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A Maxwell–Schrödinger Model for Non-perturbative
Laser-molecule Interaction and Some Methods of Numerical

Computation

E. Lorin, S. Chelkowski, and A. Bandrauk

Abstract. We present in this paper a numerical Maxwell–Schrödinger model
to simulate intense ultrashort laser pulses interacting with a H+

2 -gas in the
nonlinear non-perturbative regime. After presentation of the model and a
short mathematical study, we propose a numerical approach for its compu-
tation. In particular we focus on the polarization computation allowing the
coupling between the Maxwell and Schrödinger equations, and on the bound-
ary conditions problem for the time dependent Schrödinger equations, TDSE.
Some comparisons with existing methods are also addressed.

1. Introduction

From the theoretical point of view to the very practical point of view (controlled
fusion by inertial confinement [13], quantum dynamic imaging [6], attosecond pulse
generation [1], filamentation [27]), there exist numerous applications of ultrashort
and intense laser pulses. Indeed current laser technology allows to create ultra-
short pulses with intensities exceeding molecular and atomic internal electric fields.
Typically, for the hydrogen atom the period of electron circulation is 24.6× 10−18s
(attosecond) and the intensity of its Coulomb field is 3.5 × 1016W/cm2. Current
laser intensities can reach around 1020W/cm2 with pulse durations of ∼ 150 attosec-
onds. The main goal of this work is to study high order non-perturbative nonlinear
phenomena: ATI (Above Threshold Ionization), HOHG (High Order Harmonic
Generation) [12], obtained with very intense lasers interacting with molecules and
to study their dynamics. HOHG is one of these nonlinear phenomena that ap-
pears when the electric field is greater than the Coulomb potential field and leads
to ionization. It is, moreover, the current source of coherent “attosecond” pulses
[1, 11]. In a first step the electron is excited by an intense electric field and then
leaves through tunnelling the ion vicinity and enters in the ionized continuum with
an initial velocity equal to zero [12]. Then the free electron is accelerated by the
strong electric field and gains energy. In a last step the electron is driven back to
the vicinity of the parent ion and recombines with it, leading to the creation of
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Figure 1. Laser-molecule interactions in a H+
2 gas.

high order harmonics (see [24] for description of HOHG or [17] for their numerical
aspects).

In this paper we will introduce a precise numerical model to describe this dy-
namics, including ionization, dissociation of the molecule and including propagation
effects in order to take into account phase matching [12]. We propose here to study
ultrashort pulses interacting with one electron H+

2 -molecules. To model the non-
linear response, the most natural way is to consider a coupling between the Maxwell
equations describing the behavior of the electric and magnetic fields and the time
dependent Schrödinger equation (TDSE) describing the electron motions and ion-
ization. In order to increase the precision of the model, we propose to go beyond the
Born–Oppenheimer approximation taking into account the proton motions. The
Maxwell and the Schrödinger equations are then coupled with the polarization of
molecules that describes the relative position of all the particles constituting the
molecule. The model is written first in its whole generality and then some approx-
imations are proposed in order to solve it numerically. Note that the model we
propose although close to the atomic models presented in [28,29] (see also [15,16])
includes both electron and nuclear motion. The present work is the first to treat
molecules completely.

In Section 2. we will present our model and we will briefly evoke some other
existing ones. Then we will focus on the existence of solutions for the TDSE we
consider. Finally in a last part we will give a simple presentation of the numerical
method we have used to solve the coupled system. In particular we will detail the
polarization computation (and how to reduce it in CPU time) and on the numerical
boundary conditions for the TDSE, crucial in this framework. In [25] an exhaustive
presentation of both the model and numerical approach will be proposed in a real
3-D configuration.

2. Mathematical Modeling

There exist many models describing the laser-matter interaction problems de-
scribed above. The simplest ones are the nonlinear Maxwell models, and consist in
calculating the polarization as an expansion of the susceptibility (linear, quadratic,
cubic, and so on):

(2.1) P (z′, t) = χ(1) · E + χ(2) · E2 + χ(3) · E3 + · · · ,
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where χ(i) are the nonlinear polarizabilities (susceptibilities) [12]. Some slowly
varying envelope (SVE) versions leading to nonlinear TDSE, also exist. These
models allow for example to simulate the behavior of low intensity lasers with low
order harmonic generation. As the transmitted fields possess high order harmonics
at high intensities these models are in fact not valid here as they do not include
ionization. The Maxwell–Bloch equations constitute a more precise model where
the polarization is obtained from the TDSE via the Bloch equation coupled with
the Maxwell equations. The polarization is then deduced from the Bloch equation
(ODE for the density matrix).

Unfortunately with such a model it is a priori not possible to include the
continuous part of the Hamiltonian (ionization) and therefore it is not adapted to
compute high order harmonics with very intense laser pulses (typically of the order
of the Coulomb potential intensity). Such a strong approximation induces then a
“loss of informations” hard to evaluate. Details can be found in [26].

The Maxwell–Schrödinger model we consider is then much more precise than
the usual models briefly presented above in the sense that it considers much more
physical phenomena in the non-perturbative regime where the continuous spec-
trum must be included. Furthermore, we propose to include nuclear motion thus
allowing to go beyond the Born–Oppenheimer approximation and take into account
dissociative ionization [7].

