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Low Complexity Normal Elements over
Finite Fields of Characteristic Two

ARIANE M. MASUDA, LUCIA MOURA, DANIEL PANARIO AND DAVID THOMSON

Abstract—In this paper we extend previously known results
on the complexities of normal elements. Using algorithms that
exhaustively test field elements, we are able to provide the
distribution of the complexity of normal elements for binary fields
with degree extensions up to 39. We also provide current results
on the smallest known complexity for the remaining degree
extensions up to 512 by using a combination of constructive
theorems and known exact values. We give an algorithm to
exhaustively search field elements by using Gray codes which
allows us to reuse previous computations. We compare this
with a standard method. We analyze this algorithm and show
both experimentally and asymptotically that the Gray code
optimization gives substantial savings. The total computation of
the distribution of the complexity of normal elements for degrees
up to 39 in our experiments allows us to draw several conjectures.
In particular, our data provides remarkable evidence for the
conjecture that the complexity of normal elements follows a
normal distribution. Finally, we conjecture that there is no linear
bound on the minimum complexity with respect to the degree of
the extension.

Index Terms—Finite fields, normal elements, low complexity,
Gray codes.

I. INTRODUCTION

LET Fq be a finite field of order q, and let Fqn be a finite
extension of Fq . A normal basis of Fqn over Fq is a basis

of the form N = {α, αq, . . . , αqn−1} where α ∈ Fqn . In this
case, we say that α is a normal element of Fqn over Fq, or
that α generates the normal basis N . The elements in N are
called the conjugates of α. Normal bases exist in any finite
extension of a finite field [14].

Let αi = αqi

for 0 ≤ i ≤ n − 1, and let T = (tij) be the
n× n matrix given by

ααi =
n−1∑

j=0

tijαj , 0 ≤ i ≤ n− 1, tij ∈ Fq. (1)

The complexity of the normal basis N , denoted by cN , is the
number of non-zero entries in T . Mullin, Onyszchuk, Vanstone
and Wilson [18] proved that cN ≥ 2n−1. The normal basis N
is said to be optimal when this lower bound is achieved, that
is, when cN = 2n− 1. Optimal normal elements exist but not
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in all finite fields (for instance, see [15, Chapter 3]). Optimal
normal bases over finite fields were completely characterized
by Gao and Lenstra [8].

The implementation of finite field arithmetic is highly re-
quired in several applications such as coding theory, cryptogra-
phy and signal processing; see for example [16]. In particular,
an important operation for these applications is exponentiation
of elements in a finite field. It is well known that the use
of normal bases yields efficient exponentiation in F2n [7],
[23], including applications to hardware implementations [20].
Specifically, exponentiations to 2k, for any positive integer k,
are just cyclic bit shifts. Moreover, when using normal bases
the speed of multiplications over F2n depends directly on
cN (see [5, Section 11.2.2]). Thus, it is important to use a
normal basis in F2n , for any given n, with the lowest possible
complexity.

When no optimal normal basis exists, the problem of clas-
sifying low complexity normal bases still remains open. There
is no proper definition of the term “low complexity”. Ideally,
one expects to have a complexity bounded by kn for some
small constant k. Young and Panario [26] conjecture that low
complexity normal elements over finite fields of characteristic
two with complexity up to 3n only occur in finite fields with
an optimal normal element. Wan and Zhou [25] extended part
of the results in [26] for finite fields of odd characteristic.

For a better understanding of the behavior of the com-
plexities of normal elements, tables summarizing the com-
plexity distribution are important tools. In [15, Section 3.3],
Jungnickel provides a table with minimum and maximum
complexities of normal elements in F2n , for each n ≤ 30.
In [15, Section 5.4], for 31 ≤ n ≤ 60, he provides a table due
to Geiselmann [13] with the lowest complexities found via
free polynomials. In this paper, we present the distribution of
the complexity of normal elements for n ≤ 39. We gather, for
each n in this range, the frequency of each possible complexity
value. We give summary tables with minimum, maximum,
average and variance values for the complexities of normal
elements and self-dual normal elements in F2n . We do a
statistical fit of the frequency data, for each n ≤ 39, that
clearly suggests that the complexities of normal elements in
F2n follow a normal distribution. Our data is obtained via an
exhaustive search in F2n which is substantially sped up by
visiting the finite field elements in a Gray code order. We
also extend the table of the smallest known complexities for
other practical values of interest (40 ≤ n ≤ 512), using a
combination of previously known results and random search.

This paper is organized as follows. In Section II, we give a
brief survey of known results about normal elements that are
relevant and used in our research. In Section III, we describe
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and analyze the algorithms that we use for the exhaustive
complexity computations. Our asymptotic analysis shows that
using a Gray code order, instead of an arbitrary order, allows a
21.05% reduction on the running time. Tables and conjectures
are given in Section IV.

II. PREVIOUS RESULTS

We start with a criterion, due to Davenport, that we use to
determine whether an element is normal or not.

Theorem 1: [15, Theorem 3.1.8] Let α be an element in
Fqn . Then α is a normal element of Fqn over Fq if and only
if the polynomials xn − 1 and

αqn−1
xn−1 + · · ·+ αqx + α

in Fqn [x] are relatively prime.
The number of normal elements was established by Ore.
Theorem 2: [15, Theorem 3.1.5] Let q be a power of the

prime p, let n be a positive integer and write n = pam, where
p does not divide m. Then the number of normal bases of Fqn

over Fq equals

1
n

Φq(xn − 1) =
qn

n

∏

d|m
(1− q−od(q))φ(d)/od(q),

where Φq(f) is the number of polynomials in Fq[x] of degree
smaller than the degree of f which are relatively prime to f ,
on(a) is the order of a modulo n, and φ(d) is the number of
positive integers smaller than d that are relatively prime to d.

Several authors have provided lower and upper bounds for
the number of normal bases of Fqn over Fq . Here, we present
Gao and Panario’s upper bound [9, Theorem 3.4]:

1
n

Φq(xn − 1) ≤ qn

eγ−cqn
√

1 + logq n
, (2)

where γ = 0.577216 . . . is Euler’s constant and cq =
q/

(
(q − 1)(

√
q − 1)

)
; see also [6]. Von zur Gathen and Gies-

brecht [12] showed that the probability that an arbitrary ele-
ment in Fqn forms a normal basis is larger than 1/(16 logq n).

Specific criteria to identify optimal normal elements are
provided by Mullin, Onyszchuk, Vanstone and Wilson [18].
As a consequence of these criteria, given n, it is simple to
determine whether there exists an optimal normal basis in
Fqn or not. When q = 2, a list with all such values of n
up to 1300 can be found in [15, Table 3.1]. There is also a list
of all complexities of normal bases for F2n with n up to 30
in [15, Table 3.2]. Using our algorithms, we extend this table
for n up to 39 (Table IV). For n from 40 to 512, we give
the smallest complexity found using different methods from
the literature (Table V). The details will be explained later;
we now present some results that are used to compute these
tables.

