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Abstract

This paper is dedicated to the derivation of multilevel Schwarz Waveform Relax-
ation (SWR) Domain Decomposition Methods (DDM) in real- and imaginary-
time for the NonLinear Schrödinger Equation (NLSE). In imaginary-time, it is
shown that the multilevel SWR-DDM accelerates the convergence compared to
the one-level SWR-DDM, resulting in an important reduction of the computa-
tional time and memory storage. In real-time, the method requires in addition
the storage of the solution in overlapping zones at any time, but on coarser dis-
cretization levels. The method is numerically validated on the Classical SWR
and Robin-based SWR methods, but can however be applied to any SWR-DDM
approach.

Keywords: Domain decomposition method, Schwarz waveform relaxation
algorithm, multilevel preconditioning, nonlinear Schrödinger equation,
dynamics, stationary states

1. Introduction

This paper is devoted to the derivation of a multilevel Schwarz Waveform
Relaxation (SWR) method for computing both in real- and imaginary-time the
solution to the NonLinear Schrödinger Equation (NLSE) that models many
physics problems, including nonlinear optics and Bose-Einstein condensates [1,
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2, 3, 4, 5, 6, 7]. The proposed method is also applicable to the Linear Schrödinger
Equation (LSE) in real- and imaginary-time, in particular for solving intense and
short laser-molecule interaction including ionization processes. In this frame-
work real-space numerical methods are largely used, see [8, 9, 10, 11], and DDM
method is then the center of main interests. Domain decomposition SWR meth-
ods for solving wave equations have a long history from the classical SWR
method with overlapping zones to optimal version without overlap (see e.g.
[12, 13, 8, 14, 15, 16, 17, 18, 19, 20] as well as http://www.ddm.org, for a com-
plete review and references about this method). Basically in SWR methods,
the transmission conditions at the subdomain interfaces are derived from the
solution to the corresponding wave equation, usually using Dirichlet boundary
conditions (Classical SWR), Robin boundary conditions, transparent or high-
order Absorbing Boundary Conditions (ABCs) including Dirichlet-to-Neumann
(DtN) transmitting conditions (Optimal SWR), or Perfectly Matched Layers
[21, 8, 22]. We also refer to [21, 23, 24, 25] for some reviews on truncation
techniques for quantum wave equations in infinite domains. SWR methods can
be a priori applied to any type of wave equation [26, 27, 15]. In this paper, we
focus on multilevel SWR for the NLSE. More specifically, we consider the cubic
time-dependent (real-time) NLSE set on Rd, with d ≥ 1, i∂tφ = −4φ+ V (x)φ+ κ|φ|2φ, x ∈ Rd, t > 0,

φ(x, 0) = φ0(x), x ∈ Rd.
(1)

The real-valued space-dependent smooth potential V is positive for attractive
interactions and negative for repulsive interactions. The nonlinearity strength
κ is a real-valued constant which is positive for a focusing nonlinearity and
negative for a defocusing nonlinearity. The function φ0 is a given initial data.
In the sequel of the paper, P(|φ|) denotes the nonlinear operator

P(|φ|)φ =
(
i∂t +4− V (x)− κ|φ|2

)
φ. (2)

Compared to the real-time dynamics, the imaginary-time formulation [1, 2, 3, 4,
5] is used to compute the stationary solutions to the NLSE. The corresponding
method is referred to as Continuous Normalized Gradient Flow (CNGF) formu-
lation [1, 3, 4, 5] in the Mathematics literature and imaginary-time method in the
Physics literature. The current paper is an extension of [12] where we focus on
multilevel preconditioning. In the imaginary-time framework (stationary state
computation), we refer to as preconditioning the storage and use of a converged
solution at a lower (coarser) level for i) initializing the CNGF algorithm (Cauchy
data selection) and for ii) deriving the transmission conditions in the overlap-
ping zone interfaces at an upper (finer) level. In real-time (computation of the
dynamics), preconditioning also includes the storage of the converged solution
in the overlapping zones, at any time, for accurately deriving the transmission
conditions. We numerically show that the convergence of the SWR method
is improved in both cases. Although, the acceleration of the convergence is
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moderate in imaginary-time, it is however shown that the computational cost
per Schwarz iteration, that is the CNGF convergence, is strongly accelerated
compared to unpreconditioned SWR methods.

