・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Recursive constructions of irreducible polynomials over finite fields Carleton FF Day 2017 - Ottawa

Lucas Reis (UFMG - Carleton U)

September 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• \mathbb{F}_q : finite field with q elements, q a power of p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- \mathbb{F}_q : finite field with q elements, q a power of p.
- $\operatorname{GL}_2(\mathbb{F}_q)$: 2x2 non-singular matrices with entries in \mathbb{F}_q .

- \mathbb{F}_q : finite field with q elements, q a power of p.
- $\operatorname{GL}_2(\mathbb{F}_q)$: 2x2 non-singular matrices with entries in \mathbb{F}_q . Given $f(x) \in \mathbb{F}_q[x]$ of degree n and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_q)$,

- \mathbb{F}_q : finite field with q elements, q a power of p.
- $\operatorname{GL}_2(\mathbb{F}_q)$: 2x2 non-singular matrices with entries in \mathbb{F}_q . Given $f(x) \in \mathbb{F}_q[x]$ of degree n and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_q)$,

$$A \circ f := (bx + d)^n f\left(\frac{ax + c}{bx + d}\right).$$

- \mathbb{F}_q : finite field with q elements, q a power of p.
- $\operatorname{GL}_2(\mathbb{F}_q)$: 2x2 non-singular matrices with entries in \mathbb{F}_q . Given $f(x) \in \mathbb{F}_q[x]$ of degree n and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_q)$,

$$A \circ f := (bx + d)^n f\left(\frac{ax + c}{bx + d}\right).$$

For
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B \circ f = x^n f\left(\frac{1}{x}\right)$ is the reciprocal of $f(x)$.

Some results

Construction of irreducibles

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\mathcal{M} := \{ f \in \mathbb{F}_q[x] \, | \, f \text{ has no root in } \mathbb{F}_q \}.$

 $\mathcal{M} := \{ f \in \mathbb{F}_q[x] \, | \, f \text{ has no root in } \mathbb{F}_q \}.$

Basic Properties.

For A, B be elements of $\operatorname{GL}_2(\mathbb{F}_q)$ and $f, g \in \mathcal{M}$, the following hold:

(i)
$$A \circ f \in \mathcal{M}$$
 and $\deg(A \circ f) = \deg f$,

(ii) If *E* denotes the identity element of $\operatorname{GL}_2(\mathbb{F}_q)$, then $E \circ f = f$,

(iii)
$$(AB) \circ f = A \circ (B \circ f)$$
,

(iv)
$$A \circ (f \cdot g) = (A \circ f) \cdot (A \circ g)$$
,

(v) f is irreducible if and only if $A \circ f$ is irreducible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□ > < 個 > < E > < E > E 9 < 0</p>

• $\mathcal{I}_n :=$ irreducible monic polynomials of degree *n*.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree *n*.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

* From the basic properties, $\operatorname{PGL}_2(\mathbb{F}_q)$ acts on $\mathcal{I}_n, n \ge 2$ via the compositions $[A] \circ f$.

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree *n*.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

* From the basic properties, $\operatorname{PGL}_2(\mathbb{F}_q)$ acts on $\mathcal{I}_n, n \ge 2$ via the compositions $[A] \circ f$.

How about the invariants?

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree *n*.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

* From the basic properties, $\operatorname{PGL}_2(\mathbb{F}_q)$ acts on $\mathcal{I}_n, n \ge 2$ via the compositions $[A] \circ f$.

How about the invariants?

 $C_A(n) := \{ f \in \mathcal{I}_n \, | \, [A] \circ f = f \},$

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

* From the basic properties, $\operatorname{PGL}_2(\mathbb{F}_q)$ acts on $\mathcal{I}_n, n \ge 2$ via the compositions $[A] \circ f$.

How about the invariants?

 $C_A(n) := \{ f \in \mathcal{I}_n \, | \, [A] \circ f = f \}, \; N_A(n) = |C_A(n)|$

- $\mathcal{I}_n :=$ irreducible monic polynomials of degree *n*.
- $\operatorname{PGL}_2(\mathbb{F}_q)$: $\operatorname{GL}_2(\mathbb{F}_q)/\sim$ (matrices up to a constant).

Definition

For $[A] \in \operatorname{PGL}_2(\mathbb{F}_q)$ and $f \in \mathcal{I}_n$, $n \ge 2$, $[A] \circ f$ is the only monic polynomial $= \lambda \cdot (A \circ f)$ with $\lambda \in \mathbb{F}_q^*$.

