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Université de Sherbrooke, Qué, J1K 2R1, Canada
Andre.Bandrauk@USherbrooke.ca

Abstract

We present in this short paper some domain decomposi-
tion and high performance numerical techniques for simu-
lating laser-gas interaction and propagation using a multi-
scale Maxwell-Schrödinger model. Ionization and high or-
der harmonic generation are in particular taken into ac-
count in this micro-macro model, leading to additional sim-
ulation difficulties. We propose some benchmarks to vali-
date the presented techniques.

1. Introduction

Simulation of intense and ultrashort laser-matter interac-
tion necessitates a very precise micro-macro modeling. In
[4], [5] we have introduced a multi-scale model coupling the
macroscopic Maxwell equations modeling the propagation
of an electro-magnetic field in a gas modeled by many Time
Dependent Schrödinger Equations (TDSE’s). The complex-
ity of this model especially in 3-D, requires the use of effi-
cient techniques. In this paper, we present some numer-
ical and parallel methods for simulating efficiently ultra-
short (less than 10−14 second), intense (more than 1013 W
· cm−2) and high frequency (less than 800 nm) laser pulses
propagating in dense (more than 1017 mol · cm−3) gaseous
media. At this point, numerical schemes used are still rela-
tively standard and consists of the use of a Yee-like scheme
for the Maxwell equations and Crank-Nicolson scheme for
the TDSE’s and multi-grid techniques. As discussed later in
the paper the TDSE approximation is the most costly part
of the simulation due the fact that an accurate description of

the gas requires the computation of hundreds or thousands
TDSE’s.
In Sections 2, 3 we present shortly the Maxwell-
Schrödinger model and its numerical approximation. We
will consider the case of non Born-Oppenheimer approxi-
mations (moving nuclei) even if most of the computations
are done under the Born-Oppenheimer approximation al-
lowing to reduce the complexity of the problem. We focus
in particular on the boundary conditions for laser-molecule
TDSE’s (still in Section 3) allowing a crucial reduction of
the algorithmic complexity of the numerical scheme ap-
proximating these equations. Then a domain decomposition
approach is presented and its natural parallelization in Sec-
tion 4. A numerical experiment is then proposed to validate
the chosen method.

2 Physical problem and modeling

The model we consider is a coupling between the mi-
croscopic laser-molecule Schrödinger equations and macro-
scopic Maxwell’s equations. It allows to take into account
high order harmonic generation, ionization and is then more
precise than classical nonlinear Schrödinger’s equations.
Some informations related to the model may be found in [5]
and some applications in [6] or [7]. As it is not the purpose
of this paper we simply present the system of equations (in
atomic unit). First, we introduce some important notations.
For the Maxwell equations, we will denote by Ω ⊂ R

3 the
spatial domain with a regular boundary denoted by Γ and
by r = (x, y, z) the space variable in Ω. At the molecule
scale we will denote by

(
r′ = (x′, y′, z′), R′) ∈ R

3 × R
∗
+

the space variable (for electrons and ions). The molecular
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density is supposed to be constant in time and is given by a
function n. The equations we consider are the following:



∂tB(r, t) = −c∇× E(r, t),

∂tE(r, t) = c∇× B(r, t) − 4π∂tP(r, t),

∇ · B(r, t) = 0,

∇ · (E(r, t) + 4πP(r, t)) = 0,

P(r, t) = n(r)
∑�

i=1 Pi(r, t) = n(r)
∑�

i=1 χΩi
(r)

∫
R4 ψi(R′, r′, t)r′ψ∗

i (R′, r′, t)dr′dR′,

i∂tψi(R′, r′, t) = −�r′

2
ψi(R′, r′, t)

−�R′

mp
ψi(R′, r′, t)

+
(
Vi(R′) + Vc(R′, r′)

+r′ · Eri
(t)

)
ψi(R′, r′, t).

