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Abstract. The aim of this paper is to lay a theoretical framework for developing numerical
schemes for approximating Non-Conservative Hyperbolic Systems (NCHSs). We first recall
some key points of the theory of NCHSs, beginning with the definition non-conservative
products proposed by Dal Maso, LeFloch, and Murat [14]. Next, we briefly introduce the
vanishing viscosity solutions and shock curves derived from Bianchini and Bressan’s center
manifold technique [7], and their partial generalization recently proposed by Alouges and
Merlet [5]. Approximation of these shock curves also proposed by Alouges and Merlet are
then introduced and discussed. We then investigate the numerical implementation of these
analytical approaches using Godunov-like schemes, which either use the approximate Shock
curves of Alouges and Merlet directly in a Riemann solver, or use the framework of Dal
Maso, LeFloch, and Murat, in combination with these approximate shock curves. To our
knowledge, this work is the first attempt to numerically implement shock curves derived
from Bianchini and Bressan’s center manifold approach.
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1 Introduction

This paper is devoted to the numerical approximation of Non-Conservative Hyperbolic Sys-
tems (NCHSs). Non-conservative hyperbolic systems arise in several areas, in particular in
the study of compressible multi-phase/fluid flows and have various industrial applications,
such as two-phase flows in nuclear power plant reactors, solid rocket motors, chemical plants,
detonations, shallow water bi-fluid flows, and others [16], [34], [26], [31]. These systems have
proven to be difficult to analyze and have been much less studied than Hyperbolic Systems
of Conservation Laws (HSCL). Nevertheless, their wide range of applications have recently
motivated large efforts to better understand these systems and their numerical approximation.

An example of a system of interest is the model developed by Deledicque and Papalexan-
dris in [15]. Their system is a two-phase, two pressure systemmodeling the dynamics of fluids
with a gaseous, g, and liquid, l, phase. Each phase is assigned a density ρα, pressure pα, specific
internal energy eα, velocity uα, and volume fraction φα, where α=g,l. The governing equations
consist of mass, momentum, and energy balance laws for each phase, plus a convection equa-
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tion for the solid volume fraction,
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where Eα = eα+u2α/2 is the total specific energy for each phase. The following saturation con-
dition is also assumed

φg+φl=1.

Together with the equations of state for pg and pl , this system of balance laws can be written
as a non-conservative system and is thus a special case of the general system which we will
consider. Note that most of multi-phase/fluid models (with one or two pressures) contain a
non-conservative product. See for instance [31], [2], [35].
More generally, in this paper we will be interested in one dimensional NCHS,

∂u

∂t
+A(u)

∂u

∂x
=0, u∈Ω⊆R

n, (x,t)∈R×R
+, (1.1)

where Ω is open convex set and A is a smooth function A :Rn→Mn(R). We assume that this
system is strictly hyperbolic, that is, A has n real and distinct eigenvalues λ1(u)< λ2(u)< . . .<
λn(u) , ∀u ∈ Ω with linearly independent eigenvectors. Recall that when A is the Jacobian
matrix of some vector-valued function f :Rn→R

n, i.e. A(u)=Df(u), then this system reduces
to a HSCL.
Our primary goal when studying hyperbolic systems is to completely describe solutions of the
Riemann problem for (1.1)

u(x,0)=

{

uL, x<0,

uR, x>0.

Because of the non-conservative term, A(u)ux, and the fact that products of distributions are
not defined by the theory of distributions [32], we cannot rigorously define the notion of weak
solutions for system (1.1) and we cannot derive a Rankine-Hugoniot Jump Condition, as in
the conservative case. Finally, we cannot define, a priori, the notion of shock wave for NCHSs.
Although this constitutes an old problem, ‘recently’ two distinct ways of overcoming this issue
in the framework of NCHSs have been proposed. The first considered in this paper is due to
Dal Maso, LeFloch and Murat (DLM) [14], [23]. Specifically, the authors propose a definition
of non-conservative products, and hence they can define weak solutions of (1.1). They suggest
to introduce a family of paths, ψ : [0,1]×R

n×R
n→R

n which satisfies the following properties,

ψ(0;uL,uR)=uL, ψ(1;uL,uR)=uR,
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∀uL,uR∈R
n. They then define the non-conservative product, A(u)ux, not as a distribution, but

as a bounded Borel measure which depends on this family of paths. This measure, denoted by
[A(u)ux]ψ, is defined as

[A(u)ux]ψ(B)=
∫

B
A(u)ux dx,

when u is continuous on a Borel set B, and by

[A(u)ux]ψ((x0,t0))=
∫ 1

0
A(ψ(s;uL,uR))

∂ψ

∂s
(s;uL,uR)ds,

when u has a jump discontinuity and uL and uR are the left and right limits of the discontinuity,
respectively. It is important to note that this definition of a non-conservative product only
applies to functions which are piecewise differentiable with finite jump discontinuities, and
not for general distributions. However, a priori these functions are all we need in order to
solve the Riemann problem for NCHSs. In fact, this product extends the definition of non-
conservative products given by Volpert [36], which can be recovered in this framework by
choosing the family of straight lines ψ(s;uL,uR)=uL+s(uR−uL). This formulation of the non-
conservative product allows us to define weak solutions of the system, and furthermore it
allows us to generalize the Rankine-Hugoniot jump condition [14] to

σ(uR−uL)=
∫ 1

0
A(ψ(s;uL,uR))

∂ψ

∂s
(s;uL,uR)ds.

Using this condition, it is possible to proceed as done in the conservative case and solve the
Riemann problem by using shock waves, rarefaction waves, and contact discontinuities to
separate at most n+1 constant states. The obvious drawback in this formulation is that the
definition of the non-conservative product depends on the choice of path, ψ. Because of this,
it is difficult, a priori, to select the paths that will give us the correct, physical solution. As
LeFloch remarks in [23], appropriate paths could be chosen so that they parametrize viscous
profiles. However, the question of how to determine the viscous profiles is made difficult since
it involves finding bounded solutions of an ODE on an infinite domain. For a more complete
discussion see [33].
Another approach for finding solutions to NCHSs was developed in the recent works of Bian-
chini and Bressan [7], and Alouges and Merlet [5] who partially generalized Bianchini and
Bressan’s work. In their very technical work, Bianchini and Bressan investigate the solutions
of the following viscous system,

uε
t+A(uε)uε

x= εuε
xx,

which is a parabolic regularization of the original system (1.1), with the specific viscosity ma-
trix B(u)= I. They define solutions of (1.1) as vanishing viscosity solutions of the viscous system,
i.e. solutions to (1.1) are constructed as the limit of the solution to this viscous system as ε→0.
In a very general setting, they show that these vanishing viscosity solutions are unique and,
in particular, they describe the shock curves and viscous shock profiles associated to this vis-
cosity matrix B= I. The work of Bianchini and Bressan was then generalized by Alouges and
Merlet in [5], who extended their results to the case where the viscosity matrix B commutes
with A. The authors also propose a definition of shock curves of non-conservative systems as
solution of the following dynamical system







(A(u)−σI)
du

dσ
=u−uL,

u(λi(uL))=uL.
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They prove that the shock curves given by this system are close to the shock curves deduced
from the center manifold theory of Bianchini and Bressan, up to the third order. This result
gives us a way for selecting the admissible discontinuities and therefore allows us to solve
Riemann Problems in NCHSs. Moreover Alouges and Merlet prove that the shock curves de-
fined by the system above also agree with the viscous shock profiles up to the third order.
These shock curves therefore give us a close approximation of the viscous profiles which we
can use for instance, as a path in the DLM theory. This leads us to investigate two interesting
designs for numerical schemes. Note finally that Colombeau has proposed [12] to extend the
set of distributions as a quotient algebra, allowing to define the product of “extended gener-
alized functions”. Within this framework, shock waves solutions of non-conservative hyper-
bolic systems can “easily” be defined as well as their discretization (for elasticity models in
particular) [11], [13] using weak-strong formulations of the considered system. See also [25]
for a more recent work on numerical schemes for non-conservative hyperbolic systems based
on Colombeau’s generalized functions. In this paper, Colombeau’s approach will not be dis-
cussed, but some of its links with Bianchini & Bressan’s, and LeFloch’s workswill be addressed
in a forthcoming paper.
The question of implementing the DLM theory in a numerical solver has been investigated by
several authors. Originally Toumi and Kumbaro proposed a path-based approach [35] to build
a Roe solver for NCHSs. Later other authors, in particular Parés and Castro [9], [8], [27], and
Rhebergen, Bokhove, and Van der Vegt, [29], [28] have investigated other numerical methods
(Godunov, Discontinuous Galerkin, etc) for these systems which are based on DLM’s path-
theory. Note that many other approaches have been proposed to treat the non-conservative
product, in particular in the multi-phase flow framework (see [18], for instance).
In this paper, we will focus on the shock and approximate shock curves as defined by Alouges
and Merlet. Our main scheme of interest will be a Godunov-like Scheme [20] using an exact
Riemann solver:

Vn+1j =Vnj −
∆t

∆x

(

Gn,−
j+ 12

+Gn,+
j− 12

)

.

