Some Open Problems Arising from my Recent Finite Field Research

Gary L. Mullen

Penn State University
mullen@math.psu.edu

Sept. 29, 2017

Let q be a prime power
Let F_{q} denote the finite field with q elements

E-perfect codes

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

E-perfect codes

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem
(Hamming bound) Let C be a t-error-correcting code of length n over F_{q}. Then

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n}
$$

E-perfect codes

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_{q}. Then

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n}
$$

A code C is perfect if the code's parameters yield an equality in the Hamming bound.

E-perfect codes

F. Castro, H. Janwa, M, I. Rubio, Bull. ICA (2016)

Theorem

(Hamming bound) Let C be a t-error-correcting code of length n over F_{q}. Then

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n}
$$

A code C is perfect if the code's parameters yield an equality in the Hamming bound.

The parameters of all perfect codes are known, and can be listed as follows:

The trivial perfect codes are

1 The zero vector $(0, \ldots, 0)$ of length n,
2 The entire vector space F_{q}^{n}
3 The binary repetition code of odd length n.

The trivial perfect codes are

1 The zero vector $(0, \ldots, 0)$ of length n,
2 The entire vector space F_{q}^{n}
3 The binary repetition code of odd length n.

The non-trivial perfect codes must have the parameters $\left(n, M=q^{k}, 3\right)$ of the Hamming codes and the Golay codes (unique up to equivalence) whose parameters can be listed as follows:

1 The Hamming code $\left[\frac{q^{m}-1}{q-1}, n-m, 3\right]$ over F_{q}, where $m \geq 2$ is a positive integer;
2 The $[11,6,5]$ Golay code over F_{3};
3 The $[23,12,7]$ Golay code over F_{2}.

Let C be a t-error-correcting code of length n over F_{q}.
Then,

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n} .
$$

Let C be a t-error-correcting code of length n over F_{q}.
Then,

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n}
$$

A t-error correcting code C with parameters $(n, M, d), t=\left\lfloor\frac{d-1}{2}\right\rfloor$, is e-perfect if in the Hamming bound, equality is achieved when, on the right hand side, q^{n} is replaced by q^{e}.

Let C be a t-error-correcting code of length n over F_{q}.
Then,

$$
|C|\left[1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right] \leq q^{n}
$$

A t-error correcting code C with parameters $(n, M, d), t=\left\lfloor\frac{d-1}{2}\right\rfloor$, is e-perfect if in the Hamming bound, equality is achieved when, on the right hand side, q^{n} is replaced by q^{e}.

An n-perfect code is a perfect code.

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_{q}. Then C must have one of the following sets of parameters:
$1\left(\frac{q^{m}-1}{q-1}, q^{e-m}, 3\right)$, with q a prime power and $m<e \leq n$, where $m \geq 2$;
$2\left(11,3^{e-5}, 5\right)$, with $q=3$ and $5<e \leq 11$;
3 ($23,2^{e-11}, 7$), with $q=2$ and $11<e \leq 23$;
$4\left(90,2^{e-12}, 5\right)$, with $q=2$ and $12<e \leq 89$.

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_{q}. Then C must have one of the following sets of parameters:
$1\left(\frac{q^{m}-1}{q-1}, q^{e-m}, 3\right)$, with q a prime power and $m<e \leq n$, where $m \geq 2$;
$2\left(11,3^{e-5}, 5\right)$, with $q=3$ and $5<e \leq 11$;
3 (23, $\left.2^{e-11}, 7\right)$, with $q=2$ and $11<e \leq 23$;
$4\left(90,2^{e-12}, 5\right)$, with $q=2$ and $12<e \leq 89$.

Problem

Prove this conjecture.

Let C be an $(n, M, d) t$-error correcting non-trivial e-perfect code over F_{q}. Then C must have one of the following sets of parameters:
$1\left(\frac{q^{m}-1}{q-1}, q^{e-m}, 3\right)$, with q a prime power and $m<e \leq n$, where $m \geq 2$;
$2\left(11,3^{e-5}, 5\right)$, with $q=3$ and $5<e \leq 11$;
3 (23, $\left.2^{e-11}, 7\right)$, with $q=2$ and $11<e \leq 23$;
$4\left(90,2^{e-12}, 5\right)$, with $q=2$ and $12<e \leq 89$.

Problem

Prove this conjecture.

We can construct e-perfect codes with each of the parameters listed above, except for the case when $n=90$ and $e=89$.

