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Integer compositions

A composition with m parts of a positive integer n is
an m-tuple of positive integers (x1, x2, · · · , xm) such
that x1 + x2 + · · ·+ xm = n.

The number of such compositions is equal to

[zn]
(
z + z2 + · · ·

)m
= [zn]

(
z

1− z

)m

=

(
n− 1

m− 1

)
.

If we allow each part to be zero, then we will use the
term weak composition. The number of such
compositions is equal to

[zn] (1 + z + · · · )m = [zn]

(
1

1− z

)m

=

(
n+m− 1

m− 1

)
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Compositions over finite fields

A composition of an element s ∈ Fq with m parts is
an m-tuple (x1,x2, · · · ,xm) of nonzero elements of
Fq such that x1 + x2 + · · ·+ xm = s.

Such a
composition will also be called an m-composition of
s.
Examples of compositions over Z5.
(1, 2, 3, 4) is a 4-composition of 0.
(1, 2, 3, 4, 1) is a 5-composition of 1.
Let cm(s) be the number of m-compositions of
s ∈ Zk. What is cm(s)?
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Compositions over finite fields

Since

ĉm(n) := [zn]
(
z + z2 + · · ·+ zk−1

)m
is the number of all m-tuples (x1, . . . , xm) satisfying

x1 + x2 + · · ·+ xm = n, xj ∈ {1, 2, . . . , k − 1},

we have
cm(s) =

∑
n≡s (mod k)

ĉm(n).

This sum can be evaluated using the “multisection
formula”.
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Multisection formula

Multisection formula
Let ωk = exp(2πi/k), and let A(z) =

∑
n≥0 anz

n be
a generating function. Then∑

n≡s (mod k)

anz
n =

1

k

k−1∑
j=0

ω−jsk A
(
zωj

k

)
,

∑
n≡s (mod k)

an =
1

k

k−1∑
j=0

ω−jsk A
(
ωj
k

)
.

A useful formula:

1 + ωj
k + ω2j

k + . . .+ ω
(k−1)j
k = k[j ≡ 0 (mod k)].



Multisection formula

Multisection formula
Let ωk = exp(2πi/k), and let A(z) =

∑
n≥0 anz

n be
a generating function. Then∑

n≡s (mod k)

anz
n =

1

k

k−1∑
j=0

ω−jsk A
(
zωj

k

)
,

∑
n≡s (mod k)

an =
1

k

k−1∑
j=0

ω−jsk A
(
ωj
k

)
.

A useful formula:

1 + ωj
k + ω2j

k + . . .+ ω
(k−1)j
k = k[j ≡ 0 (mod k)].



Multisection formula

Multisection formula
Let ωk = exp(2πi/k), and let A(z) =

∑
n≥0 anz

n be
a generating function. Then∑

n≡s (mod k)

anz
n =

1

k

k−1∑
j=0

ω−jsk A
(
zωj

k

)
,

∑
n≡s (mod k)

an =
1

k

k−1∑
j=0

ω−jsk A
(
ωj
k

)
.

A useful formula:

1 + ωj
k + ω2j

k + . . .+ ω
(k−1)j
k = k[j ≡ 0 (mod k)].



An example

The number of m-compositions of s over Zk is equal
to

cm(s) =
∑

n≡s (mod k)

ĉm(n)

=
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ω−jsk

(
ωj
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k
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=

1

k
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(k − 1)m +

k−1∑
j=1

ω−jsk (−1)m
)

=
1

k
((k − 1)m + (−1)m(k[s = 0]− 1))
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Locally restricted compositions

A composition is called locally restricted if any d
consecutive parts satisfy certain restrictions for a
given positive integer d.