Castro, Parés, et. al. show in [9] that using the DLM definitions in a Godunov solver leads
naturally to select

Gn,−
j+ 12

=
∫ 1

0
A(ψ(s;Vnj ,V

n
j+ 12

))
∂ψ

∂s
(s;Vnj ,V

n
j+ 12

)ds,

Gn,+
j+ 12

=
∫ 1

0
A(ψ(s;Vn

j+ 12
,Vnj+1))

∂ψ

∂s
(s;Vn

j+ 12
,Vnj+1)ds,

where Vn
j+ 12
is the value at x=0 of the solution to the Riemann Problem

V(x,0)=

{

Vnj , x<0,

Vnj+1, x>0.

Although the Godunov scheme is known to be very slow, at this point the goal of this paper
is not to propose a fast and an accurate solver for NCHSs, but rather to propose a first (to our
knowledge) numerical implementation of Bianchini & Bressan and Alouges & Merlet’s shock
and approximate shock curves in a finite volume solver. When implementing the shock curves
of Alouges and Merlet, we have to solve Riemann Problems at each interface and select the
fluxes Gn,±j+1/2 dependent on the type of the wave solution (i.e. 1-shock and 2-shock, 1-shock

and 2-rarefaction, etc.). This first scheme is then a Godunov scheme based on an exact Rie-
mann solver. We will first apply this scheme to a hyperbolic system of conservation laws and
compare their numerical solutions with solutions of reference to check that we recover correct
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results.
Wewill then implement Alouges-Merlet’s approximate shock curves in aDLMpath-dependent
scheme and compare the numerical solutions with the ones found by Parés’ Godunov scheme,
described above. To obtain a worth while comparison, we will apply these schemes to a truly
non-conservative system. We show that, in this particular example, the numerical solution
does indeed converge to the exact solution, seemingly overcoming the convergence problem
for non-conservative systems as studied in [10], [21], [24], [21] and [1]. Another interesting re-
sult that we will show is that the two Godunov schemes we have constructed are in fact close
in a sense that will be defined below.

The remainder of this paper is organized as follows. In Section 2, we present some key
elements of the theories developed by Dal Maso, LeFloch and Murat, Bianchini and Bressan,
and Alouges and Merlet. We then move to the numerical implementation of these approaches
in Section 3. Comparisons of the numerical solutions obtained with these different approaches
will then be presented. Section 4 is devoted to concluding remarks.

2 Non-Conservative Hyperbolic Systems

In this section we recall some important features of non-conservative hyperbolic systems. As
mentioned in the introduction, the first fundamental difficulty that we must address are how
to define weak solutions of these systems, and how to properly define the shock curves in
order to solve the Riemann problem.

We begin this section by recalling some key elements of Dal Maso, LeFloch, and Mu-
rat’s path-theory, in particular their definition of non-conservative products. We then give
an overview of the vanishing viscosity solutions studied by Bianchini and Bressan. Finally,
we present the approximate shock curves defined by Alouges and Merlet and recall when and
how they approach the shock curves deduced from Bianchini and Bressan’s center manifold
approach. These shock curves will be referred in the following as Bianchini and Bressan’s shock
curves.

2.1 Dal Maso-LeFloch-Murat Non-Conservative Products

As we mentioned in the introduction, the main issue with non-conservative hyperbolic sys-
tems is the presence of the non-conservative term A(u)ux. As a product of distributions, it is
not clear how this term should be defined, and thus we are unable to specify what disconti-
nuity waves can be weak solutions. The idea proposed by Dal Maso, LeFloch, and Murat [14]
was to regard this term not as a distribution, but as a bounded Borel measure. Let us quickly
recall the principle. When u is smooth on a Borel set B, this measure is defined by

[A(u)ux](B)=
∫

B
A(u)ux dx.

The problem arises when u has a jump discontinuity, as:

u=

{

uL, x<0,

uR, x>0.

Regarding A(u)ux as a measure, we require that:

[A(u)ux]=Cδ0,
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where δ0 is the Dirac measure at x= 0 and C is a constant to be determined. If A(u) were a
Jacobian matrix, A(u)=Df(u),

[A(u)ux]({0})= lim
ε→0

∫ ε

−ε
A(u)ux dx,

= lim
ε→0

∫ ε

−ε
(f(u))x dx,

= f(uR)−f(uL).

So C= f(uR)−f(uL) in this case. As a consequence the definition proposed by DLM is then to
introduce a path ψ, such that ψ(0)=uL and ψ(1)=uR, and define:

[A(u)ux]=

(

∫ 1

0
A(ψ(s))

∂ψ

∂s
ds

)

δ0.

Then this gives a value to C, and does indeed recover the correct results in the case when A
is a Jacobian matrix. This idea motivates the central theorem of Dal Maso-LeFloch-Murat that
we recall here.

Theorem 2.1 (Dal Maso-LeFloch-Murat Non-Conservative Product). Let ψ:[0,1]×R
n×R

n→R
n

be a Lipschitz continuous family of paths which satisfies the following properties:

1. ∀uL,uR∈R
n,

ψ(0;uL,uR)=uL, ψ(1;uL,uR)=uR.

2. ∃k>0, such that ∀uL,uR∈R
n,∀s∈ [0,1],

∣

∣

∣

∣

∣

∂ψ

∂s
(s;uL,uR)

∣

∣

∣

∣

∣

6k|uL−uR|.

3. ∃k>0, such that ∀uL,uR,vL,vR∈R
n,∀s∈ [0,1],

∣

∣

∣

∣

∣

∂ψ

∂s
(s;uL,uR)−

∂ψ

∂s
(s;vL,vR)

∣

∣

∣

∣

∣

6k(|uL−uR|+|vL−vR|).

Then there exist a unique real-valued Borel measure, denoted [A(u)ux]ψ, on R characterized by:

1. If u is continuous on a Borel set, B, then,

[A(u)ux]ψ(B)=
∫

B
A(u)ux dx.

2. If u is discontinuous at the point x0 then,

[A(u)ux]ψ({x0})=
∫ 1

0
A(ψ(s;u(x−0 ),u(x+0 )))

∂ψ

∂s
(s;u(x−0 ),u(x+0 ))ds.

This Borel measure is called the non-conservative product of A(u) and ux.
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Remark 2.1. Note that this non-conservative product is defined only for functions uwhich are
piecewise differentiable and contain jump discontinuities, and it is therefore not defined for a
general distribution. To use this product in the framework of NCHSs, we will regard the term,
A(u)ux as a non-conservative product which also depends on the variable t.

Remark 2.2. It is clear that in this framework, the non-conservative product defined above
is dependent on the choice of path, ψ. The question of how one chooses such a family of
paths is far from trivial. As noted in [21] and [1], when using this definition to design nu-
merical schemes, poor choices in the family of paths can result in the scheme converging to
the incorrect shock curves. In fact even an appropriate choice of paths implemented in a non-
conservative scheme can lead to convergence to wrong solutions [1], [10] (and [21] to give
elements of explanation for understanding this fundamental issue).

Using this non-conservative product, weak solutions are defined as follows.

Definition 2.1. We say that u is a weak solution of (1.1) if and only if

∫

R+

∫

R

uφt+[A(u)ux]ψ φdxdt=0,

as measures, for all test functions φ∈C10(R×R
+).

Moreover, this weak formulation allows us to define a Rankine-Hugoniot Jump Condition
as given by LeFloch in [23].

