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Existence of Viscous Profiles for the
Compressible Navier^Stokes Equations
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In this article we show the existence of some particular solutions of the compressible Navier–Stokes equations
called viscous profiles. The existence of such solutions provides an entropy criterion. The crucial point in
the demonstration is the use of the center manifold theorem, and the main difficulty comes from the
non-invertibility of the viscosity matrix in the Navier–Stokes equations.
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1. INTRODUCTION

The aim of this article is to prove the existence of certain particular orbits which derive
from a dynamical system called viscous profiles [2] issued of the monodimensional
compressible Navier–Stokes equations. The introduction of such solutions is related
to the frame of the selection of physical weak solutions (entropy solutions). It is,
indeed, well known that the Lax shock condition, the Oleinik’s condition or Liu’s
criterion [2] are all criterions of selecting entropy solutions (any of these conditions
are totally relevant for treating all the possible configurations). Following this, the
existence of viscous profiles provides another criterion to select physical solutions
from all the weak solutions. We can reasonably consider that the good notion is
‘‘around’’ all the previous ones. In fact, we can show the equivalence of these different
criterions, for example when the characteristic field is genuinely nonlinear; but when the
characteristic field is linearly degenerate the equivalence does not occur anymore [4]. In
addition to this, the existence is not sufficient to consider viscous profiles as physical
solutions. Surely enough, it has to come with the structural stability of these profiles.
In this case we will only consider the existence and not the stability. Nevertheless
some results of stability can be found, for example, in [5]. This work is a generalization
(with a different method) of [7], where the case of stationary shock layers is treated.

*E-mail: elorin@cs.umn.edu

ISSN 0003-6811 print: ISSN 1563-504X online � 2003 Taylor & Francis Ltd

DOI: 10.1080/0003681031000140076



The principle of the demonstration is the following. The first step consists of revert-
ing the partial differential system to a dynamical system, which is called the profile
equation (2). The existence of heteroclinic orbits in the profile equation is the result
to prove. The main difficulty is that the viscosity matrix is not invertible. For a
scalar matrix, results of existence have been proved as shown [4]. The extension to
any invertible dissipative (for the entropy of the system) matrices is proved in this
book too. In order to avoid this particular difficulty we will project the system on a
manifold on which the ‘‘new’’ system will possess an invertible dissipative matrix.
The main issue will be the application of the center manifold theorem [3]. The searched
heteroclinic orbits do belong to this particular manifold tangent to the center subspace
of the dynamical system. In conclusion we will study the direction of the motion along
the orbits with increasing time.

Note that a recent advancing has been done concerning the study of noninvertible
diffusion matrix [6].

2. EXISTENCE OF VISCOUS PROFILES

We consider the compressible Navier–Stokes equations in Lagrangian coordinates:

�t � zx ¼ 0,

zt þ px ¼ "ðbð�, eÞzxÞx,

ðeþ 1
2
z2Þt þ ðpzÞx ¼ "ðkð�, eÞexÞx þ "ðbð�, eÞzzxÞx:

8>><
>>: ð1Þ

In (1) � represents the specific volume, z the speed of the fluid and e the internal energy.
At the end, we note E ¼ eþ z2=2, the total energy. Let ug and ud be a nonstationary
k-shock with speed �, solution of the Euler equations. We want to prove the existence
of a heteroclinic orbit solution of the profile equation which is related to (1). We also
suppose that the viscosity and the thermal conductivity respectively denoted by bð�, eÞ
and kð�, eÞ are the following positive constants:

bð�, eÞ ¼ � > 0,

kð�, eÞ ¼ � > 0,

(

with ð�, eÞ 2 ~UU and open set of � ðR
	
þÞ

2. We set in the sequel Pr ¼ �=� the Prandtl
number. Supposing also that the pressure checks the perfect gas law: pð�, eÞ ¼
ð	 � 1Þe=� where 	 > 1. Considering a shock ðug, ud; �Þ, we search for a viscous profile
(with � 6¼ 0) i.e. a particular solution of the following type: a family functions
ðu"Þ">0 2 C

1ð�,UÞ, where U is an open set of R
	
þ � R � R

	
þ and � is an open set of R

2:

u"ðt, xÞ ¼ U
x� �t

"