We present a theorem using generalized Gauss periods
to construct normal bases with known complexities. This
theorem was shown for extensions F2n over F2 by Ash, Blake
and Vanstone [1], and for general q independently by Beth,
Geiselmann and Meyer [2].

Theorem 3: [1], [2] Let q be a prime or a prime power,
and let n and k be positive integers such that nk+1 is a prime

not dividing q. Let β be a primitive (nk + 1)th root of unity
in Fqnk . Suppose that gcd(nk/e, n) = 1 where e is the order
of q modulo nk +1. Then, for any primitive kth root of unity
τ in Znk+1, the element

α =
k−1∑

i=0

βτ i

generates a normal basis of Fqn over Fq with complexity at
most (k + 1)n − k, and at most kn − 1 if k ≡ 0 (mod p),
where p is the characteristic of Fq .

This construction defines optimal normal elements for k = 1
for all q, and for k = 2 and q = 2. These elements
generate the so-called Type I and Type II optimal normal
bases, respectively. In [8], Gao and Lenstra prove that these
elements characterize all optimal normal bases over finite
fields. In general, the exact complexity of a basis constructed
using Theorem 3 is difficult to analyze. For q = 2 we have
the following special cases.

Theorem 4: [1] Let q = 2. Then the normal basis N
generated by α as constructed in Theorem 3 has complexity

cN =





4n− 7 if k = 3, 4 and n > 1;
6n− 21 if k = 5 and n > 2 or k = 6 and n > 12;
8n− 43 if k = 7 and n > 6.

The following recursive construction allows us to cover
more finite fields in Table V.

Theorem 5: [15, Theorem 3.3.13] Let α and β generate
normal bases A and B for Fqm and Fqn over Fq , respectively.
Assume that m and n are coprime and put γ := αβ. Then γ
generates a normal basis N for Fqmn over Fq and cN = cAcB .
Furthermore, if α and β both generate optimal normal bases,
then γ has complexity cN = 4mn− 2m− 2n + 1.

As a consequence (see [15, Corollary 3.3.15]), if we let the
complexity of Fqn over Fq be

Cq(n) := min{cN : N is a normal basis for Fqn over Fq},
and if m and n are relatively prime, then Cq(mn) ≤
Cq(m)Cq(n).

Next we give a class of theorems which allows us to
construct even more low complexity normal bases in subfields
of finite fields containing optimal normal bases. To do this,
we first define the trace of an element α ∈ Fqn over Fqm ,
where n = km, by Trqn/qm(α) = α + αqm

+ · · ·+ αq(k−1)m

.
We present the statement of the theorem for the q even and
Type I case, and give a table of results for both Type I and
Type II cases (Table I). There are analogous results for the q
odd case, and for the dual bases of the given constructions,
however in this paper we focus only on finite fields of even
characteristic.

Theorem 6: [4] Let α ∈ F2n generate an optimal normal
basis of Type I of F2n over F2, n > 2, and let β =
Tr2n/2m(α) ∈ F2m with m = n/k and k ≤ m. Then, an
upper bound for the complexity of the normal basis of F2m

over F2 generated by β is (k +1)m−3k +2 if m is even and
k is odd, or km− k + 1 otherwise.

A table containing optimal normal elements, the number of
normal bases, the minimum and the maximum complexity in
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TABLE I
SUMMARY OF BEST-KNOWN LOW COMPLEXITIES FOR F2m ⊆ F2n

OBTAINED BY TRACES, WHERE m = n/k.

Type I Type II
m odd km− k + 1 2km− 2k + 1
m even, k odd (k + 1)m− 3k + 2 for all m
m even, k even km− k + 1

F2n over F2 for n ≤ 30 was presented by Mullin, Onyszchuk,
Vanstone and Wilson [18]. For n ≤ 27, this information was
obtained through a computer search. For n = 28, 29 and 30,
no computer search was performed by these authors due to
the computational complexity and the observation that these
fields contain optimal normal bases.

We focus now on self-dual normal bases. Self-dual nor-
mal bases form a special class of normal bases that have
also been used in finite field implementations [24]. Suppose
A = {α0, α1, . . . , αn−1} is a basis of Fqn over Fq . A dual
basis {β0, β1, . . . , βn−1} of A is defined, for 0 ≤ i, j,≤ n, by

Tr(αiβj) =
{

1, if i = j,
0, if i 6= j.

The basis A is called self-dual if βi = αi for all i, 0 ≤ i ≤
n−1. It is well known that, for each basis {α0, α1, . . . , αn−1}
of Fqn , there exists a unique dual basis. Also, the dual of a
normal basis is always normal. The following result provides
a simple way of recognizing self-dual normal bases.

Theorem 7: [15, Corollary 5.1.3] Let α be a generator for
a normal basis B of F2n over F2, and T = (tij) be the
matrix defined in (1). Then B is self-dual if and only if T
is symmetric.

A self-dual normal basis of Fqn over Fq exists if and only
if either q is even and n is not a multiple of 4 or both q and
n are odd (see [15, Theorem 5.2.1]). As a consequence, there
is no self dual normal basis of F2n over F2 if 4 divides n. If
n ≡ 2 (mod 4), the next two results show how to obtain a
self-dual normal basis over F2n , provided that a basis of the
same type is given, and how their complexities are related.

Theorem 8: [15, Corollary 5.4.3] Let α ∈ F2n , where n is
even, and put γ := 1+α. Then α generates a self-dual normal
basis if and only if γ does.

Theorem 9: [15, Theorem 5.4.4] Let α generate a self-
dual normal basis B for F2n over F2, and assume that n is
even. Put γ := 1 + α, and let BC be the self-dual normal
basis generated by γ. Then the complexities of B and BC are
related as follows

CBC = n2 − 3n + 8− CB .

For n ≡ 2 (mod 4), the average complexity of a self-dual
normal basis for F2n over F2 is 1

2 (n2 − 3n + 8) (see [15,
Corollary 5.4.5]). Also, if CB is the complexity of a self-dual
normal basis B then

2n− 1 ≤ CB ≤ n2 − 5n + 9.

Equality holds in one of these bounds if and only if either B
or BC is optimal; in this case, 2n + 1 is prime and 2 is a
primitive root modulo 2n + 1 (see [15, Theorem 5.4.6]).

III. ALGORITHMS FOR COMPUTING THE COMPLEXITY
DISTRIBUTION OF NORMAL ELEMENTS

In this section, we describe and analyze two variants of
an exhaustive algorithm for computing the complexity of
each normal element in Fqn . Algorithm StandardNCD (for
“Standard Normal Complexity Distribution”) is the simplest
variant. Algorithm GrayCodeNCD (for “Gray Code Normal
Complexity Distribution”), the second variant, uses Gray codes
in order to efficiently update the current finite field element
and its conjugates. We use basic operations in Fq as our
time complexity measure. Then we show that asymptotically
the Gray code variant reduces the time complexity of the
standard algorithm by 21.05%. We present the algorithms and
their analyses for q = 2. Their extensions to general q are
straightforward.