Conjecture

Let C be an (n, M, d) t-error correcting non-trivial e-perfect code over F_{q}. Then C must have one of the following sets of parameters:
$1\left(\frac{q^{m}-1}{q-1}, q^{e-m}, 3\right)$, with q a prime power and $m<e \leq n$, where $m \geq 2$;
$2\left(11,3^{e-5}, 5\right)$, with $q=3$ and $5<e \leq 11$;
3 (23, $\left.2^{e-11}, 7\right)$, with $q=2$ and $11<e \leq 23$;
$4\left(90,2^{e-12}, 5\right)$, with $q=2$ and $12<e \leq 89$.

Problem

Prove this conjecture.

We can construct e-perfect codes with each of the parameters listed above, except for the case when $n=90$ and $e=89$.

As was the case for perfect codes, there could be many e-perfect codes with a given set of parameters.

R-closed subsets of Z_{p}

S. Huczynska, M, J. Yucas, JCT, A (2009)

R-closed subsets of Z_{p}

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $|G|=g$

R-closed subsets of Z_{p}

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $|G|=g$
Let S be a subset of G with $|S|=s$.

R-closed subsets of Z_{p}

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $|G|=g$
Let S be a subset of G with $|S|=s$.

Definition

Let $0 \leq r \leq s^{2}$. A set S is r-closed if, among the s^{2} ordered pairs (a, b) with $a, b \in S$, there are exactly r pairs such that $a+b \in S$.

R-closed subsets of Z_{p}

S. Huczynska, M, J. Yucas, JCT, A (2009)

Let G be a finite abelian group with $|G|=g$
Let S be a subset of G with $|S|=s$.

Definition

Let $0 \leq r \leq s^{2}$. A set S is r-closed if, among the s^{2} ordered pairs (a, b) with $a, b \in S$, there are exactly r pairs such that $a+b \in S$.

The r-value of the r-closed set S is denoted by $r(S)$.

If S is a subgroup of G then S is s^{2}-closed

If S is a subgroup of G then S is s^{2}-closed
If S is a sum-free set then S is 0 -closed.

If S is a subgroup of G then S is s^{2}-closed
If S is a sum-free set then S is 0 -closed.

For a given G, what (if anything) can be said about the spectrum of r-values of the subsets of G ?

If S is a subgroup of G then S is s^{2}-closed
If S is a sum-free set then S is 0 -closed.

For a given G, what (if anything) can be said about the spectrum of r-values of the subsets of G ?

Motivated by the classical Cauchy-Davenport Theorem, we are particularly interested in the case when $G=Z_{p}$ under addition modulo the prime p.

For $G=Z_{p}$ we characterize the maximal and minimal possible r-values.
We make a conjecture (verified computationally for all primes $p \leq 23$) about the complete spectrum of r-values for any subset cardinality in Z_{p} and prove that, for any p, all conjectured r-values in the spectrum are attained when the subset cardinality is suitably small $\left(s<\frac{2 p+2}{7}\right)$.

Theorem

Let G be a finite abelian group of order g. Let s be a positive integer with $0 \leq s \leq g$, and let S be a subset of G of size s. Let T be the complement of S in G. Then

$$
r(S)+r(T)=g^{2}-3 g s+3 s^{2} .
$$

Theorem (Cauchy-Davenport)
If A and B are non-empty subsets of Z_{p} then $|A+B| \geq \min (p,|A|+|B|-1)$.

Theorem (Cauchy-Davenport)
If A and B are non-empty subsets of Z_{p} then $|A+B| \geq \min (p,|A|+|B|-1)$.

Definition

For p be a prime, define

$$
k[p]=\left\lfloor\frac{p+1}{3}\right\rfloor= \begin{cases}\frac{p-1}{3}, & p \equiv 1 \bmod 3 \\ \frac{p}{3}, & p \equiv 0 \bmod 3 \\ \frac{p+1}{3}, & p \equiv-1 \bmod 3\end{cases}
$$

Theorem (Cauchy-Davenport)
If A and B are non-empty subsets of Z_{p} then $|A+B| \geq \min (p,|A|+|B|-1)$.

Definition

For p be a prime, define

$$
k[p]=\left\lfloor\frac{p+1}{3}\right\rfloor= \begin{cases}\frac{p-1}{3}, & p \equiv 1 \bmod 3 \\ \frac{p}{3}, & p \equiv 0 \bmod 3 \\ \frac{p+1}{3}, & p \equiv-1 \bmod 3\end{cases}
$$

Proposition

Let p be a prime. If $S \subseteq Z_{p}$ is 0 -closed then $|S| \leq k[p]$.