* From the basic properties, $\operatorname{PGL}_2(\mathbb{F}_q)$ acts on $\mathcal{I}_n, n \ge 2$ via the compositions $[A] \circ f$.

How about the invariants?

 $C_A(n) := \{ f \in \mathcal{I}_n \, | \, [A] \circ f = f \}, \; N_A(n) = |C_A(n)|$

$$C_A := \bigcup_{n \ge 2} C_A(n).$$

A characterization of C_A :

A characterization of C_A :

Theorem (Stichtenoth, Topuzoglu - FFA 2012)

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $GL_2(\mathbb{F}_q)$. For each nonnegative integer r, set

$$F_r(x) = bx^{q^r+1} - ax^{q^r} + dx - c.$$

For any $f \in \mathcal{I}_n$ with $n \ge 2$, the following are equivalent:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Set D = ord([A]): any element of C_A has degree 2 or degree Dm for some $m \ge 1$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Set D = ord([A]): any element of C_A has degree 2 or degree Dm for some $m \ge 1$.

In particular, $N_A(n) = 0$ if n > 2 and n is not divisible by D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Set D = ord([A]): any element of C_A has degree 2 or degree Dm for some $m \ge 1$.

In particular, $N_A(n) = 0$ if n > 2 and n is not divisible by D.Also,

$$N_A(Dm) pprox rac{\Phi(D)}{Dm} q^m.$$

Set D = ord([A]): any element of C_A has degree 2 or degree Dm for some $m \ge 1$.

In particular, $N_A(n) = 0$ if n > 2 and n is not divisible by D.Also,

$$N_A(Dm) pprox rac{\Phi(D)}{Dm} q^m.$$

Enumeration formulas:

- 1. Garefalakis (JPAA 2011): upper triangular elements.
- Mattarei and Pizzato (FFA 2017): involutions, following a work of O. Ahmadi.
- 3. R. (Arxiv 2017): general elements of $PGL_2(\mathbb{F}_q)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Alternative characterization of the invariants.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Alternative characterization of the invariants.

An irreducible polynomial f(x) of degree 2m is self-reciprocal if and only if f(x) is an irreducible of the form $x^m g(x + x^{-1})$ for some g(x) of degree m.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. R. (JPAA - 2017):
•
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, i.e., $[A] \circ f = (x)f(x+1)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

1. R. (JPAA - 2017): • $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, i.e., $[A] \circ f = (x)f(x+1)$. The invariants appear as $f(x) = g(x^p - x)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1. R. (JPAA - 2017): • $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, i.e., $[A] \circ f = (x)f(x+1)$. The invariants appear as $f(x) = g(x^{p} - x)$. • $A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, i.e., $[A] \circ f(x) = f(ax)$.

1. R. (JPAA - 2017): • $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, i.e., $[A] \circ f = (x)f(x + 1)$. The invariants appear as $f(x) = g(x^p - x)$. • $A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, i.e., $[A] \circ f(x) = f(ax)$. The invariants appear as $f(x) = g(x^k)$, where k = ord(a).

1. R. (JPAA - 2017): • $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, i.e., $[A] \circ f = (x)f(x+1)$. The invariants appear as $f(x) = g(x^p - x)$. • $A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, i.e., $[A] \circ f(x) = f(ax)$. The invariants appear as $f(x) = g(x^k)$, where k = ord(a).

2. Mattarei and Pizzato (FFA - 2017): involutions.

The invariants apperar as $f(x) = h_2^n \cdot g(h_1/h_2)$, where $h_1/h_2 \in \mathbb{F}_q(x)$ is a quadratic rational function.

Theorem (R., August 2017)

Let $[A] \in PGL_2(\mathbb{F}_q)$ with ord([A]) = D > 1. There exists a rational function $R(A) = \frac{g_A}{h_A}$ of degree D such that $f \in \mathcal{I}_{Dm}$ satisfies $[A] \circ f = f$ if and only if f(x) is an irreducible monic polynomial of the form $h_A^m F(\frac{g_A}{h_A})$ for some F of degree m. Moreover, the rational function R(A) can be computed from the element A.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Conjugacy classes in $PGL_2(\mathbb{F}_q)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjugacy classes in $\operatorname{PGL}_2(\mathbb{F}_q)$: 1. type 1: $A(a) := \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $R(A) = x^k$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conjugacy classes in $\operatorname{PGL}_2(\mathbb{F}_q)$: 1. type 1: $A(a) := \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $R(A) = x^k$, 2. type 2: $\mathcal{B} := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $R(A) = x^p - x$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Conjugacy classes in $\operatorname{PGL}_2(\mathbb{F}_q)$: 1. type 1: $A(a) := \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $R(A) = x^k$, 2. type 2: $\mathcal{B} := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $R(A) = x^p - x$ 3. type 3: $C(b) := \begin{pmatrix} 0 & 1 \\ b & 0 \end{pmatrix}$, $R(A) = \frac{x^2+b}{2x}$