A. Description of the algorithms

We now describe Algorithm StandardNCD; its pseu-
docode appears in Fig. 1. At each step, we compute α ∈ F2n ,
represented as a polynomial over F2 with coefficients stored
in the tuple αcoeff = [an−1, . . . , a0]. We define variables
αj = α2j

, j = 0, 1, . . . , n − 1, to store α and its conjugates.
The main loop runs through α ∈ F∗2n , updating the tuple αcoeff

with the next binary tuple, using an arbitrary order computed
via the function NextTuple() in line 12.

Each field element α is processed in lines 6-11. Since
conjugates form an equivalence class for the computation of
the complexity of normal elements, we only compute the
complexity for one canonical representative of the normal
basis. We stipulate that α is canonical if and only if α is the
(unique) minimum element among {α2j}n−1

j=0 , when using the
lexicographical ordering of the coefficients of their polynomial
representations. For a canonical element α, we check if it is
normal using the procedure IsNormal which employs a gcd
test based on Theorem 1. If α is normal, then we calculate
its complexity via the procedure CalculateComplexity,
which is an implementation of the complexity definition; see
(1). This amounts to solving an n×n system of equations with
coefficients in F2. Since the only difference between these
systems of equations are their right-hand sides, we calculate
the inverse of the matrix P associated with the system and
then apply n multiplications of P−1 by vectors in Fn

2 .
The values of α and its conjugates are updated in lines 12-

15. Algorithm StandardNCD does a straightforward update,
while Algorithm GrayCodeNCD employs a more efficient
update that uses a Gray code.

A Gray code is an ordering of the 2n binary vectors of
length n such that any two consecutive vectors have Hamming
distance equal to 1, i.e. any two consecutive vectors differ in a
unique position k. Gray codes are well studied (see [21]) and
they exist for every n. In particular, we can build a Gray code
in which the first vector is the zero vector, and each next vector
can be computed in time linear with n. In the GrayCodeNCD
algorithm, this computation is done by calling the function
NextGrayTuple() in line 12.

Now we describe how Gray codes are used to update α.
Let α′ be the field element in the previous iteration and
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α be the field element in the current iteration, represented
as polynomials over F2. Since their polynomial coefficients
correspond to successive tuples in a Gray code, we have
α = α′ + xk, for some k ∈ {0, 1, . . . , n − 1}. Therefore,
α2j

= (α′ + xk)2
j

= (α′)2
j

+ (xk)2
j

. In lines 1-2 of
the algorithm GrayCodeNCD, the values ej

i = (xi)2
j

are
precomputed, and used in line 15 for updating α. This reduces
the computation in lines 14-15 from n−1 squarings, as in the
standard algorithm, to n additions in the Gray code variant.

We recall from Theorem 7 that a self-dual normal basis has a
symmetric multiplication table. So, in order to adapt the given
algorithms to search exclusively for self-dual normal elements,
we alter the CalculateComplexity procedure to solve
for tij row-by-row (i.e. solving the system up to n times),
and check the non-diagonal elements (up to the index of the
calculated row) for symmetry. If this follows to completion,
the normal element is self-dual, and the complexity is stored.
We call this algorithm SelfDualNCD.

B. Analyses of the algorithms

In this section, we analyze the amortized worst-case running
time per finite field element, which we call TS(n) and TG(n),
for standard and Gray code variants, respectively. Therefore,
the total running time of each algorithm will be at most
2nTS(n) and 2nTG(n), respectively. We do our analysis in
terms of M(n), the number of basic operations in F2 used in
a multiplication of polynomials of degree smaller than n over
F2. We then compute the savings in running time given by the
Gray code variant with respect to the standard one.

For the multiplication of polynomials of degree n over F2,
we consider the classical method in which M(n) = 2n2 +
O(n) (see Section 2.3 in [10]), and Karatsuba’s method in
which M(n) ≤ 9nlog2 3 ≤ n1.59 (see Section 8.1 in [10]). In
addition, we observe that a multiplication in F2n corresponds
to one multiplication of polynomials of degree at most n− 1
followed by a modular reduction by the polynomial defining
the extension F2n . This multiplication in F2n costs 3M(n) +
O(n) operations in F2 (see Section 9.7 in [10]).

We first analyze the steps that are common to both algo-
rithms. The canonicity test in line 6 can be done in O(n2)
comparisons in F2. Procedure IsNormal called in line 7 is
only run for 1/n of the field elements. Each time it is run,
it involves the computation of a gcd between polynomials of
degrees n− 1 and n over F2n (see Theorem 1). This gcd can
be computed, using the Euclidean algorithm, in at most n +1
inversions and 2.5n2 + O(n) additions and multiplications in
F2n (see Section 3.3 in [10]). As we have seen, multiplications
in F2n can be executed in 3M(n) + O(n) operations in
F2, while additions require O(n). Since n + 1 inversions in
F2n can be computed in O(n3) operations in F2, line 7 can
be computed in time 7.5n2M(n) + O(n3) operations in F2.
Therefore, the amortized time for line 7 is 7.5nM(n)+O(n2).

Lines 8-9 are only executed Φ2(xn − 1)/n times in
total, since the number of normal elements is Φ2(xn −
1) by Theorem 2. Each time these lines are run, algo-
rithm CalculateComplexity is executed. For this al-
gorithm, steps 1-2 take O(nM(n)), steps 3-7 and 10 take

O(n2) and steps 8-9 take O(n3). So, the running time of
CalculateComplexity is O(nM(n) + n3) = O(n3).
Thus, the amortized cost for lines 8-9 in both main algorithms
is O(n3Φ2(xn−1)/(n2n)), which, by the upper bound in (2),
is O(n2/

√
log n).

The iterations of each algorithm differ in the updates
performed in lines 12-15. For the standard algorithm, the cost
of these lines is dominated by n− 1 squarings of an element
in F2n . Each of these operations can be done by squaring
a polynomial over F2 of degree smaller than n followed by
a modular reduction by a polynomial of degree n. The cost
of each squaring in F2n is then dominated by the modular
reduction at a cost of 2M(n) + O(n). Thus, lines 12-15 for
the standard algorithm cost 2nM(n) + O(n2) operations in
F2. On the other hand, for the Gray code algorithm, the cost
of lines 12-15 is dominated by n additions of polynomials of
degree smaller than n over F2, which can be done in time
O(n2).

Combining the above analyses for the steps of each algo-
rithm, we get

TS(n) = 7.5nM(n) + 2nM(n) + O(n2)
= 9.5nM(n) + O(n2),

TG(n) = 7.5nM(n) + O(n2).

