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Let q be a prime power

Let Fq denote the finite field with q elements
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E-perfect codes

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over Fq.
Then

|C|
[
1 +

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

t

)
(q − 1)t

]
≤ qn.

A code C is perfect if the code’s parameters yield an equality in the
Hamming bound.

The parameters of all perfect codes are known, and can be listed as
follows:
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The trivial perfect codes are

1 The zero vector (0, . . . , 0) of length n,

2 The entire vector space Fnq

3 The binary repetition code of odd length n.

The non-trivial perfect codes must have the parameters
(
n,M = qk, 3

)
of

the Hamming codes and the Golay codes (unique up to equivalence)
whose parameters can be listed as follows:

1 The Hamming code
[
qm−1
q−1 , n−m, 3

]
over Fq, where m ≥ 2 is a

positive integer;

2 The [11, 6, 5] Golay code over F3;

3 The [23, 12, 7] Golay code over F2.
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Let C be a t-error-correcting code of length n over Fq.

Then,

|C|
[
1 +

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

t

)
(q − 1)t

]
≤ qn.

A t-error correcting code C with parameters (n,M, d), t = bd−12 c, is
e-perfect if in the Hamming bound, equality is achieved when, on the
right hand side, qn is replaced by qe.

An n-perfect code is a perfect code.
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Conjecture

Let C be an (n,M, d) t-error correcting non-trivial e-perfect code over Fq.
Then C must have one of the following sets of parameters:

1

(
qm−1
q−1 , q

e−m, 3
)

, with q a prime power and m < e ≤ n, where

m ≥ 2;

2 (11, 3e−5, 5), with q = 3 and 5 < e ≤ 11;

3 (23, 2e−11, 7), with q = 2 and 11 < e ≤ 23;

4 (90, 2e−12, 5), with q = 2 and 12 < e ≤ 89.

Problem

Prove this conjecture.

We can construct e-perfect codes with each of the parameters listed
above, except for the case when n = 90 and e = 89.

As was the case for perfect codes, there could be many e-perfect codes
with a given set of parameters.
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R-closed subsets of Zp

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with |G| = g

Let S be a subset of G with |S| = s.

Definition

Let 0 ≤ r ≤ s2. A set S is r-closed if, among the s2 ordered pairs (a, b)
with a, b ∈ S, there are exactly r pairs such that a+ b ∈ S.

The r-value of the r-closed set S is denoted by r(S).
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If S is a subgroup of G then S is s2-closed

If S is a sum-free set then S is 0-closed.

For a given G, what (if anything) can be said about the spectrum of
r-values of the subsets of G?

Motivated by the classical Cauchy-Davenport Theorem, we are particularly
interested in the case when G = Zp under addition modulo the prime p.
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For G = Zp we characterize the maximal and minimal possible r-values.

We make a conjecture (verified computationally for all primes p ≤ 23)
about the complete spectrum of r-values for any subset cardinality in Zp
and prove that, for any p, all conjectured r-values in the spectrum are
attained when the subset cardinality is suitably small (s < 2p+2

7 ).
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Theorem

Let G be a finite abelian group of order g. Let s be a positive integer with
0 ≤ s ≤ g, and let S be a subset of G of size s. Let T be the complement
of S in G. Then

r(S) + r(T ) = g2 − 3gs+ 3s2.
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Theorem (Cauchy-Davenport)

If A and B are non-empty subsets of Zp then
|A+B| ≥ min(p, |A|+ |B| − 1).

Definition

For p be a prime, define

k[p] = bp+ 1

3
c =


p−1
3 , p ≡ 1 mod 3
p
3 , p ≡ 0 mod 3
p+1
3 , p ≡ −1 mod 3

Proposition

Let p be a prime. If S ⊆ Zp is 0-closed then |S| ≤ k[p].
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Definition

Let p be an odd prime. For 0 ≤ s ≤ p, define fs and gs as follows:

fs =


0 s ≤ k[p]
(3s−p)2−1

4 s > k[p] and s even
(3s−p)2

4 s > k[p] and s odd

gs =


3s2

4 s ≤ p− k[p] and s even
3s2+1

4 s ≤ p− k[p] and s odd

p2 − 3sp+ 3s2 s > p− k[p]

Note that fs + gp−s = p2 − 3sp+ 3s2.
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Proposition

Let p > 11. For 1 ≤ s ≤ 3 and p− 3 ≤ s ≤ p, the r-values for subsets of
Zp of size s are precisely the integers in the interval [fs, gs] with the
following exceptions:

s fs gs exceptions

1 0 1 —
2 0 3 2
3 0 7 4
p p2 p2 —

p− 1 p2 − 3p+ 2 p2 − 3p+ 3 —
p− 2 p2 − 6p+ 9 p2 − 6p+ 12 p2 − 6p+ 10
p− 3 p2 − 9p+ 20 p2 − 9p+ 27 p2 − 9p+ 23
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Definition