ション ふゆ く 山 マ チャット しょうくしゃ

Conjugacy classes in $PGL_2(\mathbb{F}_q)$: 1. type 1: $A(a) := \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $R(A) = x^k$, 2. type 2: $\mathcal{B} := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $R(A) = x^p - x$ 3. type 3: $C(b) := \begin{pmatrix} 0 & 1 \\ b & 0 \end{pmatrix}$, $R(A) = \frac{x^2+b}{2x}$ 4. type 4: $D(c) := \begin{pmatrix} 0 & c \\ 1 & 1 \end{pmatrix}$, $R(A) = \sum_{i=1}^{D} \Psi_{A}^{(i)}(x)$, where $\Psi_A(x) = \frac{1}{cx+1}.$

(ロト (個) (E) (E) (E) (の)(C)

Conjugacy classes in PGL₂(
$$\mathbb{F}_q$$
):
1. type 1: $A(a) := \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $R(A) = x^k$,
2. type 2: $\mathcal{B} := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $R(A) = x^p - x$
3. type 3: $C(b) := \begin{pmatrix} 0 & 1 \\ b & 0 \end{pmatrix}$, $R(A) = \frac{x^2 + b}{2x}$
4. type 4: $D(c) := \begin{pmatrix} 0 & c \\ 1 & 1 \end{pmatrix}$, $R(A) = \sum_{i=1}^{D} \Psi_A^{(i)}(x)$, where
 $\Psi_A(x) = \frac{1}{cx+1}$.

The R(A)'s above are called *canonical rational functions*.

Rational transformations:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rational transformations:

For $f \in \mathbb{F}_q[x]$ irreducible with deg f = n and $Q(x) \in \mathbb{F}_q(x)$ of degree D, Q(x) = F(x)/G(x), set

$$f^Q = G^n \cdot f\left(\frac{F}{G}\right).$$

Rational transformations:

For $f \in \mathbb{F}_q[x]$ irreducible with deg f = n and $Q(x) \in \mathbb{F}_q(x)$ of degree D, Q(x) = F(x)/G(x), set

$$f^Q = G^n \cdot f\left(\frac{F}{G}\right).$$

Also, set $f_0 = f$ and $f_i = f_{i-1}^Q$,

Rational transformations:

For $f \in \mathbb{F}_q[x]$ irreducible with deg f = n and $Q(x) \in \mathbb{F}_q(x)$ of degree D, Q(x) = F(x)/G(x), set

$$f^Q = G^n \cdot f\left(\frac{F}{G}\right).$$

Also, set $f_0 = f$ and $f_i = f_{i-1}^Q$,

 $\deg f_i = D \cdot \deg f_{i-1}.$

Rational transformations:

For $f \in \mathbb{F}_q[x]$ irreducible with deg f = n and $Q(x) \in \mathbb{F}_q(x)$ of degree D, Q(x) = F(x)/G(x), set

$$f^Q = G^n \cdot f\left(\frac{F}{G}\right).$$

Also, set
$$f_0 = f$$
 and $f_i = f_{i-1}^Q$,

$$\deg f_i = D \cdot \deg f_{i-1}.$$

Given f irreducible of degree n, we want to obtain an infinite sequence of irreducibles $\{f_i\}_{i\geq 0}$ of degree $D^i \cdot n$, via Q(x)-transformations, where Q is a canonical rational function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Cohen)

Let f(x) be irreducible of degree n over \mathbb{F}_q and $\alpha \in \mathbb{F}_{q^n}$ one of its roots. Then $f^Q = G^n \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x) - \alpha G(x)$ is irreducible over \mathbb{F}_{q^n} .

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Theorem (Cohen)

Let f(x) be irreducible of degree n over \mathbb{F}_q and $\alpha \in \mathbb{F}_{q^n}$ one of its roots. Then $f^Q = G^n \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x) - \alpha G(x)$ is irreducible over \mathbb{F}_{q^n} . Fact: If $D = \operatorname{ord}([A])$ is prime, $Q = R(A) = f_A/g_A$, then $f_A - \alpha g_A$

is either irreducible or splits completely over \mathbb{F}_{q^n} .

