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ADDITIONAL MATERIAL ON HASHINGt

A SIMPLE TABLE-ASSISTED HASHING SCHEMES

The goal of the technique described here is to ensure that we can retrieve a record given its key with u sin-
gle uccess  to secondary storage. To achieve this we are willing to sacrifice  a bit on the efficiency of the
algorithm for inserting records into the file.

We shall assume that we can spare M 01 bits of main memory, where M is the number of buckets in
the !ile and I is the length of the key (in bits). This main memory space will be devoted to the storage of an
array (table) maxKey [0.44-l].  The table has one entry for each bucket of the file. In general, maxKey  [!I]
will contain the maximum key presently stored in bucket b.

We shall use a hash function to generate a probing sequence of buckets p(K, 1). p (K, 2), * * * ,
p (K, M) for each key K. Any of the open addressing techniques for generating such sequences can be used.
However, double hashing will probably give the best results because it avoids clustering more than linear
probing and pseudo-random probing do - and clustering will make insertions less efficient, especially
when the file starts getting full. As in open addressing, there is no overflow area:  all records will be stored
in one of the M buckets that were allocated for the file.

We want to arrange things so that when we are looking for a record with key K, we can use the fol-
lowing search procedure: Find the smallest i so that K 5 maxKey [p (K, i)]. The record with key K will be
in bucket p(K, i), if it is in the file at all. Note that the outlined search procedure involves only one access
to secondary storage - namely the access to bucket p (K, i). The calculations needed to determine i only
ne& information in the maxKey table which resides in main memory.

To make the above search procedure possible, however, considerable care must be exercised when
inserting new records to the file. Suppose we want to insert record R with key K. We first look in bucket
b =p (K, 1). If there is room in that bucket, we insert the record in bucket b, update marKey  [b] (if neces-
sary), and we are done. If there is no room in bucket b, we proceed in one of two ways:

Case (a): K is greater than the keys of all records presently in bucket b. Then (according to our
search criterion), R does not “belong” to bucket b. Thus, we try to insert R to bucket p (K, 2). If that
bucket is also full and K is greater than all keys stored there, we try bucket p (K, 3) and so on.

Care (b): There is a record in b whose key is greater than K. Then (according to our search cri-
terion) R “belongs” to bucket b. Since there is no room to insert R in b, we’ll have to purge another
record from b. In particular, we must purge the record with the maximum key presently in b, say
record R’. We replace R’ by R in b, we update maxKey [b 1, and finally we re-insert R’ to the file,
using the same procedure.
We now give (in pseudo-code) the algorithms for inserting a record and for finding a record given its

key. M denotes the number of buckets in the file and BF the blocking factor of the file, i.e. the number of
records that can fit into one bucket.

t Notes by Vassos Haizihxs.
$ Rud this rcctim  as an introductim totbe more soQbistic8ted technique describd in Seaion 5.3 of Smith and Barnes.
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INSERT(R)
if there are M*BF records in the file already then error (no room to insert R)
else

i := 1
loop

K := key of record R
b :=p(K.  i)
fetch bucket b into main memory
exit when b has an empty slot or b has a record with key K
ifK>maxKey[b]  theni:=i+l
else

let R’ be the record in b with key = maxKey  [b]
replaceR’byRinb
maxKey[bl := maximum of alI keys of records now in b
write bucket b back into secondary storage
R := R’
1 1* .-

eaiiif
end loop
if b has a record with key K then error (attempt to insert duplicate key)
else % bucket b has an empty slot

put R in bucket b
ifK>mxKey[b]  thenmarKey[b]:=Kendif
write b back into secondary storage

end if
end if

SEARCH(K)
1 1* .-
*tLp
exit when i > M or K I maxKey [p (K,  i)]
1‘:=i+l

end loop
if i > M then failure (no record with key K in file)
else

fetch bucket p (K, i) into main memory
if the bucket contains a record with key K then success (record found)
else failure (no record with key K in file) end if

end if

As a test of your understanding of the insertion algorithm explain why it is impossible for a situation
to arise, where the insertion of record R causes record R’ to be re-inserted, and the re-insertion of R’ causes
R to be re-inserted again.

