Enumeration of Mullen compositions over finite fields

Jason Gao, Andrew MacFie, and Steven Wang School of Mathematics and Statistics

Carleton University
Ottawa, Ontario K1S5B6
Canada

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}
$$

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}
$$

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}=\binom{n-1}{m-1}
$$

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}=\binom{n-1}{m-1}
$$

If we allow each part to be zero, then we will use the term weak composition.

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}=\binom{n-1}{m-1}
$$

If we allow each part to be zero, then we will use the term weak composition. The number of such compositions is equal to

$$
\left[z^{n}\right](1+z+\cdots)^{m}
$$

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}=\binom{n-1}{m-1}
$$

If we allow each part to be zero, then we will use the term weak composition. The number of such compositions is equal to

$$
\left[z^{n}\right](1+z+\cdots)^{m}=\left[z^{n}\right]\left(\frac{1}{1-z}\right)^{m}
$$

Integer compositions

A composition with m parts of a positive integer n is an m-tuple of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$.
The number of such compositions is equal to

$$
\left[z^{n}\right]\left(z+z^{2}+\cdots\right)^{m}=\left[z^{n}\right]\left(\frac{z}{1-z}\right)^{m}=\binom{n-1}{m-1}
$$

If we allow each part to be zero, then we will use the term weak composition. The number of such compositions is equal to
$\left[z^{n}\right](1+z+\cdots)^{m}=\left[z^{n}\right]\left(\frac{1}{1-z}\right)^{m}=\binom{n+m-1}{m-1}$.

Compositions over finite fields

A composition of an element $\mathbf{s} \in \mathbb{F}_{q}$ with m parts is an m-tuple ($\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$) of nonzero elements of \mathbb{F}_{q} such that $\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{m}=\mathbf{s}$.

Compositions over finite fields

A composition of an element $\mathbf{s} \in \mathbb{F}_{q}$ with m parts is an m-tuple ($\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$) of nonzero elements of \mathbb{F}_{q} such that $\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{m}=\mathbf{s}$. Such a composition will also be called an m-composition of s.

Compositions over finite fields

A composition of an element $\mathbf{s} \in \mathbb{F}_{q}$ with m parts is an m-tuple ($\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$) of nonzero elements of \mathbb{F}_{q} such that $\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{m}=\mathbf{s}$. Such a composition will also be called an m-composition of s.

Examples of compositions over \mathbb{Z}_{5}. $(1,2,3,4)$ is a 4 -composition of 0 .

Compositions over finite fields

A composition of an element $\mathbf{s} \in \mathbb{F}_{q}$ with m parts is an m-tuple ($\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$) of nonzero elements of \mathbb{F}_{q} such that $\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{m}=\mathbf{s}$. Such a composition will also be called an m-composition of s.

Examples of compositions over \mathbb{Z}_{5}.
$(1,2,3,4)$ is a 4 -composition of 0 .
$(1,2,3,4,1)$ is a 5 -composition of 1 .

Compositions over finite fields

A composition of an element $\mathbf{s} \in \mathbb{F}_{q}$ with m parts is an m-tuple ($\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$) of nonzero elements of \mathbb{F}_{q} such that $\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{m}=\mathbf{s}$. Such a composition will also be called an m-composition of s.

Examples of compositions over \mathbb{Z}_{5}.
$(1,2,3,4)$ is a 4 -composition of 0 .
$(1,2,3,4,1)$ is a 5 -composition of 1 .
Let $c_{m}(s)$ be the number of m-compositions of $s \in \mathbb{Z}_{k}$. What is $c_{m}(s)$?

Compositions over finite fields

Since

$$
\hat{c}_{m}(n):=\left[z^{n}\right]\left(z+z^{2}+\cdots+z^{k-1}\right)^{m}
$$

is the number of all m-tuples $\left(x_{1}, \ldots, x_{m}\right)$ satisfying

$$
x_{1}+x_{2}+\cdots+x_{m}=n, \quad x_{j} \in\{1,2, \ldots, k-1\}
$$

we have

$$
c_{m}(s)=\sum_{n \equiv s} \hat{c}_{m}(n) .
$$

Compositions over finite fields

Since

$$
\hat{c}_{m}(n):=\left[z^{n}\right]\left(z+z^{2}+\cdots+z^{k-1}\right)^{m}
$$

is the number of all m-tuples $\left(x_{1}, \ldots, x_{m}\right)$ satisfying

$$
x_{1}+x_{2}+\cdots+x_{m}=n, \quad x_{j} \in\{1,2, \ldots, k-1\}
$$

we have

$$
c_{m}(s)=\sum_{n \equiv s} \hat{c}_{m}(n) .
$$

This sum can be evaluated using the "multisection formula".