Definition

Let p be an odd prime. For $0 \leq s \leq p$, define f_{s} and g_{s} as follows:

$$
\begin{gathered}
f_{s}= \begin{cases}0 & s \leq k[p] \\
\frac{(3 s-p)^{2}-1}{4} & s>k[p] \text { and } s \text { even } \\
\frac{(3 s-p)^{2}}{4} & s>k[p] \text { and } s \text { odd }\end{cases} \\
g_{s}= \begin{cases}\frac{3 s^{2}}{4} & s \leq p-k[p] \text { and } s \text { even } \\
\frac{3 s^{2}+1}{4} & s \leq p-k[p] \text { and } s \text { odd } \\
p^{2}-3 s p+3 s^{2} & s>p-k[p]\end{cases}
\end{gathered}
$$

Note that $f_{s}+g_{p-s}=p^{2}-3 s p+3 s^{2}$.

Proposition

Let $p>11$. For $1 \leq s \leq 3$ and $p-3 \leq s \leq p$, the r-values for subsets of Z_{p} of size s are precisely the integers in the interval $\left[f_{s}, g_{s}\right]$ with the following exceptions:

s	f_{s}	g_{s}	exceptions
1	0	1	-
2	0	3	2
3	0	7	4
p	p^{2}	p^{2}	-
$p-1$	$p^{2}-3 p+2$	$p^{2}-3 p+3$	-
$p-2$	$p^{2}-6 p+9$	$p^{2}-6 p+12$	$p^{2}-6 p+10$
$p-3$	$p^{2}-9 p+20$	$p^{2}-9 p+27$	$p^{2}-9 p+23$

Definition

If $4 \leq s \leq p-4$, define $V(s)$ by

$$
V(s)=\left\{\begin{array}{ll}
0 & \text { if } s \leq k[p] \\
\left\lceil\frac{p-s-3}{4}\right\rceil & \text { if } s \geq\left\lfloor\frac{p+1}{2}\right\rfloor . \\
\left\lceil\frac{3 s-p-1}{4}\right\rceil & \text { otherwise }
\end{array} .\right.
$$

Conjecture

For $p>11$ and $4 \leq s \leq p-4$, there are $V(s)$ exceptional values at the low end of the interval $\left[f_{s}, g_{s}\right]$ and $V(p-s)$ exceptional values at the high end of the interval $\left[f_{s}, g_{s}\right]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

$$
\begin{aligned}
& f_{s}+3 i+1 \text { for } 0 \leq i<V(s) \text { if } s \equiv p \bmod 2 \\
& f_{s}+3 i+2 \text { for } 0 \leq i<V(s) \text { if } s \not \equiv p \bmod 2 \\
& g_{s}-3 i-1 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is even } \\
& g_{s}-3 i-2 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is odd }
\end{aligned}
$$

Conjecture

For $p>11$ and $4 \leq s \leq p-4$, there are $V(s)$ exceptional values at the low end of the interval $\left[f_{s}, g_{s}\right]$ and $V(p-s)$ exceptional values at the high end of the interval $\left[f_{s}, g_{s}\right]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

$$
\begin{aligned}
& f_{s}+3 i+1 \text { for } 0 \leq i<V(s) \text { if } s \equiv p \bmod 2 \\
& f_{s}+3 i+2 \text { for } 0 \leq i<V(s) \text { if } s \not \equiv p \bmod 2 \\
& g_{s}-3 i-1 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is even } \\
& g_{s}-3 i-2 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is odd }
\end{aligned}
$$

Verified computationally for all primes $p \leq 23$ and all corresponding s $(4 \leq s \leq p-4)$.

Conjecture

For $p>11$ and $4 \leq s \leq p-4$, there are $V(s)$ exceptional values at the low end of the interval $\left[f_{s}, g_{s}\right]$ and $V(p-s)$ exceptional values at the high end of the interval $\left[f_{s}, g_{s}\right]$. All other values in the interval can be obtained as r-values. The exceptions are given by:

$$
\begin{aligned}
& f_{s}+3 i+1 \text { for } 0 \leq i<V(s) \text { if } s \equiv p \bmod 2 \\
& f_{s}+3 i+2 \text { for } 0 \leq i<V(s) \text { if } s \not \equiv p \bmod 2 \\
& g_{s}-3 i-1 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is even } \\
& g_{s}-3 i-2 \text { for } 0 \leq i<V(p-s) \text { if } s \text { is odd }
\end{aligned}
$$

Verified computationally for all primes $p \leq 23$ and all corresponding s $(4 \leq s \leq p-4)$.

