SOME NEW EULER FUNCTIONS

Gary L. Mullen

Penn State University

mullen@math.psu.edu

Sept. 29, 2017

Such values of a form a group of order $\phi(n)$.

Such values of a form a group of order $\phi(n)$.

Theorem

If p is a prime and $k \ge 1$ is an integer, then $\phi(p^k) = p^k - p^{k-1}$.

Such values of a form a group of order $\phi(n)$.

Theorem

If p is a prime and $k \ge 1$ is an integer, then $\phi(p^k) = p^k - p^{k-1}$.

Theorem

The function ϕ is multiplicative so if (m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Such values of a form a group of order $\phi(n)$.

Theorem If p is a prime and $k \ge 1$ is an integer, then $\phi(p^k) = p^k - p^{k-1}$.

Theorem

The function ϕ is multiplicative so if (m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Hence $\phi(n)$ can be determined for any n if we know the factorization of n.

A Generalization of Euler's Function

Definition

Let $b\geq 1$ be an integer. Define the function $\phi_b(n)$ to be the number of $1\leq a\leq n$ with

$$(a,n) = (a-1,n) = \dots = (a-b+1,n) = 1.$$

A Generalization of Euler's Function

Definition

Let $b \ge 1$ be an integer. Define the function $\phi_b(n)$ to be the number of $1 \le a \le n$ with

$$(a, n) = (a - 1, n) = \dots = (a - b + 1, n) = 1.$$

 $\phi_1(n) = \phi(n)$

Some properties of the function $\phi_b(n)$.

Theorem

If p is a prime and $k \ge 1$ is an integer, then $\phi_b(p^k) = p^k - bp^{k-1}$.

Some properties of the function $\phi_b(n)$.

Theorem

If p is a prime and $k \ge 1$ is an integer, then $\phi_b(p^k) = p^k - bp^{k-1}$.

Theorem

The function ϕ_b is multiplicative so if (m, n) = 1, then $\phi_b(mn) = \phi_b(m)\phi_b(n)$.

Some properties of the function $\phi_b(n)$.

Theorem

If p is a prime and $k \ge 1$ is an integer, then $\phi_b(p^k) = p^k - bp^{k-1}$.

Theorem

The function ϕ_b is multiplicative so if (m, n) = 1, then $\phi_b(mn) = \phi_b(m)\phi_b(n)$.

Hence $\phi_b(n)$ can be determined for any n if we know the factorization of n.

An Application to Latin Squares

Theorem

(Keedwell/M, Disc. Math. 2005) If $q \ge 4$ is even, we may form q - 1 latin squares of order q which are mutually (5q - 4)-orthogonal.

An Application to Latin Squares

Theorem

(Keedwell/M, Disc. Math. 2005) If $q \ge 4$ is even, we may form q - 1 latin squares of order q which are mutually (5q - 4)-orthogonal.

Proof uses uniform cyclic neofields

Theorem

(Droz, PSU thesis, 2016) If $q \ge 4$ is even and q - 1 is a prime, we may form q - 3 latin squares of order q which are mutually $(q^2 - 2q + 2)$ -orthogonal.

Theorem

(Droz, PSU thesis, 2016) If $q \ge 4$ is even and q - 1 is a prime, we may form q - 3 latin squares of order q which are mutually $(q^2 - 2q + 2)$ -orthogonal.

Proof uses cyclic uniform neofields

Theorem

(Droz, PSU thesis, 2016) If $q \ge 4$ is even and q - 1 is a prime, we may form q - 3 latin squares of order q which are mutually $(q^2 - 2q + 2)$ -orthogonal.

Proof uses cyclic uniform neofields

Problem

If $q \ge 4$ is even, there are $\phi_2(q-1)$ latin squares which are (???)-orthogonal.

Gary L. Mullen (PSU)

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_q(N)$.

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_q(N)$.

Theorem

If P is irreducible of degree m over F_q and $k\geq 1$ is an integer, then $\Phi(P^k)=q^{mk}-q^{m(k-1)}.$

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_q(N)$.

Theorem

If P is irreducible of degree m over F_q and $k\geq 1$ is an integer, then $\Phi(P^k)=q^{mk}-q^{m(k-1)}.$

Theorem

The function $\Phi_q(N)$ is multiplicative.

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_q(N)$.

Theorem

If P is irreducible of degree m over F_q and $k\geq 1$ is an integer, then $\Phi(P^k)=q^{mk}-q^{m(k-1)}.$

Theorem

The function $\Phi_q(N)$ is multiplicative.

Hence the function $\Phi_q(N)$ can be determined for any polynomial $N \in F_q[x]$ if the factorization of N is known.

Definition

The function $\Phi_q(N)$ counts the number of polynomials over F_q of degree less than the degree of N which are relatively prime to N.

Such polynomials form a group of order $\Phi_q(N)$.

Theorem

If P is irreducible of degree m over F_q and $k\geq 1$ is an integer, then $\Phi(P^k)=q^{mk}-q^{m(k-1)}.$

Theorem

The function $\Phi_q(N)$ is multiplicative.