In the previous equation Vc denotes the Coulomb potential
and Vi the nuclei potential. We impose Dirichlet conditions
on Γ:

E(r, t) = B(r, t) = 0, ∀t ≥ 0, ∀r ∈ Γ.

Ωi denotes the domain associated to ψi wavefunction of the
ith TDSE, and Pi the polarization associated to this domain
(see fig. 1). Functions χΩi

are defined by χ⊗1Ωi
where χ ∈

C∞
0 is a Plateau function and 1Ωi

the characteristic function
of Ωi. Naturally we have ∪�

i=1Ωi = Ω and we denote ψ̄ =
(ψ1, ..., ψ�)T . Results of existence and uniqueness of weak
solutions for this system will be soon presented in [3].

3 Numerical aspects

3.1 Numerical methods

A modified Yee scheme is used for solving the Maxwell
equations. This is an order 2 corrector-predictor finite dif-
ference scheme [12] where the electric and magnetic fields
are computed on two dual temporal and spatial staggered
grids. It is stable under a CFL conditions relating time and
space steps. As it is an explicit scheme its numerical com-
plexity is relatively small.
A Crank-Nicolson scheme with three-point stencil is used
to approximate the TDSE’s. At least on an infinite domain
this is an unconditionally stable and order 2 scheme in space
and time. Physical and numerical considerations lead to
choose properly the space and time steps for the Maxwell
and TDSE solvers.

The coupling between these two schemes is an order 2 split-
ting that allows to conserve a global order 2 in space and
time as follows:

Pn(r′) −→
ME

En+1(r′) −−→
TDSE

ψn+1
r′ (r) −→ Pn+1(r′)

Classical linear algebra methods are used to solve sparse
linear systems GMRES (see [10]) and eigenvalue problems
(Arnoldi using the Library PRIMME [9, 11]). Compressed
Row or Column Storage are naturally used.

The principle of the scheme is summarized on fig. 1
It consists physically and then numerically of subdividing

GAS

Ω

Ω

Elementary
volume of 
gas represented
by 1 TDSE

Ω

VACCUM2

Ω1

i

Figure 1. Physical modeling

in small volumes of gas (Ωi)i=1,...,� the sample we study
Ω = ∪�

i=1Ωi. Each small volume of gas is represented by
one single TDSE. From a computing point of view this
subdivision can be reproduced easily. At every time step,
we solve independently one TDSE per subdomain of gas
Ωi. We then deduce polarization (supposed to be constant
inside each subdomain Ωi). Once this is done the updated
polarization can be used by the Maxwell equation solver.

3.2 Algorithmic complexity

The computation of each TDSE requires O(N3/2) op-
erations every time step, where N is the size of the matrix
then also the number of degrees of freedom in one TDSE
computational domain. This is due to the use of a precon-
ditioned linear solver for sparse linear systems (GMRES).
Denoting � the number of TDSE’s that are solved in the
system, every time step O(�N3/2) operations are then nec-
essary. Polarization computation requires O(N) operations
with a very small prefactor and is then negligible compared
to the TDSE computations. At the same time, as the Yee
scheme is an explicit scheme, the computation of Maxwell’s
equations requires O(M) operations where M is the num-
ber of degrees of freedom in the Maxwell grid. In practice
there is no relation between M and N and usually N3/2�
is much larger than M . For large gaseous media (M large),
� has to be chosen large in order to describe precisely the
laser-gas interactions. The larger � is chosen the more pre-
cise the gas description will be.
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3.3 Artificial Boundary Conditions

In order to maintain a good accuracy of the numerical
schemes and of the physical model the most natural way
to reduce the algorithmic complexity is to reduce as much
as possible the TDSE computational domain. To this end,
we introduce transparent and artificial boundary conditions.
In theory N has to be very large as the TDSE computa-
tional domain is supposed to represent R

3 (R3×R+ beyond
Born-Oppenheimer approximation). However at infinity the
wavefunction modulus decreases to zero, so that N is finite
(but very large for large laser pulse intensities).
We shortly recall the principle of the method. Details can
be found in particular in [8]. The very general idea consists
of the following. Denoting by S(x, t,D) the Schrödinger
operator and d the physical dimension, we consider{

S(x, t,D)u = 0, (x, t) ∈ R
d × R+,

u(x, 0) = u0(x), x ∈ R
d.