Multisection formula

Multisection formula

Let $\omega_{k}=\exp (2 \pi i / k)$, and let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ be a generating function. Then

$$
\begin{aligned}
\sum_{\equiv s(\bmod k)} a_{n} z^{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(z \omega_{k}^{j}\right), \\
\sum_{n \equiv s(\bmod k)} a_{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(\omega_{k}^{j}\right) .
\end{aligned}
$$

A useful formula:

$$
1+\omega_{k}^{j}+\omega_{k}^{2 j}+\ldots+\omega_{k}^{(k-1) j}=k[j \equiv 0 \quad(\bmod k)]
$$

Multisection formula

Multisection formula

Let $\omega_{k}=\exp (2 \pi i / k)$, and let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ be a generating function. Then

$$
\begin{aligned}
\sum_{n \equiv s(\bmod k)} a_{n} z^{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(z \omega_{k}^{j}\right), \\
\sum_{n \equiv s(\bmod k)} a_{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(\omega_{k}^{j}\right) .
\end{aligned}
$$

Multisection formula

Multisection formula

Let $\omega_{k}=\exp (2 \pi i / k)$, and let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ be a generating function. Then

$$
\begin{aligned}
\sum_{\equiv s(\bmod k)} a_{n} z^{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(z \omega_{k}^{j}\right), \\
\sum_{n \equiv s(\bmod k)} a_{n} & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} A\left(\omega_{k}^{j}\right) .
\end{aligned}
$$

A useful formula:
$1+\omega_{k}^{j}+\omega_{k}^{2 j}+\ldots+\omega_{k}^{(k-1) j}=k[j \equiv 0 \quad(\bmod k)]$.

An example

The number of m-compositions of s over \mathbb{Z}_{k} is equal to

$$
\begin{aligned}
c_{m}(s) & =\sum_{n \equiv s(\bmod k)} \hat{c}_{m}(n) \\
& =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s}\left(\omega_{k}^{j}+\omega_{k}^{2 j}+\ldots+\omega_{k}^{(k-1) j}\right)^{m} \\
& =\frac{1}{k}\left((k-1)^{m}+\sum_{j=1}^{k-1} \omega_{k}^{-j s}(-1)^{m}\right) \\
& =\frac{1}{k}\left((k-1)^{m}+(-1)^{m}(k[s=0]-1)\right)
\end{aligned}
$$

An example

The number of m-compositions of s over \mathbb{Z}_{k} is equal to

$$
c_{m}(s)=\sum_{n \equiv s(\bmod k)} \hat{c}_{m}(n)
$$

$$
\begin{aligned}
& =\frac{1}{k}\left((k-1)^{m}+\sum_{j=1}^{k-1} \omega_{k}^{-j s}(-1)^{m}\right) \\
& =\frac{1}{k}\left((k-1)^{m}+(-1)^{m}(k[s=0]-1)\right)
\end{aligned}
$$

An example

The number of m-compositions of s over \mathbb{Z}_{k} is equal to

$$
c_{m}(s)=\sum_{n \equiv s(\bmod k)} \hat{c}_{m}(n)
$$

$$
=\frac{1}{k}\left((k-1)^{m}+(-1)^{m}(k[s=0]-1)\right)
$$

An example

The number of m-compositions of s over \mathbb{Z}_{k} is equal to

$$
\begin{aligned}
c_{m}(s) & =\sum_{n \equiv s(\bmod k)} \hat{c}_{m}(n) \\
& =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s}\left(\omega_{k}^{j}+\omega_{k}^{2 j}+\ldots+\omega_{k}^{(k-1) j}\right)^{m} \\
& =\frac{1}{k}\left((k-1)^{m}+\sum_{j=1}^{k-1} \omega_{k}^{-j s}(-1)^{m}\right) \\
& =\frac{1}{k}\left((k-1)^{m}+(-1)^{m}(k[s=0]-1)\right)
\end{aligned}
$$

Locally restricted compositions

A composition is called locally restricted if any d consecutive parts satisfy certain restrictions for a given positive integer d.

