Recursive constructions of irreducible polynomials over finite fields
 Carleton FF Day 2017 - Ottawa

Lucas Reis (UFMG - Carleton U)

September 2017

- \mathbb{F}_{q} : finite field with q elements, q a power of p.
- \mathbb{F}_{q} : finite field with q elements, q a power of p.
- $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): 2 \times 2$ non-singular matrices with entries in \mathbb{F}_{q}.
- \mathbb{F}_{q} : finite field with q elements, q a power of p.
- $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): 2 \times 2$ non-singular matrices with entries in \mathbb{F}_{q}. Given $f(x) \in \mathbb{F}_{q}[x]$ of degree n and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$,
- \mathbb{F}_{q} : finite field with q elements, q a power of p.
- $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): 2 \times 2$ non-singular matrices with entries in \mathbb{F}_{q}.

Given $f(x) \in \mathbb{F}_{q}[x]$ of degree n and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
A \circ f:=(b x+d)^{n} f\left(\frac{a x+c}{b x+d}\right) .
$$

- \mathbb{F}_{q} : finite field with q elements, q a power of p.
- $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): 2 \times 2$ non-singular matrices with entries in \mathbb{F}_{q}.

Given $f(x) \in \mathbb{F}_{q}[x]$ of degree n and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
A \circ f:=(b x+d)^{n} f\left(\frac{a x+c}{b x+d}\right)
$$

For $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), B \circ f=x^{n} f\left(\frac{1}{x}\right)$ is the reciprocal of $f(x)$.

$\mathcal{M}:=\left\{f \in \mathbb{F}_{q}[x] \mid f\right.$ has no root in $\left.\mathbb{F}_{q}\right\}$.

$\mathcal{M}:=\left\{f \in \mathbb{F}_{q}[x] \mid f\right.$ has no root in $\left.\mathbb{F}_{q}\right\}$.
Basic Properties.
For A, B be elements of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ and $f, g \in \mathcal{M}$, the following hold:
(i) $A \circ f \in \mathcal{M}$ and $\operatorname{deg}(A \circ f)=\operatorname{deg} f$,
(ii) If E denotes the identity element of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$, then $E \circ f=f$,
(iii) $(A B) \circ f=A \circ(B \circ f)$,
(iv) $A \circ(f \cdot g)=(A \circ f) \cdot(A \circ g)$,
(v) f is irreducible if and only if $A \circ f$ is irreducible.

- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).
- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

* From the basic properties, $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{I}_{n}, n \geq 2$ via the compositions $[A] \circ f$.
- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

* From the basic properties, $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{I}_{n}, n \geq 2$ via the compositions $[A] \circ f$.

How about the invariants?

- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

* From the basic properties, $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{I}_{n}, n \geq 2$ via the compositions $[A] \circ f$.

How about the invariants?
$C_{A}(n):=\left\{f \in \mathcal{I}_{n} \mid[A] \circ f=f\right\}$,

- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

* From the basic properties, $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{I}_{n}, n \geq 2$ via the compositions $[A] \circ f$.

How about the invariants?
$C_{A}(n):=\left\{f \in \mathcal{I}_{n} \mid[A] \circ f=f\right\}, N_{A}(n)=\left|C_{A}(n)\right|$

- $\mathcal{I}_{n}:=$ irreducible monic polynomials of degree n.
- $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right): \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right) / \sim$ (matrices up to a constant).

Definition

For $[A] \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and $f \in \mathcal{I}_{n}, n \geq 2,[A] \circ f$ is the only monic polynomial $=\lambda \cdot(A \circ f)$ with $\lambda \in \mathbb{F}_{q}^{*}$.

* From the basic properties, $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\mathcal{I}_{n}, n \geq 2$ via the compositions $[A] \circ f$.

How about the invariants?
$C_{A}(n):=\left\{f \in \mathcal{I}_{n} \mid[A] \circ f=f\right\}, N_{A}(n)=\left|C_{A}(n)\right|$

$$
C_{A}:=\bigcup_{n \geq 2} C_{A}(n)
$$

A characterization of C_{A} :

A characterization of C_{A} :
Theorem (Stichtenoth, Topuzoglu - FFA 2012)
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$. For each nonnegative integer r, set

$$
F_{r}(x)=b x^{q^{r}+1}-a x^{q^{r}}+d x-c
$$

For any $f \in \mathcal{I}_{n}$ with $n \geq 2$, the following are equivalent:
(i) $f(x)$ divides $F_{r}(x)$ for some $r \geq 0$,
(ii) $[A] \circ f=f$.