Using the above equations, we conclude that the Gray
code variant gives (asymptotically) savings of (9.5 −
7.5)nM(n)/9.5nM(n) ≈ 21.05%, independently of the mul-
tiplication method used.

Finally, in Table II, we give asymptotic estimates of TS(n)
and TG(n) for specific values of M(n), using classical and
Karatsuba’s multiplication methods. There are other multipli-
cation methods with smaller asymptotic running times, but
these methods are less efficient for smaller n’s (see [11,
Section 7]). The cross-over happens for n’s much larger than
the ranges our algorithms could be applied, since iterations
are repeated 2n times.

TABLE II
RUNNING TIMES (PER FIELD ELEMENT) USING DIFFERENT

MULTIPLICATION METHODS.

Method Karatsuba’s Classical
M(n) 9nlog2 3 ≤ 9n1.59 2n2

TS(n) 85.5n1+log2 3 + O(n2) 19n3 + O(n2)
TG(n) 67.5n1+log2 3 + O(n2) 15n3 + O(n2)

IV. RESULTS AND CONJECTURES

Table III gives a comparative runtime analysis of all the
algorithms, and Table IV outlines the main results found in this
experiment using the GrayCodeNCD and SelfDualNCD
algorithms for n ≤ 39. In Table V we give the best known
complexities found for 40 ≤ n ≤ 512 using several sources
from the literature. These results are analyzed, and conjectures
are presented based on the findings.

The experiments were performed on individual Pentium IV
3.0 GHz systems with 1.5 GB of DDR RAM. The operating
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Algorithm StandardNCD(n)
1. αcoeff=NextTuple([0, 0, . . . , 0]);
2. α0 =polynomial(αcoeff); /* initialize α */
3. for j = 1 to n− 1 do

4. αj = (αj−1)
2; /* calculate conjugates αj = (α)2

j

*/
5. for i = 1 to 2n − 1 do /* run through F∗2n */
6. if ((α0, α1, . . . , αn−1) is canonical) then
7. if (IsNormal(α0, α1, . . . , αn−1)) then
8. Compl=CalculateComplexity(α0, α1, . . . , αn−1);
9. UpdateStats(α0,Compl);
10. endif
11. endif
12. αcoeff =NextTuple(αcoeff); /* go to next */
13. α0 =polynomial(αcoeff);
14. for j = 1 to n− 1 do

15. αj = (αj−1)
2;/* calculate αj = α2j

*/
16. endfor
17. PrintFinalStats();
end StandardNCD

Algorithm GrayCodeNCD(n)
1. for i = 0 to n− 1 do e0

i = xi; /* precomputation */
2. for j = 1 to n− 1 do ej

i = (ej−1
i )2; /* precomputation */

3. αcoeff=NextGrayTuple([0, 0, . . . , 0]) = [0, . . . , 0, 1];
4. for j = 0 to n− 1 do αj = ej

0;/* initial. α & conjug.*/
5. for i = 1 to 2n − 1 do /* run through F∗2n */
6. if ((α0, α1, . . . , αn−1) is canonical) then
7. if IsNormal(α0, α1, . . . , αn−1) then
8. Compl=CalculateComplexity(α0, α1, . . . , αn−1);
9. UpdateStats(α0,Compl);
10. endif
11. endif
12. α′coeff = αcoeff; αcoeff =NextGrayTuple(α′coeff); /* next */
13. Let k be the index ` such that αcoeff [`] 6= α′coeff [`];
14. for j = 0 to n− 1 do
15. αj = αj + ej

k; /* efficient αj computation */
16. endfor
17. PrintFinalStats();
end GrayCodeNCD

Procedure CalculateComplexity(α0, α1, . . . , αn−1)
1. for i = 0 to n− 1 do
2. βi = α0 ∗ αi;
3. for i = 0 to n− 1 do
4. for j = 0 to n− 1 do
5. Pij = j-th coefficient of αi;
6. Aij = j-th coefficient of βi;
7. endfor
8. Calculate Pinv = P−1;
9. Calculate T = A× Pinv; /* T = (tij) */
10. Compl =

∑n−1
i=0

∑n−1
j=0 tij;

11. return Compl;
end CalculateComplexity

Procedure IsNormal(α0, α1, . . . , αn−1)
1. if (gcd(xn − 1, α0 + α1x + · · ·+ αn−1x

n−1) = 1)
2. then return true;
3. else return false;
end IsNormal

Fig. 1. Algorithms for exhaustively searching and enumerating all normal bases of F2n over F2.
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TABLE III
RUNNING TIME IN SECONDS FOR SEVERAL ALGORITHMS.

n Standard GrayCode SelfDual
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 0.00 0.00 0.00
7 0.00 0.00 0.00
8 0.00 0.00 0.00
9 0.00 0.01 0.00

10 0.01 0.01 0.01
11 0.03 0.03 0.02
12 0.07 0.06 0.05
13 0.16 0.13 0.11
14 0.43 0.27 0.23
15 0.65 0.52 0.48
16 1.48 1.13 1.02
17 3.20 2.42 2.21
18 6.37 4.96 4.75
19 14.11 10.52 9.67
20 29.18 21.50 20.49
21 57.34 41.74 39.67
22 127.11 92.23 83.80
23 281.38 194.05 176.11
24 546.18 375.23 355.41
25 1157.33 833.03 741.50
26 2416.47 1672.35 1513.56
27 4983.14 3252.12 3011.80
28 9116.89 6776.99 7276.91
29 21179.50 14994.80 13115.90
30 40738.50 27515.20 25103.80

system was Red Hat Linux Enterprise Edition kernel 2.6.9-
34.EL. We use C++, compiled using g++ 3.4.3, for all pro-
gramming tasks. For arithmetic performed over F2, Shoup’s
NTL package version 5.3.2 was used [22], specifically taking
advantage of the optimized binary arithmetic “GF2” libraries.

A. Exhaustive search for n ≤ 39

Table III gives the CPU User-time for the StandardNCD,
GrayCodeNCD, and the SelfDualNCD algorithms, mea-
sured in seconds. We observe from Table III that the running
time of the SelfDualNCD algorithm is approximately ten
percent faster than the GrayCodeNCD algorithm running
time, though no analysis of this algorithm is presented. More-
over, a comparison of the running time per element shows
an improvement in the GrayCodeNCD algorithm over the
StandardNCD ranging from 26% to 35% for 20 ≤ n ≤ 30.
We also include Fig. 2 for graphical comparison.

Table IV shows findings on the complexity of normal
elements for every finite field F2n with n ≤ 39, computed with
the implementation of the GrayCodeNCD algorithm. This
includes the number of normal bases found ((Φ2(xn−1))/n),
the smallest and the largest complexities (mcN , McN ), average
complexity, variance and standard deviation (AvgcN

, V arcN
,

σcN
), and the smallest and the largest complexities for self-

dual normal elements (m′
cN

,M ′
cN

). Due to the time limita-
tions, no search was performed for self-dual normal elements
for n ≥ 37. The optimal normal bases found are in agreement
with the theorem of Gao and Lenstra [8] that characterizes for
which fields optimal normal bases exist.
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Fig. 2. Average runtime per element for two exhaustive algorithms.