Discussion: Even though searches are pretty efficient, the insertion of a record may require the insertion of
another record and so on. This “domino effect” may cause long sequences of insertions to be generated as
a result of a single insertion. This will be especially pronounced as the file gets full - why? This makes
this technique inappropriate if insertions to the file occur frequently. On the other hand, if search  operations
significantly outnumber insertions (as is the case in some applications), this is a gd technique to use.

Another problem with this method is the need for the main memory resident table. If the keys are
long (and there are many buckets in the file), M *I bits of main memory might be a bit much to be asking
for. There is a way around this problem. The main idea is to use the key of a record to generate (in a
pseudo-random manner) a short bit string, called the record’s “signature”. Rather than using the keys to
order the records that are hashed into the same bucket, we use their signatures. Thus, maxKey  [b] contains
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the maximum signature of all records stored in the bucket (which, consists of just a few bits). However,
there are some problems that must be ~solved: while keys are guaranteed to be unique, signatures are not
(i.e. different records’ signatures might collide). This creates problems because the signature stored in
marKey [b] must clearly differentiate between those records with greater signatures (and which cannot
possibly be in the bucket) and those with smaller (or equal) signatures (which will be in the bucket, if they
are in the file at all). The details of how this issue can be resolved are spelled out in Section 5.3 of Smith
and Barnes, which you are expected to read.

HASH FILE REORGANISATION

As slots get filled, collisions increase and the performance of hashing deteriorates, because an increasing
number of accesses are need4 to located a record.

The traditional approach to this problem is to reorganise the file when the load factor reaches a cer-
tain threshold value. This reorganisation,  called rehashing, involves the allocation of a larger number of
buckets to store the file and the re-insertion of the file’s records into the new, larger, set of buckets.
Because the number of buckets in the file has changed, the hash function used to decide where to store the
records of the file must also change.

Rehashing is a big job. Therefore (a) we should arrange things so that it doesn’t have to be done too
often and (b)  when it becomes unavoidable, we should try to do it as efficiently as possible. To achieve the
first  goal, we must be able to anticipate the future growth of a file, so that sufficient storage can be devoted
to it when the file is rehashed The second goal can sometimes be achieved by using the following method
for rehashing.

In our subsequent discussion we shall assume that we are using the division method for hashing.
Suppose that the old file contained M buckets, so that the hash function used was h(K) =K mod M.t When
we wish to reorganise the hash file, we allocate an additional M buckets, so that the new tile will contain
M’ = 2 M buckets. The new file will consist of the old M buckets (which will be buckers 0 through M -1 of
the new file) and the M newly allocated ones (buckets M through 2M -1 of the new file). In the new file we
shall use the hash function h’(K) = K mod M’ to determine the position of a record with key K. Notice that

Theorem: For any natural number K, K mod 2M is equal to either K mod M or to (K mod M) + M.

P~cx$:  By the fundamental theorem of arithmetic, we have that for some numbers q and r’, K = 2Mq +r,
where Osrc2M,  and for some numbers q’and r’, K=Mq’+r’,  where OIr’cM.  Thus, 2Mq+r = Mq’+r’
and therefore r = M (q’-2q)  + r’. But since 0 5 r c 2M and 0 I r’c M, it must bc that q’-2q is either 0 or 1;
and therefore, r = r’ or I = r’+ M, as wanted Cl

The significance of this for the issue at hand is that when we rehash, the records that were in bucket i
in the old file, will be distributed between exactly two buckets in the new file, namely buckets i and i+M; in
other words, some records that were in bucket i need not be moved at all, and those that have to be moved
must all be moved to the same place. This makes it possible to do rehashing fairly efficiently, keeping at
most two buckets in main memory at any time and not needing to bring to main memory any bucket of the
new file more than once. We could express the rehashing algorithm in pseudo-code as follows.

SupposethatthefiIetobereorganisedpresentlyhasMbuckets,O,l,  ***,M-1.
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REHASH
Allocate M new buckets for the file (buckets M, M+l, - . * ,2M - 1)
for i: O..M-1  do

fetch buckets i and i+M  to main memory
for each record R in bucket i (and any overflow  records that belong to 11 do

K := key of record R
ifKmod2M=KmodMthenleaveRinbucketi
else move R to bucket i+M end if

end for
write buckets i and i+M  back to secondary storage

end for
M:=2*M

LINEAR HASHING

One of the disadvantages of the rehashing technique described above is that it is very inflexible regarding
the size of the new file: it murf  have twice as many buckets as the old file. This is a fairly drastic change in
the size of the file.  I.&W  hashing (not to be confused with the collision resolution technique we called
“linear probing*‘) is a method that avoids this problem by providing a smoother growth in the size of the
file: the file now grows a bucket at a time. In addition, this growth is incorporated into the insertion algo-
rithm - so that linear hashing completely eliminates the need for rehashing, at the expense of slightly
slower insertions. As in the previous section we are assuming that we use the division method for hashing,
thatis,h(K)=KmodM.

