Lecture 23: Datatase Management System

Last Day: Intraduction

- Database processing
- Data medils.
- Entixy-Relationship diagrams

Teday: Relatisnal Databases

- Rilctem:
- Implimintiong ER (liay, ans
- Kiys / Forsign $K_{(y)}$
- Pata Defingtion Lansi-agz (D)
- Data Manipulation Language (DDC)

Smith t Parnes, ch. 12.

Relational Databases

- In relational databases, entities and relationships ave repieserited with one construct: relations.
- A relation is a set of tuples.
- A tuple is an ordered sequence of values, $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
- A relation is generally stared on disk as a file of records, where epoch record is a tuple.

Observation

- Because a relation is a set,
- its tuples are not ordered;
- it contains no duplicate tuples.
- In contrast, in a file,
- records are ordered (ie, there is a first record, a second record, atc.)
- the sarnie record may appear many times (in different locations in the file).

Question: How de we impinasert entity-relationslif diagrams using relations?

Entity Relationship Diagram: Example

$$
\begin{aligned}
& \square \text { - Attributes } \\
& \square \text { - Entities }
\end{aligned}
$$

$$
\circlearrowleft \text { - Relationships }
$$

Implementing ER Diagroms as Relations

Observations

N:1 relationships are implemented as Field, called foreign keys.

- A foreign key identifies a record in another relation $(i$, It is a key for another relation.
- eg. In the student relation, the D\# field implements the "Majors in" relationship
- M:N relationships, like "Takes", are implemented as relations with two foreign keys.

Terminology

ER Model

Entity

Relationship
Attribute

Relational Model

Relation

Relation / Foreign key
Field

Observation

- Several fields together can form a key and be used to index a file.
- eg. We can build a B-tree (or hash function) For Student based on St\#.
- Likewise, we can build a B-tree Cor hash Function) for Takes based on the coricatenatir of St, C\# and Semester.
- In general, any nonempty set of fields can index a file.

High-Lavel Datatas: Languages

Relational datatase systems privide simple languoges for

$$
\begin{aligned}
& \left.\begin{array}{ll}
- \text { Creatinaj relations } \\
- \text { Indexing relations }
\end{array}\right\} \begin{array}{l}
\text { Duta Defination } \\
\text { Lanyrage (DOL) }
\end{array} \\
& \left.\begin{array}{rl}
- & \text { Querying relations } \\
- & \text { Urctating relation) }
\end{array}\right\} \begin{array}{l}
\text { Lanabiage (DML) } \\
\text { Laniation }
\end{array}
\end{aligned}
$$

Example: DOL Specification

Create Table Student:
St\# (Integer, No Null)
Name (Char (La))
D\# (Integer)

Create Table Dept:
D\# (Integer, No Null)
Name (Char (20))
Lac (Char (5))
Head (Char (20))

DDL Example (Cont.)

Create Table Course:
C\# (Integer, N: Null)
Name (Char (20))
D\# (Integer)

Create Table Takes:
St\# (Integer, $N_{i} N_{n} 11$)
C $\#$ (Integer, NoNall^{1})
Semester (Char (I), No Null)
Grade (Real)

Thias IDL commonds geverate the Following relational datobase sulima:

$$
\begin{aligned}
& \text { Stadert (St\#, Name, D\#) } \\
& \text { Dept (iH, Name, Loc, Had) } \\
& \text { Ccurs (C\#, Name, Sabject, DH) } \\
& T_{\text {akes }}(S t \#, C \#, \text { Sormeater, Crade })
\end{aligned}
$$

Date Base Instance (Relational Example)

Dept			Heme
659	$C S$	Lee	Head
223	Math	SS	Corneil
	Jones		

Takes	St	CH	Semester
298311695	164	F	
298311695	385	S	
298142362	164	F	
238431658	238	F	
79385729	158	S	
2438572%	385	S	

Data Manipulation Language (DML)

- Two basic operations:
(1) Selecting data from a given relation.
(2) Relating data in different rilo.ans
- The most important commercial DMC is SQL (Set Query Language).
- Syntax of $S Q L$:

Select fields
From relations

+ some frills.
where conditions

Single - Relation Queries

Example 1: Selecting Fields.
"Retrieve the Name and location of every department"
$\left.\begin{array}{l}\text { Select Name, Lie } \\ \text { From Dept }\end{array}\right\}$ SQL query
$\left.\begin{array}{c|c}\text { Name } & \text { Loo } \\ \hline \text { CS } & \text { SF } \\ \text { Math } & S S\end{array}\right\}$ query answer

Example 2: Selecting tipple's
"Retrieve the record for the math dept."

$\left.\begin{array}{l|l|l|l}\text { DH } & \text { Name } & \text { ic } & \text { Head } \\ \hline 723 & \text { math } & \text { ss } & \text { Jones }\end{array}\right\}$ query answer

Note: Both the input 4 output to an SQL query is a relation (ie, a table).

Example 3: Candbining tuple 7 field selection
"Retrieve the lead of the Math dept."

$$
\left.\frac{\text { Head }}{\text { Tones }}\right\} \text { query answer }
$$

Example 4: Combining tuple 7 Field selection
"Retrieve the Course \# and Kame of all courses about computers!"

Select CH, Name
from Course
where Subject $=$ 'Computers'.
$\left.\begin{array}{l|l}\text { CH } & \text { Name } \\ \hline 158 & \text { Programming } \\ 385 & \text { Computability }\end{array}\right\}$ Query answer

Malti-Relation (xuerve)

Example 1: "Retrieve the name of fall. student in the math dept."

Problem: Student data is in sue relation, while Dept data is in another relation

Solution: Fret, "join" the two relations together, to produce ire, large relation

Here is the jon of the strident and
Dept relations:

CH\#	Name	D\#	Name	Lac	Head
2998311695	Jim	659	CS	SF	Cornell
228142362	Camel	723	Md th	SS	Jones
219367183	Jean	659	CS	Sf	Corned
238431659	Alex	659	CS	SF	Cornell
243957296	Dave	723	Math	SS	Jones

A subtle point: Vie now have two fields called Name

To distinguish them, $S Q L$ uses Student. L'ame and Dept. Name

The following SQL query generates this "joined" table:

Select St\#, Student. Name, Di\#, Dept, Name, Lac, Head From Student, Dept where student. $D \#=D_{\text {pt. }}$ D\#

Specifies that tuples from Student 4 Dept with the came D\# value are to be joined together inter a single, long tuple

- Me de not have to write all this out, since we da not want the entire joined table.
- Instead, we specify only what we want (the vanes of d ll math students) as follows
 $\underset{\substack{2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 3 \\ 3 \\ 3 \\ 0}}{\substack{1 \\ 3 \\ \text { Carrel } \\ \text { Dave }}}$