Theorem 2.2 (DLM Rankine-Hugoniot Jump Condition). Let ψ be the family of paths as in Theo-
rem 2.1. Let u be a solution to (1.1) in the weak sense, with respect to this family of paths, and let u be
smooth throughout a region D, except along a curve x=γ(t) which divides D into two regions DL and
DR, and along which u has a jump discontinuity. Then,

γ′(t)(uR−uL)=
∫ 1

0
A(ψ(s;uL,uR))

∂ψ

∂s
(s;uL,uR)ds, (2.1)

where,

uR(t)= lim
(x,t)→(γ(t),t)

(x,t)∈DR

u(x,t), uL(t)= lim
(x,t)→(γ(t),t)

(x,t)∈DL

u(x,t),

are the values of u at either side of the discontinuity.

Let us focus now on contact discontinuity curves. Suppose uL and uR are separated by a
k-contact discontinuity. Then uL and uR lie on the same contact discontinuity curve v. Then v
solves

{

v′(ξ)= rk(v(ξ)),
v(0)=uL,

and furthermore

A(v(ξ))rk(v(ξ))=λk(uL)rk(v(ξ))

for all ξ, since λk remains constant along v(ξ). We can re-parametrize v so that v(1)=uR. Then
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ψ(s;uL,uR)=v(s) and we find

∫ 1

0
A(ψ(s;uL,uR))

∂ψ

∂s
(s;uL,uR)ds=

∫ 1

0
A(v(s))v′(s)ds,

=
∫ 1

0
A(v(s))rk(v(s))ds,

=λk(uL)
∫ 1

0
rk(v(s))ds,

=λk(uL)
∫ 1

0
v′(s)ds,

=λk(uL)(uR−uL).

Hence, this discontinuity satisfies the DLM jump condition. Thus we can indeed use the def-
inition of contact discontinuities as done in the conservative case. Furthermore, now that we
have a jump condition we can define the shock curves.

Theorem 2.3 (DLM shock Curves). Suppose that the k-th field is genuinely nonlinear. Then given a
left state uL∈Ω there exists a curve, Sk(uL), of right states that can be connected to uL on the right by
a k-shock wave.

The proof of this theorem follows closely the arguments used to prove the existence of
shock curves in the conservative case. See Chapter 1, Section 4, Theorem 4.1 in [19].

Using the definition of k-shock curves for genuinely nonlinear fields, we can then invoke
entropy conditions to identify admissible shock waves. In particular we apply the Lax shock
entropy condition to identify the admissible portion of the k-shock curves. Thus, given two
states uL and uR, sufficiently close, we can uniquely solve their Riemann problem as a compo-
sition of k-simple waves.

S1(uL)

R2(uR)

uL

uR

R1(uL)

S2(uR)

u1

Figure 1: Example of shock and rarefaction curves in a 2×2 system. The entropy condition allows us to determine
the admissible parts of the shock curves and we can then find the intersection to uniquely determine u1.

As we remarked earlier, when designing a numerical scheme, choosing the family of paths
is not trivial and different choices of paths can lead to vastly different numerical solutions.
It is clear that we need some way of determining what paths will give us physical, entropic

8



solutions. To this end, let us consider the vanishing viscosity entropy condition and examine
the viscous profiles. First, we introduce an admissible viscosity matrix B(u) to the system.

uε
t+A(uε)uε

x= ε(B(uε)uε
x)x,

and we look for the viscous profiles uε(x,t)=v( x−σt
ε ). The resulting ODE is

(A(v)−σ)v′=(B(v)v′)′.

Next, let us suppose the vanishing viscosity limit of this viscous profile is a shock wave, i.e,

lim
ε→0
uε(x,t)=

{

uL, x<σt,

uR, x>σt.

Then the viscous profile will have the form

uε(x,t)=











uL, x<σt−ε,

φ( x−σt+ε
2ε ), σt−ε6x6σt+ε,

uR, x>σt+ε,

where φ is a smooth function with the properties φ(0)=uL and φ(1)=uR. Considering u
ε as a

measure we see that

lim
ε→0

[A(uε)uε
x]=

(

∫ 1

0
A(φ(s))

∂φ

∂s
ds

)

δx−σt,

with the convergence in the sense of measures. Thus, in order to obtain the vanishing viscosity
solution, we choose our path, ψ to be precisely the viscous profile φ. A similar argument shows
the same results when uε limits to a rarefaction wave or a contact discontinuity, or any com-
position of these simple waves. Notice that, as in the conservative case, the viscosity profiles
will, in general, depend on the viscosity matrix, B. On the other hand, in the conservative case
the shock curves are defined using only the Rankine-Hugoniot jump condition and thus, do
not depend on the choice of B. Let us state all of these ideas formally.

Criterion 2.4 (Choice of Paths). To obtain a vanishing viscosity entropic solution of the non-
conservative system (1.1), we choose the family of paths, ψ, so that, ψ(s;uL,uR) is a parametriza-
tion of the viscous profile connecting the states uL and uR. This path will, a priori, depend on
the viscosity matrix, B(u).

Moreover (as proposed by LeFloch et. al. in [10]),

• If the k-th field is linearly degenerate, given the k-contact discontinuity curve Ck(uL),
and given that uR∈Ck(uL), then the path s 7→ψ(s;uL,uR) is a parametrization of the arc
of Ck(uL) connecting uL and uR.

• If the k-th field is genuinely nonlinear, given the k-rarefaction curve Rk(uL), and given
that uR∈Rk(uL), then the path s 7→ψ(s;uL,uR) is a parametrization of the arc of Rk(uL)
connecting uL and uR.

We make this choice in the construction of ψ because contact discontinuity and rarefaction
curves are the same as in the conservative case, and are therefore not dependent on the choice
of B.
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2.2 Vanishing Viscosity Solutions of Bianchini and Bressan

In order to define solutions to general non-conservative systems, Bianchini and Bressan [7]
consider a regularization of the system (1.1),

uε
t+A(uε)uε

x= ε(B(uε)uε
x)x. (2.2)

More specifically, they consider the case where the viscosity matrix B(u) is the identity matrix,
I. The authors define solutions to (1.1) as the unique limits of solutions to this viscous system
as ε → 0. The details are well beyond the scope of this paper, but we will state their main
results. For a very general A(u) (no genuine nonlinearity assumptions, etc.), the authors solve
the Riemann Problem for uL and uR sufficiently close and recover the classical succession of
self-similar k-waves and characterize them.
The obvious shortcoming of this study is that vanishing viscosity solutions of this system

for amore general viscosity matrix are not given by this theory. Moreover, theway inwhich the
shock curves and viscous shock profiles are derived makes them very difficult in implement
explicitly in a numerical scheme. Although the theory presented by Bianchini and Bressan
is very interesting from the theoretical perspective, this difficulty prevents us from applying
these results in numerical schemes.
Recently, in the paper by Alouges and Merlet [5] the results presented by Bianchini and

Bressan are extended to the case where the admissible viscositymatrix B(u) is assumed to com-
mute with A(u). The authors establish the same results as Bianchini and Bressan in this more
general setting and also propose a new definition for shock curves in the non-conservative
case. Before we state this definition let us present its motivation. Suppose for the moment that
the systemwe are considering is in fact conservative and consider an admissible k-shock wave
with left state uL, and right state uR, propagating with speed σ. If we consider uR as a function
of σ, the Rankine-Hugoniot jump condition writes

f(uR(σ))−f(uL)=σ(uR(σ)−uL),

with uR(λk(uL))=uL. Differentiating with respect to σ yields






(A(uR)−σI)
duR

dσ
=uR−uL,

uR(λk(uL))=uL.
(2.3)

Alouges and Merlet use this system to define an approximate shock curve.

Definition 2.2 (Alouges-Merlet Shock Curves [5]). A non-constant solution of (2.3) is called an
approximate shock curve of the non-conservative system (1.1).

Notice that this differential equation is not classical since there is a degeneracy at the initial
point uR(λk(uL))=uL, for each k. To overcome this, the authors prove the following result:

Proposition 2.1. Suppose that the k-th field is genuinely nonlinear. Then equation (2.3) has a
unique, non-trivial solution in the neighborhood of λk(uL). Moreover, the non-trivial solution
satisfies

uR(σ)=uL+
2(σ−λk(uL))

∇λk(uL)·rk(uL)
rk(uL)+O(|σ−λk(uL)|

2).

The degeneracy is then overcome by adding the initial condition

duR

dσ
(λk(uL))=

2

∇λk(uL)·rk(uL)
rk(uL),

to the differential equation. In fact, we can extend the above result to include the second order
terms which gives a more precise description of these shock curves.
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Proposition 2.2. For a genuinely nonlinear k-field, the unique and non-trivial solution to (2.3)
satisfies:

uR(σ)=uL+
2(σ−λk(uL))

∇λk(uL)·rk(uL)
rk(uL)+

4(σ−λk(uL))
2

(∇λk(uL)·rk(uL))2
Drk(uL)·rk(uL)

+O(|σ−λk(uL)|
3).