Problem

Prove the conjecture

All conjectured r-values in the spectrum are attained when the subset cardinality is suitably small $\left(s<\frac{2 p+2}{7}\right)$.

Subfield Value Sets

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Subfield Value Sets

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let $F_{q^{d}}$ be a subfield of $F_{q^{e}}$ so $d \mid e$

Subfield Value Sets

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let $F_{q^{d}}$ be a subfield of $F_{q^{e}}$ so $d \mid e$
For $f \in F_{q^{e}}[x]$, subfield value set $V_{f}\left(q^{e} ; q^{d}\right)=\left\{f(c) \in F_{q^{d}} \mid c \in F_{q^{e}}\right\}$

Subfield Value Sets

W.-S. Chou, J. Gomez-Calderon, M, D. Panario, D. Thomson, Funct. Approx. Comment. Math. (2013)

Let $F_{q^{d}}$ be a subfield of $F_{q^{e}}$ so $d \mid e$
For $f \in F_{q^{e}}[x]$, subfield value set $V_{f}\left(q^{e} ; q^{d}\right)=\left\{f(c) \in F_{q^{d}} \mid c \in F_{q^{e}}\right\}$
Theorem

$$
\left|V_{x^{n}}\left(q^{e} ; q^{d}\right)\right|=\frac{\left(n\left(q^{d}-1\right), q^{e}-1\right)}{\left(n, q^{e}-1\right)}+1
$$

Dickson poly. deg. n, parameter $a \in F_{q}$

$$
D_{n}(x, a)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

Dickson poly. deg. n, parameter $a \in F_{q}$

$$
D_{n}(x, a)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

$$
D_{n}(x, 0)=x^{n}
$$

Dickson poly. deg. n, parameter $a \in F_{q}$

$$
D_{n}(x, a)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

$D_{n}(x, 0)=x^{n}$
Theorem
Chou, Gomez-Calderon, M, JNT, (1988)

$$
\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2(n, q-1)}+\frac{q+1}{2(n, q+1)}+\alpha
$$

α usually 0.

Theorem
q odd and $a \in F_{q^{e}}^{*}$ with $a^{n} \in F_{q^{d}}, \eta_{q^{e}}(a)=1$ and $\eta_{q^{d}}\left(a^{n}\right)=1$,

$$
\begin{aligned}
& \left|V_{D_{n}(x, a)}\left(q^{e} ; q^{d}\right)\right|=\frac{\left(q^{e}-1, n\left(q^{d}-1\right)\right)+\left(q^{e}-1, n\left(q^{d}+1\right)\right)}{2\left(q^{e}-1, n\right)} \\
& +\frac{\left(q^{e}+1, n\left(q^{d}-1\right)\right)+\left(q^{e}+1, n\left(q^{d}+1\right)\right)}{2\left(q^{e}+1, n\right)}-\frac{3+(-1)^{n+1}}{2}
\end{aligned}
$$

Theorem

q odd and $a \in F_{q^{e}}^{*}$ with $a^{n} \in F_{q^{d}}, \eta_{q^{e}}(a)=1$ and $\eta_{q^{d}}\left(a^{n}\right)=1$,

$$
\begin{aligned}
& \left|V_{D_{n}(x, a)}\left(q^{e} ; q^{d}\right)\right|=\frac{\left(q^{e}-1, n\left(q^{d}-1\right)\right)+\left(q^{e}-1, n\left(q^{d}+1\right)\right)}{2\left(q^{e}-1, n\right)} \\
& +\frac{\left(q^{e}+1, n\left(q^{d}-1\right)\right)+\left(q^{e}+1, n\left(q^{d}+1\right)\right)}{2\left(q^{e}+1, n\right)}-\frac{3+(-1)^{n+1}}{2}
\end{aligned}
$$

Problem

Find subfield value set $\left|V_{D_{n}(x, a)}\left(q^{e} ; q^{d}\right)\right|$ when $a \in F_{q^{e}}^{*}$ and $a^{n} \notin F_{q^{d}}$

In order to have $D_{n}(c, a)=y^{n}+\frac{a^{n}}{y^{n}} \in F_{q^{d}}$ we need

$$
\left(y^{n}+\frac{a^{n}}{y^{n}}\right)^{q^{d}}=y^{n}+\frac{a^{n}}{y^{n}} .
$$

In order to have $D_{n}(c, a)=y^{n}+\frac{a^{n}}{y^{n}} \in F_{q^{d}}$ we need

$$
\left(y^{n}+\frac{a^{n}}{y^{n}}\right)^{q^{d}}=y^{n}+\frac{a^{n}}{y^{n}} .
$$

If $a^{n} \in F_{q^{d}}$

$$
\left(y^{n\left(q^{d}-1\right)}-1\right)\left(y^{n\left(q^{d}+1\right)}-a^{n}\right)=0 .
$$

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
If $d \geq 2 r$, two such hypercubes are orthogonal if when superimposed, each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times.