B. Lowest found complexities for 40 ≤ n ≤ 512
Table V is devoted to the cases when 40 ≤ n ≤ 512. For

these values of n, no self-dual testing has been performed.
When an optimal normal element is known not to exist, we
show the lowest complexity found by using known methods
from the literature. In the first method considered, we check
the conditions of Theorem 3 for values of k in the range
established in the theorem. We are given exact complexities by
Theorem 4. In the second method, we apply Theorem 5 which
allows us to combine two complexities previously computed.
In the third method, we apply Theorem 6 which allows us
to find low complexity normal elements from larger fields
containing an optimal normal basis. The final method is based
on a random search, which starts with a random finite field
element, and randomly flips one of its polynomial coefficients
a prescribed number of times, keeping the normal element
found with lowest complexity. If Theorem 3 gives the lowest
complexity then we indicate in the “Property” column of
Table V which k value satisfies the conditions of the theorem.
If Theorem 5 gives the lowest complexity, we indicate the
coprime factorization of n that gives the low complexity. If
the method of Theorem 6 achieves the lowest complexity, we
note in the “Property” column which type of normal basis
and which value of k is used. Theorem 5 does not apply for
n prime or prime-power, and in the absence of an optimal
basis for degree n or for a multiple of degree n, the random
search is required. However, random search yields quite large
smallest found complexities, and so appears only for few
values of n. We observe that the smallest complexity found is
not necessarily the minimum complexity possible in the field
and for this reason the best found complexity is denoted as
min cN .
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TABLE IV
STATISTICS ON THE COMPLEXITY OF NORMAL ELEMENTS OBTAINED USING THE GrayCodeNCD AND THE SelfDualNCD ALGORITHMS.

normal element self-dual
n Φ2(xn−1)

n
mcN McN AvgcN V arcN σcN m′

cN
M ′

cN
Notes

2 1 3 3 3.00 0 0 3 3 Optimal, sd
3 1 5 5 5.00 0 0 5 5 Optimal, sd
4 2 7 9 8.00 1.00 1.00 - -
5 3 9 15 11.67 6.20 2.49 9 9 Optimal, sd
6 4 11 17 15.00 6.00 2.45 11 15 Optimal, sd
7 7 19 27 23.00 9.12 3.02 21 21 [10]: 3n-2
8 16 21 35 29.00 11.02 3.32 - - [10]: 3n-3
9 21 17 45 35.57 41.60 6.45 17 29 Optimal, sd

10 48 19 61 44.83 61.31 7.83 27 51
11 93 21 71 55.82 57.61 7.59 21 57 Optimal, sd
12 128 23 83 64.13 139.48 11.81 - -
13 315 45 101 78.38 71.06 8.43 45 81 Best, sd
14 448 27 135 91.07 108.37 10.41 27 135 Optimal, sd
15 675 45 137 105.89 127.46 11.29 45 105 Best, sd
16 2048 85 157 115.82 731.70 27.05 - -
17 3825 81 177 132.77 671.84 25.92 81 171 Best, sd
18 5376 35 243 153.51 189.50 13.77 35 243 Optimal, sd
19 13797 117 229 172.00 174.05 13.19 117 201 Best, sd
20 24576 63 257 190.80 207.28 14.40 - -
21 27783 95 277 210.97 216.43 14.71 105 237
22 95232 63 363 231.93 238.56 15.45 63 363 [10]: 3n-3
23 182183 45 325 254.02 254.60 15.96 45 309 Optimal, sd
24 262144 105 375 276.82 281.01 16.76 - -
25 629145 93 383 301.01 300.37 17.33 93 357 Best, sd
26 1290240 51 555 325.96 328.59 18.13 51 555 Optimal, sd
27 1835001 141 443 351.99 351.38 18.75 141 413
28 3670016 55 517 378.98 379.12 19.47 - - Optimal
29 9256395 57 521 407.00 406.22 20.15 57 465 Optimal, sd
30 11059200 59 759 435.95 438.52 20.94 59 759 Optimal, sd
31 28629151 237 587 466.00 465.20 21.57 237 537 Best, sd
32 67108864 361 621 497.00 495.95 22.27 - -
33 97327197 65 693 529.00 528.48 22.99 65 693 Optimal, sd
34 250675200 243 819 562.00 561.52 23.70 243 819 Best, sd
35 352149515 69 779 596.00 595.03 24.39 69 693 Optimal, sd
36 704643060 71 1017 630.99 630.51 25.11 - - Optimal
37 1857283155 171 823 667.00 666.04 25.81
38 3616800703 207 1131 704.00 703.18 26.52
39 5282242828 77 933 742.00 741.09 27.22 Optimal

TABLE V
BEST FOUND COMPLEXITIES FOR F2n WITH 40 ≤ n ≤ 512.

n min cN Property Method
40 189 5,8 Thm 5
41 81 Optimal [18]
42 135 3,14 Thm 5
43 165 k = 4 Thm 3
44 147 4,11 Thm 5
45 153 5,9 Thm 5
46 135 2,23 Thm 5
47 261 k = 6 Thm 3
48 425 3,16 Thm 5
49 189 k = 4 Thm 3
50 99 Optimal [18]
51 101 Optimal [18]
52 103 Optimal [18]
53 105 Optimal [18]
54 209 Type 1, k = 3 Thm 6
55 189 5,11 Thm 5
56 399 7,8 Thm 5
57 585 3,19 Thm 5
58 115 Optimal [18]
59 697 Type 2, k = 6 Thm 6
60 119 Optimal [18]
61 345 k = 6 Thm 3
62 351 k = 6 Thm 3
63 323 7,9 Thm 5
64 1829 Prime Power Random
65 129 Optimal [18]

n min cN Property Method
66 131 Optimal [18]
67 261 k = 4 Thm 3
68 567 4,17 Thm 5
69 137 Optimal [18]
70 207 2,35 Thm 5
71 841 Type 2, k = 6 Thm 6
72 357 8,9 Thm 5
73 285 k = 4 Thm 3
74 147 Optimal [18]
75 465 3,25 Thm 5
76 297 k = 3 Thm 3
77 399 7,11 Thm 5
78 231 2,39 Thm 5
79 309 k = 4 Thm 3
80 765 5,16 Thm 5
81 161 Optimal [18]
82 163 Optimal [18]
83 165 Optimal [18]
84 275 3,28 Thm 5
85 729 5,17 Thm 5
86 171 Optimal [18]
87 285 3,29 Thm 5
88 441 8,11 Thm 5
89 177 Optimal [18]
90 179 Optimal [18]
91 525 k = 6 Thm 3
92 315 4,23 Thm 5
93 365 k = 4 Thm 3
94 369 k = 3 Thm 3
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n min cN Property Method
95 189 Optimal [18]
96 1805 3,32 Thm 5
97 381 k = 4 Thm 3
98 195 Optimal [18]
99 197 Optimal [18]