2.1. Presentation of the Maxwell–Schrödinger model. The 3-D TDSE
describing the H+

2 molecule response excited by a laser field is given by [7]:

(2.2) i∂tψ(r, R, r′, t) =
[
−1

2
4r + Vc(r, R)− i

c
A(r′, t) ·∇r

+Vi(R)− 1
mp

∂2
RR +

‖A(z′, t)‖2
2c2

]
ψ(r, R, r′, t),

where ψ represents the wave function, mp denotes the H+ mass. The Coulomb and
nuclear potentials are given by:

(2.3) Vc(r, R) = − 1√
x2 + (y −R/2)2 + z2

− 1√
x2 + (y +R/2)2 + z2

,

Vi(R) =
1
R
.

We use atomic units, where e = h/2π = me = 1 and mp = 1837 and c = 137.
The electron position in the ion center of mass coordinates is denoted by r =
(x, y, z)T . R represents the proton relative position. We assume in this paper that
the ion motion R, is 1-D. The term A ·∇+‖A‖/2c2 denotes the field interaction, A
being the vector potential, and r′ denotes the field space variable. In the following
we will suppose that the electric field propagation is 1-D (in the direction z′) and
polarized in the direction y, so that the TDSE becomes (see Fig. 2):

(2.4) i∂tψ(r, R, z′, t) =
[
−1

2
4r + Vc(r, R)− i

c
Ay′(z′, t)∂y + Vi(R)− 1

mp
∂2

RR

+
|Ay′(z′, t)|2

2c2

]
ψ(r, R, z′, t).
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Figure 2. Coordinates.

Note that in our coordinates, ey · ez′ = 0, ez = ez′ , ey = ey′ and Ay′ is the y′-
component of A. Now, if the laser wavelength λ, is large enough we can assume
that the electric and magnetic fields are constant in space at the molecular scale
`, (λ/`¿ 1), allowing us to reduce the numerical and mathematical complexity of
the problem. Indeed, in this situation the TDSE can be written in its dipole form1:

(2.5) i∂tψz′(r, R, t) =
[
−1

2
4r + Vc(r, R)− iAy′,z′(t)

c
∂y + Vi(R)

− 1
mp

∂2
RR +

|Ay′,z′(t)|2
2c2

]
ψz′(r, R, t),

z′ is now a parameter denoting the molecule position in the “Maxwell domain”. For
each z′ in the gas, one has to solve a 4D-TDSE (3-D for the electron and 1-D for the
proton). Let us remark that the dipole approximation leads to [4r, Ay′,z′(t)∂y] =
[∂2

RR, Ay′,z′(t)∂y] = 0; very useful feature to have a free error numerical splitting
method based on this commutation.

The above TDSE is given is the so-called velocity gauge where the electron-
field interaction is through the electron momentum py = i∂/∂y. Another possible
formulation is in the so-called length gauge, see [7]. Setting

(2.6) ψ 7→ ψ exp
(

i

2c2

∫ t

0

|Ay′,z′ |2(s) ds+
i

c
yAy′,z′(t)

)
,

we get a new formulation of the TDSE:

(2.7) i∂tψz′(r, R, t) =
[
−1

2
4r + Vc(r, R) + yEy′,z′(t) + Vi(R)

− 1
mp

∂2
RR

]
ψz′(r, R, t).

with cEy′,z′(t) = −∂Ay′,z′(t)/∂t denoting the electric field. The interaction with
the electric field is now through the electron dipole y.

Ideally the electric field dynamics modeling is given by the microscopic Maxwell
equations where the molecular density n = n(r′, t), coupled with the TDSE and will
be done in a future work. A full description of the microscopic Maxwell equations
can be found in [20].

An approximate approach is proposed in [22], where the authors study the
microscopic Maxwell equations but coupled with classical dynamics equations to

1The notation Ay′,z′ denotes that z′ is a parameter of the y′-component of A.
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describe the particle motions. We will here consider the macroscopic Maxwell
equations that correspond to a spatial average of the microscopic ones. These
equations are typically valid in a domain equal or exceeding a size of 10−18cm3

with a sufficiently high molecular density (see again [20]). The macroscopic 3-D-
Maxwell equations written in atomic units are:

(2.8)





∂tB = −c∇×E,
∂tE = c∇×B− 4π∂tP,
∇ ·B = 0,
∇ · (E + 4πP) = 0.

We consider here a 1-D propagation (direction ez′ orthogonal to ey) with c denoting
the light velocity in the vacuum and we neglect the transversal effects (justified in a
gas due to large inter-molecular distances). We then have E = Ey′ey′ , P = Py′ey′

and B = Bxex′ . Denoting E = Ey′ , P = Py′ and B = Bx′ , we have the simple
equations (the fields are not independent of x′ and y′):

{
∂tB(z′, t) = c∂tE(z′, t),
∂tE(z′, t) = c∂tB(z′, t)− 4π∂tP (z′, t).

Under the dipolar approximation the polarization P for a molecule located at z′ is
effectively parallel to ey′ and is given by:

(2.9) P (z′, t) = −n(z′)
∫
ψz′(r, R, t)yψ∗z′(r, R, t) dRdr,

and the dipolar acceleration is

(2.10) d(z′, t) = −n(z′)
∫
ψz′(r, R, t)

(
∂V

∂y
+ E(t)

)
ψ∗z′(r, R, t) dRdr,

where n(z′) denotes the molecular density given for example for all x′ and y′, by:

(2.11) n(z′) =





0, if ` < |z′| < L,

n0 sin2

(
π(|z′| − `)
2(a− `)

)
if a < |z′| < `,

n0 if |z′| < a,

where n0 ∈ R∗+ (mol/cm3). Such a density choice will allow us in particular to
numerically reduce the reflections of the incoming electric field at the “frontiers” of
the gas.