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
If $d \geq 2 r$, two such hypercubes are orthogonal if when superimposed, each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times. A set \mathcal{H} of such hypercubes is mutually orthogonal if any two distinct hypercubes in \mathcal{H} are orthogonal.

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
If $d \geq 2 r$, two such hypercubes are orthogonal if when superimposed, each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times. A set \mathcal{H} of such hypercubes is mutually orthogonal if any two distinct hypercubes in \mathcal{H} are orthogonal.

A $(2, n, 1,1)$ hypercube is a latin square order n.

Hypercubes of class r

J. Ethier, M, D. Panario, B. Stevens, D. Thomson, JCT, A (2011)

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
If $d \geq 2 r$, two such hypercubes are orthogonal if when superimposed, each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times. A set \mathcal{H} of such hypercubes is mutually orthogonal if any two distinct hypercubes in \mathcal{H} are orthogonal.

A $(2, n, 1,1)$ hypercube is a latin square order n.
If $r=1$ we have latin hypercubes.

A hypercube of dimension 3 , order 3 , class 2 , and type 1 .

Theorem

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$
\frac{1}{n^{r}-1}\left(n^{d}-1-\binom{d}{1}(n-1)-\binom{d}{2}(n-1)^{2}-\cdots-\binom{d}{t}(n-1)^{t}\right) .
$$

Theorem

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$
\frac{1}{n^{r}-1}\left(n^{d}-1-\binom{d}{1}(n-1)-\binom{d}{2}(n-1)^{2}-\cdots-\binom{d}{t}(n-1)^{t}\right) .
$$

Corollary

There are at most $n-1$ mutually orthogonal Latin squares of order n.

Theorem

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t, and class r is bounded above by

$$
\frac{1}{n^{r}-1}\left(n^{d}-1-\binom{d}{1}(n-1)-\binom{d}{2}(n-1)^{2}-\cdots-\binom{d}{t}(n-1)^{t}\right) .
$$

Corollary

There are at most $n-1$ mutually orthogonal Latin squares of order n.

Theorem

Let q be a prime power. The number of $(2 r, q, r, r)$-hypercubes is at least the number of linear MDS codes over F_{q} of length $2 r$ and dimension r.

Theorem
There are at most $(n-1)^{r},(2 r, n, r, r)$ mutually orthogonal hypercubes.

Theorem
There are at most $(n-1)^{r},(2 r, n, r, r)$ mutually orthogonal hypercubes.

Theorem

Let n be a prime power. For any integer $r<n$, there is a set of $n-1$ mutually orthogonal ($2 r, n, r, r$)-hypercubes.

Theorem

There are at most $(n-1)^{r},(2 r, n, r, r)$ mutually orthogonal hypercubes.

```
Theorem
Let n be a prime power. For any integer r<n, there is a set of n-1
mutually orthogonal (2r,n,r,r)-hypercubes.
```


Theorem

Let $n=2^{2 k}, k \in \mathbb{N}$. Then there is a complete set of $(n-1)^{2}$ mutually orthogonal hypercubes of dimension 4 , order n, and class 2.

Theorem

There are at most $(n-1)^{r},(2 r, n, r, r)$ mutually orthogonal hypercubes.

Theorem
 Let n be a prime power. For any integer $r<n$, there is a set of $n-1$ mutually orthogonal ($2 r, n, r, r$)-hypercubes.

Theorem

Let $n=2^{2 k}, k \in \mathbb{N}$. Then there is a complete set of $(n-1)^{2}$ mutually orthogonal hypercubes of dimension 4, order n, and class 2.
D. Droz: If $r=2$ and n is odd, there is complete set.

Hypercube problems

1 Construct a complete set of mutually orthogonal $(4, n, 2,2)$-hypercubes when $n=2^{2 k+1}$.

Hypercube problems

1 Construct a complete set of mutually orthogonal (4, $n, 2,2)$-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$. Are there $(n-1)^{2} \mathrm{MOHC}$?

Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, $n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$.

Are there $(n-1)^{2} \mathrm{MOHC}$?
2 Is the $(n-1)^{r}$ bound tight when $r>2$? If so, construct a complete set of mutually orthogonal ($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.

Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, $n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$.