If 4 ≤ s ≤ p− 4, define V (s) by

V (s) =


0 if s ≤ k[p]

dp−s−34 e if s ≥ bp+1
2 c

d3s−p−14 e otherwise

.
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Conjecture

For p > 11 and 4 ≤ s ≤ p− 4, there are V (s) exceptional values at the
low end of the interval [fs, gs] and V (p− s) exceptional values at the high
end of the interval [fs, gs]. All other values in the interval can be obtained
as r-values. The exceptions are given by:

fs + 3i+ 1 for 0 ≤ i < V (s) if s ≡ p mod 2

fs + 3i+ 2 for 0 ≤ i < V (s) if s 6≡ p mod 2

gs − 3i− 1 for 0 ≤ i < V (p− s) if s is even

gs − 3i− 2 for 0 ≤ i < V (p− s) if s is odd

Verified computationally for all primes p ≤ 23 and all corresponding s
(4 ≤ s ≤ p− 4).

Problem

Prove the conjecture
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All conjectured r-values in the spectrum are attained when the subset
cardinality is suitably small (s < 2p+2

7 ).
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Subfield Value Sets

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct.
Approx. Comment. Math. (2013)

Let Fqd be a subfield of Fqe so d|e

For f ∈ Fqe [x], subfield value set Vf (qe; qd) = {f(c) ∈ Fqd |c ∈ Fqe}

Theorem

|Vxn(qe; qd)| = (n(qd − 1), qe − 1)

(n, qe − 1)
+ 1
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Dickson poly. deg. n, parameter a ∈ Fq

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

Dn(x, 0) = xn

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α

α usually 0.

Gary L. Mullen (PSU) Some Open Problems Arising from myRecent Finite Field ResearchSept. 29, 2017 18 / 37



Dickson poly. deg. n, parameter a ∈ Fq

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

Dn(x, 0) = xn

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α

α usually 0.

Gary L. Mullen (PSU) Some Open Problems Arising from myRecent Finite Field ResearchSept. 29, 2017 18 / 37



Dickson poly. deg. n, parameter a ∈ Fq

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

Dn(x, 0) = xn

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α

α usually 0.

Gary L. Mullen (PSU) Some Open Problems Arising from myRecent Finite Field ResearchSept. 29, 2017 18 / 37



Theorem

q odd and a ∈ F ∗qe with an ∈ Fqd , ηqe(a) = 1 and ηqd(an) = 1,

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 3 + (−1)n+1

2

Problem

Find subfield value set |VDn(x,a)(q
e; qd)| when a ∈ F ∗qe and an 6∈ Fqd

Gary L. Mullen (PSU) Some Open Problems Arising from myRecent Finite Field ResearchSept. 29, 2017 19 / 37



Theorem

q odd and a ∈ F ∗qe with an ∈ Fqd , ηqe(a) = 1 and ηqd(an) = 1,

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 3 + (−1)n+1

2

Problem

Find subfield value set |VDn(x,a)(q
e; qd)| when a ∈ F ∗qe and an 6∈ Fqd
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In order to have Dn(c, a) = yn + an

yn ∈ Fqd we need

(yn +
an

yn
)q

d
= yn +

an

yn
.

If an ∈ Fqd

(yn(q
d−1) − 1)(yn(q

d+1) − an) = 0.
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Hypercubes of class r
J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and 0 ≤ t ≤ d− r. A
(d, n, r, t)-hypercube of dimension d, order n, class r and type t is an
n× · · · × n (d times) array on nr distinct symbols such that in every
t-subarray (that is, fix t coordinates of the array and allow the remaining
d− t coordinates to vary) each of the nr distinct symbols appears exactly
nd−t−r times.
If d ≥ 2r, two such hypercubes are orthogonal if when superimposed,
each of the n2r possible distinct pairs occurs exactly nd−2r times.
A set H of such hypercubes is mutually orthogonal if any two distinct
hypercubes in H are orthogonal.

A (2, n, 1, 1) hypercube is a latin square order n.

If r = 1 we have latin hypercubes.
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0 1 2 | 4 5 3 | 8 6 7
3 4 5 | 7 8 6 | 2 0 1
6 7 8 | 1 2 0 | 5 3 4

A hypercube of dimension 3, order 3, class 2, and type 1.
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Theorem

The maximum number of mutually orthogonal hypercubes of dimension d,
order n, type t, and class r is bounded above by

1

nr − 1

(
nd − 1−

(
d

1

)
(n− 1)−

(
d

2

)
(n− 1)2 − · · · −

(
d

t

)
(n− 1)t

)
.

Corollary

There are at most n− 1 mutually orthogonal Latin squares of order n.

Theorem

Let q be a prime power. The number of (2r, q, r, r)-hypercubes is at least
the number of linear MDS codes over Fq of length 2r and dimension r.
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Theorem

There are at most (n− 1)r, (2r, n, r, r) mutually orthogonal hypercubes.

Theorem

Let n be a prime power. For any integer r < n, there is a set of n− 1
mutually orthogonal (2r, n, r, r)-hypercubes.

Theorem

Let n = 22k, k ∈ N. Then there is a complete set of (n− 1)2 mutually
orthogonal hypercubes of dimension 4, order n, and class 2.