The paper is organized as follows. In Subsections 2.1 and 2.2, we recall some
results about SWR methods in real- and imaginary-time. In Subsection 2.2, we
provide some informations about the Continuous Normalized Gradient Flow
(CNGF) method for solving the stationary NLSE. Subsection 2.3 gives some
notations about the multilevel approximation. In Section 3, we describe the
two-level SWR method in imaginary-time and next in real-time. A discussion
on the computational complexity is also addressed. Section 4 is devoted to some
numerical experiments where two types of results are presented: i) convergence
rates for Schwarz algorithms and ii) CNGF convergence time in imaginary-time.
We finally conclude in Section 5.

2. SWR methods in real- and imaginary-time; notations

2.1. SWR algorithms in real-time

We recall the basics of SWR algorithms which are presented for two subdo-
mains for the sake of conciseness. We introduce two open sets Ω±ε such that Rd =
Ω+
ε ∪ Ω−ε , with overlapping region Ω+

ε ∩ Ω−ε , where ε is a (small) non-negative
parameter. In 1-d (d = 1), the domains of interest read: Ω+

ε =
(
− ∞, ε/2

)
,

Ω−ε =
(
− ε/2,∞

)
and R = Ω+

ε ∪Ω−ε . with Ω+
ε ∩Ω−ε =

(
− ε/2, ε/2

)
. We denote

by φ± the solution to the time-dependent GPE in Ω±ε . Solving the NLSE by a
Schwarz waveform domain decomposition [8] requires some transmission condi-
tions at the subdomain interfaces. More specifically, for any Schwarz iteration
k ≥ 1, the equation in Ω±ε reads, for a given T > 0,

(
i∂t +4− V − κ

∣∣φ±,(k)
∣∣2)φ±,(k) = 0, on Ω±ε × (0, T ),

B±φ±,(k) = B±φ∓,(k−1), on Γ±ε × (0, T ),

φ±,(k)(·, 0) = φ0(·) on Ω±ε ,

(3)

where Γ±ε = ∂Ω±ε . The notation φ±,(k) stands for the solution φ± in Ω±ε × (0, T )
at Schwarz iteration k. Initially, φ±,(0) are two given functions defined in Ω±ε .
We denote by B± an operator characterizing the type of SWR algorithm. In the
CSWR case, B± is the identity operator and B± = ∂n± + γId (γ ∈ R∗+) for the
Robin-like SWR method. For the optimal SWR algorithm, B± can be a local
or a nonlocal approximation of the DtN operator (see [8, 22]). The convergence
criterion for the Schwarz DDM is given by∥∥ ‖φ+,(k)

|Γ+
ε
− φ−,(k)

|Γ−
ε
‖∞,Γε

∥∥
L2(0,T )

≤ δSc. (4)

typically with δSc = 10−14 (”Sc” is added for Schwarz). The convergence occurs
at an iteration denoted by kcvg and the converged global solution in real time,
is given by φcvg := φ(kcvg).
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2.2. SWR algorithms in imaginary-time

The computation of stationary states, e.g. ground states and excited states,
corresponds [5] to computing a real number µ and a spatially varying eigenfunc-
tion φ satisfying the equation

µφ(x) = −4φ(x) + V (x)φ(x) + κφ(x),x ∈ Rd,

with the L2-norm constraint

||φ||2L2(Rd) :=

∫
Rd
|φ(x)|2dx = 1.

The total energy of the system is defined as

Eκ(χ) :=

∫
Rd
|∇χ(x)|2 + V (x)|χ(x)|2 +

κ

2
|χ(x)|4dx. (5)

A stationary state is then such that Eκ(φ) := min||χ||
L2(Rd)=1Eκ(χ). Once φ is

obtained, the eigenvalue µ is given by

µ := µκ(φ) = Eκ(φ) +

∫
Rd

κ

2
|φ(x)|4dx.

To determine µ and φ, a standard method is the imaginary-time/CNGF method
[1, 3, 4, 5] which consists in solving (1) in imaginary-time, i.e. setting t → it.
This leads to the iterative algorithm

∂tφ(x, t) = −∇φ∗Eκ(φ) = 4φ(x, t)− V (x)φ(x, t)− κ|φ|2φ(x, t), x ∈ Rd, tn < t < tn+1,

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

||φ(·, t−n+1)||L2(Rd)

,

φ(x, t = 0) = φ0(x), x ∈ Rd,with ||φ0||2L2(Rd) = 1.

(6)

In the above equation, t0 := 0 < t1 < ... < tn+1 < ... are the discretization
times (that we assume to be equally spaced here), φ0 is an initial guess for
the time marching algorithm discretizing the projected gradient method and
limt→t±n φ(x, t) = φ(x, t±n ). The corresponding semi-discrete energy is dimin-
ishing [5] for a given positive potential V and a positive interaction strength
κ.