� �
,

such that:

Uð�1Þ ¼ ug,
Uðþ1Þ ¼ ud :

�
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The physical flux writes:

ð f1, f2, f3Þ
t : U � R

	
þ � R � R

	
þ ! R

3,

�
z
E

0
@

1
A�

�z
p
pz

0
@

1
A:

When " tends to 0, u"ðt, xÞ is given by the following function:

uðt, xÞ ¼
ug, x < �t,

ud , x > �t,

(

such that the Rankine–Hugoniot relation is checked. This shock is then considered as
an admissible shock. Injecting u" in the initial system gives the following differential
system:

ðBðUÞU 0Þ
0
¼ ð f ðUÞÞ

0
� �U 0:

Moreover,

lim
�!�1

BðUð�ÞÞU 0ð�Þ ¼ lim
�!þ1

BðUð�ÞÞU 0ð�Þ ¼ 0: ð2Þ

Then, integrating (2) between � �1, �� we obtain a dynamical system called the profile
equation:

BðUÞU 0 ¼ f ðUÞ � f ðugÞ � �ðU � ugÞ, ð3Þ

where

BðUÞ ¼

0 0 0

0 � 0

0 ð�� �Þz �

0
B@

1
CA: ð4Þ

Recall that [7] treats the case � ¼ 0. Futhermore the Jacobian taken in U is given by:

df ðUÞ ¼

0 �1 0

ð1� 	Þe

�2
ð1� 	Þz

�

ð	 � 1Þ

�

ð1� 	Þez

�2
ð1� 	Þz2

�
þ
eð	 � 1Þ

�

ð	 � 1Þz

�

0
BBBBB@

1
CCCCCA:

The eigenvalues of this matrix for all U in U, are:

�1ðUÞ ¼ �
	ð	 � 1Þe

�2

� �1=2

, �2ðUÞ ¼ 0, �3ðUÞ ¼
	ð	 � 1Þe

�2

� �1=2

: ð5Þ
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We notice that to the second eigenvalue corresponds to a linearly degenerate charac-
teristic field: for all U in U, r�kðUÞ � rkðUÞ ¼ 0. This is the reason why we will look
for viscous profiles approaching some 1-shocks and some 3-shocks. Indeed, a viscous
profile cannot approach a contact discontinuity because a necessary condition for a
viscous profile to exist is [4]:

½F ðUÞ� < �½EðUÞ�,

where, E is a strictly convex entropy such that BðUÞ is dissipative for it. F is an
entropy flux associated to E and � is the speed of the discontinuity. Now, for a contact
discontinuity ½F ðUÞ� ¼ �½EðUÞ� occurs.

2.1. Study of the Dynamical System

The operator BðUÞ is a bidimensional range operator and we can show that
U ¼ kerBðUÞ � =BðUÞ. The eigenvalues of BðUÞ (4) are: �,�, 0, with respective eigen-
vectors, with z > 0:

s1ðUÞ ¼ ð0, 0, 1Þt, s2ðUÞ ¼ ð0, 1, zÞt, s3ðUÞ ¼ ð1, 0, 0Þt:

Then kerBðUÞ ¼ Rs3ðUÞ. Projecting the algebraic equations onto kerBðUÞ gives an
affine manifold of U � R

	
þ � R � R

	
þ:

Vðug; �Þ ¼ ð�, z, eÞ 2 U � R
	
þ � R � R

	
þ, � ¼ �g þ

zg � z

�

n o
:

By doing this, the dynamical system projected on Vðug; �Þ writes:

�z0 ¼
�ð	 � 1ÞE

��g þ zg � z
�

�ð	 � 1Þz2

2ð��g þ zg � zÞ
� pg � �ðz� zgÞ,

�E0 þ zz0ð�� �Þ ¼
�ð	 � 1ÞEz

��g þ zg � z
�

�ð	 � 1Þz3

2ð��g þ zg � zÞ
� pgzg � �ðE � EgÞ

8>>><
>>>:

Note that: kerBðUÞ � =BðUÞ ¼ kerBðUÞ � Vðug; �Þ.
We set on w ¼ ðw1,w2Þ

t
¼ ðz,EÞt and � ¼ ðx� �tÞ=", too. Now, we shall suppose that

the shock’s speed � will be nonconstant. To avoid any confusion we shall call it s to
differentiate it to the constant value �. Set:

~BBðwð�Þ, sÞ ¼
� 0

ð�� �Þz �

� �
,

and

�FF ¼
f2

f3

� �
: U � R

	
þ � R � R

	
þ ! R

2,

ð�, z,EÞ�
f2ð�, z,EÞ,

f3ð�, z,EÞ:

(
8>>>><
>>>>:
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And F such that:

Fðz,E, sÞ ¼

f2
zg � z

s
þ �g, z,E

� �
f3
zg � z

s
þ �g, z,E

� �
0
B@

1
CA: ð6Þ

We shall note by Fs the function, with a fixed s, defined as Fsðz,EÞ ¼ Fðz,E, sÞ i.e., we
have to resolve the following dynamical system (with the limit conditions imposed
above):

~BBðw, sÞw0 ¼ Fðw, sÞ � �FFðugÞ � sðw� wgÞ: ð7Þ

Note that for wg ¼ w the RHS of the previous equation vanishes. Then, on the manifold
Vðug; sÞ:

d�wð�Þ ¼ ~BBðwð�Þ, sÞ�1
ðFðwð�Þ, sÞ � �FFðugÞ � sðwð�Þ � wgÞÞ ¼ gðwð�Þ, sÞ:

Now, we increase the dynamical system, that gives on Vðug; sÞ,

w

s

 !0

¼
gðw, sÞ

0

 !
¼ Gðw, sÞ: ð8Þ

Setting P ¼ ðwg, �kðugÞÞ with k 6¼ 2 we want to linearize the new system around P:

d�
wð�Þ

sð�Þ

� �
¼ Gðwð�Þ, sð�ÞÞ: ð9Þ

We deduce that:

dGðPÞ ¼
~BBðwg, �kðugÞÞ

�1 @F

@w
ðwg, �kðugÞ

� �
� �kðugÞI2Þ � ~BBðwg, �kðugÞÞ

�1wg

0 0

0
B@

1
CA2M3ðRÞ:

ð10Þ

We make, now, some elementary calculus that will be useful in the sequel. To begin,
we determine the eigenelements of ð@F=@wÞðwg, �kðugÞÞ where:

@F

@w
ðwg, sÞ ¼

ð	 � 1Þ

s��2g
ðeg � zg�gsÞ

ð	 � 1Þ

��g

ð	 � 1Þ

s�2g
egðzg þ s�gÞ þ

ð1� 	Þz2g
�g

ð	 � 1Þzg

�g

0
BBB@

1
CCCA:
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We find that:

Sp
@F

@w
ðwg, �kðugÞÞ

� �
¼ ���1ðwg, �kðugÞÞ ¼ �kðugÞ, ���2ðwg, �kðugÞÞ ¼

1� 	

	
�kðugÞ

� �
:

Furthermore, for the first eigenvalue �1ðPÞwe determine a left and a right eigenvector:

�ll1ðwg, �kðugÞÞ ¼ �zg þ
	

	�1
eg

� �1=2
, 1

� �
,

�rr1ðwg, �kðugÞÞ ¼ 1, zg þ
	

	�1
eg

� �1=2
ð	1=2 � 	�1=2Þ

� �t
:

8>>><
>>>:

In the same manner we obtain ð@F=@wÞðwg, �kðugÞÞ � �kðugÞId2:

@F

@w
ðwg, sÞ � sId2 ¼

ð	 � 1Þ

s��2g
ðeg � zg�gsÞ � s

ð	 � 1Þ

��g

ð	 � 1Þ

s�2g
egðzg þ s�gÞ þ

ð1� 	Þz2g
�g

ð	 � 1Þzg

�g
� s

0
BBB@

1
CCCA,

The eigenvalues are of course:

Sp
@F

@w
ðwg, �kðugÞÞ � �kðugÞId2

� �
¼ ���1ðwg, �kðugÞÞ ¼ 0, ���2ðwg, �kðugÞÞ ¼

1� 2	

	
�kðugÞ

� �
:

The left and right eigenvectors associated to the zero eigenvalue are the same as those
of ð@F=@wÞðwg, �kðugÞÞ.