Are there $(n-1)^{2} \mathrm{MOHC}$?
2 Is the $(n-1)^{r}$ bound tight when $r>2$? If so, construct a complete set of mutually orthogonal ($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.
D. Droz: If $r \geq 1$ and $n \equiv 1(\bmod r)$, there is complete set.

Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, $n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$.

Are there $(n-1)^{2} \mathrm{MOHC}$?
2 Is the $(n-1)^{r}$ bound tight when $r>2$? If so, construct a complete set of mutually orthogonal ($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.
D. Droz: If $r \geq 1$ and $n \equiv 1(\bmod r)$, there is complete set.
D. Droz: If $n=p^{r k}$ there is a complete set.

Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, $n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$.

Are there $(n-1)^{2} \mathrm{MOHC}$?
2 Is the $(n-1)^{r}$ bound tight when $r>2$? If so, construct a complete set of mutually orthogonal ($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.
D. Droz: If $r \geq 1$ and $n \equiv 1(\bmod r)$, there is complete set.
D. Droz: If $n=p^{r k}$ there is a complete set.

3 Find constructions (other than the standard Kronecker product constructions) for sets of mutually orthogonal hypercubes when n is not a prime power. Such constructions will require a new method not based on finite fields.

Hypercube problems

1 Construct a complete set of mutually orthogonal
(4, $n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
D. Droz: If $r=2, n=2^{2 k+1}$ there are $(n-1)(n-2) \mathrm{MOHC}$.

Are there $(n-1)^{2} \mathrm{MOHC}$?
2 Is the $(n-1)^{r}$ bound tight when $r>2$? If so, construct a complete set of mutually orthogonal ($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.
D. Droz: If $r \geq 1$ and $n \equiv 1(\bmod r)$, there is complete set.
D. Droz: If $n=p^{r k}$ there is a complete set.

3 Find constructions (other than the standard Kronecker product constructions) for sets of mutually orthogonal hypercubes when n is not a prime power. Such constructions will require a new method not based on finite fields.
4 What can be said when $d>2 r$?

k-Normal elements

S. Huczynska, M, D. Panario, D. Thomson, FFA (2013)

k-Normal elements

S. Huczynska, M, D. Panario, D. Thomson, FFA (2013)

Let q be a prime power and $n \in \mathbb{N}$. An element $\alpha \in \mathbb{F}_{q^{n}}$ yields a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if $B=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}; such an α is a normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Theorem

For $\alpha \in \mathbb{F}_{q^{n}},\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if and only if the polynomials $x^{n}-1$ and $\alpha x^{n-1}+\alpha^{q} x^{n-2}+\cdots+\alpha^{q^{n-1}}$ in $\mathbb{F}_{q^{n}}[x]$ are relatively prime.

Theorem

For $\alpha \in \mathbb{F}_{q^{n}},\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if and only if the polynomials $x^{n}-1$ and $\alpha x^{n-1}+\alpha^{q} x^{n-2}+\cdots+\alpha^{q^{n-1}}$ in $\mathbb{F}_{q^{n}}[x]$ are relatively prime.

Motivated by this, we make the

Definition

Let $\alpha \in \mathbb{F}_{q^{n}}$. Denote by $g_{\alpha}(x)$ the polynomial $\sum_{i=0}^{n-1} \alpha^{q^{i}} x^{n-1-i} \in \mathbb{F}_{q^{n}}[x]$. If $\operatorname{gcd}\left(x^{n}-1, g_{\alpha}(x)\right)$ over $\mathbb{F}_{q^{n}}$ has degree k (where $0 \leq k \leq n-1$), then α is a k-normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Theorem

For $\alpha \in \mathbb{F}_{q^{n}},\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if and only if the polynomials $x^{n}-1$ and $\alpha x^{n-1}+\alpha^{q} x^{n-2}+\cdots+\alpha^{q^{n-1}}$ in $\mathbb{F}_{q^{n}}[x]$ are relatively prime.

Motivated by this, we make the

Definition

Let $\alpha \in \mathbb{F}_{q^{n}}$. Denote by $g_{\alpha}(x)$ the polynomial $\sum_{i=0}^{n-1} \alpha^{q^{i}} x^{n-1-i} \in \mathbb{F}_{q^{n}}[x]$. If $\operatorname{gcd}\left(x^{n}-1, g_{\alpha}(x)\right)$ over $\mathbb{F}_{q^{n}}$ has degree k (where $0 \leq k \leq n-1$), then α is a k-normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

A normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} is 0 -normal.