Proof. Let us expand uR(σ) as

uR(σ)=uL+
2(σ−λk(uL))

∇λk(uL)·rk(uL)
rk(uL)+

1

2
R(uL)(σ−λk(uL))

2+O(|σ−λk(uL)|
3),

where R(uL)= d2uR
dσ2

(uL) is to be determined. Using this expression, we can expand A(uR(σ))
around σ=λk(uL) to obtain:

A(uR(σ))=A(uL)+
2(σ−λk(uL))

∇λk(uL)·rk(uL)
DA(uL)·rk(uL)+O(|σ−λk(uL)|

2).

Let us next perform the same expansion around σ = λk(uL) in system (2.3) and use the above
expressions to obtain,

[

A(uL)+
2(σ−λk(uL))

∇λk(uL)·rk(uL)
DA(uL)·rk(uL)+O(|σ−λk(uL)|

2)−λk(uL)I

−(σ−λk(uL))I

](

2(σ−λk(uL))

∇λk(uL)·rk(uL)
rk(uL)+R(uL)+O(|σ−λk(uL)|

2)

)

=
2

∇λk(uL)·rk(uL)
rk(uL)+O(|σ−λk(uL)|

2).

Expanding and re-arranging, we obtain:

2

∇λk(uL)·rk(uL)
[A(uL)−λk(uL)I]rk(uL)+

[

2

∇λk(uL)·rk(uL)
DA(uL)·rk(uL)−2I

]

·
2(σ−λk(uL))

∇λk(uL)·rk(uL)
rk(uL)+[A(uL)−λk(uL)I]R(uL)(σ−λk(uL))

+O(|σ−λk(uL)|
2)=0.

To satisfy this equation, the zeroth and first order terms must vanish. It is clear that the first
term on the left (the zeroth order term) vanishes since rk(uL) is an eigenvector of A(uL) asso-
ciated to the eigenvalue λk(uL). For the first order terms to vanish, we must have that

2

∇λk(uL)·rk(uL)

[

2

∇λk(uL)·rk(uL)
DA(uL)·rk(uL)−2I

]

rk(uL)+[A(uL)−λk(uL)I]R(uL)=0.

(2.4)
In order to determine R(uL), let us consider the identity

[A(uR(σ))−λk(uR(σ))I]rk(uR(σ))=0.
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Differentiating this with respect to σ yields:

[

DA(uR(σ))
duR

dσ
−

(

∇λk(uR(σ))·
duR

dσ

)

I

]

rk(uR(σ))

+[A(uR(σ))−λk(uR(σ))I]Drk(uR(σ))·
duR

dσ
=0,

and evaluating it at σ=λk(uL), we obtain:

[

2

∇λk(uL)·rk(uL)
DA(uL)rk(uL)−2I

]

rk(uL)

+
2

∇λk(uL)·rk(uL)
[A(uL)−λk(uL)I]Drk(uL)·rk(uL)=0.

Comparing this expression with (2.4), we find that

R(uL)=
d2uR

dσ2
(uL)=

4

(∇λk(uL)·rk(uL))2
Drk(uL)·rk(uL).

which completes the proof.

It is clear that when A is a Jacobian matrix, this definition will recover the correct shock
curves. Alouges and Merlet prove that these approximate shock curves agree with the ones
found by the vanishing viscosity process of Bianchini and Bressan up to the third order near a
given left state. Thus (2.3) gives us a simple way to approximate the shock curves as described
by Bianchini and Bressan, that is this gives us a way to approximate ‘true’ vanishing viscosity
solutions of the Riemann problem in the non-conservative case, which are very complex to
implement numerically [5]. Moreover, since (2.3) is independent of B(u), the approximate
solutions are also B-independent.
Another point of interest is that these approximate shock curves coincide with the viscous

shock profiles to the third order near a given left state. To see this, let us consider the viscous
system (2.2) and let us examine the k-shock profiles, which have the form uε(x,t)=U( x−σt

ε ;σ)=
U(ξ;σ). Then these shock profiles will solve the following system, ∀σ







(A(U)−σI)Uξ =(B(U)Uξ)ξ ,
U(−∞;σ)=uL,
U(ξ;λk(uL))≡uL.

The k-shock curve, Sk(uL), is defined by these profiles by uR(σ)=U(+∞;σ). Integrating this
system along the profiles gives

σ(uR(σ)−uL)=
∫

R

A(U)Uξ dξ,

and differentiating with respect to σ and integrating by parts we obtain

(A(uR(σ))−σI)
duR

dσ
=uR(σ)−uL+

∫

R

A(U)ξUσ−A(U)σUξ dξ.

So that we recover system (2.3) up to the term

R(U,σ)=
∫

R

A(U)ξUσ−A(U)σUξ dξ.

12



Now we note that if A is indeed a Jacobian matrix then R(U,σ) vanishes. Also, if the shock
curves and the shock profiles coincide then R(U,σ) will again vanish. As noted earlier, ap-
proximate shock curves defined by (2.3) do indeed recover the correct shock curves up to the
third order so R(U,σ)=O(|σ−λk(uL)|

3). This tells us that these approximate shock curves are
in fact also close to viscous shock profiles. This result is interesting since it gives us a way to
approximate the viscous shock profiles which, as explained in the previous section, is a piece
of information useful to solve the Riemann problem using the DLM path-theory.

2.2.1 Reversibility of Alouges-Merlet Approximate Shock Curves

Recall that in the conservative case, when a state uR lies on a k-shock curve of a state uL, i.e.
uR ∈Sk(uL), then from the Rankine-Hugoniot jump condition we know immediately that uL
will lie on the k-shock curve of the state uR. In their paper, Alouges andMerlet point out that it
is unclear whether this property will hold in the non-conservative case using the approximate
shock curves. Here, we establish the following result:

Theorem 2.5. Let Sk(uL) be the approximate k-Shock Curve of the state uL for the system (1.1).
Suppose that uR ∈ Sk(uL), that is, suppose that a state uR can be connected to uL on the right by
a k-shock wave traveling with speed σ. Furthermore, let ũL(σ) ∈ Sk(uR) be the state which can be
connected to uR on the left by a k-shock wave, again traveling with speed σ. Then either ũL(σ)≡uL,
∀σ or ũL(σ)=uL+O(|σ−λ(uL)|).

uL

Sk(uL)

uR

Sk(uR)

Figure 2: Reversibility of approximate shock curves of Alouges and Merlet: if the state uR lies on the k-shock curve
of uL then uL lies on the k-shock curve of uR.

Proof. Let us consider a genuinely nonlinear k-th field and consider the approximate k-shock
curve of a fixed left state. Let us denote this curve by u1(ξ). Then u1(ξ) satisfies







(A(u1)−ξ I)
du1

dξ
=u1−uL,

u1(λk(uL))=uL.
(2.5)

13



Let us select a point on this curve, say u1(σ), for some σ. We wish to determine the state ũL(σ)
which will lie on the k-shock curve of u1(σ), that we denote by u2(τ;σ). Then u2(τ;σ) satisfies







(A(u2)−τ I)
∂u2

∂τ
=u2−u1(σ),

u2(λk(u1(σ));σ)=u1(σ).
(2.6)

In Figure 3, we have depicted the construction of these curves, u1(ξ) and u2(τ;σ). Let us

uL

u1(ξ)

u1(σ)

u2(τ)

ũL(σ)

Figure 3: Graphical depiction of the k-shock curve of the left state uL and the k-shock curve of the right state u1(σ̃).

integrate (2.5) from λk(uL) to σ to obtain

∫ σ

λk(uL)
(A(u1)−ξ I)

du1

dξ
dξ =

∫ σ

λk(uL)
u1(ξ)−uL dξ,

∫ σ

λk(uL)
A(u1)

du1

dξ
dξ =

∫ σ

λk(uL)
ξ
du1

dξ
+u1(ξ)−uL dξ,

∫ σ

λk(uL)
A(u1)

du1

dξ
dξ =σ(u1(σ)−uL).

Similarly, we integrate (2.6) from λk(u1(σ)) to σ to obtain

∫ σ

λk(u1(σ))
A(u2)

∂u2

∂τ
dτ =σ(u2(σ;σ)−u1(σ)).

