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Notation

1. Q(X ) ∈ Z2[X ]

2. n = deg(Q(X )) (n is odd during all this presentation)

3. a ∈ Zn
2

4. Pa(X ) = a0 + a1X + . . .+ an−1X
n−1 ∈ Z2[X ]/(Q(X )) ∼= F2n
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Powers and boolean functions

For a ∈ Zn
2, and t ∈ Z2n−1, ϕj ’s are the boolean functions s.t.

Pa(X ) 7→
(
Pa(X )

)t
mod Q(X )

≡

(
n−1∑
j=0

ajX
j

)t

mod Q(X )

≡
n−1∑
j=0

ϕj(a)X j mod Q(X ).

In vector space notation:

a 7→ (ϕ0(a), . . . , ϕn−1(a))

def
= σ(a) and σ ∈ S2n .

Each ϕj is a sum of products of the form ai1 · · · aij . There are no
more than 2n such products.
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Irreducible polynomials

For n ∈ N, the number of irreducible polynomials of degree n is

1

n

∑
d |n

2dµ
(n
d

)
.

Let Q1 and Q2 be two irreducible polynomials. For a given
t ∈ Z2n−1, there is at least one a such that(

Pa(X )
)t

mod Q1(X ) 6≡
(
Pa(X )

)t
mod Q2(X ).

Q1 and Q2 lead to two different permutations σ1 and σ2.
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List of some interesting properties

Given an irreducible polynomial Q, we consider

σ(a) = (ϕ0(a), . . . , ϕn−1(a)).

Some properties of interest (not an exhaustive list) are:

1. The algebraic degrees w.r.t. a of the boolean functions ϕj .

2. The cycle structure of σ.

3. The (average) number of products in the ϕj ’s.
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Example I

Take an n ∈ N, and t = 2n − 2. Given an irreducible polynomial Q
of degree n, we have

(
Pa(X )

)2n−2 ≡ (Pa(X )
)−1 ≡ n−1∑

j=0

ϕj(a)X j mod Q(X ).

The permutation has two fixed points and only cycles of length 2.

The algebraic degree of the outputs is n − 1.

The average number of products in ϕj is (empirically) about 2n−1.
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Example II

As before, take n ∈ N, and any t = −2k mod (2n − 1) with
k = 0, . . . , n − 1.

The algebraic degree of the outputs n − 1.

There is a cycle with length larger than 2 if k 6= 0, and there are
two fixed points.

The average number of products in ϕj is (empirically) about 2n−1.
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About the algebraic degree

The algebraic degree of the output boolean functions have been
well-studied.

For a given n ∈ N, it is shown that the powers that produce
maximal degree output boolean functions are of the form
2n − 2k − 1 ≡ −2k mod (2n − 1) for k ∈ {0, . . . , n − 1}.
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About the period

We recall that for a ∈ Zn
2 and for some t ∈ Z2n−1,

Pa(X ) 7→
(
Pa(X )

)t ≡ n−1∑
j=0

ϕj(a)X j mod Q(X ).

Under the tth-power map, the period is the minimal value of k
such that

Pa(X ) 7→
(
Pa(X )

)t 7→ (
Pa(X )

)t2
. . . 7→

(
Pa(X )

)tk
= Pa(X ).

For t = 2n − 2, the permutation has period 2 since

(2n − 2)2 ≡ (−1)2 ≡ 1 mod (2n − 1).

For t = −2k and 1 < k < n, the period is 2n since

(−2k)2n ≡ 22kn mod n mod (2n − 1) ≡ 1 mod (2n − 1).
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Some remarks about previous slides

It seems impossible to get the algebraic degree right, i.e., all
output bits with degree n − 1, and a long cycle.

To keep the algebraic degree alive, combine maps with powers of
the form −2k for k = 0, . . . , n − 1.

Taking consecutive powers (the order does not matter actually)

−20 → −21 → . . .→ −2n−1

does not increase the lenght of the cycles since

n−1∏
j=0

−2j ≡ (−1)n2n(n−1)/2 ≡ −1 mod (2n − 1).
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Idea

Idea: Perturb the input at every step, shift by a power of two, and
invert.