100 199 Optimal [18]
101 585 k = 6 Thm 3
102 303 2,51 Thm 5
103 597 k = 6 Thm 3
104 945 8,13 Thm 5
105 209 Optimal [18]
106 211 Optimal [18]
107 621 k = 6 Thm 3
108 627 k = 5 Thm 3
109 1081 Type 2, k = 5 Thm 6
110 399 10,11 Thm 5
111 2201 Type 2, k = 10 Thm 6
112 1615 7,16 Thm 5
113 225 Optimal [18]
114 663 k = 5 Thm 3
115 405 5,23 Thm 5
116 399 4,29 Thm 5
117 765 9,13 Thm 5
118 687 k = 6 Thm 3
119 237 Optimal [18]
120 945 3,40 Thm 5
121 705 k = 6 Thm 3
122 711 k = 6 Thm 3
123 405 3,41 Thm 5
124 489 Type 1, k = 3 Thm 6
125 729 k = 6 Thm 3
126 459 9,14 Thm 5
127 501 k = 4 Thm 3
128 7821 Prime Power Random
129 1281 Type 2, k = 5 Thm 6
130 259 Optimal [18]
131 261 Optimal [18]
132 455 4,33 Thm 5
133 2223 7,19 Thm 5
134 267 Optimal [18]
135 269 Optimal [18]
136 1701 8,17 Thm 5
137 801 k = 6 Thm 3
138 275 Optimal [18]
139 549 k = 4 Thm 3
140 483 4,35 Thm 5
141 1681 Type 2, k = 6 Thm 6
142 831 k = 6 Thm 3
143 837 k = 6 Thm 3
144 1445 9,16 Thm 5
145 513 5,29 Thm 5
146 291 Optimal [18]
147 861 k = 6 Thm 3
148 295 Optimal [18]
149 2073 Type 2, k = 7 Thm 6
150 495 3,50 Thm 5
151 885 k = 6 Thm 3
152 2457 8,19 Thm 5
153 605 k = 4 Thm 3
154 567 11,14 Thm 5
155 309 Optimal [18]
156 515 3,52 Thm 5
157 1561 Type 2, k = 5 Thm 6
158 315 Optimal [18]
159 525 3,53 Thm 5
160 3249 5,32 Thm 5
161 855 7,23 Thm 5
162 323 Optimal [18]
163 645 k = 4 Thm 3
164 567 4,41 Thm 5
165 585 5,33 Thm 5
166 495 2,83 Thm 5
167 2325 Type 2, k = 7 Thm 6
168 1995 3,56 Thm 5
169 669 k = 4 Thm 3
170 999 k = 6 Thm 3
171 1989 9,19 Thm 5

n min cN Property Method
172 343 Optimal [18]
173 345 Optimal [18]
174 347 Optimal [18]
175 693 k = 4 Thm 3
176 1785 11,16 Thm 5
177 701 k = 4 Thm 3
178 355 Optimal [18]
179 357 Optimal [18]
180 359 Optimal [18]
181 1065 k = 6 Thm 3
182 721 Type 1, k = 3 Thm 6
183 365 Optimal [18]
184 945 8,23 Thm 5
185 2209 Type 2, k = 6 Thm 6
186 371 Optimal [18]
187 1101 k = 6 Thm 3
188 1107 k = 5 Thm 3
189 377 Optimal [18]
190 567 2,95 Thm 5
191 381 Optimal [18]
192 9145 3,64 Thm 5
193 765 k = 4 Thm 3
194 387 Optimal [18]
195 645 3,65 Thm 5
196 391 Optimal [18]
197 3529 Type 2, k = 9 Thm 6
198 591 2,99 Thm 5
199 789 k = 4 Thm 3
200 1953 8,25 Thm 5
201 4001 Type 2, k = 10 Thm 6
202 1191 k = 6 Thm 3
203 1083 7,29 Thm 5
204 707 4,51 Thm 5
205 729 5,41 Thm 5
206 817 Type 1, k = 3 Thm 6
207 765 9,23 Thm 5
208 3825 13,16 Thm 5
209 417 Optimal [18]
210 419 Optimal [18]
211 2101 Type 2, k = 5 Thm 6
212 735 4,53 Thm 5
213 845 k = 4 Thm 3
214 849 k = 3 Thm 3
215 1269 k = 6 Thm 3
216 2961 8,27 Thm 5
217 1281 k = 6 Thm 3
218 1287 k = 5 Thm 3
219 869 k = 4 Thm 3
220 873 Type 1, k = 3 Thm 6
221 441 Optimal [18]
222 735 3,74 Thm 5
223 2665 Type 2, k = 6 Thm 6
224 6859 7,32 Thm 5
225 1581 9,25 Thm 5
226 451 Optimal [18]
227 5877 Type 2, k = 13 Thm 6
228 2255 Type 1, k = 9 Thm 6
229 5017 Type 2, k = 11 Thm 6
230 459 Optimal [18]
231 461 Optimal [18]
232 1197 8,29 Thm 5
233 465 Optimal [18]
234 867 9,26 Thm 5
235 933 k = 4 Thm 3
236 937 Type 1, k = 3 Thm 6
237 2361 Type 2, k = 5 Thm 6
238 711 2,119 Thm 5
239 477 Optimal [18]
240 3825 3,80 Thm 5
241 1425 k = 6 Thm 3
242 1431 k = 6 Thm 3
243 485 Optimal [18]
244 969 k = 3 Thm 3
245 489 Optimal [18]
246 815 3,82 Thm 5
247 1461 k = 6 Thm 3
248 4977 8,31 Thm 5
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n min cN Property Method
249 825 3,83 Thm 5
250 5479 Type 2, k = 11 Thm 6
251 501 Optimal [18]
252 935 9,28 Thm 5
253 945 11,23 Thm 5
254 507 Optimal [18]
255 909 5,51 Thm 5
256 N/A Prime Power No data
257 1521 k = 6 Thm 3
258 855 3,86 Thm 5
259 2581 Type 2, k = 5 Thm 6
260 903 4,65 Thm 5
261 521 Optimal [18]
262 783 2,131 Thm 5
263 1557 k = 6 Thm 3
264 1365 8,33 Thm 5
265 945 5,53 Thm 5
266 1575 k = 6 Thm 3
267 885 3,89 Thm 5
268 535 Optimal [18]
269 3753 Type 2, k = 7 Thm 6
270 539 Optimal [18]
271 1605 k = 6 Thm 3
272 6885 16,17 Thm 5
273 545 Optimal [18]
274 2731 Type 2, k = 5 Thm 6
275 1953 11,25 Thm 5
276 959 4,69 Thm 5
277 1101 k = 4 Thm 3
278 555 Optimal [18]
279 1109 k = 4 Thm 3
280 1449 8,35 Thm 5
281 561 Optimal [18]
282 1671 k = 6 Thm 3
283 1677 k = 6 Thm 3
284 1129 Type 1, k = 3 Thm 6
285 945 3,95 Thm 5
286 1071 11,26 Thm 5
287 1539 7,41 Thm 5
288 6137 9,32 Thm 5
289 3457 Type 2, k = 6 Thm 6
290 1035 5,58 Thm 5
291 1725 k = 6 Thm 3
292 583 Optimal [18]
293 585 Optimal [18]
294 975 3,98 Thm 5
295 6469 Type 2, k = 11 Thm 6
296 10773 8,37 Thm 5
297 1761 k = 6 Thm 3
298 1767 k = 6 Thm 3
299 597 Optimal [18]
300 995 3,100 Thm 5
301 3001 Type 2, k = 5 Thm 6
302 1201 Type 1, k = 3 Thm 6
303 605 Optimal [18]
304 9945 16,19 Thm 5
305 1809 k = 6 Thm 3
306 611 Optimal [18]
307 1221 k = 4 Thm 3
308 1155 11,28 Thm 5
309 617 Optimal [18]
310 927 2,155 Thm 5
311 1845 k = 6 Thm 3
312 1617 8,39 Thm 5
313 1857 k = 6 Thm 3
314 1863 k = 5 Thm 3
315 1173 9,35 Thm 5
316 631 Optimal [18]
317 8217 Type 2, k = 13 Thm 6
318 1055 3,106 Thm 5
319 1197 11,29 Thm 5
320 16461 5,64 Thm 5
321 3841 Type 2, k = 6 Thm 6
322 1215 14,23 Thm 5
323 645 Optimal [18]
324 1127 4,81 Thm 5
325 1293 k = 4 Thm 3

