, A][]:[A+A]:0m,nm

where 0, ,,_m represents the m x (n — m) zero matrix. (We have used the fact that a +a = 0 for
all a € Z».) Since the codewords in C are all of the form u = sG where s € (Z3)™ , it follows that
uH = sGH = s0p n—m = 0 for every codeword u (where 0 denotes the row vector consisting of
n —m 0's.) Because the matrix H has rank n — m it can also be shown that uH # 0 if u € (Z2)"
is not a codeword. This leads to the following definition.

Definition For any systematic (n,m)-code C with generating matriz G, the matrix H defined above
is called the parity check matriz. For each vector w € (Z2)", the syndrome of w is the (n —m)-row
vector wH. The syndrome is zero if and only if w € C. (Syndrome is a medical term which means
a pattern of symptoms which characterize a medical condition or disease.)

EXAMPLE 8 Consider Example 5. In this case

OO = O = =
O H O KO
= O O = O

The syndrome of the vector w := [0,1,1,1,0,0] is [0,1,1,1,0,0]H = [0,0,1] (remember you are
working in Zs!). Since this syndrome is not the zero vector, w is not a codeword.

Now consider the case where a codeword v is transmitted and a (possibly corrupted) word w
is received. Write e := w—v for the error in w. Note that e is a vector in (Z2)" which has 1 in each
component where w differs from v and 0 in the other components. In particular, wt(e) = d(v,w)
so, if at most d bits in w are in error, then wt(e) < d. Since w = v + e, the syndrome of w is
wH = (v+ e)H = vH + eH = eH because vH = (0 for each codeword v. In particular, if d =1 (so
we are correcting single errors), then we assume that e has at most one entry equal to 1. If e has
its ith entry equal to 1, then wH = eH is equal to the ith row of H. This leads to the following
theorem.

Theorem 3 Let C be a systematic (n,m)-linear code, and suppose that the parity check matriz H
has all its rows different and that no row consists entirely of 0's. Then C can correct (at least) single
errors. If a received word w has only one error then it can be decoded by computing the syndrome
s:=wH. Ifs is the zero vector, then w is the required code word. If s is nonzero, then it must
equal one of the rows of H. If s equals the ith row, then the error in w is in the ith entry.

EXAMPLE 9 Consider the vector w in Example 8. Since its syndrome is nonzero it is not a code
word. However, the syndrome is equal to the 6th row of H, and so the error (assuming that there

is only one) in w is in the 6th entry. Hence w is corrected to [0,1,1,1,0,1] (check that this is a
codeword). Since the code C is a systematic (6,3)-linear code, the original message consists of the
first three entries of this codeword. Thus w is decoded as [0,1,1]. On the other hand, suppose that
we received w' :=[1,1,1,1,1,1]. Then the syndrome s' := w'H = [1,1,1]. This is nonzero and is
not equal to any row of H. Therefore w' could not have been obtained from any codeword with a
single error; at least two bit errors must have occurred.

A theorem similar to Theorem 3 but rather more complicated explains the form of a code
which can correct both single and double errors (d = 2).

Theorem 4 Let C be a systematic (n,m)-linear code, and let H be its parity check matriz. Con-
struct a list L consisting of the rows of H and all (72‘) vectors which are obtained as the sum of two
rows of H. Suppose that all of the vectors on this list are different and that none is the zero vector.
Then C can correct all single and double errors as follows. If w is the received word and w differs
in at most two entries from the codeword which is sent, then the syndrome s := wH is either 0 (and
w 1is correct) or s is one of the vectors on the list L. If s is one of the rows of H, say the ith row,
then w has a single error in the ith entry. Otherwise s is the sum of two rows of H, say the ith and
the jth, and in this case w has an error in both the ith and the jth entries.

