Some Open Problems Arising from my Recent Finite Field Research

Gary L. Mullen

Penn State University

mullen@math.psu.edu

Sept. 29, 2017

Let q be a prime power

Let F_q denote the finite field with q elements

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_q . Then

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_q . Then

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

A code C is **perfect** if the code's parameters yield an equality in the Hamming bound.

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_q . Then

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

A code C is **perfect** if the code's parameters yield an equality in the Hamming bound.

The parameters of all perfect codes are known, and can be listed as follows:

The trivial perfect codes are

- **1** The zero vector $(0, \ldots, 0)$ of length n,
- **2** The entire vector space F_q^n
- **3** The binary repetition code of odd length n.

The trivial perfect codes are

- **1** The zero vector $(0, \ldots, 0)$ of length n,
- **2** The entire vector space F_q^n
- **3** The binary repetition code of odd length n.

The non-trivial perfect codes must have the parameters $(n, M = q^k, 3)$ of the Hamming codes and the Golay codes (unique up to equivalence) whose parameters can be listed as follows:

- 1 The Hamming code $\left[\frac{q^m-1}{q-1}, n-m, 3\right]$ over F_q , where $m \ge 2$ is a positive integer;
- **2** The [11, 6, 5] Golay code over F_3 ;
- **3** The [23, 12, 7] Golay code over F_2 .

Let C be a t-error-correcting code of length n over F_q .

Then,

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

Let C be a t-error-correcting code of length n over F_q .

Then,

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

A *t*-error correcting code C with parameters $(n, M, d), t = \lfloor \frac{d-1}{2} \rfloor$, is *e*-**perfect** if in the Hamming bound, equality is achieved when, on the right hand side, q^n is replaced by q^e . Let C be a t-error-correcting code of length n over F_q .

Then,

$$|C| \left[1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{t} (q-1)^t \right] \le q^n.$$

A *t*-error correcting code *C* with parameters $(n, M, d), t = \lfloor \frac{d-1}{2} \rfloor$, is *e*-**perfect** if in the Hamming bound, equality is achieved when, on the right hand side, q^n is replaced by q^e .

An *n*-perfect code is a perfect code.

5 / 37

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_q . Then C must have one of the following sets of parameters:

$$\left(\frac{q^{m}-1}{q-1}, q^{e-m}, 3\right), \text{ with } q \text{ a prime power and } m < e \le n, \text{ where } m \ge 2;$$

2
$$(11, 3^{e-5}, 5)$$
, with $q = 3$ and $5 < e \le 11$;

3
$$(23, 2^{e-11}, 7)$$
, with $q = 2$ and $11 < e \le 23$;

4
$$(90, 2^{e-12}, 5)$$
, with $q = 2$ and $12 < e \le 89$.

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_q . Then C must have one of the following sets of parameters:

Problem

Prove this conjecture.

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_q . Then C must have one of the following sets of parameters:

1
$$\left(\frac{q^{m-1}}{q-1}, q^{e-m}, 3\right)$$
, with q a prime power and $m < e \le n$, where $m \ge 2$;
2 $(11, 3^{e-5}, 5)$, with $q = 3$ and $5 < e \le 11$;
3 $(23, 2^{e-11}, 7)$, with $q = 2$ and $11 < e \le 23$;
4 $(90, 2^{e-12}, 5)$, with $q = 2$ and $12 < e \le 89$.

Problem

Prove this conjecture.

We can construct *e*-perfect codes with each of the parameters listed above, except for the case when n = 90 and e = 89.

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_q . Then C must have one of the following sets of parameters:

1
$$\left(\frac{q^{m-1}}{q-1}, q^{e-m}, 3\right)$$
, with q a prime power and $m < e \le n$, where $m \ge 2$;
2 $(11, 3^{e-5}, 5)$, with $q = 3$ and $5 < e \le 11$;
3 $(23, 2^{e-11}, 7)$, with $q = 2$ and $11 < e \le 23$;
4 $(90, 2^{e-12}, 5)$, with $q = 2$ and $12 < e \le 89$.