n min cN Property Method
326 651 Optimal [18]
327 14345 Type 2, k = 22 Thm 6
328 1701 8,41 Thm 5
329 657 Optimal [18]
330 659 Optimal [18]
331 1965 k = 6 Thm 3
332 1155 4,83 Thm 5
333 8721 9,37 Thm 5
334 2629 k = 7 Thm 3
335 4009 Type 2, k = 6 Thm 6
336 8075 3,112 Thm 5
337 3361 Type 2, k = 5 Thm 6
338 675 Optimal [18]
339 1125 3,113 Thm 5
340 1353 k = 3 Thm 3
341 4081 Type 2, k = 6 Thm 6
342 2031 k = 6 Thm 3
343 1365 k = 4 Thm 3
344 15771 8,43 Thm 5
345 1233 5,69 Thm 5
346 691 Optimal [18]
347 2061 k = 6 Thm 3
348 695 Optimal [18]
349 3481 Type 2, k = 5 Thm 6
350 699 Optimal [18]
351 3501 Type 2, k = 5 Thm 6
352 7581 11,32 Thm 5
353 4929 Type 2, k = 7 Thm 6
354 707 Optimal [18]
355 2109 k = 6 Thm 3
356 1239 4,89 Thm 5
357 1185 3,119 Thm 5
358 1071 2,179 Thm 5
359 717 Optimal [18]
360 3213 5,72 Thm 5
361 10801 Type 2, k = 15 Thm 6
362 2151 k = 5 Thm 3
363 1445 k = 4 Thm 3
364 1449 k = 3 Thm 3
365 9465 Type 2, k = 13 Thm 6
366 1095 2,183 Thm 5
367 2181 k = 6 Thm 3
368 3825 16,23 Thm 5
369 1377 9,41 Thm 5
370 1323 5,74 Thm 5
371 741 Optimal [18]
372 743 Optimal [18]
373 1485 k = 4 Thm 3
374 1489 Type 1, k = 3 Thm 6
375 749 Optimal [18]
376 19173 8,47 Thm 5
377 2565 13,29 Thm 5
378 755 Optimal [18]
379 6805 Type 2, k = 9 Thm 6
380 1323 4,95 Thm 5
381 7601 Type 2, k = 10 Thm 6
382 1143 2,191 Thm 5
383 16045 Type 2, k = 21 Thm 6
384 39105 3,128 Thm 5
385 1449 11,35 Thm 5
386 771 Optimal [18]
387 1541 k = 4 Thm 3
388 775 Optimal [18]
389 14745 Type 2, k = 19 Thm 6
390 1295 3,130 Thm 5
391 2325 k = 6 Thm 3
392 21021 8,49 Thm 5
393 785 Optimal [18]
394 3915 Type 1, k = 9 Thm 6
395 2349 k = 6 Thm 3
396 1379 4,99 Thm 5
397 2361 k = 6 Thm 3
398 795 Optimal [18]
399 4777 Type 2, k = 6 Thm 6
400 7905 16,25 Thm 5
401 4801 Type 2, k = 6 Thm 6
402 1335 3,134 Thm 5
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n min cN Property Method
403 8845 Type 2, k = 11 Thm 6
404 1609 Type 1, k = 3 Thm 6
405 1449 5,81 Thm 5
406 1539 14,29 Thm 5
407 10773 11,37 Thm 5
408 2121 8,51 Thm 5
409 1629 k = 4 Thm 3
410 819 Optimal [18]
411 821 Optimal [18]
412 1641 Type 1, k = 3 Thm 6
413 825 Optimal [18]
414 827 Optimal [18]
415 1485 5,83 Thm 5
416 16245 13,32 Thm 5
417 1661 k = 4 Thm 3
418 835 Optimal [18]
419 837 Optimal [18]
420 839 Optimal [18]
421 11761 Type 2, k = 14 Thm 6
422 10947 Type 2, k = 13 Thm 6
423 1685 k = 4 Thm 3
424 2205 8,53 Thm 5
425 2529 k = 6 Thm 3
426 851 Optimal [18]
427 7669 Type 2, k = 9 Thm 6
428 2547 k = 5 Thm 3
429 857 Optimal [18]
430 1539 5,86 Thm 5
431 861 Optimal [18]
432 11985 16,27 Thm 5
433 1725 k = 4 Thm 3
434 4315 Type 1, k = 9 Thm 6
435 1733 k = 4 Thm 3
436 14727 Type 1, k = 33 Thm 6
437 5265 19,23 Thm 5
438 875 Optimal [18]
439 4381 Type 2, k = 5 Thm 6
440 3969 5,88 Thm 5
441 881 Optimal [18]
442 883 Optimal [18]
443 885 Optimal [18]
444 1475 3,148 Thm 5
445 1593 5,89 Thm 5
446 2655 k = 6 Thm 3
447 2661 k = 6 Thm 3
448 34751 7,64 Thm 5
449 6273 Type 2, k = 7 Thm 6
450 1683 9,50 Thm 5
451 1701 11,41 Thm 5
452 1575 4,113 Thm 5
453 905 Optimal [18]
454 9025 Type 1, k = 19 Thm 6
455 2451 7,65 Thm 5
456 12285 3,152 Thm 5
457 13681 Type 2, k = 15 Thm 6
458 2727 k = 6 Thm 3
459 4581 Type 2, k = 5 Thm 6
460 919 Optimal [18]
461 2745 k = 6 Thm 3
462 1383 2,231 Thm 5
463 5545 Type 2, k = 6 Thm 6
464 4845 16,29 Thm 5
465 1545 3,155 Thm 5
466 931 Optimal [18]
467 2781 k = 6 Thm 3
468 1751 9,52 Thm 5
469 1869 k = 4 Thm 3
470 939 Optimal [18]
471 9401 Type 2, k = 10 Thm 6
472 32067 8,59 Thm 5
473 945 Optimal [18]
474 1575 3,158 Thm 5
475 1893 k = 4 Thm 3
476 1659 4,119 Thm 5
477 1785 9,53 Thm 5
478 1431 2,239 Thm 5
479 5737 Type 2, k = 6 Thm 6

