SOME NEW EULER FUNCTIONS

Gary L. Mullen
Penn State University
mullen@math.psu.edu

Sept. 29, 2017

Euler's function $\phi(n)$ counts the number of $1 \leq a \leq n$ with $(a, n)=1$.

Euler's function $\phi(n)$ counts the number of $1 \leq a \leq n$ with $(a, n)=1$.
Such values of a form a group of order $\phi(n)$.

Euler's function $\phi(n)$ counts the number of $1 \leq a \leq n$ with $(a, n)=1$.
Such values of a form a group of order $\phi(n)$.
Theorem
If p is a prime and $k \geq 1$ is an integer, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

Euler's function $\phi(n)$ counts the number of $1 \leq a \leq n$ with $(a, n)=1$.
Such values of a form a group of order $\phi(n)$.

Theorem

If p is a prime and $k \geq 1$ is an integer, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

Theorem
The function ϕ is multiplicative so if $(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.

Euler's function $\phi(n)$ counts the number of $1 \leq a \leq n$ with $(a, n)=1$.
Such values of a form a group of order $\phi(n)$.
Theorem
If p is a prime and $k \geq 1$ is an integer, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

Theorem
The function ϕ is multiplicative so if $(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.

Hence $\phi(n)$ can be determined for any n if we know the factorization of n.

A Generalization of Euler's Function

Definition

Let $b \geq 1$ be an integer. Define the function $\phi_{b}(n)$ to be the number of $1 \leq a \leq n$ with

$$
(a, n)=(a-1, n)=\cdots=(a-b+1, n)=1
$$

A Generalization of Euler's Function

Definition

Let $b \geq 1$ be an integer. Define the function $\phi_{b}(n)$ to be the number of $1 \leq a \leq n$ with

$$
(a, n)=(a-1, n)=\cdots=(a-b+1, n)=1
$$

$\phi_{1}(n)=\phi(n)$

Some properties of the function $\phi_{b}(n)$.
Theorem
If p is a prime and $k \geq 1$ is an integer, then $\phi_{b}\left(p^{k}\right)=p^{k}-b p^{k-1}$.

Some properties of the function $\phi_{b}(n)$.
Theorem
If p is a prime and $k \geq 1$ is an integer, then $\phi_{b}\left(p^{k}\right)=p^{k}-b p^{k-1}$.
Theorem
The function ϕ_{b} is multiplicative so if $(m, n)=1$, then $\phi_{b}(m n)=\phi_{b}(m) \phi_{b}(n)$.

Some properties of the function $\phi_{b}(n)$.
Theorem
If p is a prime and $k \geq 1$ is an integer, then $\phi_{b}\left(p^{k}\right)=p^{k}-b p^{k-1}$.

Theorem
The function ϕ_{b} is multiplicative so if $(m, n)=1$, then $\phi_{b}(m n)=\phi_{b}(m) \phi_{b}(n)$.

Hence $\phi_{b}(n)$ can be determined for any n if we know the factorization of n.

An Application to Latin Squares

Theorem
(Keedwell/M, Disc. Math. 2005) If $q \geq 4$ is even, we may form $q-1$ latin squares of order q which are mutually ($5 q-4$)-orthogonal.

An Application to Latin Squares

Theorem
(Keedwell/M, Disc. Math. 2005) If $q \geq 4$ is even, we may form $q-1$ latin squares of order q which are mutually ($5 q-4$)-orthogonal.

Proof uses uniform cyclic neofields

Theorem
(Droz, PSU thesis, 2016) If $q \geq 4$ is even and $q-1$ is a prime, we may form $q-3$ latin squares of order q which are mutually ($q^{2}-2 q+2$)-orthogonal.

Theorem
(Droz, PSU thesis, 2016) If $q \geq 4$ is even and $q-1$ is a prime, we may form $q-3$ latin squares of order q which are mutually ($q^{2}-2 q+2$)-orthogonal.