Set $D=\operatorname{ord}([A]):$ any element of C_{A} has degree 2 or degree $D m$ for some $m \geq 1$.

Set $D=\operatorname{ord}([A]):$ any element of C_{A} has degree 2 or degree $D m$ for some $m \geq 1$.

In particular, $N_{A}(n)=0$ if $n>2$ and n is not divisible by D.

Set $D=\operatorname{ord}([A])$: any element of C_{A} has degree 2 or degree $D m$ for some $m \geq 1$.

In particular, $N_{A}(n)=0$ if $n>2$ and n is not divisible by D.Also,

$$
N_{A}(D m) \approx \frac{\Phi(D)}{D m} q^{m}
$$

Set $D=\operatorname{ord}([A])$: any element of C_{A} has degree 2 or degree $D m$ for some $m \geq 1$.

In particular, $N_{A}(n)=0$ if $n>2$ and n is not divisible by D.Also,

$$
N_{A}(D m) \approx \frac{\Phi(D)}{D m} q^{m}
$$

Enumeration formulas:

1. Garefalakis (JPAA - 2011): upper triangular elements.
2. Mattarei and Pizzato (FFA - 2017): involutions, following a work of O. Ahmadi.
3. R. (Arxiv - 2017): general elements of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$.

Alternative characterization of the invariants.

Alternative characterization of the invariants.
An irreducible polynomial $f(x)$ of degree $2 m$ is self-reciprocal if and only if $f(x)$ is an irreducible of the form $x^{m} g\left(x+x^{-1}\right)$ for some $g(x)$ of degree m.

1. R. (JPAA - 2017):

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, i.e., $[A] \circ f=(x) f(x+1)$.

1. R. (JPAA - 2017):

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, i.e., $[A] \circ f=(x) f(x+1)$.

The invariants appear as $f(x)=g\left(x^{p}-x\right)$.

1. R. (JPAA - 2017):

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, i.e., $[A] \circ f=(x) f(x+1)$.

The invariants appear as $f(x)=g\left(x^{p}-x\right)$.

- $A=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, i.e., $[A] \circ f(x)=f(a x)$.

1. R. (JPAA - 2017):

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, i.e., $[A] \circ f=(x) f(x+1)$.

The invariants appear as $f(x)=g\left(x^{p}-x\right)$.

- $A=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, i.e., $[A] \circ f(x)=f(a x)$.

The invariants appear as $f(x)=g\left(x^{k}\right)$, where $k=\operatorname{ord}(a)$.

1. R. (JPAA - 2017):

- $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, i.e., $[A] \circ f=(x) f(x+1)$.

The invariants appear as $f(x)=g\left(x^{p}-x\right)$.

- $A=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, i.e., $[A] \circ f(x)=f(a x)$.

The invariants appear as $f(x)=g\left(x^{k}\right)$, where $k=\operatorname{ord}(a)$.
2. Mattarei and Pizzato (FFA - 2017): involutions.

The invariants apperar as $f(x)=h_{2}^{n} \cdot g\left(h_{1} / h_{2}\right)$, where $h_{1} / h_{2} \in \mathbb{F}_{q}(x)$ is a quadratic rational function.

Theorem (R., August 2017)
Let $[A] \in \operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}([A])=D>1$. There exists a rational function $R(A)=\frac{g_{A}}{h_{A}}$ of degree D such that $f \in \mathcal{I}_{D m}$ satisfies $[A] \circ f=f$ if and only if $f(x)$ is an irreducible monic polynomial of the form $h_{A}^{m} F\left(\frac{g_{A}}{h_{A}}\right)$ for some F of degree m.
Moreover, the rational function $R(A)$ can be computed from the element A.