The overall organisation of the hash file is illustrated in Figure 1. The file consists of a primary area
and an overflow area The primary area consists of a number, say M, of buckets called the home buckets
and some additional, up to M, buckets, called the new buckets. The overflow area consists of a number of
slots. Each bucket in the primary can hold up to BF records and a pointer to an overflow area slot; each
overflow area slot can hold one record and a pointer to another overflow area slot.

overflow

primary

Figure 1

Initially, there are only the M home buckets in the primary area (no new buckets exist, yet). When a
bucket overflows, the records that cannot be accommodated in the bucket are stored in the overflow area,
forming a chain whose head is the pointer of the bucket So far, what we have described is simply hashing
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with record chaining for collision resolution. Now comes the extra twist of linear hashing. Whenever a
bucket overflows for the first time, a new bucket is added to the end of the primary area of the file. Sup-
pose this is the irh new bucket to be added (i.e. there are i buckets that have overflowed); thus, it is bucket
M + i of the file. This new bucket is used to split the ith home bucket. Let’s call buckets i and M + i bud-
dies of each other. Splitting a home bucket involves the distribution of its records between itself and its
buddy as in the rehashing technique described previously. Namely, a record with key K stays in the home
bucket if K mod2M  =K modM and goes to the home bucket’s buddy otherwise (i.e. if
Kmod2M=(KmodM)+M).

Note that a new bucket is created every time a bucket overflows. However, the home bucket chosen
to be split might not be the same as the one whose overflow caused the split. This is because the order in
which buckets overflow is not predetermined, while the order in which they are split is. Thus, a split might
not help alleviate the problem that caused it - in particular, it may result in the splitting of a bucket that is
way underfilled. The question then arises: Why bother splitting such a bucket? The answer is that it helps,
in the long run. The overflow of a bucket indicates that the load factor of the hash table starts getting high.
Thus, more buckets must be allocated to reduce the load factor. This is exactly what linear hashing does.
By the way, the name “linear hashing** comes from the (Linear)  ordering according to which the home
buckets are split: tist bucket 0, then bucket 1 and so on.

Suppose now we are looking for a record with key K. If the record’s home bucket h (K) =K modM
has been split, the record might be in bucket K mod M or in its buddy, bucket (K modM)  +M. How do we
know where to look? Of course we could look in both places, but it turns out there is no need to do so. A
simple caIculation wilI  tell us in exactly which of the two buckets a record with key K will he (if it is in the
file at alI): SpecificaIly,  if K modM = K mod 2M,  then the record is in the home bucket K mod M; otherwise,
the record must be in the home bucket’s buddy, i.e. bucket (K mod M) + M. For this to work properly we
must take similar action when inserting a record whose home bucket has been split. Suppose K is the
record’s key, so that its home bucket is K modM. If this has been split, we must decide whether the record
should go to the home bucket or its buddy. We use the same criterion: If K mod 2M = K mod M the record
stays in the home bucket (or its overflow atea, in case that bucket has overflowed); othenvise, the record
goes to the home bucket’s buddy, (K mod M) + M, (or the buddy’s overflow area).

After all M home buckets have been split, we have a file with 2M buckets. We now start over the
cycle of splitting, considering the 2M buckets as the home buckets, and adding new ones at the end. That
is, we split buckets 0, l,..., 2M-1 in that order. When bucket 2M-1 is split we have a file with 4M buckets;
the whole cycle is then repeated again. In effect, eveq time the number of buckets doubles with respect to
the “original” M home buckets, we take the resulting 2M buckets as the home buckets, and start over
again.