ション ふゆ アメリア メリア しょうくの

Theorem (Cohen)

Let f(x) be irreducible of degree n over \mathbb{F}_q and $\alpha \in \mathbb{F}_{q^n}$ one of its roots. Then $f^Q = G^n \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x) - \alpha G(x)$ is irreducible over \mathbb{F}_{q^n} . Fact: If $D = \operatorname{ord}([A])$ is prime, $Q = R(A) = f_A/g_A$, then $f_A - \alpha g_A$ is either irreducible or splits completely over \mathbb{F}_{q^n} .

In particular, if D is prime, f^Q is either irreducible or split into D irreducible factors, each of degree n.

Theorem (Cohen)

Let f(x) be irreducible of degree n over \mathbb{F}_q and $\alpha \in \mathbb{F}_{q^n}$ one of its roots. Then $f^Q = G^n \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x) - \alpha G(x)$ is irreducible over \mathbb{F}_{q^n} .

Fact: If D = ord([A]) is prime, $Q = R(A) = f_A/g_A$, then $f_A - \alpha g_A$ is either irreducible or splits completely over \mathbb{F}_{q^n} . In particular, if D is prime, f^Q is either irreducible or split into Dirreducible factors, each of degree n.

The roots of $f_A - \alpha g_A$ can be explored through the dynamics of the map $x \mapsto \frac{f_A(x)}{g_A(x)}$ in $\overline{\mathbb{F}}_q$: in general, the functional graph is full of symmetries.

Some results

Methods:

1. **Deterministic**: initial conditions on f for f^Q to be irreducible.

For instance, $Q = x^{p} - x$, f(x) must be of non-zero trace and

 $Q = x^k$, some conditions on the order ord(f) of f(x).

Some results

- 1. Deterministic: initial conditions on f for f^Q to be irreducible. For instance, $Q = x^p - x$, f(x) must be of non-zero trace and $Q = x^k$, some conditions on the order ord(f) of f(x).
- 2. Iterated trials: works for D prime; if f^Q is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible.

- 1. Deterministic: initial conditions on f for f^Q to be irreducible. For instance, $Q = x^p - x$, f(x) must be of non-zero trace and $Q = x^k$, some conditions on the order ord(f) of f(x).
- Iterated trials: works for D prime; if f^Q is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible. For self-reciprocals, D = 2, (Ugolini DCC 2015).

- 1. Deterministic: initial conditions on f for f^Q to be irreducible. For instance, $Q = x^p - x$, f(x) must be of non-zero trace and $Q = x^k$, some conditions on the order ord(f) of f(x).
- Iterated trials: works for D prime; if f^Q is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible. For self-reciprocals, D = 2, (Ugolini DCC 2015).
- Probabilistic: pick a random irreducible f of degree n and check if f^Q is irreducible or not.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Efficiency of iterations: if A is of type 1, 3 or 4 and Q = R(A), once f_i is irreducible, f_j is irreducible for any $j \ge i$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Efficiency of iterations: if A is of type 1, 3 or 4 and Q = R(A), once f_i is irreducible, f_j is irreducible for any $j \ge i$. The case A of type 1 is a classical result.

ション ふゆ アメリア メリア しょうくの

Efficiency of iterations: if A is of type 1, 3 or 4 and Q = R(A), once f_i is irreducible, f_j is irreducible for any $j \ge i$. The case A of type 1 is a classical result. The case A of type 4 or 3, we can verify that the map $x \mapsto \frac{f_A(x)}{g_A(x)}$ is "conjugated" to map $x \mapsto x^D$ in $\overline{\mathbb{F}}_q$, via Mobius permutations.

Efficiency of iterations: if A is of type 1, 3 or 4 and Q = R(A), once f_i is irreducible, f_j is irreducible for any $j \ge i$. The case A of type 1 is a classical result. The case A of type 4 or 3, we can verify that the map $x \mapsto \frac{f_A(x)}{g_A(x)}$ is "conjugated" to map $x \mapsto x^D$ in $\overline{\mathbb{F}}_q$, via Mobius permutations. * The case A of type 2 is more complicated: if $f_i = f_{i-1}(x^p - x)$ is irreducible, f_{i+1} is reducible.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Iterated trial: related to the functional graph of the map $x \mapsto \frac{f_A(x)}{g_A(x)}$.

Iterated trial: related to the functional graph of the map $x \mapsto \frac{f_A(x)}{g_A(x)}$.