D. Droz: If r = 2 and n is odd, there is complete set.
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Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, n, 2, 2)-hypercubes when n = 22k+1.

D. Droz: If r = 2, n = 22k+1 there are (n− 1)(n− 2) MOHC.
Are there (n− 1)2 MOHC?

2 Is the (n− 1)r bound tight when r > 2? If so, construct a complete
set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If
not, determine a tight upper bound and construct such a complete
set.

D. Droz: If r ≥ 1 and n ≡ 1 (mod r), there is complete set.

D. Droz: If n = prk there is a complete set.

3 Find constructions (other than the standard Kronecker product
constructions) for sets of mutually orthogonal hypercubes when n is
not a prime power. Such constructions will require a new method not
based on finite fields.

4 What can be said when d > 2r?
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k-Normal elements

S. Huczynska, M, D. Panario, D. Thomson, FFA (2013)

Let q be a prime power and n ∈ N. An element α ∈ Fqn yields a normal

basis for Fqn over Fq if B = {α, αq, . . . , αqn−1} is a basis for Fqn over Fq;
such an α is a normal element of Fqn over Fq.
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Theorem

For α ∈ Fqn , {α, αq, . . . , αqn−1} is a normal basis for Fqn over Fq if and

only if the polynomials xn − 1 and αxn−1 + αqxn−2 + · · ·+ αq
n−1

in
Fqn [x] are relatively prime.

Motivated by this, we make the

Definition

Let α ∈ Fqn . Denote by gα(x) the polynomial
∑n−1

i=0 α
qixn−1−i ∈ Fqn [x].

If gcd(xn − 1, gα(x)) over Fqn has degree k (where 0 ≤ k ≤ n− 1), then
α is a k-normal element of Fqn over Fq.

A normal element of Fqn over Fq is 0-normal.
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Definition

Let f ∈ Fq[x] be monic, the Euler Phi function for polynomials is given by
Φq(f) = |(Fq[x]/fFq[x])∗|.

Theorem

The number of k-normal elements of Fqn over Fq is given by∑
h|xn−1,

deg(h)=n−k

Φq(h), (1)

where divisors are monic and polynomial division is over Fq.
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An important extension of the Normal Basis Theorem is the Primitive
Normal Basis Theorem which establishes that, for all pairs (q, n), a
normal basis {α, αq, . . . , αqn−1} for Fqn over Fq exists with α a primitive
element of Fqn .

We ask whether an analogous claim can be made about k-normal elements
for certain non-zero values of k?

In particular, when k = 1, does there always exist a primitive 1-normal
element of Fqn over Fq?
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Theorem

Let q = pe be a prime power and n ∈ N with p - n. Assume that n ≥ 6 if
q ≥ 11, and that n ≥ 3 if 3 ≤ q ≤ 9. Then there exists a primitive
1-normal element of Fqn over Fq.

Problem

Obtain a complete existence result for primitive 1-normal elements of Fqn
over Fq (with or without a computer). We conjecture that such elements
always exist.
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Problem

For which values of q, n and k can explicit formulas be obtained for the
number of k-normal primitive elements of Fqn over Fq?

Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements of Fqn over Fq.
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Conjecture

(L. Anderson/M) Let p ≥ 5 be a prime and let m ≥ 3. Let a be 1 or 2 and
let k be 0 or 1. Then there is an element α ∈ Fpm of order pm−1

a which is
k-normal.

The a = 1, k = 0 case gives the Prim. Nor. Basis Thm.

Problem

Determine the existence of high-order k-normal elements α ∈ Fqn over Fq.
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Dickson Polynomials

Dickson poly. deg. n, parameter a ∈ Fq

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

Dn(x, 0) = xn
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Theorem

Nöbauer (1968) For a 6= 0, Dn(x, a) PP on Fq iff (n, q2 − 1) = 1.

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α

α usually 0
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Reverse Dickson Polynomials

Fix x ∈ Fq and let a be the variable in Dn(x, a)

Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

f : Fq → Fq is almost perfect nonlinear (APN) if for each a ∈ F ∗q and
b ∈ Fq the eq. f(x+ a)− f(x) = b has at most two solutions in Fq

Theorem

For p odd, xn APN on Fp2e implies Dn(1, x) PP on Fpe

implies xn APN on Fpe
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Conjecture

Let p > 3 be a prime and let 1 ≤ n ≤ p2 − 1. Then Dn(1, x) is a PP on
Fp if and only if

n =


2, 2p, 3, 3p, p+ 1, p+ 2, 2p+ 1 if p ≡ 1 (mod 12),

2, 2p, 3, 3p, p+ 1 if p ≡ 5 (mod 12),

2, 2p, 3, 3p, p+ 2, 2p+ 1 if p ≡ 7 (mod 12),

2, 2p, 3, 3p if p ≡ 11 (mod 12).

Problem

Complete the PP classification for RDPs over Fp.

Problem

What happens over Fq when q is a prime power?

Problem

Determine value set for RDPs over Fp
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THANK YOU!!!
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