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

1. type 1: $A(a):=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), R(A)=x^{k}$,

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

1. type 1: $A(a):=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), R(A)=x^{k}$,
2. type 2: $\mathcal{B}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), R(A)=x^{p}-x$

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

1. type 1: $A(a):=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), R(A)=x^{k}$,
2. type 2: $\mathcal{B}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), R(A)=x^{p}-x$
3. type 3: $C(b):=\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right), R(A)=\frac{x^{2}+b}{2 x}$

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

1. type 1: $A(a):=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), R(A)=x^{k}$,
2. type $2: \mathcal{B}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), R(A)=x^{p}-x$
3. type 3: $C(b):=\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right), R(A)=\frac{x^{2}+b}{2 x}$
4. type 4: $D(c):=\left(\begin{array}{ll}0 & c \\ 1 & 1\end{array}\right), R(A)=\sum_{i=1}^{D} \psi_{A}^{(i)}(x)$, where

$$
\Psi_{A}(x)=\frac{1}{c x+1}
$$

Conjugacy classes in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$:

1. type 1: $A(a):=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), R(A)=x^{k}$,
2. type $2: \mathcal{B}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), R(A)=x^{p}-x$
3. type 3: $C(b):=\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right), R(A)=\frac{x^{2}+b}{2 x}$
4. type 4: $D(c):=\left(\begin{array}{cc}0 & c \\ 1 & 1\end{array}\right), R(A)=\sum_{i=1}^{D} \psi_{A}^{(i)}(x)$, where

$$
\Psi_{A}(x)=\frac{1}{c x+1}
$$

The $R(A)$'s above are called canonical rational functions.

Rational transformations:

Rational transformations:
For $f \in \mathbb{F}_{q}[x]$ irreducible with $\operatorname{deg} f=n$ and $Q(x) \in \mathbb{F}_{q}(x)$ of degree $D, Q(x)=F(x) / G(x)$, set

$$
f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right) .
$$

Rational transformations:
For $f \in \mathbb{F}_{q}[x]$ irreducible with $\operatorname{deg} f=n$ and $Q(x) \in \mathbb{F}_{q}(x)$ of degree $D, Q(x)=F(x) / G(x)$, set

$$
f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right) .
$$

Also, set $f_{0}=f$ and $f_{i}=f_{i-1}^{Q}$,

Rational transformations:
For $f \in \mathbb{F}_{q}[x]$ irreducible with $\operatorname{deg} f=n$ and $Q(x) \in \mathbb{F}_{q}(x)$ of degree $D, Q(x)=F(x) / G(x)$, set

$$
f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right) .
$$

Also, set $f_{0}=f$ and $f_{i}=f_{i-1}^{Q}$,

$$
\operatorname{deg} f_{i}=D \cdot \operatorname{deg} f_{i-1}
$$

Rational transformations:
For $f \in \mathbb{F}_{q}[x]$ irreducible with $\operatorname{deg} f=n$ and $Q(x) \in \mathbb{F}_{q}(x)$ of degree $D, Q(x)=F(x) / G(x)$, set

$$
f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right) .
$$

Also, set $f_{0}=f$ and $f_{i}=f_{i-1}^{Q}$,

$$
\operatorname{deg} f_{i}=D \cdot \operatorname{deg} f_{i-1}
$$

Given f irreducible of degree n, we want to obtain an infinite sequence of irreducibles $\left\{f_{i}\right\}_{i \geq 0}$ of degree $D^{i} \cdot n$, via
$Q(x)$-transformations, where Q is a canonical rational function.

Theorem (Cohen)
Let $f(x)$ be irreducible of degree n over \mathbb{F}_{q} and $\alpha \in \mathbb{F}_{q^{n}}$ one of its roots. Then $f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x)-\alpha G(x)$ is irreducible over $\mathbb{F}_{q^{n}}$.

Theorem (Cohen)
Let $f(x)$ be irreducible of degree n over \mathbb{F}_{q} and $\alpha \in \mathbb{F}_{q^{n}}$ one of its roots. Then $f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x)-\alpha G(x)$ is irreducible over $\mathbb{F}_{q^{n}}$.

Fact: If $D=\operatorname{ord}([A])$ is prime, $Q=R(A)=f_{A} / g_{A}$, then $f_{A}-\alpha g_{A}$ is either irreducible or splits completely over $\mathbb{F}_{q^{n}}$.

Theorem (Cohen)

Let $f(x)$ be irreducible of degree n over \mathbb{F}_{q} and $\alpha \in \mathbb{F}_{q^{n}}$ one of its roots. Then $f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x)-\alpha G(x)$ is irreducible over $\mathbb{F}_{q^{n}}$.

Fact: If $D=\operatorname{ord}([A])$ is prime, $Q=R(A)=f_{A} / g_{A}$, then $f_{A}-\alpha g_{A}$ is either irreducible or splits completely over $\mathbb{F}_{q^{n}}$. In particular, if D is prime, f^{Q} is either irreducible or split into D irreducible factors, each of degree n.