Locally restricted compositions

A composition is called locally restricted if any d consecutive parts satisfy certain restrictions for a given positive integer d.
Example d-Mullen compositions: the sum of at most d consecutive parts are nonzero.

Locally restricted compositions

A composition is called locally restricted if any d consecutive parts satisfy certain restrictions for a given positive integer d.
Example d-Mullen compositions: the sum of at most d consecutive parts are nonzero.
Example d-Carlitz compositions: there is no repeated part among any $d+1$ consecutive parts.

Locally restricted compositions

A composition is called locally restricted if any d consecutive parts satisfy certain restrictions for a given positive integer d.
Example d-Mullen compositions: the sum of at most d consecutive parts are nonzero.
Example d-Carlitz compositions: there is no repeated part among any $d+1$ consecutive parts. Locally restricted compositions over \mathbb{Z}_{k} can be modeled by directed walks in a digraph and then enumerated by the transfer matrix method.

Locally restricted compositions

A composition is called locally restricted if any d consecutive parts satisfy certain restrictions for a given positive integer d.
Example d-Mullen compositions: the sum of at most d consecutive parts are nonzero.
Example d-Carlitz compositions: there is no repeated part among any $d+1$ consecutive parts. Locally restricted compositions over \mathbb{Z}_{k} can be modeled by directed walks in a digraph and then enumerated by the transfer matrix method. In the following, ε_{s} denotes a distinguished copy of the empty sequence.

Mullen compositions defined by a digraph

Example 3-Mullen compositions over \mathbb{Z}_{k} can be defined using walks in the following digraph D. The vertex set is $V(D)=\left\{\varepsilon_{s}\right\} \cup \mathcal{R} \cup \dot{T}$, where \mathcal{R} is the set of all 3 -Mullen compositions of length 3 , and \mathcal{T} is the set of all 2-Mullen compositions of length less than 3.

Mullen compositions defined by a digraph

Example 3-Mullen compositions over \mathbb{Z}_{k} can be defined using walks in the following digraph D. The vertex set is $V(D)=\left\{\varepsilon_{s}\right\} \dot{\cup} \mathcal{R} \dot{\cup} \mathcal{T}$, where \mathcal{R} is the set of all 3 -Mullen compositions of length 3 , and \mathcal{T} is the set of all 2-Mullen compositions of length less than 3.

- There is no arc between vertices in \mathcal{T}.

Mullen compositions defined by a digraph

Example 3-Mullen compositions over \mathbb{Z}_{k} can be defined using walks in the following digraph D. The vertex set is $V(D)=\left\{\varepsilon_{s}\right\} \dot{\cup} \mathcal{R} \dot{\cup} \mathcal{T}$, where \mathcal{R} is the set of all 3 -Mullen compositions of length 3 , and \mathcal{T} is the set of all 2-Mullen compositions of length less than 3 .

- There is no arc between vertices in \mathcal{T}.
- There is an arc from ε_{s} to every vertex in \mathcal{R}.

Mullen compositions defined by a digraph

Example 3-Mullen compositions over \mathbb{Z}_{k} can be defined using walks in the following digraph D. The vertex set is $V(D)=\left\{\varepsilon_{s}\right\} \dot{\cup} \mathcal{R} \dot{\cup} \mathcal{T}$, where \mathcal{R} is the set of all 3 -Mullen compositions of length 3 , and \mathcal{T} is the set of all 2-Mullen compositions of length less than 3.

- There is no arc between vertices in \mathcal{T}.
- There is an arc from ε_{s} to every vertex in \mathcal{R}.
- There is an arc from a vertex $\mathbf{u} \in \mathcal{R}$ to a vertex $\mathbf{v} \in \mathcal{R} \dot{\cup} \mathcal{T}$ if and only if the concatenation $\mathbf{u v}$ is 3-Mullen.