We assume now, that the Maxwell computational domain is given by [−L,L],
L > 0. We introduce some real constants `, a such that L > ` > a > 0, where the
molecules are located in [−`, `], and the vacuum region is [−L,−`]∪ [`, L]. Initially
for the laser-pulse of frequency ω, the electric field is defined as follows:

(2.12)

{
E(z′, 0) = E0(z′)fω(z′), z′ ∈ [−L,−`], ω ∈ R∗+,
E(z′, 0) = 0, elsewhere.

Where
∫
E(t) dt = 0.

The function f , usually a sinusoidal function, and E0, the envelope, is a Gauss-
ian function E0(z′) = e−cz(z′−zc)

2
, where zc is the molecule center of mass and

cz a positive constant depending on the pulse radius. In fact this function should
depend on x′ and y′ (E0(x′, y′, z′) = e−cx(x′−xc)

2−cy(y′−yc)
2−cz(z′−zc)

2
) but in most
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Figure 4. |Ê(ω)|2, for a single molecule, and a 5-cycle laser pulse
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harmonic order N , with ω = Nω0, the harmonic frequency, and
ω0 the incident electric field frequency R0 = 3.2a.u.

usual cases the beam is sufficiently large so that along the propagation axis z′, we
can again neglect the x′ and y′ dependencies.
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The harmonic spectra of the transmitted field, denoted by ET , possesses in
theory [24], a frequency cut-off denoted by ωc (see Fig. 4). This cut-off corresponds
to the maximum return energy acquired by an electron in the field of E(t), Nmω =
3.17Up + Ip [14]. It is then possible to filter this field around ωc and to create
a shorter and “intense” pulse denoted by EF , thus leading to attosecond pulses
through the uncertainty relation ∆ω∆t ∼ 1 [1, 16]:

(2.13) EF (t) =
1
2π

∫ ωc+∆ω

ωc−∆ω

ÊT (ω)eiωt dt.

See for instance, [31] or [5] or [11] for the control aspects of such new pulses.
Note that, this problem constitutes typically a multiscale physical problem as

the characteristic length and time of the TDSE are much smaller (‖r‖ ∼ 10−10m)
than the Maxwell equations characteristic ones (λ ∼ 10−6m = 1µm).

2.2. Existence and regularity for the TDSE model. In this section we
are interested in the existence and regularity of solutions for the TDSE (2.7). To
do this, we will use the Fourier transform set of H1:

(2.14) H1 =
{
u ∈ L2(R4),

∫

R4
(1 + ‖(r, R)‖2)|u(r, R)|2dr dR <∞

}

From Baudouin, Kavian and Puel [9, 10], we can easily deduce that for L ∈
L∞

(
0, T ;C2

b (R4)
)

and if u0 ∈ H1 ∩ H1, then there exists a unique solution u in
C0(0, T ;H1 ∩H1) such that

(2.15)
(
i∂t +

4r

2
+
∂2

RR

mp
+ L(r, R, t)

)
u(r, R, t) = 0, u(r, R, 0) = u0(r, R).

Furthermore, for K > 0 such that

(2.16) ‖V ‖L∞(0,T ;C2
b (R4)) ≤ K

then there exists CT,K such that

(2.17) ‖u‖C0(0,T ;H1∩H1) ≤ CT,K‖u0‖H1∩H1 .

Considering now (2.7), let us suppose that for all T > 0, E ∈ L∞(0, T ) and
∂tE ∈ L1(0, T ). The laser field interaction yE(t) we consider is a priori non-zero in
the whole space as it is defined for all y ∈ R. Physically it is obviously not true, so
that we will consider a function χ defined as follows: χ : (r, R) 7→ χ(r, R) in C2

b (R4)
and χ(r, R) = y on a compact set Ω1 of R4 and χ(r, R) is zero outside a set Ω2

containing strictly Ω1. Such a function can easily be constructed by convolution of
y and a plateau function. Then we can prove:

Theorem 2.1. Let us consider the following TDSE:

(2.18) i∂tψ(r, R, t)

=
[
−1

2
4r + Vc(r, R)− 1

mp
∂2

RR + Vi(R)− E(t)χ(r, R)
]
ψ(r, R, t).

∀T > 0, suppose that E ∈ L∞(0, T ) and ∂tE ∈ L1(0, T ). Then there exists CT > 0
such that, for all ψ0 ∈ H1∩H1, there exists a solution unique ψ ∈ L∞(0, T ;H1∩H1)
and

(2.19) ‖ψ(t)‖L∞(0,T ;H1∩H1) ≤ CT ‖ψ0‖H1∩H1 .
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Proof. The proof is based an energy estimate in H1 ∩ H1 via a Gronwall
inequality and a compactness argument to extract a convergent subsequence. As
it can be derived with some elementary modifications from the proof in Ref. [10,
Theorem 2.1] and is very close to existing results, for instance [19], we do not
present the proof. ¤

The existence of solutions for the coupled Maxwell–Schrödinger system has
yet to be proved; in particular the regularity of the polarization P , equation (2.9)
(linking the two systems) is useful in our numerical approach. We can expect
that the polarization regularity on z′ comes from the incoming electric field spatial
regularity. Some interesting results about this coupling can be found for instance
in [18], where the existence of global smooth and weak Maxwell–Bloch solutions is
presented.

3. Some Issues on the Numerical Approach

We propose in this section to give a non exhaustive description of our numerical
method to approximate a 1-D version of the Maxwell–Schrödinger system presented
above. In this study the electronic variable becomes y, instead of r in 3-D. The
extension to higher dimensions can be found in [25]. We will focus here on the
polarization P computation that allows the coupling between the Maxwell and
TDSE and on the boundary conditions for the TDSE.