Theorem (Cohen)

Let $f(x)$ be irreducible of degree n over \mathbb{F}_{q} and $\alpha \in \mathbb{F}_{q^{n}}$ one of its roots. Then $f^{Q}=G^{n} \cdot f\left(\frac{F}{G}\right)$ is irreducible if and only if $F(x)-\alpha G(x)$ is irreducible over $\mathbb{F}_{q^{n}}$.

Fact: If $D=\operatorname{ord}([A])$ is prime, $Q=R(A)=f_{A} / g_{A}$, then $f_{A}-\alpha g_{A}$ is either irreducible or splits completely over $\mathbb{F}_{q^{n}}$. In particular, if D is prime, f^{Q} is either irreducible or split into D irreducible factors, each of degree n.

The roots of $f_{A}-\alpha g_{A}$ can be explored through the dynamics of the map $x \mapsto \frac{f_{A}(x)}{g_{A}(x)}$ in $\overline{\mathbb{F}}_{q}$: in general, the functional graph is full of symmetries.

Methods:

Methods:

1. Deterministic: initial conditions on f for f^{Q} to be irreducible. For instance, $Q=x^{p}-x, f(x)$ must be of non-zero trace and $Q=x^{k}$, some conditions on the order $\operatorname{ord}(f)$ of $f(x)$.

Methods:

1. Deterministic: initial conditions on f for f^{Q} to be irreducible. For instance, $Q=x^{p}-x, f(x)$ must be of non-zero trace and $Q=x^{k}$, some conditions on the order $\operatorname{ord}(f)$ of $f(x)$.
2. Iterated trials: works for D prime; if f^{Q} is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible.

Methods:

1. Deterministic: initial conditions on f for f^{Q} to be irreducible. For instance, $Q=x^{p}-x, f(x)$ must be of non-zero trace and $Q=x^{k}$, some conditions on the order $\operatorname{ord}(f)$ of $f(x)$.
2. Iterated trials: works for D prime; if f^{Q} is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible.

For self-reciprocals, $D=2$, (Ugolini - DCC 2015).

Methods:

1. Deterministic: initial conditions on f for f^{Q} to be irreducible. For instance, $Q=x^{p}-x, f(x)$ must be of non-zero trace and $Q=x^{k}$, some conditions on the order $\operatorname{ord}(f)$ of $f(x)$.
2. Iterated trials: works for D prime; if f^{Q} is not irreducible, it splits into D irreducible factors of degree n. Pick one of those irreducibles, apply Q again. Eventually we find an irreducible.

For self-reciprocals, $D=2$, (Ugolini - DCC 2015).
3. Probabilistic: pick a random irreducible f of degree n and check if f^{Q} is irreducible or not.

Efficiency of iterations: if A is of type 1,3 or 4 and $Q=R(A)$, once f_{i} is irreducible, f_{j} is irreducible for any $j \geq i$.

Efficiency of iterations: if A is of type 1,3 or 4 and $Q=R(A)$, once f_{i} is irreducible, f_{j} is irreducible for any $j \geq i$.

The case A of type 1 is a classical result.

Efficiency of iterations: if A is of type 1,3 or 4 and $Q=R(A)$, once f_{i} is irreducible, f_{j} is irreducible for any $j \geq i$.

The case A of type 1 is a classical result.
The case A of type 4 or 3 , we can verify that the map $x \mapsto \frac{f_{A}(x)}{g_{A}(x)}$ is "conjugated" to map $x \mapsto x^{D}$ in $\overline{\mathbb{F}}_{q}$, via Mobius permutations.

Efficiency of iterations: if A is of type 1,3 or 4 and $Q=R(A)$, once f_{i} is irreducible, f_{j} is irreducible for any $j \geq i$.

The case A of type 1 is a classical result.
The case A of type 4 or 3 , we can verify that the map $x \mapsto \frac{f_{A}(x)}{g_{A}(x)}$ is "conjugated" to map $x \mapsto x^{D}$ in $\overline{\mathbb{F}}_{q}$, via Mobius permutations. * The case A of type 2 is more complicated: if $f_{i}=f_{i-1}\left(x^{p}-x\right)$ is irreducible, f_{i+1} is reducible.

Iterated trial: related to the functional graph of the map $x \mapsto \frac{f_{A}(x)}{g_{A}(x)}$.