Problem

Prove this conjecture.

We can construct *e*-perfect codes with each of the parameters listed above, except for the case when n = 90 and e = 89.

As was the case for perfect codes, there could be many e-perfect codes with a given set of parameters.

Gary L. Mullen (PSU)

Some Open Problems Arising from myRecent

S. Huczynska, M, J. Yucas, JCT, A (2009)

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with |G| = g

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $\left|G\right|=g$

Let S be a subset of G with |S| = s.

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $\left|G\right|=g$

Let S be a subset of G with |S| = s.

Definition

Let $0 \le r \le s^2$. A set S is r-closed if, among the s^2 ordered pairs (a, b) with $a, b \in S$, there are exactly r pairs such that $a + b \in S$.

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $\left|G\right|=g$

Let S be a subset of G with |S| = s.

Definition

Let $0 \le r \le s^2$. A set S is r-closed if, among the s^2 ordered pairs (a, b) with $a, b \in S$, there are exactly r pairs such that $a + b \in S$.

The *r*-value of the *r*-closed set S is denoted by r(S).

If S is a subgroup of G then S is $s^2\operatorname{-closed}$

If S is a subgroup of G then S is s^2 -closed

If S is a sum-free set then S is 0-closed.

If S is a subgroup of G then S is s^2 -closed

If S is a sum-free set then S is 0-closed.

For a given G, what (if anything) can be said about the spectrum of r-values of the subsets of G?

If S is a subgroup of G then S is $s^2\operatorname{-closed}$

If S is a sum-free set then S is 0-closed.

For a given G, what (if anything) can be said about the spectrum of r-values of the subsets of G?

Motivated by the classical Cauchy-Davenport Theorem, we are particularly interested in the case when $G = Z_p$ under addition modulo the prime p.

For $G = Z_p$ we characterize the maximal and minimal possible *r*-values.

We make a conjecture (verified computationally for all primes $p \leq 23$) about the complete spectrum of r-values for any subset cardinality in Z_p and prove that, for any p, all conjectured r-values in the spectrum are attained when the subset cardinality is suitably small $(s < \frac{2p+2}{7})$.

Theorem

Let G be a finite abelian group of order g. Let s be a positive integer with $0 \le s \le g$, and let S be a subset of G of size s. Let T be the complement of S in G. Then

$$r(S) + r(T) = g^2 - 3gs + 3s^2.$$

Theorem (Cauchy-Davenport)

If A and B are non-empty subsets of Z_p then $|A + B| \ge \min(p, |A| + |B| - 1).$

Theorem (Cauchy-Davenport)

If A and B are non-empty subsets of Z_p then $|A + B| \ge \min(p, |A| + |B| - 1).$

Definition

For p be a prime, define

$$k[p] = \lfloor \frac{p+1}{3} \rfloor = \begin{cases} \frac{p-1}{3}, & p \equiv 1 \mod 3\\ \frac{p}{3}, & p \equiv 0 \mod 3\\ \frac{p+1}{3}, & p \equiv -1 \mod 3 \end{cases}$$

Theorem (Cauchy-Davenport)

If A and B are non-empty subsets of Z_p then $|A + B| \ge \min(p, |A| + |B| - 1).$

Definition

For p be a prime, define

$$k[p] = \lfloor \frac{p+1}{3} \rfloor = \begin{cases} \frac{p-1}{3}, & p \equiv 1 \mod 3\\ \frac{p}{3}, & p \equiv 0 \mod 3\\ \frac{p+1}{3}, & p \equiv -1 \mod 3 \end{cases}$$

Proposition

Let p be a prime. If $S \subseteq Z_p$ is 0-closed then $|S| \leq k[p]$.