Within the SWR formalism, we then have to minimize an energy at each
Schwarz iteration k ≥ 1. This is achieved at an imaginary-time, denoted by
T (k) > 0, where for t > T (k), the error ‖φ±(·, T (k)) − φ±(·, t)‖L2(Rd) is small
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enough. For a two-subdomains decomposition, we then solve

∂tφ
±,(k) = 4φ±,(k) − V φ±,(k) − κ|φ±,(k)|2φ±,(k), on Ω±ε × (tn, tn+1),

B±φ±,(k) = B±φ∓,(k−1), on Γ±ε × (tn, tn+1),

φ±,(k)(·, t = 0) = φ0(·), on Ω±ε ,

φ±,(k)(·, tn+1) = φ±,(k)(·, t+n+1) =
φ̃±,(k)(·,t−n+1)

||φ̃−,(k)(·,t−n+1)+φ̃+,(k)(·,t−n+1)||
L2(Rd)

, in Ω±ε ,

(7)

where again, t0 := 0 < t1 < ... < tn+1 < ... are uniformly spaced discrete times,

with constant time step ∆t, and φ̃+ (resp. φ̃−) denotes the extension to Rd of
φ+ (resp. φ−). Regarding the CNGF convergence criterion for a given Schwarz
iteration k, we stop the computation when the error between the two numerical
solutions φn,(k) and φn+1,(k) respectively related to two successive time steps tn
and tn+1 is small enough

||φn+1,(k) − φn,(k)||∞ ≤ δ,

where δ is a small parameter and ‖φ‖∞ := supx∈Rd |φ(x)|. At the CNGF con-
vergence, the stopping time is such that: T (k) = T cvg,(k) := ncvg,(k)∆t for a
converged solution φcvg,(k) reconstructed from the two subdomains solutions
φ±,cvg,(k). The convergence criterion for the Schwarz DDM is set by the con-
straint ∥∥ ‖φ+,cvg,(k)

|Γ+
ε

− φ−,cvg,(k)

|Γ−
ε

‖∞,Γε
∥∥
L2(0,T (kcvg))

≤ δSc. (8)

The convergence of the whole iterative algorithm is obtained at Schwarz iteration
kcvg. Then, one gets the converged global solution in imaginary time which is
denoted φcvg := φcvg,(kcvg) (e.g. with δSc = 10−14). Notice that the converged
solution in real and imaginary time are both denoted by φcvg. However the
iterative algorithm in imaginary is naturally more complex as it contains a
CNFG process. The framework (real or imaginary time) allows for avoiding any
confusion about the meaning of φcvg.

2.3. Notations and discretization

We introduce here some important notations. The spatial domain Rd (d ≥ 1)
is approximated by a uniform finite volume/difference grids Ω` with cell volume
hd` , where h` = h0/2

` (` ≥ 1) and h0 ∈ R∗ corresponds to the one-dimensional
space step of the coarsest grid. For instance, for d = 3, we have

Ω` = ∪(i,j,k)∈Z3

[
ih`, (i+ 1)h`

]
×
[
jh`, (j + 1)h`

]
×
[
kh`, (k + 1)h`

]
.

The operator Pm;`
h designates a projection operator from the grid Ωm to Ω`,

where m > `. In practice, Pm;`
h is an average operator defined iteratively from
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Ωm to Ω`. Conversely, we introduce I`;mh , for m > `, as a polynomial interpola-
tion operator from Ω` to Ωm. In practice, the standard Lagrangian interpolation
is used in this paper. Moreover, Ω±ε,` now denotes the uniform subgrid such that

Ω` = Ω+
ε,`∪Ω−ε,` on which are defined the semi-discrete time-dependent solutions

φ
±,(k)
` (t) =

{
φ
±,(k)
`,j (t)

}
j

at Schwarz iteration k and where j is a multi-index in

Zd, which is denoted by j ∈ Z when d = 1. For the sake of simplicity we

also use the notation φ
±,(k)
` =

{
φ
±,(k)
`,j

}
j

for denoting φ
±,(k)
` (t) and we now set

Ω±` = Ω±ε,`. The reconstructed solution φ
(k)
` on Ω` is

φ
(k)
` :=

φ̃
+,(k)
` + φ̃

−,(k)
`

||φ̃+,(k)
` + φ̃

−,(k)
` ||`2(Ω`)

, (9)

where φ̃
±,(k)
` denotes the extension by 0 of φ

±,(k)
` to Ω∓` and ||φ̃`||`2(Ω`) is the

(discrete) `2-norm on Ω`.