The TDSE is approximated by a finite difference Crank–Nicolson scheme in
time, and the Laplace operator is approximated using a 3-point stencil. Such a
scheme, allows to preserve the `2-norm and is a second order scheme and is uncon-
ditionally stable. The Yee scheme is used to solve the Maxwell equations [32] that
consists in a finite difference scheme where the electric E, and magnetic B, fields
are computed on two spatial and temporal staggered grids. Under a Courant–
Friedrichs–Lewy (CFL) condition, this is a stable and order two scheme (see for
details [25]). At this point it is important to recall that to be valid the macro-
scopic Maxwell equations have to be applied on a sufficiently large domain (as it is
obtained by a spatial average on microscopic Maxwell equations). Typically if we
denote by ∆z′M the Maxwell space step should be such that ∆z′M × n1/3

0 is much
larger than 1 but also should be smaller than λmin, with λmin corresponding to
the highest harmonics created during the HOHG process. In each Maxwell cell, a
large number of molecules is included, but in practice we solve only one TDSE to
determine a local polarization. The problem has then some multiple scales as ∆z′M
is much larger than ∆yS where ∆yS is the Schrödinger grid space step. Also, ∆tM
is much larger than ∆tS where ∆tS , ∆tM are respectively the Schrödinger and
Maxwell solver time steps. In the numerical scheme approximating the Maxwell
equations, the time step is taken, for stability reasons, equal to D∆z′/c, with D a
positive constant. We then set

(3.1) N = E

[
∆tM
∆tS

]
.

Now denoting by S the Schrödinger operator and by B the Maxwell operator, the
global coupled numerical scheme can be written as the following splitting scheme
(here written at order 1 but computed at order 2, to preserve the Maxwell and
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Figure 5. Maxwell and Schrödinger scales.

Schrödinger solvers order), from time tn to time tn+1:

(3.2)





En+1 ← e∆tMBn

En, ∀z′ ∈ [−L,L],
solving the Maxwell equations,

ψn+1 ← e[∆tM−(N−1)∆tS ]Sn

e(N−1)∆tSSn

ψn,

solving the TDSE in each “Maxwell cell”,
Pn+1 ← ψn+1,

by definition of the polarization(2.9).

Globally, this then constitutes an order 2 scheme, stable under a CFL condition
given by the Yee scheme (see [32]).

3.1. Polarization computation. The polarization computation is central in
this work as it allows to couple the Maxwell equations and the TDSE. As said above
the polarization is deduced from the TDSE by (2.9).

We note that for a 100 cycle laser pulse with a wavelength of 800nm interacting
with molecules, we have to solve numerically at each iteration and in 1-D 8000
(80× 100) TDSE’s, for a Maxwell cell size equal to 10nm (one TDSE per Maxwell
cell). As noticed above, even in 1-D, the TDSE we have to solve, because of
the ion motions, are 2-D equations which is costly in CPU time. We therefore
propose a technique based on a simple Taylor expansion that allows to reduce the
numerical cost, assuming the polarization smooth in space. As discussed above,
this assumption seems a priori valid when the electric field is smooth enough over
dimensions (wavelength, λ) larger than molecular size (y). This satisfies also the
dipole approximation, equation (2.5).

The idea is the following: we make a partition of the domain [−`, `]
= ∪i=1,...,I−1[z

′
i, z

′
i+1[ with z

′
1 = −l and z

′
I = l and I is small integer. We suppose

that each sub-domain [z
′
i, z

′
i+1[ contains a sufficiently large number of Maxwell cells.

For each interval [z
′
i, z

′
i+1[, we choose a reference cell z′i,0 (located for example in the

middle of the interval). For this cell we compute the corresponding TDSE which
can be written in this framework:
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(3.3) i∂tψz′i,0
(y,R, t)=

(
−1

2
∂2

yy+V (y,R)− 1
mp

∂2
RR+

1
R

+yEz′i,0
(t)

)
ψz′i,0

(y,R, t).

and the corresponding polarization:

(3.4) P (z′i,0, t) = −n(z′i,0)
∫
ψz′i,0

(y,R, t)yψ∗z′i,0
(y,R, t) dy dR.

An equivalent expression is obtained by using the acceleration form [14]. The
present dipolar formulation is more convenient for performing a Taylor expansion
as follows. Now for every other cell located in z′ ∈ [z

′
i, z

′
i+1[ we have:

(3.5) P (z′, t) = P (z′i,0, t) + (z′ − z′i,0)∂z′P (z′i,0, t) +O(
(z′ − z′i,0)2

)
.

Then we deduce the value of the polarization P , for every cell of the domain
[z
′
i, z

′
i+1[. However to do this, it is necessary to compute ∂z′P (z′i,0, t). With this

purpose, by differentiation in z′ of (2.9), we get

∂z′P (z′i,0, t) = −n(z′i,0)
∫
∂z′ψz′i,0

(y,R, t)yψ∗z′i,0
(y,R, t) dy dR− n(z′i,0)

∫
ψz′i,0

(y,R, t)y∂z′ψ
∗
z′i,0

(y,R, t) dy dR− (∂z′n)(z′i,0)
∫
ψz′i,0

(y,R, t)yψ∗z′i,0
(y,R, t) dy dR.

To compute ∂z′P (z′i,0, t) we have to compute ∂z′ψz′i,0
(y,R, t) then to solve the

following equation obtained by derivation in z′ of the TDSE:

(3.6) i∂t

(
∂z′ψz′i,0

(y,R, t)
)

=
(
− 1

2
∂2

yy + V (y,R)− 1
mp

∂2
RR +

1
R

+ yEz′i,0
(t)

)
∂z′ψz′i,0

(y,R, t)

+ iy
(
∂z′Ez′i,0

(t)
)
ψz′i,0

(y,R, t).