Definition

Let p be an odd prime. For $0 \le s \le p$, define f_s and g_s as follows:

$$f_s = \begin{cases} 0 & s \le k[p] \\ \frac{(3s-p)^2 - 1}{4} & s > k[p] \text{ and } s \text{ even} \\ \frac{(3s-p)^2}{4} & s > k[p] \text{ and } s \text{ odd} \end{cases}$$

$$g_s = \begin{cases} \frac{3s^2}{4} & s \le p - k[p] \text{ and } s \text{ even} \\ \frac{3s^2 + 1}{4} & s \le p - k[p] \text{ and } s \text{ odd} \\ p^2 - 3sp + 3s^2 & s > p - k[p] \end{cases}$$

Note that $f_s + g_{p-s} = p^2 - 3sp + 3s^2$.

Proposition

Let p > 11. For $1 \le s \le 3$ and $p - 3 \le s \le p$, the *r*-values for subsets of Z_p of size *s* are precisely the integers in the interval $[f_s, g_s]$ with the following exceptions:

s	f_s	g_s	exceptions
1	0	1	
2	0	3	2
3	0	7	4
p	p^2	p^2	
p - 1	$p^2 - 3p + 2$	$p^2 - 3p + 3$	
p-2	$p^2 - 6p + 9$	$p^2 - 6p + 12$	$p^2 - 6p + 10$
p-3	$p^2 - 9p + 20$	$p^2 - 9p + 27$	$p^2 - 9p + 23$

Definition

If $4 \leq s \leq p-4$, define V(s) by

$$V(s) = \begin{cases} 0 & \text{if } s \le k[p] \\ \lceil \frac{p-s-3}{4} \rceil & \text{if } s \ge \lfloor \frac{p+1}{2} \rfloor \\ \lceil \frac{3s-p-1}{4} \rceil & \text{otherwise} \end{cases}$$

For p > 11 and $4 \le s \le p - 4$, there are V(s) exceptional values at the low end of the interval $[f_s, g_s]$ and V(p - s) exceptional values at the high end of the interval $[f_s, g_s]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

 $f_s + 3i + 1 \text{ for } 0 \le i < V(s) \text{ if } s \equiv p \mod 2$ $f_s + 3i + 2 \text{ for } 0 \le i < V(s) \text{ if } s \not\equiv p \mod 2$ $g_s - 3i - 1 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is even}$ $g_s - 3i - 2 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is odd}$

For p > 11 and $4 \le s \le p - 4$, there are V(s) exceptional values at the low end of the interval $[f_s, g_s]$ and V(p - s) exceptional values at the high end of the interval $[f_s, g_s]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

 $f_s + 3i + 1 \text{ for } 0 \le i < V(s) \text{ if } s \equiv p \mod 2$ $f_s + 3i + 2 \text{ for } 0 \le i < V(s) \text{ if } s \not\equiv p \mod 2$ $g_s - 3i - 1 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is even}$ $g_s - 3i - 2 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is odd}$

Verified computationally for all primes $p \le 23$ and all corresponding s $(4 \le s \le p-4)$.

For p > 11 and $4 \le s \le p - 4$, there are V(s) exceptional values at the low end of the interval $[f_s, g_s]$ and V(p - s) exceptional values at the high end of the interval $[f_s, g_s]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

 $f_s + 3i + 1 \text{ for } 0 \le i < V(s) \text{ if } s \equiv p \mod 2$ $f_s + 3i + 2 \text{ for } 0 \le i < V(s) \text{ if } s \not\equiv p \mod 2$ $g_s - 3i - 1 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is even}$ $g_s - 3i - 2 \text{ for } 0 \le i < V(p - s) \text{ if } s \text{ is odd}$

Verified computationally for all primes $p \le 23$ and all corresponding s $(4 \le s \le p-4)$.

Problem

Prove the conjecture

Gary L. Mullen (PSU)

All conjectured *r*-values in the spectrum are attained when the subset cardinality is suitably small $(s < \frac{2p+2}{7})$.