Walks in a digraph

- The directed walks from ε_{s} to a vertex in \mathcal{T} give sequences of elements of \mathbb{Z}_{k} corresponding to 3-Mullen compositions over \mathbb{Z}_{k}.

Walks in a digraph

- The directed walks from ε_{s} to a vertex in \mathcal{T} give sequences of elements of \mathbb{Z}_{k} corresponding to 3-Mullen compositions over \mathbb{Z}_{k}.
- The (integer) weight of a composition $\mathbf{v}=\left(v_{1}, \ldots, v_{j}\right)$ is $|\mathbf{v}|:=v_{1}+\cdots+v_{j}$ (sum as integers).

Walks in a digraph

- The directed walks from ε_{s} to a vertex in \mathcal{T} give sequences of elements of \mathbb{Z}_{k} corresponding to 3-Mullen compositions over \mathbb{Z}_{k}.
- The (integer) weight of a composition $\mathbf{v}=\left(v_{1}, \ldots, v_{j}\right)$ is $|\mathbf{v}|:=v_{1}+\cdots+v_{j}$ (sum as integers).
- The weight of an arc $\mathbf{u v}$ is defined to be $z^{|\mathbf{v}|}$, and the weight of a walk is the product of the weights of its arcs.

The transfer matrix

The transfer matrix $T(z)$ is defined as follows. Its rows and columns are indexed by the vertices of \mathcal{R}.
The (\mathbf{u}, \mathbf{v}) entry of $T(z)$ is defined to be $z^{|\mathbf{v}|}$ if (\mathbf{u}, \mathbf{v}) is an arc in D; otherwise it is zero.

The transfer matrix

The transfer matrix $T(z)$ is defined as follows. Its rows and columns are indexed by the vertices of \mathcal{R}. The (\mathbf{u}, \mathbf{v}) entry of $T(z)$ is defined to be $z^{|\mathbf{v}|}$ if (\mathbf{u}, \mathbf{v}) is an arc in D; otherwise it is zero. The start vector $\boldsymbol{\alpha}(\mathbf{z})$ is defined to be the row vector whose $j^{\text {th }}$ entry is the weight of the arc from ε_{s} to the $j^{\text {th }}$ vertex of \mathcal{R}.

The transfer matrix

The transfer matrix $T(z)$ is defined as follows. Its rows and columns are indexed by the vertices of \mathcal{R}. The (\mathbf{u}, \mathbf{v}) entry of $T(z)$ is defined to be $z^{|\mathbf{v}|}$ if (\mathbf{u}, \mathbf{v}) is an arc in D; otherwise it is zero.
The start vector $\boldsymbol{\alpha}(\mathbf{z})$ is defined to be the row vector whose $j^{\text {th }}$ entry is the weight of the arc from ε_{s} to the $j^{\text {th }}$ vertex of \mathcal{R}.
Write $m=3 a+b$ with $0 \leq b \leq 2$,

The transfer matrix

The transfer matrix $T(z)$ is defined as follows. Its rows and columns are indexed by the vertices of \mathcal{R}. The (\mathbf{u}, \mathbf{v}) entry of $T(z)$ is defined to be $z^{|\mathbf{v}|}$ if (\mathbf{u}, \mathbf{v}) is an arc in D; otherwise it is zero.
The start vector $\boldsymbol{\alpha}(\mathbf{z})$ is defined to be the row vector whose $j^{\text {th }}$ entry is the weight of the arc from ε_{s} to the $j^{\text {th }}$ vertex of \mathcal{R}.
Write $m=3 a+b$ with $0 \leq b \leq 2$, and define the finish vector $\boldsymbol{\beta}_{b}(\mathbf{z})$ as the column vector whose $j^{\text {th }}$ entry is the sum of weights of all arcs from the $j^{\text {th }}$ vertex of \mathcal{R} to a vertex in \mathcal{T} of length b.