Iterated trial: related to the functional graph of the map $x \mapsto \frac{f_{A}(x)}{g_{A}(x)}$.

Insert a functional graph.

Suppose that $Q=R(A)=f_{A} / g_{A}$ is a canonical rational function associated to A, with $\operatorname{ord}([A])=D$.

Suppose that $Q=R(A)=f_{A} / g_{A}$ is a canonical rational function associated to A, with $\operatorname{ord}([A])=D$.

$$
N_{A}(D n) \approx \frac{\Phi(D)}{D n} q^{n}, n \gg 1
$$

Suppose that $Q=R(A)=f_{A} / g_{A}$ is a canonical rational function associated to A, with $\operatorname{ord}([A])=D$.

$$
N_{A}(D n) \approx \frac{\Phi(D)}{D n} q^{n}, n \gg 1
$$

We know that the invariants of degree $D n$ arise from f^{Q}, with f of degree n.

Suppose that $Q=R(A)=f_{A} / g_{A}$ is a canonical rational function associated to A, with $\operatorname{ord}([A])=D$.

$$
N_{A}(D n) \approx \frac{\Phi(D)}{D n} q^{n}, n \gg 1
$$

We know that the invariants of degree $D n$ arise from f^{Q}, with f of degree n.

Necessary condition: f must be irreducible. How many they are?

Suppose that $Q=R(A)=f_{A} / g_{A}$ is a canonical rational function associated to A, with $\operatorname{ord}([A])=D$.

$$
N_{A}(D n) \approx \frac{\Phi(D)}{D n} q^{n}, n \gg 1
$$

We know that the invariants of degree $D n$ arise from f^{Q}, with f of degree n.

Necessary condition: f must be irreducible. How many they are?
Close to $\frac{q^{n}}{n}, n \gg 1$.

Random Method:

Random Method:
Pick f irreducible of degree n. If f^{Q} is irreducible, proceed with the iterations $f_{i}=f_{i-1}^{Q}$. If not, pick another irreducible of degree n.

Random Method:
Pick f irreducible of degree n. If f^{Q} is irreducible, proceed with the iterations $f_{i}=f_{i-1}^{Q}$. If not, pick another irreducible of degree n.

In particular, for a random irreducible of degree n, f^{Q} is also irreducible with probability $p_{A} \approx \frac{\Phi(D)}{D}$.

Random Method:
Pick f irreducible of degree n. If f^{Q} is irreducible, proceed with the iterations $f_{i}=f_{i-1}^{Q}$. If not, pick another irreducible of degree n.

In particular, for a random irreducible of degree n, f^{Q} is also irreducible with probability $p_{A} \approx \frac{\Phi(D)}{D}$.

Geometric Distribution with $p=p_{A}$.

Random Method:
Pick f irreducible of degree n. If f^{Q} is irreducible, proceed with the iterations $f_{i}=f_{i-1}^{Q}$. If not, pick another irreducible of degree n.

In particular, for a random irreducible of degree n, f^{Q} is also irreducible with probability $p_{A} \approx \frac{\Phi(D)}{D}$.

Geometric Distribution with $p=p_{A}$.
In particular, the expected number of trials is $\frac{1}{p_{A}} \approx \frac{D}{\Phi(D)}$.

Random Method:
Pick f irreducible of degree n. If f^{Q} is irreducible, proceed with the iterations $f_{i}=f_{i-1}^{Q}$. If not, pick another irreducible of degree n.

In particular, for a random irreducible of degree n, f^{Q} is also irreducible with probability $p_{A} \approx \frac{\Phi(D)}{D}$.

Geometric Distribution with $p=p_{A}$.
In particular, the expected number of trials is $\frac{1}{p_{A}} \approx \frac{D}{\Phi(D)}$.
For D prime, $\frac{D}{\Phi(D)}=\frac{D}{D-1} \leq 2$.