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let F_{q^d} be a subfield of F_{q^e} so d|e

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let F_{q^d} be a subfield of F_{q^e} so d|e

For $f \in F_{q^e}[x]$, subfield value set $V_f(q^e; q^d) = \{f(c) \in F_{q^d} | c \in F_{q^e}\}$

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let ${\cal F}_{q^d}$ be a subfield of ${\cal F}_{q^e}$ so d|e

For $f \in F_{q^e}[x]$, subfield value set $V_f(q^e; q^d) = \{f(c) \in F_{q^d} | c \in F_{q^e}\}$

Theorem

$$|V_{x^n}(q^e; q^d)| = \frac{(n(q^d - 1), q^e - 1)}{(n, q^e - 1)} + 1$$

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

 $D_n(x,0) = x^n$

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

 $D_n(x,0) = x^n$

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

$$|V_{D_n(x,a)}| = \frac{q-1}{2(n,q-1)} + \frac{q+1}{2(n,q+1)} + \alpha$$

 α usually 0.

 $q \text{ odd and } a \in F_{q^e}^*$ with $a^n \in F_{q^d}$, $\eta_{q^e}(a) = 1$ and $\eta_{q^d}(a^n) = 1$,

$$|V_{D_n(x,a)}(q^e;q^d)| = \frac{(q^e - 1, n(q^d - 1)) + (q^e - 1, n(q^d + 1))}{2(q^e - 1, n)}$$

$$+\frac{(q^e+1, n(q^d-1)) + (q^e+1, n(q^d+1))}{2(q^e+1, n)} - \frac{3 + (-1)^{n+1}}{2}$$

q odd and $a\in F_{q^e}^*$ with $a^n\in F_{q^d}$, $\eta_{q^e}(a)=1$ and $\eta_{q^d}(a^n)=1$,

$$|V_{D_n(x,a)}(q^e;q^d)| = \frac{(q^e - 1, n(q^d - 1)) + (q^e - 1, n(q^d + 1))}{2(q^e - 1, n)}$$

$$-\frac{(q^e+1,n(q^d-1))+(q^e+1,n(q^d+1))}{2(q^e+1,n)}-\frac{3+(-1)^{n+1}}{2}$$

Problem

Find subfield value set $|V_{D_n(x,a)}(q^e;q^d)|$ when $a\in F_{q^e}^*$ and $a^n\not\in F_{q^d}$

In order to have $D_n(c,a)=y^n+\frac{a^n}{y^n}\in F_{q^d}$ we need

$$(y^n + \frac{a^n}{y^n})^{q^d} = y^n + \frac{a^n}{y^n}.$$

In order to have $D_n(c,a)=y^n+\frac{a^n}{y^n}\in F_{q^d}$ we need

$$(y^n + \frac{a^n}{y^n})^{q^d} = y^n + \frac{a^n}{y^n}.$$

If $a^n \in F_{q^d}$

$$(y^{n(q^d-1)} - 1)(y^{n(q^d+1)} - a^n) = 0.$$

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and $0 \le t \le d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining d - t coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and $0 \le t \le d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining d - t coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

If $d \ge 2r$, two such hypercubes are **orthogonal** if when superimposed, each of the n^{2r} possible distinct pairs occurs exactly n^{d-2r} times.

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and $0 \le t \le d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining d - t coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

If $d \ge 2r$, two such hypercubes are **orthogonal** if when superimposed, each of the n^{2r} possible distinct pairs occurs exactly n^{d-2r} times. A set \mathcal{H} of such hypercubes is **mutually orthogonal** if any two distinct hypercubes in \mathcal{H} are orthogonal.

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and $0 \le t \le d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining d - t coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

If $d \ge 2r$, two such hypercubes are **orthogonal** if when superimposed, each of the n^{2r} possible distinct pairs occurs exactly n^{d-2r} times. A set \mathcal{H} of such hypercubes is **mutually orthogonal** if any two distinct hypercubes in \mathcal{H} are orthogonal.