Insert a functional graph.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose that $Q = R(A) = f_A/g_A$ is a canonical rational function associated to A, with ord([A]) = D.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose that $Q = R(A) = f_A/g_A$ is a canonical rational function associated to A, with ord([A]) = D.

$$N_A(Dn) \approx \frac{\Phi(D)}{Dn}q^n, n >> 1$$

Suppose that $Q = R(A) = f_A/g_A$ is a canonical rational function associated to A, with ord([A]) = D.

$$N_A(Dn) \approx \frac{\Phi(D)}{Dn}q^n, n >> 1$$

We know that the invariants of degree Dn arise from f^Q , with f of degree n.

Suppose that $Q = R(A) = f_A/g_A$ is a canonical rational function associated to A, with ord([A]) = D.

$$N_A(Dn) \approx \frac{\Phi(D)}{Dn}q^n, n >> 1$$

We know that the invariants of degree Dn arise from f^Q , with f of degree n.

Necessary condition: f must be irreducible. How many they are?

Suppose that $Q = R(A) = f_A/g_A$ is a canonical rational function associated to A, with ord([A]) = D.

$$N_A(Dn) \approx \frac{\Phi(D)}{Dn}q^n, n >> 1$$

We know that the invariants of degree Dn arise from f^Q , with f of degree n.

Necessary condition: f must be irreducible. How many they are? Close to $\frac{q^n}{n}$, n >> 1. Random Method:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Random Method:

Pick *f* irreducible of degree *n*. If f^Q is irreducible, proceed with the iterations $f_i = f_{i-1}^Q$. If not, pick another irreducible of degree *n*.

Random Method:

Pick *f* irreducible of degree *n*. If f^Q is irreducible, proceed with the iterations $f_i = f_{i-1}^Q$. If not, pick another irreducible of degree *n*. In particular, for a random irreducible of degree *n*, f^Q is also irreducible with probability $p_A \approx \frac{\Phi(D)}{D}$.

Random Method:

Pick *f* irreducible of degree *n*. If f^Q is irreducible, proceed with the iterations $f_i = f_{i-1}^Q$. If not, pick another irreducible of degree *n*. In particular, for a random irreducible of degree *n*, f^Q is also irreducible with probability $p_A \approx \frac{\Phi(D)}{D}$. Geometric Distribution with $p = p_A$.

Random Method:

Pick *f* irreducible of degree *n*. If f^Q is irreducible, proceed with the iterations $f_i = f_{i-1}^Q$. If not, pick another irreducible of degree *n*. In particular, for a random irreducible of degree *n*, f^Q is also irreducible with probability $p_A \approx \frac{\Phi(D)}{D}$.

Geometric Distribution with $p = p_A$.

In particular, the expected number of trials is $\frac{1}{P_A} \approx \frac{D}{\Phi(D)}$.

Random Method:

Pick *f* irreducible of degree *n*. If f^Q is irreducible, proceed with the iterations $f_i = f_{i-1}^Q$. If not, pick another irreducible of degree *n*. In particular, for a random irreducible of degree *n*, f^Q is also irreducible with probability $p_A \approx \frac{\Phi(D)}{D}$.

Geometric Distribution with $p = p_A$.

In particular, the expected number of trials is $\frac{1}{p_A} \approx \frac{D}{\Phi(D)}$. For *D* prime, $\frac{D}{\Phi(D)} = \frac{D}{D-1} \leq 2$.

Example 1:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_2)$$

Example 1:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_2)$$

$$Q = R(A) = \frac{1}{x+1} + \frac{x+1}{x} + x = \frac{x^3 + x + 1}{x^2 + x}.$$

Example 1:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_2)$$

 $Q = R(A) = \frac{1}{x+1} + \frac{x+1}{x} + x = \frac{x^3 + x + 1}{x^2 + x}.$
Set $f_0 = x + 1$ and $f_i = f_{i-1}^Q, i \ge 1.$

Example 1:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_2)$$

 $Q = R(A) = \frac{1}{x+1} + \frac{x+1}{x} + x = \frac{x^3 + x + 1}{x^2 + x}.$
Set $f_0 = x + 1$ and $f_i = f_{i-1}^Q, i \ge 1.$
 $f_1 = x^3 + x^2 + 1$