Definition

Let $f \in \mathbb{F}_{q}[x]$ be monic, the Euler Phi function for polynomials is given by $\Phi_{q}(f)=\left|\left(\mathbb{F}_{q}[x] / f \mathbb{F}_{q}[x]\right)^{*}\right|$.

Definition

Let $f \in \mathbb{F}_{q}[x]$ be monic, the Euler Phi function for polynomials is given by $\Phi_{q}(f)=\left|\left(\mathbb{F}_{q}[x] / f \mathbb{F}_{q}[x]\right)^{*}\right|$.

Theorem

The number of k-normal elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} is given by

$$
\begin{equation*}
\sum_{\substack{h \mid x^{n}-1, \operatorname{eg}(h)=n-k}} \Phi_{q}(h) \tag{1}
\end{equation*}
$$

where divisors are monic and polynomial division is over \mathbb{F}_{q}.

An important extension of the Normal Basis Theorem is the Primitive Normal Basis Theorem which establishes that, for all pairs (q, n), a normal basis $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} exists with α a primitive element of $\mathbb{F}_{q^{n}}$.

An important extension of the Normal Basis Theorem is the Primitive Normal Basis Theorem which establishes that, for all pairs (q, n), a normal basis $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} exists with α a primitive element of $\mathbb{F}_{q^{n}}$.

We ask whether an analogous claim can be made about k-normal elements for certain non-zero values of k ?

An important extension of the Normal Basis Theorem is the Primitive Normal Basis Theorem which establishes that, for all pairs (q, n), a normal basis $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} exists with α a primitive element of $\mathbb{F}_{q^{n}}$.

We ask whether an analogous claim can be made about k-normal elements for certain non-zero values of k ?

In particular, when $k=1$, does there always exist a primitive 1-normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} ?

Theorem

Let $q=p^{e}$ be a prime power and $n \in \mathbb{N}$ with $p \nmid n$. Assume that $n \geq 6$ if $q \geq 11$, and that $n \geq 3$ if $3 \leq q \leq 9$. Then there exists a primitive 1-normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Theorem

Let $q=p^{e}$ be a prime power and $n \in \mathbb{N}$ with $p \nmid n$. Assume that $n \geq 6$ if $q \geq 11$, and that $n \geq 3$ if $3 \leq q \leq 9$. Then there exists a primitive 1-normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Problem

Obtain a complete existence result for primitive 1-normal elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} (with or without a computer). We conjecture that such elements always exist.

Problem

For which values of q, n and k can explicit formulas be obtained for the number of k-normal primitive elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} ?

Problem

For which values of q, n and k can explicit formulas be obtained for the number of k-normal primitive elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} ?

Problem

Determine the pairs (n, k) such that there exist primitive k-normal elements of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Conjecture

(L. Anderson/M) Let $p \geq 5$ be a prime and let $m \geq 3$. Let a be 1 or 2 and let k be 0 or 1 . Then there is an element $\alpha \in F_{p^{m}}$ of order $\frac{p^{m}-1}{a}$ which is k-normal.

Conjecture

(L. Anderson/M) Let $p \geq 5$ be a prime and let $m \geq 3$. Let a be 1 or 2 and let k be 0 or 1 . Then there is an element $\alpha \in F_{p^{m}}$ of order $\frac{p^{m}-1}{a}$ which is k-normal.

The $a=1, k=0$ case gives the Prim. Nor. Basis Thm.

Conjecture

(L. Anderson/M) Let $p \geq 5$ be a prime and let $m \geq 3$. Let a be 1 or 2 and let k be 0 or 1 . Then there is an element $\alpha \in F_{p^{m}}$ of order $\frac{p^{m}-1}{a}$ which is k-normal.

The $a=1, k=0$ case gives the Prim. Nor. Basis Thm.

Problem

Determine the existence of high-order k-normal elements $\alpha \in \mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_{q}$

$$
D_{n}(x, a)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

Dickson Polynomials

Dickson poly. deg. n, parameter $a \in F_{q}$

$$
D_{n}(x, a)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

$D_{n}(x, 0)=x^{n}$

Theorem
Nöbauer (1968) For $a \neq 0, D_{n}(x, a) P P$ on F_{q} iff $\left(n, q^{2}-1\right)=1$.

Theorem
Nöbauer (1968) For $a \neq 0, D_{n}(x, a) P P$ on F_{q} iff $\left(n, q^{2}-1\right)=1$.