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \operatorname{GL}_{2}\left(\mathbb{F}_{2}\right)$

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$

$$
Q=R(A)=\frac{1}{x+1}+\frac{x+1}{x}+x=\frac{x^{3}+x+1}{x^{2}+x} .
$$

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$

$$
Q=R(A)=\frac{1}{x+1}+\frac{x+1}{x}+x=\frac{x^{3}+x+1}{x^{2}+x} .
$$

Set $f_{0}=x+1$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$

$$
Q=R(A)=\frac{1}{x+1}+\frac{x+1}{x}+x=\frac{x^{3}+x+1}{x^{2}+x} .
$$

Set $f_{0}=x+1$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{3}+x^{2}+1$

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$

$$
Q=R(A)=\frac{1}{x+1}+\frac{x+1}{x}+x=\frac{x^{3}+x+1}{x^{2}+x} .
$$

Set $f_{0}=x+1$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{3}+x^{2}+1$
$f_{2}=x^{9}+x+1$

Example 1: $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$

$$
Q=R(A)=\frac{1}{x+1}+\frac{x+1}{x}+x=\frac{x^{3}+x+1}{x^{2}+x} .
$$

Set $f_{0}=x+1$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{3}+x^{2}+1$
$f_{2}=x^{9}+x+1$
$f_{3}=x^{27}+x^{26}+x^{24}+x^{18}+x^{17}+x^{11}+x^{9}+x^{8}+x^{3}+x^{2}+1$

$$
f_{4}=x^{81}+x^{64}+x^{16}+x+1
$$

$$
\begin{aligned}
& f_{4}=x^{81}+x^{64}+x^{16}+x+1 \\
& f_{5}=x^{243}+x^{242}+x^{240}+x^{227}+x^{225}+x^{224}+x^{210}+x^{209}+x^{195}+ \\
& x^{194}+x^{192}+x^{179}+x^{177}+x^{176}+x^{162}+x^{161}+x^{147}+x^{146}+x^{144}+ \\
& x^{131}+x^{129}+x^{128}+x^{114}+x^{113}+x^{99}+x^{98}+x^{96}+x^{83}+x^{81}+x^{80}+ \\
& x^{66}+x^{65}+x^{51}+x^{50}+x^{48}+x^{35}+x^{33}+x^{32}+x^{18}+x^{17}+x^{3}+x^{2}+1
\end{aligned}
$$

Example 2: $\quad A=\left(\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

Example 2: $\quad A=\left(\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

$$
Q=R(A)=\frac{3 x^{6}+x+4}{x^{5}-x}
$$

Example 2: $\quad A=\left(\begin{array}{cc}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

$$
Q=R(A)=\frac{3 x^{6}+x+4}{x^{5}-x}
$$

Set $f_{0}=x$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.

Example 2: $\quad A=\left(\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

$$
Q=R(A)=\frac{3 x^{6}+x+4}{x^{5}-x}
$$

Set $f_{0}=x$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{6}+2 x+3$

Example 2: $\quad A=\left(\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

$$
Q=R(A)=\frac{3 x^{6}+x+4}{x^{5}-x}
$$

Set $f_{0}=x$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{6}+2 x+3$
$f_{2}=x^{36}+x^{31}+x^{26}+2 x^{25}+3 x^{11}+3 x^{10}+x^{6}+4 x^{5}+x+4$

Example 2: $\quad A=\left(\begin{array}{cc}0 & 3 \\ 1 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$

$$
Q=R(A)=\frac{3 x^{6}+x+4}{x^{5}-x}
$$

Set $f_{0}=x$ and $f_{i}=f_{i-1}^{Q}, i \geq 1$.
$f_{1}=x^{6}+2 x+3$
$f_{2}=x^{36}+x^{31}+x^{26}+2 x^{25}+3 x^{11}+3 x^{10}+x^{6}+4 x^{5}+x+4$
$f_{3}=x^{216}+4 x^{211}+3 x^{210}+3 x^{206}+2 x^{205}+2 x^{201}+2 x^{200}+3 x^{191}+$
$2 x^{190}+4 x^{185}+x^{181}+2 x^{180}+4 x^{176}+2 x^{175}+4 x^{166}+2 x^{165}+$
$x^{156}+3 x^{155}+x^{151}+3 x^{150}+4 x^{141}+3 x^{140}+x^{131}+3 x^{130}+2 x^{125}+$
$x^{91}+3 x^{90}+4 x^{86}+x^{85}+2 x^{81}+3 x^{80}+2 x^{76}+2 x^{66}+4 x^{65}+2 x^{61}+$
$4 x^{60}+3 x^{56}+3 x^{55}+2 x^{51}+x^{50}+4 x^{40}+4 x^{36}+x^{35}+2 x^{31}+$
$x^{30}+2 x^{26}+x^{25}+2 x^{16}+3 x^{15}+4 x^{11}+x^{10}+3 x^{6}+4 x^{5}+4 x+1$.

Thank you!