Numerically the computation of the previous equation is very close to the compu-
tation of the TDSE.

(3.7)
(
∂z′ψz′i,0

)n+1 =
(∂z′ψz′i,0

)n+1

2
+

(∂z′ψz′i,0
)n

2

− i
2
Hn+1(∂z′ψz′i,0

)n+1− i
2
Hn∂z′ψ

n
z′i,0

+iy(∂z′Ez′i,0
)n+1ψn+1

z′i,0
.
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Figure 7. Parallelization for 4 TDSE’s (molecules).

In (3.7) the quantity ψn+1
z′i,0

is previously computed by the numerical scheme ap-
proximating the TDSE and with Hn naturally given by:

(3.8) Hn = −1
2
∂2

yy + V (y,R)− 1
mp

∂2
RR +

1
R

+ yEn
z′i,0

, n ≥ 0.

Finally, for each sub-domain [z
′
i, z

′
i+1[ we compute ψz′i,0

(y,R, t) and ∂z′ψz′i,0
(y,R, t)

to deduce linearly from P (z′i,0, t) the polarization for each cell located in z′ of this
sub-domain. The error due to this process is naturally here of order one. It is
possible to increase to the second order using a higher order Taylor expansion. In
this case, it would be necessary to compute ∂2

z′z′ψz′i,0
(y,R, t) obtained by double

differentiation in z′ of the TDSE. We can then deduce easily the following result:

Proposition 3.1. Assuming the polarization and the molecular density smooth
enough, the approximation proposed in each z′ ∈ [z′i, z

′
i+1[, for z′ 6= z′i,0 is of order

1 or 2 depending on the Taylor expansion order.

In practice we can expect in some cases, a strong reduction of the number of
TDSE’s to solve. Typically the sub-domains size will depend on the transmitted
electric field ET harmonics, then on the intensity and frequency of the incoming
laser. The higher the harmonics will be, the smaller the size of the sub-domains
will be chosen.

Taking into account the previous method to reduce the computational cost of
the polarization, that is the number of TDSE’s to solve, we have the following
temporal scheme from tn to tn+1, denoting by I − 1 the number of sub-domains,
with I much smaller than the number of cells in the Maxwell grid:
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(3.9)





En+1 ← En, ∀z′ ∈ [−L,L],

ψn+1
z′i,0
← ψn, for z′i,0 ∈ [z′i, z

′
i+1[, ∀i ∈ [1, I],

Pn+1
z′i,0
← ψn+1

z′i,0
for z′i,0 ∈ [z′i, z

′
i+1[, ∀i ∈ [1, I],

∂z′ψ
n+1
z′i,0
← ψn+1

z′i,0
and eq. (3.6), for z′i,0 ∈ [z′i, z

′
i+1[, ∀i ∈ [1, I],

∂z′Pn+1
z′i,0
← ∂z′ψ

n+1
z′i,0

for z′i,0 ∈ [z′i, z
′
i+1[, ∀i ∈ [1, I],

Pn+1
z′ ← Pn+1

z′i,0
, (∂z′n)(z′i,0) and ∂z′P

n+1
z′i,0

, ∀z′ ∈ [z′i, z
′
i+1[,

and ∀i ∈ [1, I].

Remark on the parallelization of the polarization computation. Many
approaches are possible to parallelize the Maxwell–Schrödinger equations; in par-
ticular in [25], we will present some possible issues. One of the most effective ones
is as follows. To simplify the presentation let us suppose that the Maxwell-grid
possesses N cells and that we solve N TDSE’s (one per Maxwell-cell) with a code
running on N processors. At each temporal Maxwell iteration, each processor solves
one single TDSE, and computes the corresponding polarization P . Then it sends
it to the root processor. The root processor “having” now the polarization in the
whole physical domain, it solves the Maxwell equations (note that here our config-
uration the CPU cost of the Maxwell equations computation is negligible compared
to the TDSE’s computation cost). Then the root processor sends to the slaves the
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Figure 8. Computation of the 3-D Maxwell–Schrödinger equa-
tions with one TDSE (molecule) per processor. In ordinate the
real time (in seconds) necessary for the numerical computation.
Representation on log-scale.
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updated electric field E(t) (this process is summed-up in Fig. 7). Such a simple
parallelization scheme allows us to obtain a very efficient speed-up. Note also that
the data are distributed between the computer nodes allowing to consider a large
number of molecules with sufficiently large spatial grids.

The Fig. 8 represents for a given mesh: in abscissa the number of TDSE’s (4, 16,
64, 256 TDSE’s) to solve also equal to the number of processors (one equation per
processor) and in ordinate the real time for the 3-D code to solve the corresponding
Maxwell–Schrödinger equations. The ideal configuration would be y=constant,
corresponding to a speed-up equal to the number of processors. The real time
of computation of our Maxwell–Schrödinger code with 256 TDSE’s running on 256
processors is only 2.5% slower than the code running on 4 processors with 4 TDSE’s.

The coupling of our proposed reduced computation of the polarization with this
parallelization allows us to expect efficient simulations with a very large number of
molecules. Note also that the parallelization is almost totally independent of the
way we solve numerically the TDSE and Maxwell equations.