The point we are interested in is ũL(σ)=u2(σ;σ). Adding these two equations, we obtain

∫ σ

λk(uL)
A(u1)

du1

dξ
dξ+

∫ σ

λk(u1(σ))
A(u2)

∂u2

∂τ
dτ =σ(ũL(σ)−uL).

Note that this entire expression depends on the parameter σ. Let us differentiate this equation
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with respect to σ, to obtain

A(u1(σ))
du1

dξ
(σ)+A(u2(σ;σ))

∂u2

∂τ
(σ;σ)−

A(u2(λk(u1(σ));σ))
∂u2

∂τ
(λk(u1(σ));σ)

(

∇λk(u1(σ))·
du1

dξ
(σ)

)

+

∫ σ

λk(u1(σ))

d

dσ

[

A(u2)
∂u2

∂τ

]

dτ = ũL(σ)−uL+σ
dũL

dσ
(σ).

Using the initial condition u2(λk(u1(σ));σ)=u1(σ) and the fact that ũL(σ)=u2(σ;σ), this reads:

A(u1(σ))
du1

dξ
(σ)+A(ũL(σ))

∂u2

∂τ
(σ;σ)−

A(u1(σ))
∂u2

∂τ
(λk(u1(σ));σ)·

(

∇λk(u1(σ))·
du1

dξ
(σ)

)

+

∫ σ

λk(u1(σ))

d

dσ

[

A(u2(τ;σ))
∂u2

∂τ

]

dτ = ũL(σ)−uL+σ
dũL

dσ
(σ). (2.7)

Let us examine the integral term in this expression. Expanding and integrating by parts we
obtain

∫ σ

λk(u1(σ))

d

dσ

[

A(u2)
∂u2

∂τ

]

dτ =
∫ σ

λk(u1(σ))
A(u2)σ

∂u2

∂τ
+A(u2)

∂2u2
∂τ∂σ

dτ

=A(u2(σ;σ))
∂u2

∂σ
(σ;σ)−A(u2(λk(u1(σ));σ))

∂u2

∂σ
(λk(u1(σ));σ)

+
∫ σ

λk(u1(σ))
A(u2)σ

∂u2

∂τ
−A(u2)τ

∂u2

∂σ
dτ

=A(ũL(σ)
∂u2

∂σ
(σ;σ)−A(u1(σ))

∂u2

∂σ
(λk(u1(σ));σ)+R(u2,σ).

Here we used the notation R(u2,σ) =
∫ σ

λk(u1(σ))A(u2)σ

∂u2

∂τ
−A(u2)τ

∂u2

∂σ
dτ. Inserting this

expression into (2.7), we obtain

A(ũL(σ))

(

∂u2

∂τ
(σ;σ)+

∂u2

∂σ
(σ;σ)

)

+A(u1(σ))

[

du1

dξ
(σ)−

∂u2

∂τ
(λk(u1(σ));σ)

·

(

∇λk(u1(σ))·
du1

dξ
(σ)

)

−
∂u2

∂σ
(λk(u1(σ));σ)

]

+R(u2,σ)= ũL(σ)−uL+σ
dũL

dσ
(σ).

Finally, note that
dũL

dσ
=

∂u2

∂τ
(σ;σ)+

∂u2

∂σ
(σ;σ) and notice that the term within the square

braces is simply the derivative of the initial condition in (2.6). Thus, this term vanishes and we
obtain

(A(ũL)−σI)
dũL

dσ
+R(u2,σ)= ũL(σ)−uL. (2.8)

15



This system is similar to the Shock Curve system proposed by Alouges and Merlet, the
difference being the additional term R(u2,σ). Since clearly R(u2,σ) is O(|σ−λk(uL)|) we can
apply the existence and uniqueness result for these systems established by Alouges andMerlet
in their paper to conclude that either ũL(σ)≡uL, ∀σ or ũL(σ) is a smooth curve with ũL(σ)=
uL+O(|σ−λk(uL)|).

Note that if R(u2,σ)≡0, which is guaranteed if A(u) is a Jacobian matrix, then (2.8) is the
defining system for the k-shock curve at uL. By the existence and uniqueness results of Alouges
and Merlet we can conclude that either ũL(σ)≡uL, ∀σ or ũL(σ) coincides completely with the
k-shock curve of uL. It is clear that the latter case is not possible since by construction u2(σ,σ)
cannot coincide with the point u1(σ), so we must have that ũL(σ)≡uL.

Remark 2.3. Although the proof states that it is possible to have ũL(σ) 6 ≡uL, we are not able
to provide an example of a non-conservative system for which this occurs. For the non-
conservative system considered below the Alouges-Merlet Shock Curves seem reversible, i.e.
ũL(σ)≡uL.

3 Design of Numerical Schemes

We outline the design of some numerical schemes for approximating non-conservative hyper-
bolic systems using the above analysis. A natural first choice of scheme is a Godunov-like
scheme which utilizes an “exact” Riemann solver. The first scheme we propose is a Godunov
scheme which utilizes the approximate Shock curves defined by Alouges and Merlet. Then,
we describe a Godunov scheme which utilizes Dal Maso, LeFloch, and Murat’s path-theory in
combination with Alouges and Merlet’s approximate shock curves.

3.1 Alouges-Merlet Shock Curve-based Godunov Scheme

Before describing the Godunov scheme for non-conservative systems, let us quickly recall its
principle for HSCLs, as it will be useful to justify and to understand its non-conservative ver-
sions. We first discretize the space-time domain by a grid of points (xj,tn), j∈Z, n∈Z

+, with
uniform spatial step, ∆x and a non-uniform time step ∆tn. The Godunov scheme is a finite vol-
ume scheme, that is we approximate the solution of the systemby a piecewise constant function
U, defined by

U(x,t)=Unj for x∈ (xj− 12
,xj+ 12

),t∈ (tn,tn+1),

where the xj±1/2 are the cell interface positions, i.e. xj±1/2 = xj±
∆x
2 . The values U

n
j are the

averages of the exact solution in the cell (xj−1/2,xj+1/2), defined by

Unj =
1

∆x

∫ x
j+ 12

x
j− 12

u(x,tn)dx,

where u is the exact solution to the system. Now suppose that at time tn, we are given an
approximation,Vnj , of these averages,U

n
j . Then the Godunov scheme is constructed as follows:

first we solve exactly for all j∈Z the problem

ut+f(u)x=0, (3.1)

u(x,0)=Vnj , x∈ (xj− 12
,xj+ 12

).
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This initial profile is just a superposition of Riemann problems, each of which has an entropic

solution, wj+1/2

(

x−xj+1/2
t ;Vnj ,V

n
j+1

)

, at the interface of the j-th and (j+1)-th cell. Moreover,

these local solutions will not interact for ∆tn small enough. Specifically, we enforce a C.F.L.
condition

∆tn
∆x
max
k,j

|λk(V
n
j )|6

1

2
.

We integrate system (3.1) over (xj−1/2,xj+1/2)×(0,∆tn) to obtain

∫ x
j+ 12

x
j− 12

u(x,∆tn)−u(x,0)dx+
∫

∆tn

0
f(u(xj+ 12

,t))−f(u(xj− 12
,t))dt=0.

Using the definition of the cell averages, and the fact that the solution u(x,t) is a superposition
of solutions to the Riemann problems at the (j− 12)-th and (j+ 12 )-th interfaces, we can write
this as

∆x(Vn+1j −Vnj )+
∫

∆tn

0

[

f
(

wj+ 12
(0;Vnj ,V

n
j+1)

)

−f(Vnj )
]

+
[

f(Vnj )−f
(

wj− 12
(0;Vnj−1,V

n
j )
)]

dt=0.

Note that
(

f(Vnj )
)

j
are added for convenience. We can write this as

Vn+1j =Vnj −
∆t

∆x

(

Gn,+
j− 12

+Gn,−
j+ 12

)

, (3.2)

where
Gn,−
j+ 12

= f(Vn
j+ 12

)−f(Vnj ),

Gn,+
j− 12

= f(Vnj )−f(V
n
j− 12

),

and Vnj+1/2=wj+1/2(0;V
n
j ,V

n
j+1) and V

n
j−1/2=wj−1/2(0;V

n
j−1,V

n
j ) are the values at the interfaces

x= xj±1/2. Naturally in this case the Godunov scheme is conservative.
Let us now develop the Godunov scheme in the non-conservative case. Clearly we cannot

derive such a concise formulation of this scheme since no such function f(u) exists. Suppose
again that at time tn we are given an approximation, V

n
j , of the cell averages, U

n
j . Then we

solve exactly for all j∈Z the problem

ut+A(u)ux=0, (3.3)

u(x,0)=Vnj , x∈ (xj− 12
,xj+ 12

).