3. Multilevel SWR methods

A two-level preconditioning technique is derived by using i) the converged
solution computed at a lower (coarser) level and ii) interpolation operations
from Ω±m to Ω±` , with m > `.

3.1. Two-level SWR method in imaginary-time

Let us assume that an approximation fp;` =
{
fp;`,j

}
j

of the eigenfunction fp

associated to the pth eigenvalue λp approximated by λp;` has been computed at
level ` on Ω`, that is

P`(|fp;`|)fp;` = λp;`fp;`,

and P` designates a discrete approximation of P on Ω` (see Section 4.1). For
m > `, using a domain decomposition on Ω±m as described above, leads to com-

puting time-dependent local wavefunctions φ
±,(k)
` =

{
φ
±,(k)
`,j

}
j
. This requires

• to choose a discrete initial guess φ
(k)
m (t = 0) =

{
φ

(k)
m,j(t = 0)

}
j
, for all

k ≥ 0,

• and to impose a transmission condition on φ
±,(k)
m (t) at the interface Γ±m

of Ω±m, for all t > 0.

To this end, we use i) fp;` and ii) the interpolation operator I`;mh . At level m > `

(hm < h`) and for all k ≥ 0, the initial guess is then built using I`;mh fp;` on Ω±m.
This is useful since the initial function in the minimization process at level m is
expected to be close to the converged solution fp;m, for m close to `. We then
impose

φ±,(k)
m (0) = I`;mh f±p;`, on Ω±m.
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We also want to benefit from the knowledge of fp;` for designing the transmission
conditions. We then impose at the subdomain interfaces, for all t ≥ 0

B±mφ±,(0)
m (t) = B±mI

`;m
h f±p;`, on Γ±m, (10)

where the operator B±m is an approximation of the operator B± on Γ±m. From
now on, all the necessary conditions to perform the Algorithm (7) on Ωm are
available. The preconditioning step ensures simultaneously that the initial guess
and transmission conditions are already close to the exact solution on the grids
Ω±m. Compared to a direct computation of fp;m, the additional workload con-
sists of computing and storing fp;`, which makes this approach quite simple and
attractive. The computational complexity aspects will be detailed in Section 3.4.

To summarize, from level ` to level m > `, we perform

1. At the lower level `: computation of fp;`, starting from an initial guess
φ±` (0) = φ±0;`.

2. At the upper level m: computation of fp;m, starting from φ±m(0) = I`;mh f±p;`
and with transmission conditions at Γ±m, by using I`;mh fp;` .

The expected gain is not the convergence acceleration of the SWR algorithm,
but rather the acceleration of the CNGF algorithm at each Schwarz iteration
k. Typically, this procedure is used between two successive levels, i.e. with
m = `+ 1.

3.2. Two-level SWR method in real-time

The method proposed above can be directly adapted from the imaginary-
to real-time. However, although the relative computational workload is roughly
the same compared to imaginary-time, additional data-storage is necessary as
seen below. Let us first assume that the converged solution to (1) is computed
on Ω±` × [0, T ] and its restriction to the interface Γ±` is stored in S±` , defined by

S±` =
{
φ±,cvg
`

(
tn`
)

at Γ±` , ∀n ∈ {0, · · · , L`}
}
, (11)

where i) φ±,cvg
` is the converged solution on Ω±` and ii) tn` = n∆t`, with n ∈

{0, · · · , L`}, ∆t`L` = T . These points are used for preconditioning the Schwarz
algorithm. More specifically on Ω±m, at Schwarz iteration k ≥ 1, we need to
impose transmission conditions at any time t ∈ [0, T ]. Note that unlike the
imaginary-time situation, the Cauchy data is a fixed given data, which restricts
the flexibility of the method in the real-time context. We then set the following
transmission conditions at any time tnm on Γ±m

• If ∆t` = ∆tm, we impose

B±φ±,(0)
m (tnm) = B±I`;mh φ±,cvg

`

(
tnm
)
, on Γ±m.
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• If ∆t` > ∆tm, it is necessary to interpolate in time the converged solution
on Ω±` computed at times tn` , for n ≤ L`, to get an estimate of I`;mh φ±,cvg

`

at times tnm, with n ≤ Lm, and where Lm < L`. The corresponding

interpolation operator is denoted by I`;m∆t and we then impose

B±φ±,(0)
m

(
tnm
)

= B±
(
I`;m∆t I

`;m
h

)
φ±,cvg
`

(
tnm
)
, on Γ±m.