3.2. Boundary conditions for the TDSE. Let us now discuss the bound-
ary conditions problem for the TDSE. The initial wavefunction (initial state) ψ(·, 0)
support is located in the Schrödinger computational domain center. Then the laser
field E interacts with the molecules and delocalizes the wavefunctions whose sup-
ports can become very large due to dissociative ionization into continuum states of
both electrons and nuclei (beyond Born–Oppenheimer). Numerically it means that
it is necessary to discretize the TDSE in a very large domain. To overcome this
well-known problem in numerical scattering theory [6], we have to find an adapted
method. The usual idea to circumvent this difficulty is to reduce the computational
domain and to impose some particular numerical boundary conditions on the re-
duced domain. It is well-known that imposing Dirichlet or Neumann boundary
conditions leads to important numerical oscillations and reflections on the bound-
ary on the domain interacting with “physical” waves inside the domain. Absorbing
boundary conditions are also used in order to absorb the numerical spurious re-
flections. Even if this kind of method allows effectively to reduce the spurious
reflections, these are often empirical (see for instance [14] in this framework), as
some “parameters” have to be adapted for each numerical situation. Moreover the
spurious reflections can be made to vanish but a part of the wavefunction can also
be partially or totally absorbed by the absorber. Outside the reduced domain the
potential is supposed to be zero and the TDSE with laser interaction can then be
solved “exactly” using for instance the Volkov state propagator [14]. As absorb-
ing boundary conditions globally do not preserve the `2-norm of the wavefunction
(as they absorb it) it can hardly be preserved. Ideally we would like to impose
particular boundary conditions such that the solution of the whole space problem
restricted to the compact domain (containing the solution support) is equal to the
total solution on the compact domain (that is without spurious reflections). Then
outside the reduced domain the wavefunction-solution is yet correct and can be
updated using for instance the Volkov state propagator. To be more precise let us
consider the following simplified model without laser field :

(3.10)





(i∂tu+ ∂2
yyu+ V (y) · u)(y, t) = 0,

u(y, 0) = u0(y), u0 ∈ H1(R).
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We suppose that the supports of u0 and V are strictly included in a compact set
Ω. One then considers the domain Ω× [0, T ] with Ω ⊂ Ω and one denotes by Γ the
boundary of Ω. One then looks for v solution of

(3.11)





(i∂tv + ∂2
yyv + V (y) · v)(y, t) = 0, y ∈ Ω,

B(y, ∂y, ∂t)v(y, t) = 0, y ∈ Γ,

v(y, 0) = u0(y), y ∈ Γ, u0 ∈ H1(R)

such that

(3.12) u|Ω×[0,T ]
= v.

The main problem consists then in finding an adequate (pseudo-)differential bound-
ary operator B on Γ such that (3.12) occurs. As is well-known these conditions,
called Dirichlet–Neumann, are nonlocal in time (and in space in multidimension).

Denoting by n the outward normal of Γ and ∂n is the trace operator on Γ we
obtain:

(3.13)





(i∂tv + ∂2
yyv + V (y) · v)(y, t) = 0, y ∈ Ω,

v(y, t) = −eiπ/4

∫ t

0

∂yv(y, τ)√
π(t− τ) dτ, y ∈ Γ.

This approach has been very well described in particular in [2], and some numerical
issues can be found in [3,4]. We also refer to [8] for the first presented discretization
of nonlocal transparent boundary conditions for the TDSE. As unfortunately these
conditions are nonlocal in time, many studies have been devoted to find effective
numerical approximations. At each iteration we can for instance decompose the
convolution product as the sum of a local part and historical part as proposed in
[21]. Thus at time tn+1:

(3.14) v(yΓ, tn+1) = −eiπ/4

∫ tn+1

0

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ

is decomposed into

(3.15) v(yΓ, tn+1) = −eiπ/4

∫ tn

0

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ−e

iπ/4

∫ tn+1

tn

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ.

It is then possible to treat accurately each integral (see again [21]).

Coupling with the laser. Now we present some ideas related to the bound-
ary conditions for the TDSE coupled with a laser interaction yE(t). As the laser
interaction does not depend on the inter-nuclear distance R, then the TDSE we
consider here simply writes:

(3.16) i∂tv(y, t) =
(− ∂2

yy + V (y) + yE(t)
)
v(y, t).

It is important to note that the term V (y)+yE(t) does not have a compact support,
so that it is no more possible to solve “easily” the free potential TDSE outside a
bounded domain as done above. Indeed, outside a given domain containing the
support of the Coulomb potential V , the potential free equation becomes:

(3.17) i∂tv(y, t) =
(− ∂2

yy + yE(t)
)
v(y, t).
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Using as above a Laplace transform in time would lead to a convolution product
between the Laplace transforms of E and v. We then propose not to solve exactly
this equation but to give an approximate condition based on a splitting operator.
Given the solution on the boundaries at time tn we look for it at time tn+1 splitting
the equation (3.16):




i∂tv(y, t) = yE(t)v(y, t), y ∈ Γ, t ∈ [tn, tn+1/2[,

i∂tv(y, t) =
(− ∂2

yy + V (y)
)
v(y, t), y ∈ Γ, t ∈ [tn+1/2, tn+1].

The first equation provides the following solution:

(3.18) v(yΓ, tn+1/2) = e−iyΓ
R tn+1

tn E(s) dsv(yΓ, tn).

To approximate the second one we consider the solution at time tn+1 when the
laser is null :

(3.19) v(yΓ, tn+1) = −eiπ/4

∫ tn+1

0

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ.

We then decompose this integral in two parts corresponding to the local and his-
torical parts.

(3.20) v(yΓ, tn+1) = −eiπ/4

∫ tn

0

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ−e

iπ/4

∫ tn+1

tn

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ.