In order to find unique, entropic, solutions for this superposition of Riemann Problems we
make use of the Alouges-Merlet shock curves described in the previous section. At the inter-

faces, we can then determine an entropic solution, wj+1/2

(

x−xj+1/2
t ;Vnj ,V

n
j+1

)

, to the Riemann

Problem. Using this exact solution we can update the approximations, Vnj , by

Vn+1j =
∫ xj

x
j− 12

wj− 12

( x−xj− 12
∆tn

;Vnj−1,V
n
j

)

dx−
∫ x

j+ 12

xj

wj+ 12

( x−xj+ 12
∆tn

;Vnj ,V
n
j+1

)

dx.

This scheme can be rewritten in the form (3.2) where

Gn,−
j+ 12

=
1

∆tn

(

∫ x
j+ 12

xj

[

wj+ 12

( x−xj+ 12
∆tn

;Vnj ,V
n
j+1

)

−Vnj

]

dx

)

,
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Gn,+
j− 12

=
1

∆tn

(

∫ xj

x
j− 12

[

Vnj −wj− 12

( x−xj− 12
∆tn

;Vnj−1,V
n
j

)]

dx

)

.

In order to give more explicit formulas of the interfacial fluxes let us consider now 2×2 sys-
tems. However in principle what follows is still valid for general n×n systems.

3.1.1 Flux terms in 2×2 Systems

As it is well known, Riemann problems for 2×2 systems have different kinds of solution: 1-
discontinuity waves and 2-discontinuity waves, or 1-discontinuity waves and 2-rarefaction
waves, or ... etc.† Let us, for instance, assume that at the interface between the j-th and (j+1)-
th cell, the solution consists of a 1-discontinuity wave and a 2-discontinuity wave traveling
with speeds σ1 and σ2, respectively. The solution to the Riemann problem has then the form,

wj+ 12

( x

t
;Vnj ,V

n
j+1

)

=











Vnj ,
x
t <σ1,

V∗, σ1<
x
t <σ2,

Vnj+1,
x
t >σ2,

where V∗ is the intermediate state determined by the intersection of the 1-shock and 2-shock
curves (or contact discontinuity curves if the fields are linearly degenerate). Before calculating
the general form of these fluxes, let us demonstrate how these flux terms are calculated. Let us
assume for simplicity that σ160 and σ2>0. The interface flux becomes

Gn,+
j+ 12

=
1

∆tn

(

∫ xj+1

x
j+ 12

[

Vnj+1−wj+ 12

( x−xj+ 12
∆tn

;Vnj ,V
n
j+1

)]

dx

)

,

=
∫ ∆x
2∆tn

0

[

Vnj+1−wj+ 12

(

ξ;Vnj ,V
n
j+1

)]

dξ,

=
∫ σ2

0
Vnj+1−V

∗ dξ+
∫ ∆x
2∆tn

σ2
Vnj+1−V

n
j+1 dξ,

=σ2(V
n
j+1−V

∗),

where, in the second line above, we have used the change of variables ξ =
x−xj+1/2

∆tn
. Similarly,

we calculate

Gn,−
j+ 12

=σ1(V
∗−Vnj ).

Thus, we have calculated the flux terms for this specific case. More generally (σ1,σ2∈R), the
interfacial fluxes Gn,±j+1/2 are given by

Gn,+
j+ 12

=
1+sgn(σ2)

2
σ2(V

n
j+1−V

∗)+
1+sgn(σ1)

2
σ1(V

∗−Vnj ),

Gn,−
j+ 12

=
1−sgn(σ2)

2
σ2(V

n
j+1−V

∗)+
1−sgn(σ1)

2
σ1(V

∗−Vnj ).

Let us now consider the case where, at the interface located in xj+1/2, the solution consists
of a 1-rarefaction wave and a 2-discontinuity wave, traveling with velocity σ2. The solution to

†The solution can obviously consists of only a single k-simple wave. In this case we choose any of the flux terms
which contain this k-simple wave, since every case is reduced to the same flux.
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the Riemann problem then has the form,

w
( x

t
;Vnj ,V

n
j+1

)

=























Vnj ,
x
t <λ1(V

n
j ),

v
(

x
t

)

, λ1(V
n
j )<

x
t <λ1(V

∗),

V∗, λ1(V
∗)<

x
t <σ2,

Vnj+1,
x
t >σ2,

where V∗ is the intermediate state determined by the intersection of the 1-rarefaction and 2-
shock (or 2-Contact discontinuity) curves, and v(x/t) is the section of the 1-rarefaction curve
linking Vnj and V

∗. Again, before presenting the general form of the flux terms in this case,

let us show a sample calculation. For the sake of the notations, let us assume for instance that
σ2>0, λ1(V

n
j )60, and λ1(V

∗)>0. We repeat the above process and obtain

Gn,+
j+ 12

=
1

∆tn

(

∫ xj+1

x
j+ 12

[

Vnj+1−wj+ 12

( x−xj+ 12
∆tn

;Vnj ,V
n
j+1

)]

dx

)

,

=
∫ ∆x
2∆tn

0

[

Vnj+1−wj+ 12

(

ξ;Vnj ,V
n
j+1

)]

dξ,

=
∫ λ1(V

∗)

0
Vnj+1−v(ξ)dξ+

∫ σ2

λ1(V∗)
Vnj+1−V

∗ dξ,
∫ ∆x
2∆tn

σ2
Vnj+1−V

n
j+1 dξ

=λ1(V
∗)Vnj+1−

∫ λ1(V
∗)

0
v(ξ)dξ+σ2(V

n
j+1−V

∗)−λ1(V
∗)(Vnj+1−V

∗),

=σ2(V
n
j+1−V

∗)−
∫ λ1(V

∗)

0
v(ξ)−V∗ dξ,

where again we have used the change of variables ξ =
x−xj+1/2

∆tn
in the second line. Similarly, we

calculate

Gn,−
j+ 12

=
∫ 0

λ1(V
n
j+1)
v(ξ)−Vnj dξ.

Generalizing this process for arbitrary choices of σ2, etc., the interfacial fluxes G
n,±
j+1/2 are given

by

Gn,+
j+ 12

=
1+sgn(σ2)

2
σ2(V

n
j+1−V

∗)−
1+sgn(λ1(V

∗))

2

∫ λ1(V
∗)

0
v(ξ)−V∗ dξ

+
1+sgn(λ1(V

n
j ))

2

∫ λ1(V
n
j )

0
v(ξ)−Vnj dξ,

Gn,−
j+ 12

=
1−sgn(σ2)

2
σ2(V

n
j+1−V

∗)−
1−sgn(λ1(V

∗))

2

∫ 0

λ1(V∗)
v(ξ)−V∗ dξ

+
1−sgn(λ1(V

n
j ))

2

∫ 0

λ1(V
n
j )
v(ξ)−Vnj dξ.

The remaining cases follow analogously from these.

An implementation of this scheme for 2×2 systems follows the blueprint:
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1. At each cell interface xj+1/2, we numerically compute the 1-rarefaction and 1-shock curves
(or 1-Contact discontinuity curves for linearly degenerate fields) from the state Vnj , and

the 2-rarefaction and admissible 2-shock curve (or 2-Contact discontinuity curves for
linearly degenerate fields) from the state Vnj+1, by using their corresponding differential

systems‡. Then an entropy condition is used to select admissible shock and rarefaction
waves (Lax shock condition in our case).

2. We determine the intermediate state at the (unique) intersection of these curves and con-
struct the flux terms Gn,±j+1/2 using the equations described above.

3. We then update the solution to time tn+1 using (3.2).

It is clear that this procedure is extremely costly since at each cell interface we must in-
tegrate four curves numerically and find their point of intersection. This is the unfortunate
drawback of using an exact Riemann solver. One possible way to reduce the complexity of this
scheme is to replace the exact Riemann solver with an approximate or linearized one, as it is
done in the Roe solver [30]. Although this is an extremely important point for real, physical
applications, the question of how to reduce computational complexity is not the focus of this
paper.