Exact and asymptotic results

Proposition Let $m=3 a+b$, with $0 \leq b \leq 2$. Then $\hat{C}_{m}(z)=\boldsymbol{\alpha}(z) T^{a-1}(z) \boldsymbol{\beta}_{b}(z)$ enumerates all directed walks of length m from ε_{s} to \mathcal{T},

Exact and asymptotic results

Proposition Let $m=3 a+b$, with $0 \leq b \leq 2$.
Then $\hat{C}_{m}(z)=\boldsymbol{\alpha}(z) T^{a-1}(z) \boldsymbol{\beta}_{b}(z)$ enumerates all directed walks of length m from ε_{s} to \mathcal{T}, and the number $c_{m}(s)$ of 3-Mullen compositions of s over \mathbb{Z}_{k} with m parts is given by

$$
\begin{aligned}
c_{m}(s) & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} \hat{C}_{m}\left(\omega_{k}^{j}\right) \\
& \sim \frac{1}{k} \boldsymbol{\alpha}(1) T^{a-1}(1) \boldsymbol{\beta}_{b}(1) \text { as } m \rightarrow \infty \\
& =\frac{(k-1)(k-2)}{k}(k-3)^{m-2} .
\end{aligned}
$$

Exact and asymptotic results

Proposition Let $m=3 a+b$, with $0 \leq b \leq 2$.
Then $\hat{C}_{m}(z)=\boldsymbol{\alpha}(z) T^{a-1}(z) \boldsymbol{\beta}_{b}(z)$ enumerates all directed walks of length m from ε_{s} to \mathcal{T}, and the number $c_{m}(s)$ of 3-Mullen compositions of s over \mathbb{Z}_{k} with m parts is given by

$$
\begin{aligned}
c_{m}(s) & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} \hat{C}_{m}\left(\omega_{k}^{j}\right) \\
& =\frac{(k-1)(k-2)}{k}(k-3)^{m-2}
\end{aligned}
$$

Exact and asymptotic results

Proposition Let $m=3 a+b$, with $0 \leq b \leq 2$.
Then $\hat{C}_{m}(z)=\boldsymbol{\alpha}(z) T^{a-1}(z) \boldsymbol{\beta}_{b}(z)$ enumerates all directed walks of length m from ε_{s} to \mathcal{T}, and the number $c_{m}(s)$ of 3-Mullen compositions of s over \mathbb{Z}_{k} with m parts is given by

$$
\begin{aligned}
c_{m}(s) & =\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{-j s} \hat{C}_{m}\left(\omega_{k}^{j}\right) \\
& \sim \frac{1}{k} \boldsymbol{\alpha}(1) T^{a-1}(1) \boldsymbol{\beta}_{b}(1) \text { as } m \rightarrow \infty \\
& =\frac{(k-1)(k-2)}{k}(k-3)^{m-2} .
\end{aligned}
$$

Locally restricted compositions over a finite abelian group

We note $\mathbb{F}_{q} \cong \mathbb{Z}_{p}^{r}$. Also a finite abelian group G is isomorphic to a direct sum $\oplus_{t=1}^{r} \mathbb{Z}_{k_{t}}$.

Locally restricted compositions over a finite abelian group

We note $\mathbb{F}_{q} \cong \mathbb{Z}_{p}^{r}$. Also a finite abelian group G is isomorphic to a direct sum $\oplus_{t=1}^{r} \mathbb{Z}_{k_{t}}$. Our results
extend to compositions over G by using multivariate generating functions with z_{t} keeps track of the $t^{\text {th }}$ component, and a multivariate multisection formula.

Locally restricted compositions over a finite abelian group

We note $\mathbb{F}_{q} \cong \mathbb{Z}_{p}^{r}$. Also a finite abelian group G is isomorphic to a direct sum $\oplus_{t=1}^{r} \mathbb{Z}_{k_{t}}$. Our results
extend to compositions over G by using multivariate generating functions with z_{t} keeps track of the $t^{\text {th }}$ component, and a multivariate multisection formula. Main Theorem Let $c_{m}(s)$ be the number of m-compositions of s in a class of locally restricted compositions over G defined by a digraph D. Under some aperiodic conditions on D, we have

$$
c_{m}(s)=A \cdot B^{m}\left(1+O\left(\theta^{m}\right)\right), \quad \text { as } m \rightarrow \infty
$$

where A, B, and $\theta<1$ are some positive constants.