Choose b ∈ Zn
2 (b 6= 0) and let a(j) ∈ Zn

2 be the sequence defined
by

Pa(0)(X ) = Pa(X )

Pa(j)(X ) =
(
Pa(j−1)(X ) + Pb(X )

)−2j−1

for j = 1, . . . , n,

with input a ∈ Zn
2, and output a(n) ∈ Zn

2.

Note: For a given b ∈ Z2n (b 6= 0), not all irreducible
polynomials of degree n lead to the desired permutations.
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Remarks and intuition for the construction

Note: Easy to implement, i.e., perturbation (bit flips), and powers
of 2n − 1− 2k for k = 0, . . . , n − 1.

Note: If the block length is increased by 1 from n to n + 1 bits,
then one more round is added. The number of rounds is
logarithmic and hence bits are well ”shook”. There are exactly
n = log2(2n) powers of the form 2k .

Note: Analogy with continued fractions over finite field, but it is
the power that changes.
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A counting (empirical) experiment

Let In ⊂ Z2[X ] be the set of irreducible polynomials.
Let Jn ⊂ In be the set of irreducible polynomial which lead to the
desired permutations such that the perturbation polynomial is
P(X ) = X n−1 + 1. (In the following table, Pn ⊂ In is the set of
primitive and irreducible polynomials.

n |Jn| |In| |Jn|/|In| |Pn|
3 1 2 0.5 2

5 2 6 0.333333 6

7 6 18 0.333333 18

9 10 56 0.178571 48

11 30 186 0.16129 176

13 87 630 0.138095 630

15 259 2182 0.118698 1800

17 1130 7710 0.146563 7710

19 3805 27594 0.137892 27594
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Illustrated rounds - Example I

0 1 2

0 2 6 4

1 7 7 3

2 4 1 5

3 3 5 0

4 1 3 7

5 0 4 1

6 6 2 2

7 5 0 6

P(X ) = X 2 + 1,Q(X ) = 1 + X + X 3
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Illustrated rounds - Example II

0 1 2 3 4

0 12 13 9 16 1
1 7 18 12 11 30
2 5 11 17 0 19
3 29 8 18 14 21
4 9 2 8 13 2
5 15 26 29 3 22
6 2 17 0 26 20
7 27 3 20 10 25
8 11 5 27 17 0
9 31 30 22 2 3
10 22 9 4 4 16
11 3 6 16 1 28
12 18 19 7 15 14
13 4 31 3 25 12
14 24 24 23 27 8
15 10 29 30 29 5
16 1 21 21 24 7
17 0 14 28 22 4
18 26 22 31 5 13
19 23 15 19 21 23
20 19 28 25 19 24
21 28 20 14 7 11
22 16 1 24 28 29
23 13 16 1 23 18
24 21 7 13 31 17
25 14 23 11 8 15
26 25 10 6 9 9
27 30 25 26 6 31
28 6 4 2 30 6
29 17 0 10 20 26
30 20 12 15 12 27
31 8 27 5 18 10

P(X ) = X 4 + 1,Q(X ) = 1 + X + X 2 + X 3 + X 5
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Illustrated rounds - Example III

0 1 2 3 4

0 7 5 28 6 13
1 10 17 0 22 5
2 4 25 23 28 20
3 26 20 21 12 24
4 14 28 26 23 18
5 8 22 25 26 26
6 28 23 13 20 22
7 3 6 11 13 31
8 30 12 16 1 19
9 12 4 3 31 7
10 5 13 6 8 21
11 18 27 24 4 17
12 2 16 1 29 15
13 23 8 27 2 2
14 13 26 31 27 4
15 25 31 22 3 23
16 1 9 19 9 9
17 0 21 9 10 3
18 22 14 18 21 29
19 29 2 15 17 0
20 27 15 5 18 30
21 19 19 10 25 6
22 17 0 30 19 12
23 11 11 8 7 25
24 15 3 20 30 10
25 20 7 17 0 27
26 6 18 7 14 8
27 16 1 12 15 14
28 31 30 29 16 1
29 24 24 2 24 16
30 9 29 4 5 11
31 21 10 14 11 28