Example 1:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_2)$$

 $Q = R(A) = \frac{1}{x+1} + \frac{x+1}{x} + x = \frac{x^3 + x + 1}{x^2 + x}.$
Set $f_0 = x + 1$ and $f_i = f_{i-1}^Q, i \ge 1.$
 $f_1 = x^3 + x^2 + 1$
 $f_2 = x^9 + x + 1$

Example 1: $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_2)$ $Q = R(A) = \frac{1}{x+1} + \frac{x+1}{x} + x = \frac{x^3 + x + 1}{x^2 + x}.$ Set $f_0 = x + 1$ and $f_i = f_i^Q$, $i \ge 1$. $f_1 = x^3 + x^2 + 1$ $f_{2} = x^{9} + x + 1$ $f_3 = x^{27} + x^{26} + x^{24} + x^{18} + x^{17} + x^{11} + x^9 + x^8 + x^3 + x^2 + 1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ 9 < (~)

$f_4 = x^{81} + x^{64} + x^{16} + x + 1$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

$$\begin{split} &f_{4} = x^{81} + x^{64} + x^{16} + x + 1 \\ &f_{5} = x^{243} + x^{242} + x^{240} + x^{227} + x^{225} + x^{224} + x^{210} + x^{209} + x^{195} + x^{194} + x^{192} + x^{179} + x^{177} + x^{176} + x^{162} + x^{161} + x^{147} + x^{146} + x^{144} + x^{131} + x^{129} + x^{128} + x^{114} + x^{113} + x^{99} + x^{98} + x^{96} + x^{83} + x^{81} + x^{80} + x^{66} + x^{65} + x^{51} + x^{50} + x^{48} + x^{35} + x^{33} + x^{32} + x^{18} + x^{17} + x^{3} + x^{2} + 1. \end{split}$$

Some results

Construction of irreducibles

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

Some results

Construction of irreducibles

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

$$Q = R(A) = \frac{3x^6 + x + 4}{x^5 - x}.$$

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

$$Q = R(A) = \frac{3x^6 + x + 4}{x^5 - x}.$$

Set
$$f_0 = x$$
 and $f_i = f_{i-1}^Q$, $i \ge 1$.

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

$$Q = R(A) = \frac{3x^6 + x + 4}{x^5 - x}.$$

Set
$$f_0 = x$$
 and $f_i = f_{i-1}^Q$, $i \ge 1$.
 $f_1 = x^6 + 2x + 3$

Construction of irreducibles

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

$$Q = R(A) = \frac{3x^6 + x + 4}{x^5 - x}.$$

Set
$$f_0 = x$$
 and $f_i = f_{i-1}^Q$, $i \ge 1$.
 $f_1 = x^6 + 2x + 3$
 $f_2 = x^{36} + x^{31} + x^{26} + 2x^{25} + 3x^{11} + 3x^{10} + x^6 + 4x^5 + x + 4$

Construction of irreducibles

Example 2:
$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_5)$$

$$Q = R(A) = \frac{3x^{6} + x + 4}{x^{5} - x}$$

Set $f_0 = x$ and $f_i = f_i^Q_1$, $i \ge 1$. $f_1 = x^6 + 2x + 3$ $f_2 = x^{36} + x^{31} + x^{26} + 2x^{25} + 3x^{11} + 3x^{10} + x^6 + 4x^5 + x + 4$ $f_3 = x^{216} + 4x^{211} + 3x^{210} + 3x^{206} + 2x^{205} + 2x^{201} + 2x^{200} + 3x^{191} + 3x^{$ $2x^{190} + 4x^{185} + x^{181} + 2x^{180} + 4x^{176} + 2x^{175} + 4x^{166} + 2x^{165} +$ $x^{156} + 3x^{155} + x^{151} + 3x^{150} + 4x^{141} + 3x^{140} + x^{131} + 3x^{130} + 2x^{125} + 3x^{120} + 3$ $x^{91} + 3x^{90} + 4x^{86} + x^{85} + 2x^{81} + 3x^{80} + 2x^{76} + 2x^{66} + 4x^{65} + 2x^{61} + 3x^{80} + 2x^{76} + 2x^{80} + 4x^{80} + 2x^{80} + 2x^{80$ $4x^{60} + 3x^{56} + 3x^{55} + 2x^{51} + x^{50} + 4x^{40} + 4x^{36} + x^{35} + 2x^{31} + x^{30} + 3x^{30} + 3x^{30}$ $x^{30} + 2x^{26} + x^{25} + 2x^{16} + 3x^{15} + 4x^{11} + x^{10} + 3x^6 + 4x^5 + 4x + 1.$ 500 Some results

Construction of irreducibles

Thank you!