3.2 DLM Godunov Scheme using Alouges-Merlet Shock Curves

The question of how to implement the DLM theory numerically has been thoroughly stud-
ied, first by Toumi [35] then by Parés [27]. Specifically, in [9], Castro and Parés present a
non-conservative (but path-conservative) Godunov scheme for non-conservative hyperbolic
systems using a Riemann solver based on DLM’s theory. The authors show that the scheme
has the form (3.2), with the flux terms given by

Gn,+
j+ 12

=
∫ 1

0
A(ψ(s;Vn

j+ 12
,Vnj+1))

∂ψ

∂s
(s;Vn

j+ 12
,Vnj+1)ds,

Gn,−
j+ 12

=
∫ 1

0
A(ψ(s;Vnj ,V

n
j+ 12

))
∂ψ

∂s
(s;Vnj ,V

n
j+ 12

)ds,

where
(

Vnj+1/2
)

j
are the interface values of the solution to (3.3). In the case where the solution

to the Riemann problem is discontinuous at an interface, we replace Vnj+1/2 in G
+,n
j+1/2 by the

right limit of the discontinuity, and by the left limit of the discontinuity in G−,n
j+1/2. The path

ψ(s;uL,uR) is chosen to be the composition of the k-Simple curves which we use to solve the
Riemann problem with left state uL, and right state uR. Using the assumptions stated above
on the choice of paths, the only missing piece of information we need to fully construct this
family of paths is how we select the shock curves. The approximate shock curves of Alouges
and Merlet enable us to complete this family of paths.
The implementation of this scheme for 2×2 systems is entirely analogous to the blueprint

detail above for the Godunov scheme using the Alouges-Merlet approximate shock curves:

1. At a cell interface, say xj+1/2, we numerically compute the 1-rarefaction and 1-shock
curves (or 1-contact discontinuity curves for linearly degenerate fields) at the state Vnj ,

and the 2-rarefaction and admissible 2-shock curve (or 2-Contact discontinuity curves for
linearly degenerate fields) at the state Vnj+1 by using their defining differential equations

‡In our implementation, a Runge-Kutta 4 method is used to numerically solve these differential systems.
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(the shock curves we use are the Alouges-Merlet approximate shock curves). Then an
entropy condition is used to select admissible shock and rarefaction waves (Lax shock
condition in our case).

2. We determine the intermediate state at the (unique) intersection of these curves and con-
struct the paths ψ(s;Vnj ,V

n
j+ 12

) and ψ(s;Vn
j+ 12
,Vnj+1) as we described above.

3. We calculate the flux terms Gn,±j+1/2 using the equations above.

4. We then update the solution to time tn+1 using (3.2).

Again, this scheme suffers from the same high levels of computational complexity as the
Godunov scheme presented in the previous section. Indeed, in order to input the path ψ into
the expressions for the flux terms, we again need to integrate the rarefaction/shock curves
numerically.

Remark 3.1. The schemes presented above are all derived from the classical Godunov scheme
(see [19] for instance). As a consequence the stability analysis can easily be deduced from
the analysis of the Godunov scheme for conservative hyperbolic systems. The convergence
analysis is more complex due to the non-conservativity of the scheme. In particular, the con-
vergence of the scheme to the exact solution (for a fixed path) is not a priori guarantied. The
origin of this issue is the complex connection between the numerical viscosity and the measure
source term (supported by the discontinuity lines) in the path-conservative scheme equivalent
equation [10], [1] and [21]. The approach developed in this paper does not a priori fix this
important open problem. We however conjecture that for instance the use of the zero-diffusive
reservoir technique developed in [3], [4], applied to the above Godunov-like scheme could fix
this problem.

3.3 Numerical Experiments

3.3.1 The ShallowWater Equations

We first implement a Godunov scheme using the exact Riemann solver based on the Alouges-
Merlet approximate shock curves, then the DLM Godunov scheme, again using the Alouges-
Merlet approximate shock curves, in order to solve the shallow water equations. This system
is in fact conservative and hence we expect numerical solutions produced by these schemes
to agree with the exact one. This is due to the fact that in the conservative case the Alouges-
Merlet approximate shock curves recover the correct shock curves, and the flux terms of the
DLM Godunov scheme will reduce to the classical fluxes of the Godunov scheme for systems
of conservation laws.
We consider the Riemann problemwith left state uL=(5,0)T and right state uR=(1,0)T . The

reader can easily verify that for this system both the 1-field and 2-field are genuinely nonlinear.
Hence, using the results from Section 2, we can construct the k-rarefaction and admissible k-
shock curves for k=1,2. In Figure 4 we see that the 1-rarefaction and 2-shock curves intersect
at the intermediate state u1≈ (2.54,10.22)T . Thus, the solution to this Riemann problem will
consist of a 1-rarefaction wave separating uL and u1, and a 2-shock wave separating u1 and
uR.
In Figure 5, we represent the solutions obtained by the two schemes. We examine the order

of convergence of these two schemes in Tables 1 and 2, where the solution of reference was
obtained with a VFFC solver (see [17]) with CFL number 0.99 and N=1280. From these tables
we can see that these schemes converge to the reference solution with, as expected, an order of
convergence close to 1.
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Figure 4: We consider the Riemann problem for the shallow water equations with left state uL=(5,0)T , and right state

uR=(1,0)T. We plot the 1-shock and 1-rarefaction curves at the left state and the 2-shock and 2-rarefaction curves at

the right state. We determine the intermediate state u1∼ (2.54,10.22)T at the intersection of the 1-rarefaction curve
and 2-shock curve.
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Figure 5: Comparison of numerical solutions of the Riemann problem for the Shallow Water Equations. A VFFC solver,
a Godunov scheme based on Alouges-Merlet’s approximate shock curves, and the DLM Godunov scheme based on
Alouges-Merlet’s approximate shock curves are used. Shown at t=0.05, with N=200.

3.3.2 A Non-Conservative System

As expected, the two presented schemes recover the correct solutionswhere the studied system
is a conservative systemwritten in a non-conservative form. Let us now proceed to implement
them in the truly non-conservative case. We consider the following non-conservative system,

ut+uux+uvx=0,

vt+vux+vvx=0.
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N h Error 1, Order, Error 2, Order,

e1= ||V−Vre f ||2
∆loge1
∆logh e2= ||V−Vre f ||∞

∆loge2
∆logh

40 5.12E-2 4.48E-1 – 3.50E-1 –
80 2.53E-2 1.96E-1 1.17 1.47E-1 1.23
160 1.26E-2 1.07E-1 0.87 7.80E-2 0.91
320 6.27E-3 4.82E-2 1.14 3.60E-2 1.11
640 3.13E-3 1.87E-2 1.34 1.42E-2 1.34

Table 1: Order of convergence the Godunov scheme using the Alouges-Merlet approximate shock curves. Riemann

problem with left state uL=(5,0)T and right state uR=(1,0)T. Order of convergence found with respect to the L2

norm, ||·||2, and the L∞ norm, ||·||∞. Data calculated at t=0.04 and x∈ [−1,1].

N h Error 1, Order, Error 2, Order,

e1= ||V−Vre f ||2
∆loge1
∆logh e2= ||V−Vre f ||∞

∆loge2
∆logh

40 5.12E-2 4.38E-1 – 3.42E-1 –
80 2.53E-2 1.91E-1 1.17 1.41E-1 1.25
160 1.26E-2 1.03E-1 0.86 7.48E-2 0.90
320 6.27E-3 4.62E-2 1.15 3.42E-2 1.12
640 3.13E-3 1.79E-2 1.37 1.32E-2 1.37

Table 2: Order of convergence of the Godunov schemes using Alouges-Merlet approximate shock curves as DLM’s

paths. Riemann problem with left state uL=(5,0)T and right state uR=(1,0)T. Order of convergence is found with

respect to the L2 norm, ||·||2, and the L∞ norm, ||·||∞. Data calculated at t=0.04 and x∈ [−1,1].