A (2, n, 1, 1) hypercube is a latin square order n.

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and $0 \le t \le d - r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^r distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining d - t coordinates to vary) each of the n^r distinct symbols appears exactly n^{d-t-r} times.

If $d \ge 2r$, two such hypercubes are **orthogonal** if when superimposed, each of the n^{2r} possible distinct pairs occurs exactly n^{d-2r} times. A set \mathcal{H} of such hypercubes is **mutually orthogonal** if any two distinct hypercubes in \mathcal{H} are orthogonal.

A (2, n, 1, 1) hypercube is a latin square order n.

If r = 1 we have latin hypercubes.

A hypercube of dimension 3, order 3, class 2, and type 1.

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$\frac{1}{n^r - 1} \left(n^d - 1 - \binom{d}{1} (n-1) - \binom{d}{2} (n-1)^2 - \dots - \binom{d}{t} (n-1)^t \right).$$

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$\frac{1}{n^r - 1} \left(n^d - 1 - \binom{d}{1} (n-1) - \binom{d}{2} (n-1)^2 - \dots - \binom{d}{t} (n-1)^t \right).$$

Corollary

There are at most n-1 mutually orthogonal Latin squares of order n.

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$\frac{1}{n^r - 1} \left(n^d - 1 - \binom{d}{1} (n-1) - \binom{d}{2} (n-1)^2 - \dots - \binom{d}{t} (n-1)^t \right).$$

Corollary

There are at most n-1 mutually orthogonal Latin squares of order n.

Theorem

Let q be a prime power. The number of (2r, q, r, r)-hypercubes is at least the number of linear MDS codes over F_q of length 2r and dimension r.

There are at most $(n-1)^r$, (2r, n, r, r) mutually orthogonal hypercubes.

There are at most $(n-1)^r$, (2r, n, r, r) mutually orthogonal hypercubes.

Theorem

Let n be a prime power. For any integer r < n, there is a set of n - 1 mutually orthogonal (2r, n, r, r)-hypercubes.

There are at most $(n-1)^r$, (2r, n, r, r) mutually orthogonal hypercubes.

Theorem

Let n be a prime power. For any integer r < n, there is a set of n - 1 mutually orthogonal (2r, n, r, r)-hypercubes.

Theorem

Let $n = 2^{2k}$, $k \in \mathbb{N}$. Then there is a complete set of $(n - 1)^2$ mutually orthogonal hypercubes of dimension 4, order n, and class 2.

There are at most $(n-1)^r$, (2r, n, r, r) mutually orthogonal hypercubes.

Theorem

Let n be a prime power. For any integer r < n, there is a set of n - 1 mutually orthogonal (2r, n, r, r)-hypercubes.

Theorem

Let $n = 2^{2k}$, $k \in \mathbb{N}$. Then there is a complete set of $(n - 1)^2$ mutually orthogonal hypercubes of dimension 4, order n, and class 2.

D. Droz: If r = 2 and n is odd, there is complete set.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

2 Is the $(n-1)^r$ bound tight when r > 2? If so, construct a complete set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a tight upper bound and construct such a complete set.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

- 2 Is the $(n-1)^r$ bound tight when r > 2? If so, construct a complete set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a tight upper bound and construct such a complete set.
 - D. Droz: If $r \ge 1$ and $n \equiv 1 \pmod{r}$, there is complete set.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

- 2 Is the $(n-1)^r$ bound tight when r > 2? If so, construct a complete set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a tight upper bound and construct such a complete set.
 - D. Droz: If $r \ge 1$ and $n \equiv 1 \pmod{r}$, there is complete set.
 - D. Droz: If $n = p^{rk}$ there is a complete set.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

- 2 Is the $(n-1)^r$ bound tight when r > 2? If so, construct a complete set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a tight upper bound and construct such a complete set.
 - D. Droz: If $r \ge 1$ and $n \equiv 1 \pmod{r}$, there is complete set.

