PERMUTATIONS WITH SPECIAL PROPERTIES

Claude Gravel

Tutte Institute for Mathematics and Computing

Friday, September 29th, 2017 Finite Fields Day @ Carleton Q(X) ∈ Z₂[X]
 n = deg(Q(X)) (n is odd during all this presentation)
 a ∈ Z₂ⁿ
 P_a(X) = a₀ + a₁X + ... + a_{n-1}Xⁿ⁻¹ ∈ Z₂[X]/(Q(X)) ≅ F_{2ⁿ}

POWERS AND BOOLEAN FUNCTIONS

For $a \in \mathbb{Z}_2^n$, and $t \in \mathbb{Z}_{2^n-1}$, φ_j 's are the boolean functions s.t.

$$P_{a}(X) \mapsto (P_{a}(X))^{t} \mod Q(X)$$
$$\equiv \left(\sum_{j=0}^{n-1} a_{j}X^{j}\right)^{t} \mod Q(X)$$
$$\equiv \sum_{j=0}^{n-1} \varphi_{j}(a)X^{j} \mod Q(X).$$

In vector space notation:

$$egin{aligned} \mathsf{a} &\mapsto (arphi_0(\mathsf{a}), \dots, arphi_{\mathsf{n-1}}(\mathsf{a})) \ &\stackrel{ ext{def}}{=} \sigma(\mathsf{a}) ext{ and } \sigma \in \mathcal{S}_{2^n}. \end{aligned}$$

Each φ_j is a sum of products of the form $a_{i_1} \cdots a_{i_j}$. There are no more than 2^n such products.

For $n \in \mathbb{N}$, the number of irreducible polynomials of degree n is

$$\frac{1}{n}\sum_{d\mid n}2^d\mu\bigg(\frac{n}{d}\bigg).$$

Let Q_1 and Q_2 be two irreducible polynomials. For a given $t \in \mathbb{Z}_{2^n-1}$, there is at least one *a* such that

$$(P_a(X))^t \mod Q_1(X) \not\equiv (P_a(X))^t \mod Q_2(X).$$

 Q_1 and Q_2 lead to two different permutations σ_1 and σ_2 .

Given an irreducible polynomial Q, we consider

$$\sigma(a) = (\varphi_0(a), \ldots, \varphi_{n-1}(a)).$$

Some properties of interest (not an exhaustive list) are:

- 1. The algebraic degrees w.r.t. *a* of the boolean functions φ_j .
- 2. The cycle structure of σ .
- 3. The (average) number of products in the φ_j 's.

Take an $n \in \mathbb{N}$, and $t = 2^n - 2$. Given an irreducible polynomial Q of degree n, we have

$$(P_a(X))^{2^n-2} \equiv (P_a(X))^{-1} \equiv \sum_{j=0}^{n-1} \varphi_j(a) X^j \mod Q(X).$$

The permutation has two fixed points and only cycles of length 2. The algebraic degree of the outputs is n - 1.

The average number of products in φ_j is (empirically) about 2^{n-1} .

As before, take $n \in \mathbb{N}$, and any $t = -2^k \mod (2^n - 1)$ with $k = 0, \ldots, n - 1$.

The algebraic degree of the outputs n-1.

There is a cycle with length larger than 2 if $k \neq 0$, and there are two fixed points.

The average number of products in φ_i is (empirically) about 2^{n-1} .

The algebraic degree of the output boolean functions have been well-studied.

For a given $n \in \mathbb{N}$, it is shown that the powers that produce maximal degree output boolean functions are of the form $2^n - 2^k - 1 \equiv -2^k \mod (2^n - 1)$ for $k \in \{0, \dots, n - 1\}$.

About the period

We recall that for $a \in \mathbb{Z}_2^n$ and for some $t \in \mathbb{Z}_{2^n-1}$,

$$P_a(X) \mapsto (P_a(X))^t \equiv \sum_{j=0}^{n-1} \varphi_j(a) X^j \mod Q(X).$$

Under the t^{th} -power map, the period is the minimal value of k such that

$$P_{a}(X) \mapsto (P_{a}(X))^{t} \mapsto (P_{a}(X))^{t^{2}} \dots \mapsto (P_{a}(X))^{t^{k}} = P_{a}(X).$$

For $t = 2^n - 2$, the permutation has period 2 since

$$(2^n - 2)^2 \equiv (-1)^2 \equiv 1 \mod (2^n - 1).$$

For $t = -2^k$ and 1 < k < n, the period is 2n since

$$(-2^k)^{2n} \equiv 2^{2kn \mod n} \mod (2^n - 1) \equiv 1 \mod (2^n - 1).$$

It seems impossible to get the algebraic degree right, i.e., all output bits with degree n - 1, and a long cycle.

To keep the algebraic degree alive, combine maps with powers of the form -2^k for k = 0, ..., n - 1.