• If ∆t` < ∆tm, we need to project in time the converged solution on Ω±`
computed at times tn` , for n ≤ L`, to get an estimate of I`;mh φ±,cvg

` at times
tnm with n ≤ Lm, and where L` < Lm. The corresponding interpolation

operator is denoted by P `;m∆t . We then impose

B±φ(0)

m|Γ±
m

(
tnm
)

= B±
(
P `;m∆t I

`;m
h

)
φ±,cvg
`

(
tnm
)
, on Γ±m.

Unlike the imaginary-time case, the real-time method then requires the storage
of the restriction to Γ±` of the converged solution on Ω±` , at any discrete time
tn` ≤ T . It is however important to notice that, in practice, we only interpolate
φ±,cvg
` in the overlapping region Γ±m and not in all Ω±m. The overall process is

summarized as follows. For all n ≤ L`,

1. At the lower level `: compute φ±,cvg
` (tn` ), starting from the Cauchy data

φ±` (0) = φ±0;`.

2. Store S±` as defined in (11).

3. At upper level m > `: compute φ±,cvg
m (tnm), with initial data φ±m(0) = φ±0;m

and transmission conditions I`;mh φ±,cvg
` , and imposed on Γ±m.

Again, this algorithm should preferably be applied to two successive levels (m =
`+ 1), as it is numerically shown in Section 4.

3.3. Multilevel method and computational complexity in real-time

The methodology presented above can easily be iteratively extended to q ≥ 3
levels, where q = m − `. We define Ωp → Ωp+1: φcvg

p → φcvg
p+1, with p ∈

{`, · · · ,m− 1}, N` < N`+1 < · · · < Nm, and where typically Np+1 ≈ 2dNp.
At any level p ∈ {`, · · · ,m}, the computational complexity for computing a

convergent solution is O(kcvg
p N

αp
p Kp), where Kp is the number of time iterations

to reach T and kcvg
p is the number of Schwarz iterations to converge without

preconditioning. The coefficient αp, that typically belongs to (1, 3), is related to
the complexity for solving the induced sparse linear system. Assume now that
the computation at level p was preconditioned by using the converged solution
at level p− 1, according to the procedure described in Subsections 2.1 and 3.2.
In this case, the number of Schwarz iterations to converge at the upper level
p is denoted by kcvg

p;p−1. It is expected that kcvg
p;p−1 ≤ kcvg

p , for all p ≤ m − 1.
Let us remark that the required space and time interpolations from one level to
another have a negligible computational complexity compared with any NLSE
solution and Schwarz iterations. We can now estimate the overall complexity
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in real-time, which is designated2 by Or`;m (from levels ` to m), of a q-level
preconditioned method by

Or`;m = O
(
kcvg
` Nα`

` K` +

m∑
p=`+1

kcvg
p;p−1N

αp
p Kp

)
. (12)

In addition, this procedure requires the storage at any level p ∈ {`, · · · ,m− 1}
of the converged solution φ±,cvg

p at any time and in the overlapping region of
Ω±p . The overall procedure is relevant as long as Or`;m � Orm, where Orm denotes

the computational complexity of the direct method (1-level) on Ω±m, that is if

Or`;m � Orm = O
(
kcvg
m Nαm

m Km

)
.

We recall that Nm = N`/2
d(m−`) and αm > 1.

3.4. Multilevel method and computational complexity in imaginary-time

In imaginary-time, the overall gain is expected to be higher compared to

real-time. First, at any Schwarz iteration k, let us denote by K
(k)
p the number

of imaginary-time iterations for the CNGF algorithm to converge at any unpre-

conditioned level p. We also denote by K
(k)
p;p−1 the number of imaginary-time

iterations for the CNGF algorithm to converge at level p with preconditioning
at the lower level p− 1, as described in subsections 2.2 and 3.1. Then, from one
level p− 1 to p, we expect that

• kcvg
p;p−1 ≤ kcvg

p , as in real-time, thanks to the transmission conditions,

• K(k)
p;p−1 � K

(k)
p , if p ≤ m. This additional outstanding property is due to

the fact that the interpolated solution at lower level p− 1 is taken as the
initial guess at the upper level p.

In conclusion, in imaginary-time, the overall complexity3 Oi`;m of a p-level
method from levels ` to m is given by

Oi`;m = O
(
Nα`
`

kcvg∑̀
k=1

K
(k)
` +

m∑
p=`+1

Nαp
p

kcvgp;p−1∑
k=1

K
(k)
p;p−1

)
, (13)

where Oim is the computational complexity of the direct method (1-level) on
Ω±m, i.e.

Oi`;m � Oim = O
(
Nαm
m

kcvgm∑
k=1

K(k)
m

)
.

We again recall that Nm = N`/2
d(m−`) and αm > 1.