Proof uses cyclic uniform neofields

Theorem
(Droz, PSU thesis, 2016) If $q \geq 4$ is even and $q-1$ is a prime, we may form $q-3$ latin squares of order q which are mutually ($q^{2}-2 q+2$)-orthogonal.

Proof uses cyclic uniform neofields

Problem

If $q \geq 4$ is even, there are $\phi_{2}(q-1)$ latin squares which are (???)-orthogonal.

q	$\phi_{2}(q-1)$
4	1
6	3
8	5
10	3
12	9
14	11
16	3
18	15
20	17
22	5
24	21
26	15
28	9
30	27
32	29
34	9
36	15

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_{q}(N)$.

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_{q}(N)$.
Theorem
If P is irreducible of degree m over F_{q} and $k \geq 1$ is an integer, then $\Phi\left(P^{k}\right)=q^{m k}-q^{m(k-1)}$.

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_{q}(N)$.
Theorem
If P is irreducible of degree m over F_{q} and $k \geq 1$ is an integer, then $\Phi\left(P^{k}\right)=q^{m k}-q^{m(k-1)}$.

Theorem
The function $\Phi_{q}(N)$ is multiplicative.

The Polynomial Euler Function

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_{q}(N)$.
Theorem
If P is irreducible of degree m over F_{q} and $k \geq 1$ is an integer, then $\Phi\left(P^{k}\right)=q^{m k}-q^{m(k-1)}$.

Theorem

The function $\Phi_{q}(N)$ is multiplicative.

Hence the function $\Phi_{q}(N)$ can be determined for any polynomial $N \in F_{q}[x]$ if the factorization of N is known.

The Polynomial Euler Function

Definition

The function $\Phi_{q}(N)$ counts the number of polynomials over F_{q} of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_{q}(N)$.
Theorem
If P is irreducible of degree m over F_{q} and $k \geq 1$ is an integer, then $\Phi\left(P^{k}\right)=q^{m k}-q^{m(k-1)}$.

Theorem

The function $\Phi_{q}(N)$ is multiplicative.

Hence the function $\Phi_{q}(N)$ can be determined for any polynomial $N \in F_{q}[x]$ if the factorization of N is known.

Definition

If c is non-negative integer, by G_{c} we mean the unique polynomial in $F_{p}[x]$ such that $G_{c}(p)=c$.

Definition

If c is non-negative integer, by G_{c} we mean the unique polynomial in $F_{p}[x]$ such that $G_{c}(p)=c$.

For example, if $p=5$ and $c=193$, then

$$
G_{193}(x)=x^{3}+2 x^{2}+3 x+3
$$

since

$$
125+2\left(5^{2}\right)+3(5)+3=193 .
$$

Definition

Let $N \in F_{p}[x]$ and suppose n is the smallest degree of any irreducible divisor of N. For $b \in\left\{1,2, \ldots, p^{n}-1\right\}$, we define the extended polynomial Euler function $\Phi_{b}(N)$ to be the number of polynomials A of degree less than the degree of N such that $\operatorname{gcd}\left(A-G_{c}, N\right)=1$ for all $c \in\{0,1, \ldots, b-1\}$.

Some Properties of the Function $\Phi_{b}(N)$

Theorem
If p is a prime and P is irreducible of degree m over F_{p} and $k \geq 1$ is an integer, then $\Phi_{b}\left(P^{k}\right)=p^{m k}-b p^{m(k-1)}$.

Some Properties of the Function $\Phi_{b}(N)$

Theorem
If p is a prime and P is irreducible of degree m over F_{p} and $k \geq 1$ is an integer, then $\Phi_{b}\left(P^{k}\right)=p^{m k}-b p^{m(k-1)}$.

Theorem

The function $\Phi_{b}(N)$ is multiplicative so if $(M, N)=1$, then $\Phi_{b}(M N)=\Phi_{b}(M) \Phi_{b}(N)$.