Below we give the insertion algorithm for linear hashing in pseudocode. We use a variable
nexfSpfit  to indicate the next bucket to be split Initially,  nexrSpZir  is set to 0. M indicates the number of
home buckets in the file. Thus, the actual number of buckets in the file at any time is M + nextSplit.  One
detail that is not spelled out in the pseudo-code below is that when a bucket is fetched into main memory,
we assume that all overflow records from the bucket are also  fetched; similarly, when a bucket is written
back into secondary storage, if there axe more records to be stored in the bucket than can be accomodated,
the extra records are chained together in the overflow area with a pointer extended from the bucket to the
head of that chain. With these conventions in mind we have:

/
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lNSERT(R)
K := key of record R
b:=Kmod2*M
ifb>M+netiSplit-1  thenb:=b-Mendif
if bucket b (or its overflow chain) contains a record with key K then
error (attempt to insert duplicate key)

else
if bucket b is not full then
insert R into bucket b

eke
put R in the overtlow chain for bucket b
ifR was the first record to cause overflow of b then
allocate a new bucket at the end of the file (this becomes bucket nexzSplit  +M)
fetch buckets nexzSplir  (with its overflow records) and nexzSplir  + M into main memory
for each record R’ in bucket nedplit  do % split bucket
K’ := key of R’
if K mod M = K mod 2*M  then leave R’ in ntdplir
else move R’ to nextSplit  + M end if

end for
write buckets nextSplit  and nextSplit  + M back to secondary storage
nexGplit  := nextsplit  + 1
if nexdplif  = M then % all buckets of “original” file were split
M := 2*M
nextSplit  := 0

end if
end if

end if
end if

The algorithm to find a record given its key K is given in pseudo-code below:

SEARCH(K)
b:=Kmod2*M
ifb>M+nexdplit-1  thenb:=b-Mendif
fetch bucket b in main memory
if record with key K is found in 6 (or its overflow  area) then success
else failure end if

BLOOM FILTERS

A Bloom filter is a nifty trick, based on hashing, used to avoid unnecessary searches in a differential file.
Recall  that differential files are used to (temporarily) store records that were recently “inserted” to a mas-
ter file. If a differential file is used, to search for a record given its key,

1. We must search the differential file (sequentially). If the record is found, we are done; if the record is
not found we must then

2. Search the master file (possibly using binary search). If the record is not found in the master file
either, then we know that no record with the given key is stored in the file.

Step (1) is somewhat inefficient because it requires the sequential search of a file. A Bloom filter sup-
plies a test which allows us to determine whether the differential file contains a record with a given key,
without the need to search the file, or otherwise access secondary storage. The outcome of the test is either
“No” (there & no record with the given key in the differential file) or “Maybe” (with very high probabil-
ity, a record with the given key exists in the differential file). In the former case, the differential file need
not be searched; in the latter case, it must be searched and most of the time a record will be found. How-
ever, there wiI1 (rarely) be “false alarms”, i.e. situations in which the test says “Maybe” but in fact there

c
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is no record with the given key in the differential file.

Let us now SG how all this is achieved. The idea is to use some number of t different hashing func-
tions

h,,hz, - -- ,h,:KEYS-+(O,  1, .yM-1)

where M is some number (any number will do, but the larger M, the more effective the Bloom filter will be,
as we shall see). There is also a “bitmap” of size M, i.e. an array B [O.&f--1  ] of M bits, stored in main
memory.

When the differential file is empty, all bits of B are 0. When a new record with key K is inserted to
the differential file, we set bits hl (K), h2(K),  . - - , h,(K) of array B to 1. When the differential file is
searched for a record with key K, we first test the values of bits h 1 (K),  h,(K), . . . , h,(K) of array B (doing
so does not require access to secondary storage). If any of these bits is 0, then surely the record is not in
the differential file (for if it were, all of these bits would have been set to 1) - so the outcome of the
Bloom filter test is “No”, in this case. If all of these bits are 1 then the record might be in the differential
file - so the outcome if the Bloom filter is “Maybe’*, in this case. Such a record might not exist in the
file, however, because there may exist t (not necessarily distinct) records with keys K, , K2,  l . . , Kl in the
file, such that hi(K) = hi(Ki),  for all 1 li It. This situation (which is a generalisation  of a collision in hash-
ing) is called afiltering  error (or, as we called it above, a false alarm).

An effective Bloom filter must have a very low probability of filtering errors. This probability
depends on the following factors:
0 the size M of the bitmap (the larger M, the smaller the probability of error);

0 the number of hash functions (if there are toO few or too many, the probability of error will increase
- why?);

0 the effectiveness of the hash functions themselves (they should produce as independently random
values as possible).