D. Droz: If $n = p^{rk}$ there is a complete set.

3 Find constructions (other than the standard Kronecker product constructions) for sets of mutually orthogonal hypercubes when n is not a prime power. Such constructions will require a new method not based on finite fields.

1 Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when $n = 2^{2k+1}$.

D. Droz: If r = 2, $n = 2^{2k+1}$ there are (n-1)(n-2) MOHC. Are there $(n-1)^2$ MOHC?

- 2 Is the $(n-1)^r$ bound tight when r > 2? If so, construct a complete set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a tight upper bound and construct such a complete set.
 - D. Droz: If $r \ge 1$ and $n \equiv 1 \pmod{r}$, there is complete set.

D. Droz: If $n = p^{rk}$ there is a complete set.

- 3 Find constructions (other than the standard Kronecker product constructions) for sets of mutually orthogonal hypercubes when n is not a prime power. Such constructions will require a new method not based on finite fields.
- 4 What can be said when d > 2r?

k-Normal elements

S. Huczynska, M, D. Panario, D. Thomson, FFA (2013)

S. Huczynska, M, D. Panario, D. Thomson, FFA (2013)

Let q be a prime power and $n \in \mathbb{N}$. An element $\alpha \in \mathbb{F}_{q^n}$ yields a **normal** basis for \mathbb{F}_{q^n} over \mathbb{F}_q if $B = \{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is a basis for \mathbb{F}_{q^n} over \mathbb{F}_q ; such an α is a **normal element** of \mathbb{F}_{q^n} over \mathbb{F}_q .

For $\alpha \in \mathbb{F}_{q^n}$, $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q if and only if the polynomials $x^n - 1$ and $\alpha x^{n-1} + \alpha^q x^{n-2} + \dots + \alpha^{q^{n-1}}$ in $\mathbb{F}_{q^n}[x]$ are relatively prime.

For $\alpha \in \mathbb{F}_{q^n}$, $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q if and only if the polynomials $x^n - 1$ and $\alpha x^{n-1} + \alpha^q x^{n-2} + \dots + \alpha^{q^{n-1}}$ in $\mathbb{F}_{q^n}[x]$ are relatively prime.

Motivated by this, we make the

Definition

Let $\alpha \in \mathbb{F}_{q^n}$. Denote by $g_{\alpha}(x)$ the polynomial $\sum_{i=0}^{n-1} \alpha^{q^i} x^{n-1-i} \in \mathbb{F}_{q^n}[x]$. If $gcd(x^n - 1, g_{\alpha}(x))$ over \mathbb{F}_{q^n} has degree k (where $0 \le k \le n-1$), then α is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q .

Theorem

For $\alpha \in \mathbb{F}_{q^n}$, $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q if and only if the polynomials $x^n - 1$ and $\alpha x^{n-1} + \alpha^q x^{n-2} + \dots + \alpha^{q^{n-1}}$ in $\mathbb{F}_{q^n}[x]$ are relatively prime.

Motivated by this, we make the

Definition

Let $\alpha \in \mathbb{F}_{q^n}$. Denote by $g_{\alpha}(x)$ the polynomial $\sum_{i=0}^{n-1} \alpha^{q^i} x^{n-1-i} \in \mathbb{F}_{q^n}[x]$. If $gcd(x^n - 1, g_{\alpha}(x))$ over \mathbb{F}_{q^n} has degree k (where $0 \le k \le n-1$), then α is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q .

A normal element of \mathbb{F}_{q^n} over \mathbb{F}_q is 0-normal.

