Permutations with special properties

Claude Grave

Let $n \geq 3$ be an odd positive integer. Based upon the properties of $\mathbb{F}_{2^{n}}$, I study the construction of a subset A of the symmetric group $S_{2^{n}}$. Every element in A has four interesting properties. The first property states that no more than $2 n$ bits are needed to describe a permutation in A. The second property states that the algebraic degree of all the n output boolean functions is $n-1$; an element of A takes $\left(a_{0}, \ldots, a_{n-1}\right)=a \in \mathbb{Z}_{2}^{n}$ as an input and produces an output $\left(\varphi_{0}(a), \ldots, \varphi_{n-1}(a)\right) \in \mathbb{Z}_{2}^{n}$ where φ_{j} is a boolean function for $j \in\{0, \ldots, n-1\}$. The third property states that every permutation in A has one cycle of length 2^{n}. The fourth property states the expected number of terms (products of the a_{i} 's) of the boolean functions φ_{j} for $j \in\{0, \ldots, n-1\}$ is $O\left(2^{n-1}\right)$. Every element in A is associated to some carefully selected irreducible polynomial $Q \in \mathbb{Z}_{2}[X]$ such that $\operatorname{deg}(Q)=n-1$, and to a polynomial $P \in \mathbb{Z}_{2}[X] \backslash\{0\}$. The polynomial P is called the perturbation polynomial. Any element $a \in \mathbb{Z}_{2}^{n}$ is canonically associated to $P_{a}(X)=a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}$. A permutation $F \in A$ such that $F(a)=b$ is defined through the sequence $a^{(j)} \in \mathbb{Z}_{2}^{n}$ for $j=0, \ldots, n$ such that (1) $P_{a^{(0)}}(X)=\left(P_{a}(X)+P(X)\right)^{-2^{0}}$, (2) $P_{a^{(j)}}(X)=\left(P_{a^{(j-1)}}(X)+P(X)\right)^{-2^{j-1}}$ for $j \in\{1, \ldots, n\}$, and (3) $b=a^{(n)}$. The set A may be connected to the set of primitive irreducible polynomials. The cardinality of A is smaller than $\frac{1}{n} \sum_{d \mid n} 2^{d} \mu\left(\frac{n}{d}\right)$ which is the number of irreducible polynomials of degree n. If characterizing such irreducible polynomials seems hard, then I wish eventually to show that the ratio of the cardinality of A and $\frac{1}{n} \sum_{d \mid n} 2^{d} \mu\left(\frac{n}{d}\right) \in O\left(\frac{2^{n}}{n}\right)$ is not zero asymptotically with respect to n or at least tends to zero very slowly for all practical purposes.