This systems was studied by C. Berthon in [6] and finds its origin in bifluid flows. The eigen-
values of this system are λ1= 0 and λ2 = u+v. Therefore, this system is strictly hyperbolic
when u 6=−v. The 1-field is linearly degenerate for this system and therefore we will consider
the 1-Contact discontinuity curve in our numerical solvers. The reader can also verify that the
2-field is genuinely nonlinear. We consider a Riemann problem with left state uL=(4,3)T and
right state uR=(2,0.5)T . The numerical solution is shown in Figure 6.
As expected, the numerical solutions produced by these two schemes are very close, even

in this non-conservative case. As remarked in [21], a non-conservative form of the Godunov-
like scheme used here can lead to the convergence of the numerical solution to the solution of
an inhomogeneous system with a Borel measure source term with support on the line of dis-
continuity of the order of the entropy dissipation [6]. That is, in general “limhuh 6=uexact”. This
is in particular what is observed in Abgrall-Karni [1], where examples of Parès’ path conser-
vative schemes converging to wrong solutions are exhibited (numerical paths do not converge
to the chosen ones). However, from Figure 6 we see that in this case the measure source term
is zero and indeed limhuh=uexact. This is an interesting point as we then have exhibited a non-
trivial example where the non-conservative scheme is convergent to the exact solution. The question
of whether this scheme will converge to the exact solution for any non-conservative system is
however still open and is the topic of an on-going research.

3.3.3 Equivalence of the schemes

In fact, the two Godunov schemes presented above are equivalent. In order to show it, we
must verify that their flux terms are equivalent, i.e. these fluxes are just a single flux written
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Figure 6: Comparison of the Alouges-Merlet shock curve-based Godunov Solver and the DLM Godunov solver, using
the Alouges-Merlet shock curves, for the genuinely non-conservative system. The initial profile is a Riemann problem

with uL=(4,3)T and uR=(2,0.5)T. Shown at t=0.06 with N=400.

in different ways. To this end, let us consider an interface at which the Riemann problem
contains a k-shock wave separating the states u− on the left and u+ on the right, traveling
with positive speed σ̃ > 0. At this interface, the positive flux term of the Godunov scheme
using the approximate shock curves of Alouges and Merlet will contain the term σ̃(u+−u−).
Also, in the Godunov scheme based on DLM theory, the path ψwill contain the segment of the
Alouges-Merlet approximate k-shock curve, parametrized by u(σ), which satisfies,







A(u(σ))
du

dσ
=σ
du

dσ
+u(σ)−u−,

u(λk(u
−))=u−.

So the positive flux for the DLM Godunov scheme will contain the term

∫ σ̃

λk(u−)
A(u(σ))

du

dσ
dσ.

Using the definition of the approximate shock curve yields,

∫ σ̃

λk(u−)
A(u(σ))

du

dσ
dσ =

∫ σ̃

λk(u−)

(

σ
du

dσ
+u(σ)−u−

)

dσ

=
[

σ(u(σ)−u−)
∣

∣

σ̃

λk(u−)

= σ̃(u+−u−).

Thus, the positive flux term in the DLM Godunov scheme also contains the term σ̃(u+−u−).
We can repeat this argument for shock waves which travel with negative speeds. Moreover,
this argument can be used in a similar fashion to show that contributions in the flux terms
due to contact discontinuities and rarefaction waves will be the same in both schemes. Finally,
this tells us that the flux terms in both schemes are equivalent. Note that, the slight numerical
differences are due to the fact that although these flux terms are theoretically the same, they are
calculated numerically in entirely different ways. This remark does not, unfortunately, plead
in favour of the presented Godunov-like scheme (Section 3.1) as the path-conservative Parès
scheme is known in general to converge to wrong solutions.
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4 Concluding remarks

In this paper, we have proposed different numerical approaches for solving non-conservative
hyperbolic systems. The proposed schemes are designed using exact Riemann solvers which
utilize the definitions recently proposed by Alouges and Merlet of approximate shock curves
in non-conservative systems. These shock curves have proven to be useful in several ways.
They are accurate approximations of the shock curves constructed by Bianchini and Bressan
in their vanishing viscosity process, so that the solutions constructed using these approximate
shock curves are accurate approximations of the vanishing viscosity solutions. Using this fact,
we first constructed a Godunov scheme for non-conservative hyperbolic systems using an ex-
act Riemann solver which implements these approximate shock curves. On the other hand,
we also know that these approximate shock curves approximate the viscous profiles and thus
are useful in the theory of non-conservative products introduced by Dal Maso, LeFloch, and
Murat. This fact gives us the possibility to construct several numerical schemes for NCHSs
using the framework proposed by Castro, Parés, et. al. An important result is that we are
able to show that the two Godunov schemes we have constructed, which use exact Riemann
solvers, are in fact equivalent numerical schemes. This result shows a subtle connection be-
tween these two different approaches to the analysis of NCHSs. An interesting result we have
shown is that these numerical schemes, when applied to a particular non-conservative system,
in fact converge to the exact solution. This is an interesting result as it seems that, in this case,
these schemes overcome the problem of convergence of non-conservative schemes as stud-
ied by Hou and LeFloch [21], and Abgrall and Karni [1]. More generally, the convergence to
the correct solution of non-conservative schemes approximating non-conservative hyperbolic
systems is still an open problem. However, we conjecture that when the numerical viscosity
matrix and the matrix A commute (which is typically satisfied for Roe or VFFC schemes with
a “Karni-like” correction [22]), the numerical solution can converge to the exact solution, if a
combination of Alouges&Merlet’s shock curves is chosen as a path. This will be studied in a
forthcoming paper.

The main issue that arises in the implementation of these numerical schemes is their ex-
treme computational cost. We indeed have to determine numerically the rarefaction, shock,
and contact discontinuity curves of each state, at each interface of the mesh. This process in-
volves numerically solving up to 2n ODEs per state. It is clear that our primary objective for
further research of these numerical schemes is to design a scheme which produces accurate
numerical results but avoids this level of computational complexity (Roe- [30] and VFFC-type
schemes [17]).

Extension of the proposed approach to n×n systems, although simple in principle becomes
computationally challenging. Moreover, because the shock curves defined by Alouges and
Merlet are merely approximations of the shock curves described by Bianchini and Bressan, it
is still desirable to construct a numerical scheme which implements the true shock curves of
Bianchini and Bressan directly. However, again due to the complexity of their derivation in [7],
this is still challenging.

Another topic for future research is the question of how to extend these numerical schemes
to the multidimensional case. Using the theory of Dal Maso, LeFloch, and Murat, Parés, Cas-
tro, et. al. addressed this equation in [8], so our first goal will be to use this framework to
extend our one-dimensional numerical scheme to the multidimensional case. Similarly, we are
also interested in the construction of high-order schemes.

Acknowledgment. The authors would like to thank the anonymous referees for their con-
structive comments.
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pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sci.
Paris Sér. I Math., 322(10):981–988, 1996.

[18] J.-M. Ghidaglia, A. Kumbaro, and G. Le Coq. On the numerical solution to two fluid models via a
cell centered finite volume method. Eur. J. Mech. B Fluids, 20(6):841–867, 2001.

[19] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws,
volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

[20] S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of the
equations of hydrodynamics. Mat. Sb. (N.S.), 47 (89):271–306, 1959.

[21] T. Y. Hou and P. G. LeFloch. Why nonconservative schemes converge to wrong solutions: error
analysis. Math. Comp., 62(206):497–530, 1994.

[22] S. Karni. Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal., 29(6):1592–1609,
1992.

[23] P. G. LeFloch. Shock waves for nonlinear hyperbolic systems in nonconservative form. preprint
593, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, 1989.

[24] P. G. LeFloch and M. Mohammadian. Why many theories of shock waves are necessary: kinetic

26



functions, equivalent equations, and fourth-ordermodels. J. Comput. Phys., 227(8):4162–4189, 2008.
[25] G. Mophou and P. Poullet. A split Godunov scheme for solving one-dimensional hyperbolic sys-

tems in a nonconservative form. SIAM J. Numer. Anal., 40(1):1–25 (electronic), 2002.
[26] M. Pailha andO. Pouliquen. A two-phase flow description of the initiation of underwater granular

avalanches. J. Fluid Mech., 633:115–135, 2009.
[27] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework.

SIAM J. Numer. Anal., 44(1):300–321 (electronic), 2006.
[28] S. Rhebergen, O. Bokhove, and J. J. W. van der Vegt. Discontinuous Galerkin finite element meth-

ods for hyperbolic nonconservative partial differential equations. J. Comput. Phys., 227(3):1887–
1922, 2008.

[29] S. Rhebergen, O. Bokhove, and J. J. W. van der Vegt. Discontinuous Galerkin finite element method
for shallow two-phase flows. Comput. Methods Appl. Mech. Engrg., 198(5-8):819–830, 2009.

[30] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput.
Phys., 43(2):357–372, 1981.

[31] R. Saurel and R. Abgrall. A multiphase Godunov method for compressible multifluid and multi-
phase flows. J. Comput. Phys., 150(2):425–467, 1999.
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