Definition

Let $f \in \mathbb{F}_q[x]$ be monic, the Euler Phi function for polynomials is given by $\Phi_q(f) = |(\mathbb{F}_q[x]/f\mathbb{F}_q[x])^*|.$

Definition

Let $f \in \mathbb{F}_q[x]$ be monic, the Euler Phi function for polynomials is given by $\Phi_q(f) = |(\mathbb{F}_q[x]/f\mathbb{F}_q[x])^*|.$

Theorem

The number of k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q is given by

$$\sum_{\substack{h|x^n-1,\\ \deg(h)=n-k}} \Phi_q(h),\tag{1}$$

where divisors are monic and polynomial division is over \mathbb{F}_q .

An important extension of the **Normal Basis Theorem** is the **Primitive Normal Basis Theorem** which establishes that, for all pairs (q, n), a normal basis $\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ for \mathbb{F}_{q^n} over \mathbb{F}_q exists with α a primitive element of \mathbb{F}_{q^n} .

An important extension of the **Normal Basis Theorem** is the **Primitive Normal Basis Theorem** which establishes that, for all pairs (q, n), a normal basis $\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ for \mathbb{F}_{q^n} over \mathbb{F}_q exists with α a primitive element of \mathbb{F}_{q^n} .

We ask whether an analogous claim can be made about k-normal elements for certain non-zero values of k?

An important extension of the **Normal Basis Theorem** is the **Primitive Normal Basis Theorem** which establishes that, for all pairs (q, n), a normal basis $\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ for \mathbb{F}_{q^n} over \mathbb{F}_q exists with α a primitive element of \mathbb{F}_{q^n} .

We ask whether an analogous claim can be made about k-normal elements for certain non-zero values of k?

In particular, when k = 1, does there always exist a primitive 1-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q ?

Theorem

Let $q = p^e$ be a prime power and $n \in \mathbb{N}$ with $p \nmid n$. Assume that $n \ge 6$ if $q \ge 11$, and that $n \ge 3$ if $3 \le q \le 9$. Then there exists a primitive 1-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q .

Theorem

Let $q = p^e$ be a prime power and $n \in \mathbb{N}$ with $p \nmid n$. Assume that $n \ge 6$ if $q \ge 11$, and that $n \ge 3$ if $3 \le q \le 9$. Then there exists a primitive 1-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q .

Problem

Obtain a complete existence result for primitive 1-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q (with or without a computer). We conjecture that such elements always exist.

Problem

For which values of q, n and k can explicit formulas be obtained for the number of k-normal primitive elements of \mathbb{F}_{q^n} over \mathbb{F}_q ?

Problem

For which values of q, n and k can explicit formulas be obtained for the number of k-normal primitive elements of \mathbb{F}_{q^n} over \mathbb{F}_q ?

Problem

Determine the pairs (n, k) such that there exist primitive k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q .

(L. Anderson/M) Let $p \ge 5$ be a prime and let $m \ge 3$. Let a be 1 or 2 and let k be 0 or 1. Then there is an element $\alpha \in F_{p^m}$ of order $\frac{p^m-1}{a}$ which is k-normal.

(L. Anderson/M) Let $p \ge 5$ be a prime and let $m \ge 3$. Let a be 1 or 2 and let k be 0 or 1. Then there is an element $\alpha \in F_{p^m}$ of order $\frac{p^m-1}{a}$ which is k-normal.

The a = 1, k = 0 case gives the Prim. Nor. Basis Thm.

(L. Anderson/M) Let $p \ge 5$ be a prime and let $m \ge 3$. Let a be 1 or 2 and let k be 0 or 1. Then there is an element $\alpha \in F_{p^m}$ of order $\frac{p^m-1}{a}$ which is k-normal.

The a = 1, k = 0 case gives the Prim. Nor. Basis Thm.

Problem

Determine the existence of high-order k-normal elements $\alpha \in \mathbb{F}_{q^n}$ over \mathbb{F}_q .

Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_q$

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

 $D_n(x,0) = x^n$

Theorem

Nöbauer (1968) For $a \neq 0$, $D_n(x, a)$ *PP on* F_q *iff* $(n, q^2 - 1) = 1$.