The historical part depends on v at time tn and is then known at time tn+1. For
the local part we use v(yΓ, tn+1/2) in order to compute v(yΓ, tn+1). More precisely
and following approximations proposed by Greengard in [21], the historical part is
approximated by:

(3.21) −eiπ/4

∫ tn

0

∂yv(yΓ, τ)√
π(tn+1 − τ) ∼ −e

iπ/4
M∑

j=1

wjcj(n),

where
(
cj(n)

)
j

and (wj)j are some sequences described in [21].
The local part is then approximated by Gauss-Legendre quadrature:

(3.22) − eiπ/4

∫ tn+1

tn

∂yv(yΓ, τ)√
π(tn+1 − τ) dτ ∼ −e

iπ/4

√
∆tn+1

π
(αvn+1/2

y,Γ

+ (2− α)vn
y,Γ), 0 ≤ α ≤ 2.

With such an approach we then obtain the following boundary conditions. If J
denotes the last cell index: J∆y = yΓ ∈ Γ.




vn+1
J = −eiπ/4




Nc∑

j=1

wjcj(n) +

√
∆tn+1

π

(
α
v

n+1/2
J − vn+1/2

J−1

∆y
e−iyΓ

R tn+1

tn E(s) ds

+ (2− α)
vn

J − vn
J−1

∆y

))
,

cj(n+ 1) = es2
j∆tn

cj(n) +
∆tn

2

(
e−s2

j∆tn+1 vn
J − vn

J−1

∆y

+ e−s2
j (∆tn+∆tn+1)

vn+1
J − vn+1

J−1

∆y

)
.
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Where,

(3.23) v
n+1/2
J = e−iyΓ

R tn+1

tn E(s) dsvn
J , v

n+1/2
J−1 = e−iyΓ

R tn+1

tn E(s) dsvn
J−1.

Note that by induction, the historical part depends also on the laser field E.
A symmetric approach is proposed in −yΓ. These 2 discrete equations in −J and
J close the Crank–Nicolson system. As a consequence the Hermitian structure of
the sparse matrix is lost so that a GMRES method (see [30]) is used to solve the
linear system. Our strong assumption consists then in searching for a numerical
boundary condition that behaves like

∫ t

0
∂yv(y, τ)/

√
π(t− τ) dτ . Note also that it

is straightforward to apply the technique presented above in the velocity gauge.
To illustrate this technique we propose a simple benchmark on the TDSE un-

der the Born–Oppenheimer approximation (fixed R). We assume here that the
Coulomb potential is equal to zero.

(3.24)

{
i∂tu(y, t) + ∂yyu(y, t) + yE(t)u(y, t) = 0, y ∈ [−10, 10], t ≥ 0,
u(y, 0) = u0(y) = e8iye−y2

.

The benchmark we propose is as follows. The global domain is [−10; 10] and the
space grid τ contains 800 cells with a space step equal to 0.05. The reduced domain
Ω = [−5, 5] contains the initial data support. We impose the Dirichlet–Neumann
boundary conditions coupled the laser as described above, at x−Γ = −5 and xΓ = 5.
Outside Ω we solve the TDSE taking as boundary conditions the solution computed
x∓Γ. We compare our numerical solution with the solution obtained using Dirichlet
boundary conditions at x−Γ = −5 and xΓ = 5 and with a reference solution. We
consider a two-cycle laser pulse, with an intensity equal to 0.05 and a duration of
0.76 (note that we use a.u.).

The Dirichlet–Neumann numerical (Fig. 9) solution is then far less reflected
(even if a small reflection exists) than the Dirichlet solution. Here, note that the
grid is coarse and small, so that the influence of spurious reflections can be obvi-
ously diminished using a larger grid and smaller space steps. Another approach
to make decrease the reflections consists in making a better approximation of the
historical part in the method presented above. In order to do this, it is necessary to
approximate this historical integral using the solution at the boundaries at all pre-
vious times (tn, tn−1, tn−2, etc). This then would lead to the approach of Antoine
and Besse in [3] where the authors are enable to reduce drastically the spurious
reflections. The price to pay is however to store the solution at the boundaries at
all times, which would be problematic in higher dimensions.

We note that the benchmark we have considered above corresponds to a to-
tal ionization (the wavefunction leaves totally the reduced domain because of the
wavenumber equal to 8). This is not of interest in our model at this time. Indeed
we want the electrons to stay inside the domain in order to take into account the
plasma effects due to free electrons.

Finally note that another approach based on the exact solution of the TDSE
without Coulomb potential but with an electric field (see Volkov wavefunction) will
be developed in a forthcoming paper. Typically this would involve the computation
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Figure 9. Comparison between a reference solution and the nu-
merical solutions obtained with Dirichlet and Dirichlet–Neumann
coupled with the laser.

at the boundary yΓ of the quantity:

(3.25) v(yΓ, tn+1)

=
1− i

2
√
πtn+1

exp

(
−iyΓ

∫ tn+1

0

E(s) ds− i

2

∫ tn+1

0

(∫ s

0

E(τ)dτ
)2

ds

)

×
∫

R
v0(y′) exp

(
i(yΓ −

∫ tn+1

0

(∫ s

0
E(τ) dτ

)
ds− y′)2

2tn+1

)
dy,

corresponding to the exact solution of the TDSE without potential. Note that in
the convolution product in the previous formula, we only integrate over the initial
wavefunction support.