Locally restricted compositions over a finite abelian group

Corollary Let $g:=|G|$ and

$$
g^{\underline{d}}:=g(g-1) \cdots(g-d+1) \text {. Then }
$$

- For d-Carlitz compositions,

$$
A=\frac{1}{g}(g-1)^{\underline{d}}(g-1-d)^{-d}, \quad B=g-1-d
$$

- For d-Carlitz weak compositions such that the first d parts are nonzero,

$$
A=\frac{1}{g}(g-1)^{\underline{d}}(g-d)^{-d}, \quad B=g-d
$$

- For d-Mullen compositions,

$$
A=\frac{1}{g}(g-1)^{\underline{d}}(g-d)^{-d}, \quad B=g-d
$$

Locally restricted compositions over a finite abelian group

The exponential growth rate B can sometimes be complicated.

- For the class of compositions over \mathbb{Z}_{4} such that the sum of any three consecutive parts is nonzero, we have

$$
c_{m}(s)=\frac{3}{8}(1+\sqrt{2})^{m}\left(1+O\left(\theta^{m}\right)\right), m \rightarrow \infty
$$

where $0<\theta<1$ is a constant.

Bijections

Bijection For each m-composition
$\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ over G, let $\mathbf{v}=\phi(\mathbf{u})$ be a (weak) m-composition defined by

$$
v_{j}=u_{1}+\cdots+u_{j}, 1 \leq j \leq m
$$

Then \mathbf{u} is d-Mullen if and only if $\phi(\mathbf{u})$ is d-Carlitz such that the first d parts of $\phi(\mathbf{u})$ are all nonzero.

Bijections

Bijection For each m-composition
$\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ over G, let $\mathbf{v}=\phi(\mathbf{u})$ be a (weak) m-composition defined by

$$
v_{j}=u_{1}+\cdots+u_{j}, 1 \leq j \leq m
$$

Then \mathbf{u} is d-Mullen if and only if $\phi(\mathbf{u})$ is d-Carlitz such that the first d parts of $\phi(\mathbf{u})$ are all nonzero. Corollary For each nonzero element $s \in G$, there is a bijection between d-Mullen m-compositions of s and d-Mullen m-compositions of 1 (the identity element of G).

Tables

m	$c_{m}(0)$	$c_{m}(0) / a_{m}$
11	5238	0.8602
12	16377	1.114
13	32196	0.9072
14	92133	1.075
15	194196	0.9388
16	524241	1.05
17	1156908	0.9596
18	3006279	1.033
19	6839406	0.9733
20	17332647	1.022
21	40234356	0.9824

Table: Comparison between exact counts and asymptotic counts $a_{m}=\frac{3}{8}(1+\sqrt{2})^{m}$ for compositions over \mathbb{Z}_{4} such that the sum of any 3 consecutive terms is nonzero.

Tables

s	m	1	2	3	4	5	6	7	8	9
10										
0	0	0	12	24	48	204	624	1680	5196	16008
1	1	3	6	21	69	192	573	1767	5262	15681

Number of 2-Mullen compositions over \mathbb{Z}_{5}.

m	2	3	4	5	6	7	8	9	10
0	4	24	88	320	1248	5120	20728	82284	326296
1	6	18	72	320	1284	5120	20232	81738	329064
2	4	18	88	320	1236	5120	20728	81738	326296
3	6	24	72	320	1392	5120	20232	82284	329064
4	4	18	88	320	1236	5120	20728	81738	326296
5	6	18	72	320	1284	5120	20232	81738	329064

Number of 2-Carlitz weak compositions over \mathbb{Z}_{6}.

Tables

s	m	2	3	4	5	6	7	8	9
10									
0	4	12	32	80	280	812	2572	6644	23460
1	4	6	34	82	284	748	2498	7372	21522
2	2	12	32	80	274	866	2266	7484	21642
3	4	12	16	136	224	820	2480	7384	21432
4	2	12	32	80	274	866	2266	7484	21642
5	4	6	34	82	284	748	2498	7372	21522

Table: Number of 2-Carlitz compositions over \mathbb{Z}_{6}.