Taking consecutive powers (the order does not matter actually)

$$-2^0
ightarrow -2^1
ightarrow \ldots
ightarrow -2^{n-1}$$

does not increase the lenght of the cycles since

$$\prod_{j=0}^{n-1} -2^j \equiv (-1)^n 2^{n(n-1)/2} \equiv -1 \mod (2^n - 1).$$

Idea: Perturb the input at every step, shift by a power of two, and invert.

Choose $b\in\mathbb{Z}_2^n$ (b
eq 0) and let $a^{(j)}\in\mathbb{Z}_2^n$ be the sequence defined by

$$P_{a^{(0)}}(X) = P_{a}(X)$$

$$P_{a^{(j)}}(X) = \left(P_{a^{(j-1)}}(X) + P_{b}(X)\right)^{-2^{j-1}} \text{ for } j = 1, \dots, n,$$

with input $a \in \mathbb{Z}_2^n$, and output $a^{(n)} \in \mathbb{Z}_2^n$.

Note: For a given $b \in \mathbb{Z}_{2^n}$ $(b \neq 0)$, not all irreducible polynomials of degree *n* lead to the desired permutations.

Note: Easy to implement, i.e., perturbation (bit flips), and powers of $2^n - 1 - 2^k$ for k = 0, ..., n - 1.

Note: If the block length is increased by 1 from *n* to n + 1 bits, then one more round is added. The number of rounds is logarithmic and hence bits are well "shook". There are exactly $n = \log_2(2^n)$ powers of the form 2^k .

Note: Analogy with continued fractions over finite field, but it is the power that changes.

A COUNTING (EMPIRICAL) EXPERIMENT

Let $\mathcal{I}_n \subset \mathbb{Z}_2[X]$ be the set of irreducible polynomials. Let $\mathcal{J}_n \subset \mathcal{I}_n$ be the set of irreducible polynomial which lead to the desired permutations such that the perturbation polynomial is $P(X) = X^{n-1} + 1$. (In the following table, $\mathcal{P}_n \subset \mathcal{I}_n$ is the set of primitive and irreducible polynomials.

n	$ \mathcal{J}_n $	$ \mathcal{I}_n $	$ \mathcal{J}_n / \mathcal{I}_n $	$ \mathcal{P}_n $	
3	1	2	0.5	2	
5	2	6	0.333333	6	
7	6	18	0.333333	18	
9	10	56	0.178571	48	
11	30	186	0.16129	176	
13	87	630	0.138095	630	
15	259	2182	0.118698	1800	
17	1130	7710	0.146563	7710	
19	3805	27594	0.137892	27594	

Illustrated rounds - Example I

	0	1	2
0	2	6	4
1	7	7	3
2	4	1	5
3	3	5	0
4	1	3	7
5	0	4	1
6	6	2	2
7	5	0	6

$$P(X) = X^2 + 1, Q(X) = 1 + X + X^3$$

Illustrated rounds - Example II

	0	1	2	3	4
0	12	13	9	16	1
1	7	18	12	11	30
2	5	11	17	0	19
3	29	8	18	14	21
4	9	2	8	13	2
5	15	26	29	3	22
6	2	17	0	26	20
7	27	3	20	10	25
8	11	5	27	17	0
9	31	30	22	2	3
10	22	9	4	4	16
11	3	6	16	1	28
12	18	19	7	15	14
13	4	31	3	25	12
14	24	24	23	27	8
15	10	29	30	29	5
16	1	21	21	24	7
17	0	14	28	22	4
18	26	22	31	5	13
19	23	15	19	21	23
20	19	28	25	19	24
21	28	20	14	7	11
22	16	1	24	28	29
23	13	16	1	23	18
24	21	7	13	31	17
25	14	23	11	8	15
26	25	10	6	9	9
27	30	25	26	6	31
28	6	4	2	30	6
29	17	0	10	20	26
30	20	12	15	12	27
31	8	27	5	18	10

$$P(X) = X^{4} + 1, Q(X) = 1 + X + X^{2} + X^{3} + X^{5}$$

15 / 21

Illustrated rounds - Example III

	0	1	2	3	4
0	7	5	28	6	13
1	10	17	0	22	5
2	4	25	23	28	20
3	26	20	21	12	24
4	14	28	26	23	18
5	8	22	25	26	26
6	28	23	13	20	22
7	3	6	11	13	31
8	30	12	16	1	19
9	12	4	3	31	7
10	5	13	6	8	21
11	18	27	24	4	17
12	2	16	1	29	15
13	23	8	27	2	2
14	13	26	31	27	4
15	25	31	22	3	23
16	1	9	19	9	9
17	0	21	9	10	3
18	22	14	18	21	29
19	29	2	15	17	0
20	27	15	5	18	30
21	19	19	10	25	6
22	17	0	30	19	12
23	11	11	8	7	25
24	15	3	20	30	10
25	20	7	17	0	27
26	6	18	7	14	8
27	16	1	12	15	14
28	31	30	29	16	1
29	24	24	2	24	16
30	9	29	4	5	11
31	21	10	14	11	28