Return to the study of dG (10). Since:

~BBðwg, sÞ
�1 @F

@w
ðwg, sÞ � sId2

� �
¼

1

�

ð	 � 1Þ

s��2
ðeg � zg�gsÞ � s

ð	 � 1Þ

��

sð	 � 1Þe

s�2
ðegzg � z

2
g�gsþ Pregs�gÞ � zgsð1� PrÞ

ð	 � 1Þ

�g
� sPr

0
BB@

1
CCA,

then dGððwg, sÞÞ admits 0 as a double eigenvalue under the condition, with Pr fixed, that
for s ¼ �kðugÞ:

s2ð1þ PrÞ 6¼
ð	 � 1Þeg

�2g
, ð11Þ

and as simple eigenvalue ðð	 � 1Þeg=�
2
gÞ � s

2ð1þ PrÞ. Consequently, for s ¼ �kðugÞ the
eigenvalues of dGððwg, sÞÞ are 0 twice and ð1� ð1þ PrÞ	Þpg one time. This last eigen-
value is always strictly negative because of the positivity of the Prandtl number and
of 	 � 1. Furthermore the eigenvectors associated to 0 are ð~00, 1Þt and ð�rr1ðwg, �kðugÞÞ, 0Þ

t.
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Fundamental remark We search for an orbit joining ud to ug since ðug, ud; sÞ constitutes
a k-shock. We can, following this, assert that ud belongs to �þ

g ðugÞ or �
�
g ðugÞ the con-

nected components of the Hugoniot locus �kðugÞ associated to the kth characteristic.

Now, we can apply the center manifold theory presented in [4]. Consequently,
since dGðwg, �kðugÞÞ admits zero as eigenvalue of multiplicity 2, and a simple nonzero
eigenvalue ~��2ðwg, �kðugÞÞ, and that,

ker dGðPÞ ¼ Vectðð~00, 1Þt, ð�rr1ðwg, �kðugÞÞ, 0Þ
t
Þ,

where

�rr1ðwg, �kðugÞÞ ¼ 1, zg þ
	

	 � 1
eg

� �1=2

ð	1=2 � 	�1=2Þ

 !t
,

then the center manifold theorem states [3] that a bidimensional manifold invariant
under the flow exists and is tangent in wg to ker dGðPÞ, denoted by Wc. This manifold
can be parametrized by:

w

s

 !
�

s

x ¼ �ll1ðPÞ � ðw� wgÞ

 !
,

where �ll1ðPÞ is a left eigenvector of dF�kðugÞðwgÞ. Futhermore, this manifold contains all
the orbits remaining in a neighborhood of wg. The critical points of G are given by
ðwg, sÞ where s 2 R, and by ðw, �ðug,wÞÞ:

fðwg, sÞ, s 2 Rg [ fðw, �ðug,wÞÞ=w 2 ~��kðugÞg �Wc,

where ~��kðugÞ is the projection of the Hugoniot locus �kðugÞ on the manifold Vðug; �Þ.
As it has been remarked above, the Hugoniot locus leaving from ug allows a parame-
trization (cf [2], page 149). Then, using this result on the center manifold, we obtain
the following parametrization (we recall that ���1ðwgÞ ¼ �kðugÞ):

�ðug,wÞ � �kðugÞ �
1

2
�ll1ðwg, �kðugÞÞ � ðw� wgÞ:

Therefore, the fixed points of the dynamical system are given by, fwgg � R and
ðw, �ðug,wÞÞ where � � �kðugÞ � x=2. These two curves are transverse. Now, if we
freeze s, the flow of the dynamical system is itself transverse to these two curves and
then cut into two fixed points. We can add that the flow is orthogonal to fx ¼ 0g. In
order to see it, it is sufficient to observe, as it will be done earlier, that the flow is
described, with � a positive constant, by the differential equation:

dx

d�
¼ � � xþ oðx2Þ,
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Then, for every couple ðwg, �ðug,wdÞÞ, ðwd , �ðug,wdÞÞ, with �ðug,wdÞ close to �kðugÞ
there exists a heteroclinic orbit of the dynamical system joining these two states.
Finally, we must determine the direction of the motion along the orbit. To this end,
it is necessary to evaluate the sign of the derivative with respect to x in x ¼ 0 of the
following differential equation:

dx

d�
¼ hð�, xÞ, ð12Þ

where:

w� wg ¼ x � �rr1ðwg, �kðugÞÞ þ oðx
2Þ,

since Wc contains fwgg � R and is tangent to ð�rr1ðwg, �kðugÞÞ, 0Þ 2 ker dGðPÞ. Now, h is
given by hðs, xÞ ¼ �ll1ðwg, �kðugÞÞ � ~BBðwg, �kðugÞÞ