2The upper index r in Or
`;m stands for real-time.

3The upper index i in Oi
`;m stands for imaginary-time.
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4. Numerical examples in 1-d

In the one-dimensional case and for a > 0, we introduce Ωa = (−a, a),
Ω+
a,ε = (−a, ε/2) and Ω−a,ε = (−ε/2, a), where ε is a (small compared to a)

parameter equal to the size of the overlapping region. Homogeneous Dirichlet
boundary conditions are imposed at ±a. We denote by {xj}j∈{1,··· ,N+

ε } the

grid nodes in Ω+
a,ε and {yj}j∈{1,··· ,N−

ε } those in Ω−a,ε. In the following tests, the
domains overlap on o nodes such that: xN+

ε
= y1+o and xN+

ε −o = y1. The
spatial mesh size h = h0 is assumed to be constant and then ε = (o−1)h, which
is the length of the overlapping zone.

4.1. Discrete SWR methods in real- and imaginary-time

At a given level and in real-time, we consider the following Crank-Nicolson
scheme [28]. Denoting φ±,n,(k) the approximate solution in Ω± at time tn with
n ≥ 0 and at Schwarz iteration k ≥ 0, we get

• For the Classical SWR-DDM (denoted by CSWR-DDM)

i
φ±,n+1,(k) − φ±,n,(k)

∆t
= −∂2

x

φ±,n+1,(k) + φ±,n,(k)

2
+ V (x)

φ±,n+1,(k) + φ±,n,(k)

2

+κ|φ±,n+1,(k) + φ±,n,(k)|2
φ±,n+1,(k) + φ±,n,(k)

8
= 0, in Ω±a,ε,

φ
±,n+1,(k)
±ε/2 = φ

∓,n+1,(k−1)
±ε/2 , on

{
± ε/2

}
.

• For the SWR-DDM with Robin-type transmission conditions(
∂n± + γ

)
φ
n+1,(k)
±,ε/2 =

(
∂n± + γ

)
φ
∓,n+1,(k−1)
ε/2 , on

{
± ε/2

}
,

for a given parameter γ ∈ R∗ and where n± denotes the time index.

In imaginary-time, the basic principle consists in replacing t→ it and ∆t→ i∆t
in the above scheme. The second-order spatial derivative is approximated by
using a 3 point-scheme. We again refer to [12] for details about SWR methods
in imaginary-time. As the CNGF method is a minimization technique, it is
important to note that at each Schwarz iteration a convergence criterion has
to be imposed to ensure the convergence of the minimizer. More specifically,
denoting by φ̃(k) the imaginary-time solution of (3) at Schwarz iteration k in
Ωa, the imaginary-time iterations are stopped when, for n ≥ 0,

‖φ̃(k)(·, t−n+1)− φ̃(k)(·, tn)‖L2(Ωa) ≤ δ, (14)

where δ is a very small positive parameter.
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4.2. Numerical tests in imaginary-time

In this series of tests, we consider a one-dimensional optical lattice with po-
tential V (x) = x2/2 + 25 sin2(πx/2) and nonlinearity strength κ = 250. The
initial data is given by φ0(x) = exp(−x2/2)π−1/4. The two subdomains are
Ω+
a,ε = (−a, ε/2) and Ω−a,ε = (−ε/2, a), with a = 16. The DDM algorithms are

the CSWR and Robin-type SWR methods. The coarsest level has N0 = 27

nodes and h0 = (b − a)/(N0 − 1). This level is refereed to as level ` = 0. We
successively compare the rate of convergence or residual history (8), at level
m > 0, i.e. on upper levels Ωm, with hm ≈ h0/2

m and m = 1, 2, 3. We then
have Nm = 2mN0, N+

m = o + 2m−1N0 and N−m = 2m−1N0. The overlapping
region covers two nodes (o = 2): εm = (o − 1)hm = hm, m = 1, 2, 3. The time
steps are equal to ∆t1 = 5 × 10−2, ∆t2 = 2 × 10−2 and ∆t3 = 5 × 10−3. The
convergence parameter in (14) for the CNGF is fixed to δ = 10−9.