Theorem
Chou, Gomez-Calderon, M, JNT, (1988)

$$
\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2(n, q-1)}+\frac{q+1}{2(n, q+1)}+\alpha
$$

α usually 0

Reverse Dickson Polynomials

Fix $x \in F_{q}$ and let a be the variable in $D_{n}(x, a)$

Reverse Dickson Polynomials

Fix $x \in F_{q}$ and let a be the variable in $D_{n}(x, a)$
Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009

Reverse Dickson Polynomials

Fix $x \in F_{q}$ and let a be the variable in $D_{n}(x, a)$
Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009
$f: F_{q} \rightarrow F_{q}$ is almost perfect nonlinear (APN) if for each $a \in F_{q}^{*}$ and $b \in F_{q}$ the eq. $f(x+a)-f(x)=b$ has at most two solutions in F_{q}

Reverse Dickson Polynomials

Fix $x \in F_{q}$ and let a be the variable in $D_{n}(x, a)$
Some basic PP results on RDPs in Hou, Sellers, M, Yucas, FFA, 2009
$f: F_{q} \rightarrow F_{q}$ is almost perfect nonlinear (APN) if for each $a \in F_{q}^{*}$ and $b \in F_{q}$ the eq. $f(x+a)-f(x)=b$ has at most two solutions in F_{q}

Theorem

For p odd, $x^{n} A P N$ on $F_{p^{2 e}}$ implies $D_{n}(1, x) P P$ on $F_{p^{e}}$ implies $x^{n} A P N$ on $F_{p^{e}}$

Let $p>3$ be a prime and let $1 \leq n \leq p^{2}-1$. Then $D_{n}(1, x)$ is a $P P$ on \mathbb{F}_{p} if and only if

$$
n=\left\{\begin{array}{lll}
2,2 p, 3,3 p, p+1, p+2,2 p+1 & \text { if } p \equiv 1 & (\bmod 12) \\
2,2 p, 3,3 p, p+1 & \text { if } p \equiv 5 \quad(\bmod 12) \\
2,2 p, 3,3 p, p+2,2 p+1 & \text { if } p \equiv 7 & (\bmod 12) \\
2,2 p, 3,3 p & \text { if } p \equiv 11 \quad(\bmod 12)
\end{array}\right.
$$

Let $p>3$ be a prime and let $1 \leq n \leq p^{2}-1$. Then $D_{n}(1, x)$ is a $P P$ on \mathbb{F}_{p} if and only if

$$
n=\left\{\begin{array}{lll}
2,2 p, 3,3 p, p+1, p+2,2 p+1 & \text { if } p \equiv 1 & (\bmod 12) \\
2,2 p, 3,3 p, p+1 & \text { if } p \equiv 5 \quad(\bmod 12) \\
2,2 p, 3,3 p, p+2,2 p+1 & \text { if } p \equiv 7 & (\bmod 12) \\
2,2 p, 3,3 p & \text { if } p \equiv 11 \quad(\bmod 12)
\end{array}\right.
$$

Problem

Complete the PP classification for RDPs over F_{p}.

Let $p>3$ be a prime and let $1 \leq n \leq p^{2}-1$. Then $D_{n}(1, x)$ is a $P P$ on \mathbb{F}_{p} if and only if

$$
n=\left\{\begin{array}{lll}
2,2 p, 3,3 p, p+1, p+2,2 p+1 & \text { if } p \equiv 1 & (\bmod 12) \\
2,2 p, 3,3 p, p+1 & \text { if } p \equiv 5 \quad(\bmod 12) \\
2,2 p, 3,3 p, p+2,2 p+1 & \text { if } p \equiv 7 & (\bmod 12) \\
2,2 p, 3,3 p & \text { if } p \equiv 11 \quad(\bmod 12)
\end{array}\right.
$$

Problem

Complete the PP classification for RDPs over F_{p}.

Problem

What happens over F_{q} when q is a prime power?

Let $p>3$ be a prime and let $1 \leq n \leq p^{2}-1$. Then $D_{n}(1, x)$ is a $P P$ on \mathbb{F}_{p} if and only if

$$
n=\left\{\begin{array}{lll}
2,2 p, 3,3 p, p+1, p+2,2 p+1 & \text { if } p \equiv 1 & (\bmod 12) \\
2,2 p, 3,3 p, p+1 & \text { if } p \equiv 5 \quad(\bmod 12) \\
2,2 p, 3,3 p, p+2,2 p+1 & \text { if } p \equiv 7 & (\bmod 12) \\
2,2 p, 3,3 p & \text { if } p \equiv 11 & (\bmod 12)
\end{array}\right.
$$

Problem

Complete the PP classification for RDPs over F_{p}.

Problem

What happens over F_{q} when q is a prime power?

Problem

Determine value set for RDPs over F_{p}

THANK YOU!!!