The idea of transparent (or artificial for approximate ones)
boundary conditions consists of finding κ (as small as possi-
ble) subset of R

d containing the support of u0 and a pseudo-
differential operator B(x, t,D), such that the solution of


S(x, t,D)v = 0, (x, t) ∈ κ× R+,
B(x, t,D)v = 0, (x, t) ∈ ∂κ× R+,
v(x, 0) = u0(x), x ∈ R

d

verifies for all time t ∈ R+, u|κ(·, t) = v(·, t).

In practice κ represents one TDSE computational do-
main. An adapted choice of B allows a drastic reduction
of the size of the computational domain κ, that is of the
number of degrees of freedom N and this, for all the
TDSE’s used in the gas modeling. Taking Dirichlet or
Neumann boundary conditions lead as is well-known to
spurious reflecting waves inside the computational domain.
Although Dirichlet-Neumann boundary conditions seem
relatively adapted we have chosen Volkov-like boundary
conditions. Based on the solution of laser-molecule TDSE
without electronic potential and coupled via splitting with
the Coulomb potential using Filon’s integration scheme for
highly oscillating functions [1], [2]. This approach gives
very promising results and are presented in [8].

4 Parallelism

The physical configuration and model complexity leads to
consider efficient parallel techniques.

4.1 Parallel Approach

The parallel approach we use can be summarized as
follows. To simplify the presentation we suppose that

there is one processor (2 in practice on mammouth,
http://ccs.usherbrooke.ca) per memory node
and we work with Np processors. From time tn to tn+1

the process is the following.

1. From time tn to tn+1/2 we solve the � TDSE’s on
m processors with then �/m TDSE’s per processors.
Note that each TDSE is solved sequentially. We then
deduce the corresponding polarization in each subdo-
main.

2. Polarization is then sent to the nodes in charge of the
Maxwell equation computation (in fact only the nodes
related to gas regions of the Maxwell domain, as po-
larization is zero in vacuum).

3. Maxwell’s equations are solved by domain decompo-
sitionD = ∪s

iDi where the sample of gas Ω ⊂ D. The
complementary D − Ω is vacuum. From time tn+1/2

to tn+1 we solve the Maxwell equations on processors
p1,...,ps with 1 subdomain per processor. We then have
Np = s+m. The updated electric field is then sent to
the nodes in charge of the TDSE computation.

4. Data storage follows the same principle. Maxwell’s
equation data are stored on the nodes associated to pro-
cessors p1,...,ps and TDSE data and the complemen-
tary ones.

P1

P2
P3 P4

P5

P6P7 P8 P9

P11 P12 P13 P14

P10

1 TDSE

GAS

VACUUM

D = UDI
I=1,6

Figure 2. Parallelism principle - 1

As an example on figs. 2, 3, we take Np = 14, � = 16,
s = 6 m = 8. From time tn to tn+1 the TDSE’s (� = 16)
are solved in parallel by processors p7 to p14 (m = 8).
Then the updated polarization is sent to processors p1 to
p6 (s = 6). Maxwell’s equations are solved in parallel by
these processors and the updated electric field is sent to
processors p7 to p14. Such a parallelism allows in theory
to reduce the algorithmic complexity as follows. Starting
sequentially (1 processor) from O(�N3/2) +O(M) we can
expect at most to obtain using Np = p + m processors,
a final complexity equal to O(�N3/2/m) + O(M/s).
Communications between processors only involve the
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polarization and the electric field (vectors) that require
relatively small data storage and then leads in theory to a
very good speed-up.