Theorem

Nöbauer (1968) For $a \neq 0$, $D_n(x, a)$ PP on F_q iff $(n, q^2 - 1) = 1$.

Theorem

Chou, Gomez-Calderon, M, JNT, (1988)

$$|V_{D_n(x,a)}| = \frac{q-1}{2(n,q-1)} + \frac{q+1}{2(n,q+1)} + \alpha$$

 α usually 0

Fix $x \in F_q$ and let a be the variable in $D_n(x, a)$

Fix $x \in F_q$ and let a be the variable in $D_n(x, a)$

Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

Fix $x \in F_q$ and let a be the variable in $D_n(x, a)$

Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

 $f: F_q \to F_q$ is almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$ the eq. f(x+a) - f(x) = b has at most two solutions in F_q

Fix $x \in F_q$ and let a be the variable in $D_n(x, a)$

Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

 $f: F_q \to F_q$ is almost perfect nonlinear (APN) if for each $a \in F_q^*$ and $b \in F_q$ the eq. f(x+a) - f(x) = b has at most two solutions in F_q

Theorem

For p odd, x^n APN on $F_{p^{2e}}$ implies $D_n(1,x)$ PP on F_{p^e} implies x^n APN on F_{p^e}

Let p > 3 be a prime and let $1 \le n \le p^2 - 1$. Then $D_n(1, x)$ is a PP on \mathbb{F}_p if and only if

$$n = \begin{cases} 2, 2p, 3, 3p, p+1, p+2, 2p+1 & \text{if } p \equiv 1 \pmod{12}, \\ 2, 2p, 3, 3p, p+1 & \text{if } p \equiv 5 \pmod{12}, \\ 2, 2p, 3, 3p, p+2, 2p+1 & \text{if } p \equiv 7 \pmod{12}, \\ 2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Let p > 3 be a prime and let $1 \le n \le p^2 - 1$. Then $D_n(1, x)$ is a PP on \mathbb{F}_p if and only if

$$n = \begin{cases} 2, 2p, 3, 3p, p+1, p+2, 2p+1 & \text{if } p \equiv 1 \pmod{12}, \\ 2, 2p, 3, 3p, p+1 & \text{if } p \equiv 5 \pmod{12}, \\ 2, 2p, 3, 3p, p+2, 2p+1 & \text{if } p \equiv 7 \pmod{12}, \\ 2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Problem

Complete the PP classification for RDPs over F_p .

Let p > 3 be a prime and let $1 \le n \le p^2 - 1$. Then $D_n(1, x)$ is a PP on \mathbb{F}_p if and only if

$$n = \begin{cases} 2, 2p, 3, 3p, p+1, p+2, 2p+1 & \text{if } p \equiv 1 \pmod{12}, \\ 2, 2p, 3, 3p, p+1 & \text{if } p \equiv 5 \pmod{12}, \\ 2, 2p, 3, 3p, p+2, 2p+1 & \text{if } p \equiv 7 \pmod{12}, \\ 2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Problem

Complete the PP classification for RDPs over F_p .

Problem

What happens over F_q when q is a prime power?

Let p > 3 be a prime and let $1 \le n \le p^2 - 1$. Then $D_n(1, x)$ is a PP on \mathbb{F}_p if and only if

$$n = \begin{cases} 2, 2p, 3, 3p, p+1, p+2, 2p+1 & \text{if } p \equiv 1 \pmod{12}, \\ 2, 2p, 3, 3p, p+1 & \text{if } p \equiv 5 \pmod{12}, \\ 2, 2p, 3, 3p, p+2, 2p+1 & \text{if } p \equiv 7 \pmod{12}, \\ 2, 2p, 3, 3p & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Problem

Complete the PP classification for RDPs over F_p .

Problem

What happens over F_q when q is a prime power?

Problem

Determine value set for RDPs over F_p

THANK YOU!!!