Some Properties of the Function $\Phi_{b}(N)$

Theorem
If p is a prime and P is irreducible of degree m over F_{p} and $k \geq 1$ is an integer, then $\Phi_{b}\left(P^{k}\right)=p^{m k}-b p^{m(k-1)}$.

Theorem

The function $\Phi_{b}(N)$ is multiplicative so if $(M, N)=1$, then $\Phi_{b}(M N)=\Phi_{b}(M) \Phi_{b}(N)$.

Hence $\Phi_{b}(N)$ can be determined for any polynomial N if we know the factorization of N.

Problem

(1) $\Phi\left(x^{n}-1\right)=\Phi_{1}\left(x^{n}-1\right)$ counts the number of normal elements in $F_{q^{n}}$ over F_{q}.

Problem

(1) $\Phi\left(x^{n}-1\right)=\Phi_{1}\left(x^{n}-1\right)$ counts the number of normal elements in $F_{q^{n}}$ over F_{q}.
(2) $\Phi_{b}\left(x^{n}-1\right)$ counts the number of normal elements in $F_{q^{n}}$ over F_{q} with property $b \geq 1$.

Problem

(1) $\Phi\left(x^{n}-1\right)=\Phi_{1}\left(x^{n}-1\right)$ counts the number of normal elements in $F_{q^{n}}$ over F_{q}.
(2) $\Phi_{b}\left(x^{n}-1\right)$ counts the number of normal elements in $F_{q^{n}}$ over F_{q} with property $b \geq 1$.
(3) What is property b ?

How to construct a uniform cyclic neofield of even order $q \geq 4$

$$
N=\left\{0,1, a, a^{2}, a^{3}, \ldots, a^{q-2}\right\}
$$

How to construct a uniform cyclic neofield of even order $q \geq 4$

$$
N=\left\{0,1, a, a^{2}, a^{3}, \ldots, a^{q-2}\right\}
$$

Multiplication is cyclic

How to construct a uniform cyclic neofield of even order $q \geq 4$

$$
N=\left\{0,1, a, a^{2}, a^{3}, \ldots, a^{q-2}\right\}
$$

Multiplication is cyclic
Let $(u, q-1)=(u-1, q-1)=1$. Then define

$$
1+a^{r}=a^{u r}
$$

How to construct a uniform cyclic neofield of even order $q \geq 4$

$$
N=\left\{0,1, a, a^{2}, a^{3}, \ldots, a^{q-2}\right\}
$$

Multiplication is cyclic
Let $(u, q-1)=(u-1, q-1)=1$. Then define

$$
1+a^{r}=a^{u r}
$$

This gives the additive operation in the neofield.

How to construct a uniform cyclic neofield of even order $q \geq 4$

$$
N=\left\{0,1, a, a^{2}, a^{3}, \ldots, a^{q-2}\right\}
$$

Multiplication is cyclic
Let $(u, q-1)=(u-1, q-1)=1$. Then define

$$
1+a^{r}=a^{u r}
$$

This gives the additive operation in the neofield.
FACT: $\phi_{2}(q-1)$ counts the number of good values of u.

A uniform cyclic neofield of order $q=6$

Let $(u, q-1)=(u-1, q-1)=(u, 5)=(u-1,5)=1$ so we can take $u=2$ (or $u=3$ or $u=4$). Then define $1+a^{r}=a^{u r}=a^{2 r}, r=1,2,3,4$
$1+a=a^{2}, 1+a^{2}=a^{4}$
$1+a^{3}=a^{6}=a, 1+a^{4}=a^{8}=a^{3}$

+	0	1	a	a^{2}	a^{3}	a^{4}
0	0	1	a	a^{2}	a^{3}	a^{4}
1	1	0	a^{2}	a^{4}	a	a^{3}
a	a	a^{4}	0	a^{3}	1	a^{2}
a^{2}	a^{2}	a^{3}	1	0	a^{4}	a
a^{3}	a^{3}	a^{2}	a^{4}	a	0	1
a^{4}	a^{4}	a	a^{3}	1	a^{2}	0

THANK YOU!!!