P(X ) = X 4 + 1,Q(X ) = 1 + X + X 3 + X 4 + X 5
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Counterexample (even degree)

0 1 2 3 4 5

0 10 38 39 23 19 39
1 13 5 29 53 34 48
2 46 13 17 17 63 30
3 38 40 53 43 27 36
4 48 24 12 14 50 10
5 18 43 59 36 48 55
6 47 10 6 39 43 14
7 34 55 46 2 6 21
8 43 19 47 45 57 17
9 21 53 23 33 0 25
10 41 60 62 31 29 8
11 20 9 50 56 28 60
12 59 62 30 44 26 49
13 3 6 40 61 49 29
14 39 42 3 46 4 11
15 35 29 8 42 17 12
16 19 21 61 10 46 16
17 37 26 56 59 2 20
18 23 27 16 27 13 37
19 7 22 63 30 55 38
20 60 16 28 9 39 34
21 8 34 57 3 51 13
22 5 58 10 20 9 7
23 28 52 7 35 32 1
24 17 3 20 60 36 44
25 27 4 55 51 62 31
26 45 48 11 41 60 2
27 2 51 4 57 5 32
28 9 47 49 18 42 63
29 53 35 26 25 59 4
30 24 63 31 58 45 24
31 15 23 14 47 54 46

0 1 2 3 4 5

32 1 36 24 37 18 35
33 0 49 32 1 16 33
34 44 18 34 24 3 41
35 58 25 33 0 56 27
36 55 20 52 21 53 22
37 29 61 25 19 40 53
38 50 45 44 29 61 45
39 22 17 5 26 10 51
40 61 56 19 50 25 28
41 52 39 35 15 22 3
42 12 28 60 13 12 19
43 33 0 45 55 41 9
44 32 1 2 38 21 61
45 11 46 36 11 38 47
46 62 31 18 22 37 58
47 25 14 21 8 35 18
48 57 12 27 62 30 57
49 26 54 38 7 23 59
50 49 15 43 28 52 50
51 36 57 37 32 1 62
52 40 8 22 12 33 0
53 42 37 15 34 11 6
54 51 2 41 52 47 56
55 6 50 54 6 7 43
56 14 7 42 5 15 42
57 63 30 48 48 44 15
58 56 33 0 54 20 52
59 16 59 13 63 31 26
60 4 44 58 49 58 54
61 54 41 9 40 8 23
62 30 11 51 16 14 40
63 31 32 1 4 24 5

P(X ) = X 5 + 1,Q(X ) = 1 + X + X 4 + X 5 + X 6
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Profile matrix and differentials

For each of the 259 cases found for n = 15 (among 2182
irreducible polynomials) with P(X ) = X 14 + 1, the largest entries
worth 6

215
(about 60 out of 230 entries for each case).

Recall that if P denotes the profiles matrix, the (a, b)-entry of P is
given by

1

2n

∑
x∈Zn

2

1
{
F (x ⊕ a)⊕ F (x) = b

}
,

where F is a permutation over {0, 1}n, a is an input approximator
to x , and b is an output approximator to F (x) for a given input
x ∈ {0, 1}n.

See text file for results.
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Goals

Goal: Clarifying the relation between the choice perturbation and
irreducible polynomials.

Goal: Characterizing the set Jn for a given P(X ) ∈ Z2[X ] with
1 ≤ degP ≤ n − 1. Have an algorithm to construct it, and then
from which we could sample randomly.

Goal: The more important perhaps would be to show at least that

lim
n→∞

|Jn|
|In|

6= 0.

We recall that

|In| =
1

n

∑
d |n

2dµ(n/d) ∈ O

(
2n

n

)
.

Also the number of primitive irreducible polynomial is given by

|Pn| =
1

n
φ
(
2n − 1

)
.
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