Test-case 1. In the first test-case dedicated to the CSWR method, we as-
sume that the preconditioning is derived from level 0, i.e., at level ` = 0 (or in
Ω0) fg;0 is first computed. As proposed in Section 2.2, we impose φ±0 = I0;m

h f±p;0
at the upper level m, with m = 1, 2, i.e. at {±εm/2} × {t > 0}, we impose

φ±,(0)
m = I0;m

h f±p;0,

where fg;0 is the ground state computed on Ω±0 . In the Test-case 1, the size
of the overlapping region is always reduced to ε = hm, m = 1, 2. Convergence
results (residual history) are reported in Fig. 1 (top). These correspond to
estimates of kcvg

1 , kcvg
2 , kcvg

1;0 and kcvg
2;0 defined in (8). In addition, we provide in

Fig. 1 (down) the convergence times T (k) of the CNGF per Schwarz iteration,
i.e. for m = 1, 2,

• K(k)
m;0∆tm: time step × number of CNGF iterations K

(k)
m;0 to converge at

level m (= 1, 2) with preconditioning at level 0,

• K(k)
m ∆tm: time step × number of CNGF iterations K

(k)
m , without precon-

ditioning.

We observe on Fig. 1 (top) that the preconditioning from lower levels m −
1 or m − 2 has only a weak effect on the acceleration of the convergence of
the CSWR method. Regarding the convergence time of the CNGF method,

we however notice that i) for all k, K
(k)
1;0 � K

(k)
1 , and that ii) K

(k)
2;0 � K

(k)
2

for the first CSWR iterations and then K
(k)
2;0 ≈ K

(k)
2 . This test illustrates

that the convergence acceleration of the DDM-CNGF method thanks to the
preconditionning at a lower level.

Test-case 2. In the second test-case, we compare the residual history (8) of the
CSWR method at level m ≥ 1, that is for Ω±m, with and without preconditioning
at level ` = m − 1 for different spatial discretization step sizes. We impose i)
initially φm(0) = Im−1;m

h fg;m−1, and ii) at {±εm/2}, we force

φ±,(0)
m = Im−1;m

h f±g;m−1.
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Figure 1: Levels 1 and 2. Top: Comparison of the residual history (8) vs. k, with/without
preconditioning at the coarse level 0. Down: Minimization time (convergence time of the
CNGF) T (k) per Schwarz iteration k, for N0 = 27.

In other words, we compare kcvg
m;m−1 with kcvg

m , for m = 1, 2, 3. We also study

the convergence times T (k) of the minimization algorithm i) K
(k)
m;m−1∆tm (with

preconditioning) and K
(k)
m ∆tm (without preconditioning). In the previous ex-

pressions, K
(k)
m;m−1 (resp. K

(k)
m ) is the number of iterations of the CNGF to

converge at level m with (resp. without) preconditioning, for m = 1, 2, 3 (see
Section 3.4). At the coarse level ` = m − 1 ≥ 0, φ±m−1(0) is chosen as the

projection on Ω±m−1 of φ0(x) = π−1/4e−x
2/2 for computing the ground state of

the NLSE [5]. We consider the standard homogeneous Dirichlet boundary con-

ditions when k = 0: φ
±,(0)
m = 0 at {±εm/2}. We report on Fig. 2 the residual
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history (8) with respect to the lower level preconditioning, for different values of
grid points Nm = 27+m. We observe that kcvg

1;0 ≤ k
cvg
1 , kcvg

2;1 ≤ k
cvg
2 , kcvg

3;2 ≤ k
cvg
3 .

However, the Schwarz acceleration is moderate and seems independent of the
number of grid points.

The genuine gain is again the acceleration of the CNGF algorithm. Indeed,
the minimization algorithm at fixed Schwarz iteration k and finer level m is
strongly accelerated as it can be observed in Fig. 3 and as it was expected from

Section 3: K
(k)
m;m−1 � K

(k)
m , with convergence times given by K

(k)
m ∆tm without

preconditioning, or K
(k)
m;m−1∆tm with preconditioning.

Test-case 3. Now, the preconditioning technique is applied to the Robin-
based Schwarz Waveform Relaxation algorithm for γ = 20 which provides a fast
convergence. The methodology and numerical data are the same as for test-case
2. We compare i) the residual history (8) at level m ≥ 1, that is on Ω±m, with
preconditioning at level ` = m−1. The number of grid points at level m is given
by Nm = 27+m. Therefore, we i) initially (t = 0) take φ±m(0) = Im−1;m

h f±g;m−1

and ii) we impose(
∂x + γ

)
φ±,(0)
m (tnm) =

(
∂x + γ

)
Im−1;m
h f±g;m−1

at
{
± εm/2

}
. We also study the convergence times T cvg,k of the minimization

algorithm, with and without preconditioning. The results are summarized in
Figs. 4 and 5.

As for the CSWR method, it is numerically observed that the precondition-
ing technique applied to the Robin SWR method has a strong positive effect on
the convergence of the CNGF, but a moderate one from the SWR convergence
point of view.