�1
� ðFðw, sÞ � �FFðugÞ � sðw� wgÞÞ.

As for a fixed s:

Fðw, sÞ � �FFðugÞ � sðw� wgÞ ¼ ðdFsðugÞ � sI2Þðw� wgÞ þ oðjw� wgjÞ,

then in (12),

hðs, xÞ ¼ �ll1ðwg, �kðugÞÞ � ~BBðwg, sÞ
�1
ðdFsðwg, sÞ � sI2Þ � ðw� wgÞ þ oðjw� wgjÞ,

where:

~BBðwg, �kðugÞÞ
�1

¼
1

�

1 0
zgð1� PrÞ Pr

� �
:

Since w� wg ¼ x�rr1ðwg, �kðugÞÞ þ oðx
2Þ then:

dx

d�
¼ �ll1ðwg, �kðugÞÞ � ~BBðwg, �kðugÞÞ

�1
� �rr1ðwg, �kðugÞÞ � ð�kðugÞ � sÞxþ oðx

2Þ:

The dissipativity of ~BB allows us to deduce (precisions can be found in [4], or in [1])
that for all U 2 U:

�ll1ðUÞ � ~BBðUÞ
�1

� �rr1ðUÞ > 0,

and notably

�ll1ðwg, �kðugÞÞ � ~BB ðwg, �kðugÞÞ
�1

� �rr1ðwg, �kðugÞÞ > 0:

In fact we can check it directly:

�ll1ðwg, �kðugÞÞ � ~BBðwg, �kðugÞÞ
�1

� �rr1ðwg, �kðugÞÞ ¼
1

�

	

	 � 1
eg

� �1=2

ð1þ PrÞ

 

þPr 1þ
eg

ð	 � 1Þ	

� �1=2
 !!

,
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or

�ll1ðwg, �kðugÞÞ � ~BBðwg, �kðugÞÞ
�1

� �rr1ðwg, �kðugÞÞ ¼

1

�

	

	 � 1
eg

� �1=2

ð1þ Prð	1=2 � 	�1=2ÞÞ > 0:

This yields:

sgnð@xhðs, 0ÞÞ ¼ sgnð�kðugÞ � sÞ:

Then, wg is a point of repulsion if, and only if, sgn ð�kðugÞ � sÞ > 0. This condition is,
in fact, is the Lax condition. As wd belongs to the projection in the Hugoniot locus,
a regular path joining wd to wg exists. Since � ¼ �g þ ðzg � zÞ=�, we can extend the
existence result to a path joining ug and ud : it is a viscous profile.

2.2. Existence result

Taking account the previous study we can now state the following result:

THEOREM 1 Consider the compressible Navier–Stokes equations:

ut þ f ðuÞx ¼ "ðBðuÞuxÞx,

where:

BðuÞ ¼

0 0 0

0 � 0

0 ð�� �Þz �

0
BB@

1
CCA:

(1) Let ud belonging to the Hugoniot locus �kðugÞ of ug with k 6¼ 2. If s is the speed of
the discontinuity such that ( for k ¼ 3):

� ð�g, egÞ 2 fð�, eÞ 2 ~UU � ðR
	
þÞ

2, e > s2�2=	ð	 � 1Þg.
� ð�d , edÞ 2 fð�, eÞ 2 ~UU � ðR

	
þÞ

2, e < s2�2=	ð	 � 1Þg.
� ug and ud close enough.

A viscous profile joining ug and ud exists.
(2) Mutually, if ud belongs to the Hugoniot locus in a neighborhood of ug and if

a viscous profile exists which joins these two states then ðug, ud; sÞ represents a
nonstationary Lax k-shock.
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