$$P(X) = X^4 + 1, Q(X) = 1 + X + X^3 + X^4 + X^5$$

16 / 21

COUNTEREXAMPLE (EVEN DEGREE)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_		0	1	2	3	4	5		0	1	2	3	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	10	38	39	23	19	39	32	1	36	24	37	18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	13	5	29	53	34	48	33	0	49	32	1	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	46	13	17	17	63	30	34	44	18	34	24	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	38	40	53	43	27	36	35	58	25	33	0	56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	48	24	12	14	50	10	36	55	20	52	21	53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	18	43	59	36	48	55	37	29	61	25	19	40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	47	10	6	39	43	14	38	50	45	44	29	61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	34	55	46	2	6	21	39	22	17	5	26	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8	43	19	47	45	57	17	40	61	56	19	50	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	21	53	23	33	0	25	41	52	39	35	15	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	41	60	62	31	29	8	42	12	28	60	13	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	20	9	50	56	28	60	43	33	0	45	55	41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	59	62	30	44	26	49	44	32	1	2	38	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	3	6	40	61	49	29	45	11	46	36	11	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	39	42	3	46	4	11	46	62	31	18	22	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	35	29	8	42	17	12	47	25	14	21	8	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	19	21	61	10	46	16	48	57	12	27	62	30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	37	26	56	59	2	20	49	26	54	38	7	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	23	27	16	27	13	37	50	49	15	43	28	52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19	7	22	63	30	55	38	51	36	57	37	32	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	60	16	28	9	39	34	52	40	8	22	12	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	8	34	57	3	51	13	53	42	37	15	34	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		22	5	58	10	20	9	7	54	51	2	41	52	47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23	28	52	7	35	32	1	55	6	50	54	6	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24	17	3	20	60	36	44	56	14	7	42	5	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	27	4	55	51	62	31	57	63	30	48	48	44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26	45	48	11	41	60	2	58	56	33	0	54	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		27	2	51	4	57	5	32	59	16	59	13	63	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28	9	47	49	18	42	63	60	4	44	58	49	58
30 24 63 31 58 45 24 31 15 23 14 47 54 46 62 30 11 51 16 14 63 31 32 1 4 24 24 24	1	29	53	35	26	25	59	4	61	54	41	9	40	8
<u>31 15 23 14 47 54 46 </u> <u>63 31 32 1 4 24</u>		30	24	63	31	58	45	24	62	30	11	51	16	14
	1	31	15	23	14	47	54	46	63	31	32	1	4	24

$$P(X) = X^{5} + 1, Q(X) = 1 + X + X^{4} + X^{5} + X^{6}$$

2 19 1 9 1 61 For each of the 259 cases found for n = 15 (among 2182 irreducible polynomials) with $P(X) = X^{14} + 1$, the largest entries worth $\frac{6}{2^{15}}$ (about 60 out of 2^{30} entries for each case).

Recall that if P denotes the profiles matrix, the (a, b)-entry of P is given by

$$\frac{1}{2^n}\sum_{x\in\mathbb{Z}_2^n}\mathbb{1}\big\{F(x\oplus a)\oplus F(x)=b\big\},$$

where F is a permutation over $\{0,1\}^n$, a is an input approximator to x, and b is an output approximator to F(x) for a given input $x \in \{0,1\}^n$.

See text file for results.

GOALS

Goal: Clarifying the relation between the choice perturbation and irreducible polynomials.

Goal: Characterizing the set \mathcal{J}_n for a given $P(X) \in \mathbb{Z}_2[X]$ with $1 \leq \deg P \leq n-1$. Have an algorithm to construct it, and then from which we could sample randomly.

Goal: The more important perhaps would be to show at least that

$$\lim_{n\to\infty}\frac{|\mathcal{J}_n|}{|\mathcal{I}_n|}\neq 0.$$

We recall that

$$|\mathcal{I}_n| = \frac{1}{n} \sum_{d|n} 2^d \mu(n/d) \in O\left(\frac{2^n}{n}\right).$$

Also the number of primitive irreducible polynomial is given by

$$|\mathcal{P}_n|=\frac{1}{n}\phi(2^n-1).$$

Special thanks to David Thomson, Daniel Panario and Steven Wang for the invitation. Thanks to Gilles Brassard, and Luc Devroye for the discussions we had during my phd period.

BIBLIOGRAPHY I

- C. CARLET, Boolean functions for cryptography and error correcting codes. Technical report, Universités Paris 8 and Paris 13, CNRS
- [2] C. CARLET, Vectorial boolean functions for cryptography. Technical report, Universités Paris 8 and Paris 13, CNRS
- [3] P. FLAJOLET, AND A. M. ODLYZKO, Random mapping statistics. *Advances In Cryptography*, pages 329-354. Springer Verlag, 1990.
- [4] P. FLAJOLET, AND R. SEDGEWICK, Analytic Combinatorics. Cambridge University Press. 2009.
- [5] R. LIDL, AND H. NIEDERREITER, *Finite Fields*, Number v.20 pt. 1, in EBL-Schweitzer. Cambridge University Press, 1997.
- [6] G. L. MULLEN, AND D. PANARIO, Handbook of Finite Fields. Chapman & Hall/CRC, 1st edition, 2013.