4.3. Numerical tests in real-time

This section is devoted to experiments in real time. We consider Ω+
a,ε =

(−a, 5/2 + ε/2) and Ω−a,ε = (5/2− ε/2, a), with ε > 0 and a = 10. Homogeneous
Dirichlet boundary conditions are again imposed at ±a. The final real time is
T = 0.5. In the equation, we have chosen κ = 50 and V = 0, corresponding to a
standard cubic NLSE. In addition, the initial data is given by a gaussian profile

φ0(x) = exp
(
−

1

5

(b+ 2a

4
− x
)2)

exp(2ix).

Test-case 1. In this first test-case, the numerical data are as follows (` = 0,
m = 1): N1 = 2N0, N+

1 = o+N0, N−1 = N0, with N0 = 400. The overlapping
region covers respectively 20, 10 and 2 nodes. The time step is fixed to ∆t1 =
∆t0 = 1× 10−2.

Figs. 6 illustrate the effect of the acceleration of the preconditioning on the
convergence of the CSWR (8), in the three studied cases N0 = 400 and: o = 20,
10, 2 and ε = (o − 1)h1. Let us note that with or without preconditioning,
the convergence graphs have two plateaux and two decreasing regions. More
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specifically, we notice that the main effect of the preconditioning is to extend
the first decreasing zone and to reduce the length of the second plateau. We
finally remark that preconditioning allows for a reduction of the number of it-
erations to reach the machine tolerance of about 20%, whatever the size of the
overlapping region is (see Fig. 6).

Test-case 2. In the second test-case, we consider the SWR method with
Robin-based transmission conditions. We therefore expect a faster convergence
compared to the CSWR method [22]. Notice that for this type of transmission
condition, it is necessary to reconstruct the normal derivatives at the subdomain
interfaces. The numerical data are as follows: N1 = 2N0, N+

1 = o + N0 and
N−1 = N0, with overlap o = 2 and ε = (o − 1)h1. The time step is fixed to
∆t1 = ∆t0 = 1 × 10−2. We impose at the subdomain interfaces, and for all
n ≥ 0 (

∂x ± γ
)
φ
±,(0)
1 =

(
∂x ± γ

)
I0;1
h φ±,cvg

0 , at
{
± ε1/2

}
,

with γ = 20. We compare the residual history (8) for the CSWR and Robin-
based SWR algorithms with and without preconditioning. The algorithm is
tested respectively with N0 = 200 and N0 = 400. As expected, the convergence
is faster for the Robin-based SWR methods than for the CSWR algorithm. The
results on Fig. 7 also show that preconditioning the Robin SWR method also
improves the convergence. As for the CSWR method, the effect of precondi-
tioning is to extend the first decay zone and to reduce the length of the second
plateau. The global gain is not as high as for the CSWR method and is about
15%.

5. Conclusion

We proposed and numerically tested a simple preconditioning technique for
accelerating SWR algorithms applied to the solution of NLSE both in real- and
imaginary-time. The general principle consists in using approximate solutions
computed on coarser grids (lower levels), and designing i) suitable SWR trans-
mission conditions, as well as ii) adapted initial data in imaginary-time. Due
to its simplicity and efficiency, the presented approach can be easily included
in a parallel SWR-DDM solver for the NLSE in real- or imaginary-time. In a
forthcoming paper, the procedure developed in this work will be implemented
in higher dimensions and tested on more realistic situations.
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Figure 2: Comparison of the residual history (8) vs. k, of the CSWR method at level m, for
a solution with preconditioning at level ` = m− 1, and without preconditioning. Top: m = 1.
Middle: m = 2. Down: m = 3.
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Figure 3: Minimization time (CNGF convergence time) T (k): comparison for the CSWR
method at level m between the solution with preconditioning at level m − 1, and without
preconditioner. Top: m = 1. Middle: m = 2. Down: m = 3.
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Figure 4: Comparison of the residual history (8) vs. k, for the Robin-based SWR method at
level m, between the solution with preconditioning at level m−1 and without preconditioning.
Top: m = 1. Down: m = 2.
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Figure 5: Minimization time (CNGF convergence time) T (k) comparison for Robin-based
SWR at level m between solution with preconditioning at level m− 1, and without precondi-
tioning. Top: m = 1. Down: m = 2.
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Figure 6: Comparison of the residual history (4) vs k, for the CSWR method, with and
without preconditioning for N0 = 400. Top: o = 20. Middle: o = 10. Down: o = 2.
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Figure 7: Comparison of the residual history (4) vs. k, of the CSWR and Robin-based SWR
methods, with and without preconditioning, for o = 2. Top: N0 = 200. Down: N0 = 400.
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