EXAMPLE 10 We shall show how to design a systematic (8,2)-code which can correct up to two
errors. The parity check matriz must be of the form

ap ax asz a4 as ag
b1 by bz by by bg
1 0 0 0 0 O

(vl en B en B en B @n)
S OO O =
S oo -=O
SO = OO
O = O OO
= OO OO

where the first two rows are chosen so that the conditions of the theorem are met. A little experi-
mentation shows that these two rows must each have at least four 1's. In fact we can choose the
two rows to be [1111 00] and [001111]. The corresponding generating matriz is

00

10
G = 1 11

1 1 11
0 0 011
Now the message [1 0] is encoded by [10]G =[10111100]. If this vector is transmitted with two
errors, say in the 2nd and 5th positions, then the received vector is [11110100]. Now the syndrome
18

s:=[11110100]H =[000111]

Since s is equal to the sum of the 2nd and 5th rows of H, this tells us (correctly) that the errors in
the received vector are in these two positions. Thus we find the correct code word [10111100] and
from that find the original message (= the first two entries in the code word).

Problems

1. Using the error detecting code describe in Example 1 decide which of the following words have
detectable errors: 11001001, 01100100, 11111100, 11010011.

2. Which of the following are valid ISBNs: 0-521-65378-9, 0-521-36664-X, 0-534-19002-8, 0-12-
751955-67

3. Decode the following words using the (3,1)-code of Example 3: 101, 111, 011, 001, 000.

4. Consider the linear code C’ defined in terms of the generating matrix

01

1 01
Gi= 1 011

0

a) Write down all the code words in C' and give the message strings which they encode.

(a)

(b) Can C’ detect all single errors? Can it detect all double errors? [Explain]
(c) Can C" correct all single errors? Can it correct all double errors? [Explain]
)

(d) To what codewords should the following received words be decoded? 01001, 10110, 01000,
01011.

5. Consider the linear code C defined by the parity check matrix

=

I
OO O O
OO = O ==
O OO O~ M-
_ O OO = O

Find the set of codewords and minimum distance for C. Is C able to correct all single errors?

6. Consider a binary (8,4)-code C' whose code words by bs...bg satisfy the conditions that the first
two rows and first two columns of the matrix

bi by by
by by bg
by bg

sum to 0 in Zo.
(a) Describe the code words in terms of information bits and check bits. Show that the code
is systematic. How many code words are there?
(b) Write down the generating matrix G for this code.
(¢) Encode the message strings: 1011, 0101 and 1000 directly from the definition and also
by using the generating matrix.

7. (continuing the previous exercise)

(a) Write down the parity check matrix H for the code C.

(b) Calculate the syndromes of the following received words: 11001011, 00011111, 01101111
and 01011010. Which of these words contain errors?

10

(¢) Assuming that the received words in (b) are results of at most single errors in codewords,
find the corrected codewords and the original message strings.

8. Consider the (7,4)-code whose parity check matrix has every possible nonzero vector of length
3 as a row (1):

Il
OO = O = =
OO MFEOK
O O MO

(a) Find the generating matrix and describe the encoding process in terms of check bits
calculated from information bits.

(b) Show that the code C' can correct all single errors.

(¢) Show that there is no other linear code of length 7 with more information bits.

9. Generalize the previous example to show how to construct systematic (2" —1,2" —r —1)-codes
which can correct all single errors (for r =1,2,3,...). Show that there are no linear codes of
length 2" — 1 with more information bits which can correct all single errors.

10. Give a careful proof of the claim in Example 10 that for the parity check matrix given there
the rows and the sums of every pair of rows are all different. You should not have to write
out all the sums explicitly—use arguments based on the weights of the rows and their sums.

11. Write down all the codewords in Example 10 and use Theorem 1 to give another proof that
this code can correct all single and double errors.

12. Show that there is no systematic (7,2)-code which can correct all single and double errors.

13. Consider the systematic linear code C' of length 12 with information bits by, ..., bg and check
bits by, ..., b12 where the latter are defined by the conditions that all rows and columns of the
following matrix sum to 0 in Zo:

by by b3 by
by by bg bg
bg bio bur bi2

Calculate the generating matrix and the parity check matrix, and show that C' can correct all
single errors. Can it correct all double errors?

(JDD 2000.10)

IThis code is the first error correcting codes ever described. It was invented in 1947 by R.W. Hamming and
is know as the (7,4)-Hamming code. Two years later M.J.E. Golay constructed an amazing (23, 12)-(binary) code
which corrects up to three errors, as well as a (11, 6)-(ternary) code which corrects up to two errors.

11