Example d-Mullen compositions: the sum of at
most d consecutive parts are nonzero.
Example d-Carlitz compositions: there is no
repeated part among any d+ 1 consecutive parts.
Locally restricted compositions over Zk can be
modeled by directed walks in a digraph and then
enumerated by the transfer matrix method. In the
following, εs denotes a distinguished copy of the
empty sequence.
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Mullen compositions defined by a digraph

Example 3-Mullen compositions over Zk can be
defined using walks in the following digraph D. The
vertex set is V (D) = {εs} ∪̇ R ∪̇ T , where R is the
set of all 3-Mullen compositions of length 3, and T is
the set of all 2-Mullen compositions of length less
than 3.

I There is no arc between vertices in T .
I There is an arc from εs to every vertex in R.
I There is an arc from a vertex u ∈ R to a vertex
v ∈ R ∪̇ T if and only if the concatenation uv is
3-Mullen.
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Walks in a digraph

I The directed walks from εs to a vertex in T give
sequences of elements of Zk corresponding to
3-Mullen compositions over Zk.

I The (integer) weight of a composition
v = (v1, . . . , vj) is |v| := v1 + · · ·+ vj (sum as
integers).

I The weight of an arc uv is defined to be z|v|,
and the weight of a walk is the product of the
weights of its arcs.
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The transfer matrix

The transfer matrix T (z) is defined as follows. Its
rows and columns are indexed by the vertices of R.
The (u,v) entry of T (z) is defined to be z|v| if
(u,v) is an arc in D; otherwise it is zero.

The start vector α(z) is defined to be the row vector
whose jth entry is the weight of the arc from εs to
the jth vertex of R.
Write m = 3a+ b with 0 ≤ b ≤ 2, and define the
finish vector βb(z) as the column vector whose jth

entry is the sum of weights of all arcs from the jth

vertex of R to a vertex in T of length b.



The transfer matrix

The transfer matrix T (z) is defined as follows. Its
rows and columns are indexed by the vertices of R.
The (u,v) entry of T (z) is defined to be z|v| if
(u,v) is an arc in D; otherwise it is zero.
The start vector α(z) is defined to be the row vector
whose jth entry is the weight of the arc from εs to
the jth vertex of R.

Write m = 3a+ b with 0 ≤ b ≤ 2, and define the
finish vector βb(z) as the column vector whose jth

entry is the sum of weights of all arcs from the jth

vertex of R to a vertex in T of length b.



The transfer matrix

The transfer matrix T (z) is defined as follows. Its
rows and columns are indexed by the vertices of R.
The (u,v) entry of T (z) is defined to be z|v| if
(u,v) is an arc in D; otherwise it is zero.
The start vector α(z) is defined to be the row vector
whose jth entry is the weight of the arc from εs to
the jth vertex of R.
Write m = 3a+ b with 0 ≤ b ≤ 2,

and define the
finish vector βb(z) as the column vector whose jth

entry is the sum of weights of all arcs from the jth

vertex of R to a vertex in T of length b.



The transfer matrix

The transfer matrix T (z) is defined as follows. Its
rows and columns are indexed by the vertices of R.
The (u,v) entry of T (z) is defined to be z|v| if
(u,v) is an arc in D; otherwise it is zero.
The start vector α(z) is defined to be the row vector
whose jth entry is the weight of the arc from εs to
the jth vertex of R.
Write m = 3a+ b with 0 ≤ b ≤ 2, and define the
finish vector βb(z) as the column vector whose jth

entry is the sum of weights of all arcs from the jth

vertex of R to a vertex in T of length b.



Exact and asymptotic results

Proposition Let m = 3a+ b, with 0 ≤ b ≤ 2.
Then Ĉm(z) = α(z)T a−1(z)βb(z) enumerates all
directed walks of length m from εs to T ,

and the
number cm(s) of 3-Mullen compositions of s over Zk

with m parts is given by

cm(s) =
1

k

k−1∑
j=0

ω−jsk Ĉm

(
ωj
k

)
∼ 1

k
α(1)T a−1(1)βb(1) as m→∞

=
(k − 1)(k − 2)

k
(k − 3)m−2.
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Locally restricted compositions over a finite abelian group

We note Fq
∼= Zr

p. Also a finite abelian group G is
isomorphic to a direct sum ⊕r

t=1Zkt.