 P7  P8  P9  P10  P11  P12  P13  P14

 P9  P10  P11  P12  P13  P14 P8

 P1  P2  P3  P4  P5  P6

 TDSE computation then 
polarization processors 7 to 14

Computation of the ME by procs 1,2,3,4,5,6

 P7

Updated polarization sent to ME 

TIME

tn

t
n+1

tn+1/2

1 TIME iteration

Updated electric fields sent to TDSE’s 

Figure 3. Parallelism principle - 2

Remark. As said above, TDSE computational time
is much larger than Maxwell’s equation computation time.
Consequently most of the time the s processors solving
Maxwell’s equations do not work. This issue is due to
the fact that because of the storage of big data (related to
Maxwell’s equation discretization) on the nodes associated
to these processors, it is not efficient to release (and then
reallocate) the memory of these nodes and to use the
corresponding processors for the TDSE computation (that
also necessitates very big data storage). This corresponds
to a lack of efficiency, but limited to the fact that in practice
p >> s.

4.2 Results

We now present a benchmark to illustrate how effi-
cient is this parallelization. The numerical Object-Oriented
(C++) code is installed on mammouth, super-computer of
the RQCHP (http://ccs.usherbrooke.ca). Typi-
cal simulations require up to 512 Intel Xeon EM64T, 3.6
GHz, (RAM 8 GB) processors during several days. This
corresponds to more than 10000 1-D TDSE’s (but some im-
portant transversal effects are lost) or several hundreds 3-D
TDSE’s coupled with 3-D Maxwell’s equations. The gen-
eral principle of the presented results is then: on each pro-
cessor we compute sequentially n TDSE’s. The TDSE’s
are coupled at each time step with the Maxwell equations
solved by domain decomposition on m processors. In the
following experiments we vary the number of TDSE’s and
processors for solving these Schrödinger equations. The
computations we present here are purely 3-D (TDSE and
Maxwell) and in practice we solve n = 1 TDSE per pro-
cessor with 2 processors per memory node. We represent
the CPU time for k TDSE’s solved on k processors with
(k = 8, 16, 32, 54, 120) coupled with the Maxwell equa-
tions solved on m = 5 processors, following the principle
described in figs 2 and 3. An ideal speed-up would corre-
spond to a constant value of the computational time when

increasing the number of TDSE’s and processors.
The TDSE’s are solved on a 40×40×401 node grids and the
Maxwell equations are solved on a grid of 300× 300× 300
nodes. MPI is used as a library of message passing. CPU
times are given after 50 Maxwell time steps correspond-
ing to 5 × 50 Schrödinger time steps (each Maxwell time
step is subdivided in q Schrödinger time steps with q varies
between 5 and 20 depending on the physical data). As
expected computational time is almost constant when the
number of TDSE’s and processors increases. The reason
is as follows. Compared to the Maxwell equation com-
putation, the TDSE computation is much more time con-
suming. As these TDSE computations are done totally in-
dependently at each iteration, and as communications be-
tween nodes involves very small data (polarization) a very
good speed-up has been reached. On the other hand, if
we would consider much larger Maxwell domains but with
small TDSE computation domains (for instance for low in-
tense laser pulses but large propagation distances) the effi-
ciency would certainly be reduced. Indeed, the domain de-
composition technique for solving the Maxwell equations
although relatively efficient, is not as efficient as the TDSE
computation parallel technique.
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Figure 4. CPU time when solving 3-D
Maxwell-Schrödinger’s equations. We solve
1 TDSE per processor (up to 120 TDSE’s and
processors) and use 5 processors to solve
Maxwell’s equations.

5 Conclusion

We have presented a multi-scale Maxwell-Schrödinger
model for intense laser-gas interactions and some efficient
numerical and parallel techniques based on domain decom-
positions, and perfectly adapted to the physical modeling.
The numerical code allows a precise description of laser-
pulse propagation in dense gaseous media taking into ac-
count high order harmonic generation, ionization under or
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beyond the Born-Oppenheimer approximation what can not
do classical nonlinear Schrödinger or Maxwell models.
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