n min cN Property Method
480 16245 3,160 Thm 5
481 2865 k = 6 Thm 3
482 2871 k = 5 Thm 3
483 965 Optimal [18]
484 1929 Type 1, k = 3 Thm 6
485 8713 Type 2, k = 9 Thm 6
486 1455 2,243 Thm 5
487 1941 k = 4 Thm 3
488 34041 8,61 Thm 5
489 5857 Type 2, k = 6 Thm 6
490 979 Optimal [18]
491 981 Optimal [18]
492 1863 12,41 Thm 5
493 1965 k = 4 Thm 3
494 1969 Type 1, k = 3 Thm 6
495 989 Optimal [18]
496 20145 16,31 Thm 5
497 9921 Type 2, k = 10 Thm 6
498 1815 6,83 Thm 5
499 1989 k = 4 Thm 3
500 5969 Type 1, k = 11 Thm 6
501 5001 Type 2, k = 5 Thm 6
502 1503 2,251 Thm 5
503 2997 k = 6 Thm 3
504 6783 7,72 Thm 5
505 5041 Type 2, k = 5 Thm 6
506 2835 2,253 Thm 5
507 2021 k = 4 Thm 3
508 1015 Optimal [18]
509 1017 Optimal [18]
510 1919 10,51 Thm 5
511 3045 k = 6 Thm 3
512 N/A Prime Power No data

C. Conjectures

To examine the distribution of normal bases of F2n over F2,
in Fig. 3 we plot the number of normal bases found against
their complexity. In each case, we observe a Gaussian shaped
curve. This leads to the following conjecture.

Conjecture 1: The number of normal bases for F2n over F2

is normally distributed with respect to their complexities.
This conjecture is verified for n ≤ 39 by running

the Shapiro-Wilk normality test [19] on the results of the
GrayCodeNCD experiments and, for 15 ≤ n ≤ 39, is
guaranteed with over 99.9% certainty. As a consequence
of this conjecture, although probabilistic algorithms to find
normal elements exist [12], these will not give low complexity
normal elements. For efficient computation, new searching
methods for normal elements must be developed.

Finding the general form of the distribution curve requires
calculating the average complexity and the variance. Alterna-
tively, an enveloping curve requires bounds (as functions of n)
to find the averages and variances of the complexities. This
is the motivation for the Conjectures 2 and 3, which suggest
upper bounds on the average and variance of the complexities
of normal bases.

The data lends itself to the following conjecture on a bound
for the average complexity of normal elements.

Conjecture 2: The average complexity of normal elements
in a finite field Fqn with n ≥ 8 has an upper bound of (n2 −
n + 3)/2.

This conjecture is based upon the data found using the
GrayCodeNCD algorithm, and observing the symmetry of
the Gaussian curve conjectured previously. This is very close
to half of the largest possible complexity n2 − n, which is
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Fig. 3. Sample distributions of complexity of (a) normal elements and (b) self-dual normal elements.

always even, so the extra factor of adding 3 in the numerator
accounts for any decimal places calculated in the average. This
conjectured bound is quite tight for many values of n ≤ 39,
and only for n = 14, 23, 25 the numerator requires a constant
term of 3 rather than 2.

Conjecture 3: For sufficiently large n the variance of com-
plexities of normal bases is bounded above by n2/2.

This conjecture comes from the side-by-side comparison
in Table IV of the average and variance of the complexities.
For this data n ≥ 19 suffices. The variance and the average
complexity are quite similar, which implies that there could
probably be a stronger conjecture here, since this conjecture
is loose in comparison to the one on the average complexity.

We recall that the average complexity of self-dual normal
elements is given in Theorem 9, so the next step would
naturally be to conjecture on the variance of the complexity
of self-dual normal elements. However, since there are very
few self-dual normal bases for n ≤ 36 more experiments are
required to give sufficient data to support any such conjecture.

The following argument leads to our final conjecture. Let us
assume that the above conjectures on the average and variance
of complexities of all normal elements in a finite field (i.e, not
restricted to self-dual normal elements) hold. Moreover, let us
consider the following problem: is there some constant k such
that the minimum complexity element in a finite field F2n

is bounded above by kn? We observe that the probability of
finding a normal element of complexity cN ≤ kn is analogous
to finding the density under the normalized curve as follows,
P (cN ≤ kn) = P [Z ≤ (kn − µ)/σ]. A low complexity is
analogous to a low Z-score on the normalized curve. Given
that, by our conjectures, µ = (n2 − n + 3)/2 and σ2 = n2/2,

calculating the Z-score of kn gives kn−n2−n+3
2

n/
√

2
. We observe

now that if k is a constant, then the Z-score becomes infinitely
small. Relating this to the complexity distribution, this implies
that the upper bound on the minimum complexity vanishes,
which is a contradiction since the minimum possible com-
plexity is 2n− 1.

Conjecture 4: There is no constant k such that the complex-

ity Cn of F2n is bounded above by kn for all n. Furthermore,
if the average and variance of the complexities of all normal
elements in F2n are both of order n2, then Cn is also of order
n2.

Our final observation concerns the distribution of the normal
elements themselves. To achieve results for 36 ≤ n ≤ 39 we
distributed the computation across many processors by letting
each processor deal with a range of field elements that were
consecutive in the Gray code order. This divided our time
linearly with the number of processors used. For example, the
estimated run time of n = 39 was 8 months using a single
processor, but we were able to complete the simulation in just
under 3 weeks using 13 processors. Furthermore, we observed
that there were large blocks along the run of the Gray code
in which there were no lexicographically canonical normal
elements found. This is an interesting topic for future research
about the existence of normal elements with prescribed coef-
ficients.
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