Our results
extend to compositions over G by using multivariate
generating functions with zt keeps track of the tth

component, and a multivariate multisection formula.
Main Theorem Let cm(s) be the number of
m-compositions of s in a class of locally restricted
compositions over G defined by a digraph D. Under
some aperiodic conditions on D, we have

cm(s) = A ·Bm(1 +O(θm)), as m→∞,

where A,B, and θ < 1 are some positive constants.
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Locally restricted compositions over a finite abelian group

Corollary Let g := |G| and
gd := g(g − 1) · · · (g − d+ 1). Then

I For d-Carlitz compositions,

A =
1

g
(g − 1)d(g − 1− d)−d, B = g − 1− d.

I For d-Carlitz weak compositions such that the
first d parts are nonzero,

A =
1

g
(g − 1)d(g − d)−d, B = g − d.

I For d-Mullen compositions,

A =
1

g
(g − 1)d(g − d)−d, B = g − d.



Locally restricted compositions over a finite abelian group

The exponential growth rate B can sometimes be
complicated.

I For the class of compositions over Z4 such that
the sum of any three consecutive parts is nonzero,
we have

cm(s) =
3

8
(1 +

√
2)m (1 +O (θm)) , m→∞,

where 0 < θ < 1 is a constant.



Bijections

Bijection For each m-composition
u = (u1, u2, . . . , um) over G, let v = φ(u) be a
(weak) m-composition defined by

vj = u1 + · · ·+ uj, 1 ≤ j ≤ m.

Then u is d-Mullen if and only if φ(u) is d-Carlitz
such that the first d parts of φ(u) are all nonzero.

Corollary For each nonzero element s ∈ G, there is
a bijection between d-Mullen m-compositions of s
and d-Mullen m-compositions of 1 (the identity
element of G).



Bijections

Bijection For each m-composition
u = (u1, u2, . . . , um) over G, let v = φ(u) be a
(weak) m-composition defined by

vj = u1 + · · ·+ uj, 1 ≤ j ≤ m.

Then u is d-Mullen if and only if φ(u) is d-Carlitz
such that the first d parts of φ(u) are all nonzero.
Corollary For each nonzero element s ∈ G, there is
a bijection between d-Mullen m-compositions of s
and d-Mullen m-compositions of 1 (the identity
element of G).



Tables

m cm(0) cm(0)/am
11 5238 0.8602
12 16377 1.114
13 32196 0.9072
14 92133 1.075
15 194196 0.9388
16 524241 1.05
17 1156908 0.9596
18 3006279 1.033
19 6839406 0.9733
20 17332647 1.022
21 40234356 0.9824

Table : Comparison between exact counts and asymptotic counts
am = 3

8 (1 +
√
2)m for compositions over Z4 such that the sum of any 3

consecutive terms is nonzero.



Tables

s
m

1 2 3 4 5 6 7 8 9 10

0 0 0 12 24 48 204 624 1680 5196 16008
1 1 3 6 21 69 192 573 1767 5262 15681

Number of 2-Mullen compositions over Z5.

s
m

2 3 4 5 6 7 8 9 10

0 4 24 88 320 1248 5120 20728 82284 326296
1 6 18 72 320 1284 5120 20232 81738 329064
2 4 18 88 320 1236 5120 20728 81738 326296
3 6 24 72 320 1392 5120 20232 82284 329064
4 4 18 88 320 1236 5120 20728 81738 326296
5 6 18 72 320 1284 5120 20232 81738 329064

Number of 2-Carlitz weak compositions over Z6.



Tables

s
m

2 3 4 5 6 7 8 9 10

0 4 12 32 80 280 812 2572 6644 23460
1 4 6 34 82 284 748 2498 7372 21522
2 2 12 32 80 274 866 2266 7484 21642
3 4 12 16 136 224 820 2480 7384 21432
4 2 12 32 80 274 866 2266 7484 21642
5 4 6 34 82 284 748 2498 7372 21522

Table : Number of 2-Carlitz compositions over Z6.