3.3. Some preliminary numerical tests. We present here two numerical
results obtained when solving the Maxwell–Schrödinger equations in 1-D and 3-
D. The first result Fig. 10 represents for a 1-D computation, the harmonic orders
contained in the transmitted electric field Ê(ω) of intensity |Ê(ω)|2 (ω = Nω0, with
ω0 the incident laser frequency), for a few-cycle (2–3 cycles) laser propagation in
a H+

2 medium of length equal from 14nm (corresponding to 1 TDSE), to 28.7µm
(2048 TDSE’s) at R = 2. Note that we obtain a good linear scaling of the low
order harmonic intensities, when we increase the domain length, as expected for
such a coherent process [15,16]. Note also that the seventh harmonics is particularly
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excited as remarked in numerous computations (see [23] for instance). In this case,
as the density is very small (10 Torr, that is ∼ 3.54× 1017mol/cm3) the attopulse
shapes are not modified (only linearly amplified) by the medium. In opposite for a
much larger molecular density (∼ 1020mol/cm3, with the same data than above and
R = 2) we observe a modification on Fig. 11 of the linear scaling even for low order
harmonic intensities (see for instance the seventh harmonics) This phenomenon
related to the fact that the wavelength of the highest harmonics approach the
inter-molecule distance [25].

The second numerical result Fig. 12 is the transmitted electric field harmonics
(squared) for a 3-D computation, with a 5-cycle pulse propagation in a H+

2 media of
length respectively equal to 15nm (corresponding to 4 TDSE’s), 60nm (16 TDSE’s),
240nm (64 TDSE’s). The pressure is here equal to 640 Torr. The code was run
during approximately 22 hours respectively on 4, 16 and 64 Xeon (Intel) processors
(see www.ccs.usherbrooke.ca/mammouth). Again we remark that the computation
gives us a linear scaling for the low order harmonics with respect to the propagation
length. These two results show also the high order harmonic generation by the
electric field acting on the H+

2 molecules and the high intensity of some of these
harmonics as a result of nonlinear non-perturbative laser-molecule interaction. This
observation confirms the necessity for the use of our Maxwell–Schrödinger model
instead of perturbative Maxwell–Schrödinger models to study intense ultrashort
lasers behaviours in nonlinear media where ionization occurs. Indeed for these

Figure 10. |Ê(ω)|2, for 14nm (1 molecule), 112nm (8 molecules),
896nm (64 molecules) and 28.7µm (2048 molecules) and n0 ∼
3.54 × 1017mol/cm3 in 1-D. In abscissa: harmonic order N , with
ω = Nω0 and ω0 incident electric field frequency.
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Figure 11. |Ê(ω)|2, for 2nm (1 molecule) and 4µm (2048
molecules) and n0 ∼ 1020mol/cm3 in 1-D. In abscissa: harmonic
order N , with ω = Nω0, harmonic frequency, and ω0 incident
electric field frequency

last models only small order harmonics are taken into account (one equation for
each harmonic). Our numerical results show that higher harmonics can have an
important intensity. Our model can then be for instance, an issue for filamentation
[27]. Indeed, this multidimensional phenomenon is usually treated using nonlinear
TDSE’s (one for each harmonic) with a plasma term modeled with a nonlinear
function of the electric field. However, in practice only small harmonics are taken
into account and the plasma term is often poorly modeled. Finally, note that by
filtering around high intense harmonics it is also possible to create shorter pulses
(much higher frequency) than the incident one (2.13). See for instance that in the
3-D case, the 70th harmonics is relatively intense allowing to create by filtering an
“intense” pulse of frequency 70 times larger than the incident laser one (2.13) [1].
Details of theses simulations and others will be presented in [25].

4. Conclusion

In this short paper, we have presented a Maxwell–Schrödinger model for laser-
molecule interaction in the nonlinear nonperturbative regime and some aspects of
its numerical computation. In particular, we have proposed some avenues to re-
duce the algorithmic complexity of the numerical problem due to the multiple scales
(polarization computation for instance) but also due to the boundary conditions
involving continuum (dissociative ionization) states both electronic and nuclear.
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Figure 12. |Ê(ω)|2, for 15nm (4 molecules), 60nm (16 molecules),
240nm (64 molecules) in 3-D. In abscissa: harmonic order N , with
ω = Nω0, harmonic frequency, and ω0 incident electric field fre-
quency.

In this framework, we have presented a 1-D approach to manage the “dispersive”
effects for the TDSE which is obviously applicable on cubic box faces in 3-D. How-
ever to overcome the difficulties due to the cubic domain singularities, a better
approach consists in applying some really multi-dimensional Dirichlet–Neumann
boundary conditions. Then some new numerical difficulties arise due to the fact
that such conditions are non-local in space (and in time): the condition on each
boundary point of the domain depends on all the points of the domain at all pre-
vious times. In [4] the authors proposed in 2-D for laser free problems to use an
approximation of the Dirichlet–Neumann nonlocal pseudodifferential operator by
some local differential operators (involving in particular the Beltrami operator on
the boundary). They are then able to obtain order two local approximations of the
“exact” nonlocal operator. In [25] we will show how we propose to apply a deriva-
tion of their technique in the framework of laser-molecule interactions. We will also
focus on transversal effects, that is spatial-temporal pulse shape effects, of the laser
field interacting with a gas not taken into account in this note. Another point to
investigate comes from the following remark. For a 10 Torr pressure, and supposing
an ideal molecular equidistribution, the space between two molecules is given by
12nm. In HOHG by a 800nm-laser, the 67th harmonic is approximately equal to
12nm. This specific configuration, that corresponds exactly to one electric field
cycle between two molecules presents challenges for the inclusion of microscopic
details into Maxwell–Schrödinger equations.
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E-mail address: lorin@CRM.UMontreal.CA
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