Hence the function $\Phi_q(N)$ can be determined for any polynomial $N \in F_q[x]$ if the factorization of N is known.

Definition

If c is non-negative integer, by G_c we mean the unique polynomial in $F_p[x]$ such that $G_c(p) = c$.

Definition

If c is non-negative integer, by G_c we mean the unique polynomial in $F_p[x]$ such that $G_c(p) = c$.

For example, if p = 5 and c = 193, then

$$G_{193}(x) = x^3 + 2x^2 + 3x + 3$$

since

$$125 + 2(5^2) + 3(5) + 3 = 193.$$

Definition

Let $N \in F_p[x]$ and suppose n is the smallest degree of any irreducible divisor of N. For $b \in \{1, 2, ..., p^n - 1\}$, we define the **extended polynomial Euler function** $\Phi_b(N)$ to be the number of polynomials A of degree less than the degree of N such that $gcd(A - G_c, N) = 1$ for all $c \in \{0, 1, ..., b - 1\}$.

Some Properties of the Function $\Phi_b(N)$

Theorem

If p is a prime and P is irreducible of degree m over F_p and $k \ge 1$ is an integer, then $\Phi_b(P^k) = p^{mk} - bp^{m(k-1)}$.

Some Properties of the Function $\Phi_b(N)$

Theorem

If p is a prime and P is irreducible of degree m over F_p and $k \ge 1$ is an integer, then $\Phi_b(P^k) = p^{mk} - bp^{m(k-1)}$.

Theorem

The function $\Phi_b(N)$ is multiplicative so if (M, N) = 1, then $\Phi_b(MN) = \Phi_b(M)\Phi_b(N)$.

Some Properties of the Function $\Phi_b(N)$

Theorem

If p is a prime and P is irreducible of degree m over F_p and $k \ge 1$ is an integer, then $\Phi_b(P^k) = p^{mk} - bp^{m(k-1)}$.

Theorem

The function $\Phi_b(N)$ is multiplicative so if (M, N) = 1, then $\Phi_b(MN) = \Phi_b(M)\Phi_b(N)$.

Hence $\Phi_b(N)$ can be determined for any polynomial N if we know the factorization of N.

Problem

(1) $\Phi(x^n - 1) = \Phi_1(x^n - 1)$ counts the number of normal elements in F_{q^n} over F_q .

Problem

(1) $\Phi(x^n - 1) = \Phi_1(x^n - 1)$ counts the number of normal elements in F_{q^n} over F_q . (2) $\Phi_b(x^n - 1)$ counts the number of normal elements in F_{q^n} over F_q with property $b \ge 1$.

Problem

(1) $\Phi(x^n - 1) = \Phi_1(x^n - 1)$ counts the number of normal elements in F_{q^n} over F_q . (2) $\Phi_b(x^n - 1)$ counts the number of normal elements in F_{q^n} over F_q with property $b \ge 1$. (3) What is property b?

$$N = \{0, 1, a, a^2, a^3, \dots, a^{q-2}\}$$

$$N = \{0, 1, a, a^2, a^3, \dots, a^{q-2}\}$$

Multiplication is cyclic

$$N = \{0, 1, a, a^2, a^3, \dots, a^{q-2}\}$$

Multiplication is cyclic

Let (u, q - 1) = (u - 1, q - 1) = 1. Then define

$$1 + a^r = a^{ur}$$

$$N = \{0, 1, a, a^2, a^3, \dots, a^{q-2}\}$$

Multiplication is cyclic

Let (u, q - 1) = (u - 1, q - 1) = 1. Then define

$$1 + a^r = a^{ur}$$

This gives the additive operation in the neofield.

$$N = \{0, 1, a, a^2, a^3, \dots, a^{q-2}\}$$

Multiplication is cyclic

Let (u, q - 1) = (u - 1, q - 1) = 1. Then define

$$1 + a^r = a^{ur}$$

This gives the additive operation in the neofield.

FACT: $\phi_2(q-1)$ counts the number of good values of u.

A uniform cyclic neofield of order q = 6

Let (u, q - 1) = (u - 1, q - 1) = (u, 5) = (u - 1, 5) = 1 so we can take u = 2 (or u = 3 or u = 4). Then define $1 + a^r = a^{ur} = a^{2r}, r = 1, 2, 3, 4$ $1 + a = a^2, 1 + a^2 = a^4$

 $1 + a^3 = a^6 = a$, $1 + a^4 = a^8 = a^3$

-	F	0	1	a	a^2	a^3	a^4
()	0	1	a	a^2	a^3	a^4
-	L	1	0	a^2	a^4	a	a^3
6	ı	a	a^4	0	a^3	1	a^2
a	2	a^2	a^3	1	0	a^4	a
a	3	a^3	a^2	a^4	a	0	1
а	4	a^4	a	a^3	1	a^2	$ \begin{array}{c} a^{4}\\ a^{3}\\ a^{2}\\ a\\ 1\\ 0 \end{array} $

THANK YOU!!!