University of Toronto Computer Science 228

NOTES ON FILE SYSTEMS+

A file system is a service provided by the operating system (OS). Minimally, such a system allows users to
create, read, write and delete files. Usually OS's support more operations on files, such as editing, copying, renam-
ing files etc.

First we'll discuss file systems in general, without reference to any particular OS. Later we'll look in more
detail into the Unixt file system.

In our discussion we' Il assume (as modem OS's do) that files are stored on disk (or similar storage device),
rather than cm tape.

Disk space is organised into cylinders (all tracks with the same radius from the center). A cylinder is
comprised of anumber of surfaces (two for each platter on the disk). Each track of a cylinder is further subdivided
into blocks. Individual blocks are the units of transfer between main memory and secondary storage. Thus, disk
address space may be viewed as a 3-dimensional array, where item (i, j, A) is the kth block on the jth surface of the
ith cylinder. .-

File systems abstract this structure of disk address space and view it asalong linear (I-dimensional) array of
blocks. If each cylinder has s surfaces and each track has b blocks, then block (i, j k) in the 3-dimensional view of
thedisk, istakento bethe (k + j- b + i -b-s)th entry in the one-dimensional view of the disk. In effect, the linear
array consists of al the blocks of thefirst cylinder (i.e., all the blocksthe first track of the first surface, then the first
track of the second surface, «--, then thefirst track of the last surface); following are the blocks of the second
cylinder (in the same order) and so on. Notice that blocks within the same track and tracks comprising the same
cylinder are contiguousin thisarray.

The one dimensional view of disk space is convenient because it sSimplifies the space management problem.

SPACE MANAGEMENT b

Thefile system must somehow manage the linear array of blocks. In particular it must:
. Keep track of the blocks not used by any file (the set of such blocksis caled the free pool, or free list).
. Allocate space for afile, when a user creates that file.
. Return to the free pool the space alocated to afile, when that file is deleted.

There are three principal methods of space alocation: segmented dlocation, linked allocation and indexed
allocation. Before describing these, let’ s first consider the question of how to keep track of the free poal.

Managing the free pool
There are several techniques for keeping track of the disk blocksthat are free. The main are:

1. Linked list of free blocks: All free blocks are linked together to form a list. A special location is used to store a
pointer to the first block in that list. We may also keep there the length of thelist, so that if a user requests k blocks
for afile, the file system can tell whether it can satisfy the request without having to traverse the entire list. (Note
that traversing the list is time consuming since moving from one block to the next requires adisk access.)

2. Linked list of segments: A segment is a set of contiguous blocks (i.e. blocks that are successive in the linear
array). A free segment is a segment consisting entirely of free blocks. Instead of linking together individual free
blocks we link together entire free segments. In each segment we store its size (the number of blocks it consists of)
and apointer to the next free segment. In addition, a pointer to the first segment in thislist is kept in a special loca-
tion, (This method is used in conjunction with the segmented allocation technique, discussed below.)

+ Notes by V. Hadzilacos.
+ Unwx is a trademark of AT&T Bell Laboratories.

.
[3]
‘

3. Bitmap: We keep an array of as many hits as there are blocks. Bit: is off if and only if block i isfrec.

Segmented allocation

In this allocation technique, the free list is managed by using the linked list of segments (¢f. 2 above). Initially
(when all blocks are free) the free list consists of a single segment that encompasses al blocks.

When afileis created, a segment consisting of some fixed number of blocks is allocated for it. Thus, the tie
creation request must specify the size of the file to be created, so that the needed number of blocks can be alocated

Suppose a user has requested the creation of ak-block file. The file system scans the free list to find some seg-
ment S of at least k blocks. It then removes S from the free list and breaks it into two pieces: Sy, of k blocks, is allo-
cated for the user’s file; the remainder, S 5, is returned to the free list.

An interesting question is, how to choose S in the event the free list contains several segments of size at least
k. There are severa policies one might use. Most popular are:

1. First fiu: Choose the first segment S of size at least k inthe freelist.
2. Best fit: Choose the smallest segment S of size at least k in thefree list.

There are other possibilities too. No known strategy is superior to al othersin all cases. As a matter of practi-
cal interedt, first fit is the one most commonly used. (Among other advantages, note that it does not require the sys-
tem to scan the entire free list; we can stop as soon as the first “big enough” segment is found. On the contrary, to
determine the block that “best fits’ arequest, the entire free list must be scanned.)

When afile is deleted, its alocated segment is return4 to the list of free segments. If one or both adjacent
segments are aso free, the file system will consolidate them into asingle, “large” free segment.

Advantages:
1. Maintains physical contiguity of blocks belonging o the samefile, thereby minimising time spent on seeks.

2. It is very easy to directly access the ith block of afile. Thus, this alocation policy is suitable for direct file
access.

Disadvantages:
1. Vey inflexible: Can't increase ‘the size of a file dynamically.

2. Spaceiswasted for two reasons:. (a) the maximum number of blocks a file might need must be allocated, even
if that maximum size has not been reached yet; and (b) external fragmentation (there may be enough space to
fit a new record, but none of the free segments by itsdlf is big enough).

Linked allocation

The blocks of a file are linked together. Successive blocks of the file are not necessarily physically contigu-
ous. Thisisillustrated in the diagram below.

FAN |Fa T Fa

Advaniages:

1. Noexterna fragmentation problems.

2. Sizeof afile can change dynamically.

3. Canmodify afile by writing only the affected blocks (no need to copy the entire file).
Disadvantages:

1. Can'tdirectly accesstheith block of afile (the previous blocks must be accessed sequentially). Thusthis
alocation method is not useful for direct files.

-3-

2. Seguentia file processing may require wild seeks, since blocks of the same file are not (necessarily) physi-
cdly contiguous.

Space must be reserved for pointersin each block If the block size is small then the fraction of space devoted
to pownters could be significant

(W8]

Indexed allocation

For each file we keep an index of the blocks used by that file. The index is alist of pointers, the ith of which
points to the ith block in the file. Thus, instead of block pointers being embedded in the blocks of the file (asin the
linked allocation method), the pointers are al kept together, in one place (the index).

The index itself is kept as a separate block, the index block. The System keep one such block for each file.
Thistechniqueisillustrated by the following diagram.

index biock for F

IR F.1 F.3 F.2 F.4L

So, to find where the ith block of file Fis, we simply look up theith pointer in F’s index block In particular, it is not
necessary to scan thei first blocks of afile, as isthe casein the linked allocation method

A natural question is: what do we do if the number of blocks in afile exceeds the number of pointers that may
be kept in a block? The solution is to have a multi-level index. That is the index blocks contains pointers to blocks
that have pointers to blocks . . . that have pointers to the file's data blocks. Asit turns out, a 3-level index (root and
two more levels) is sufficient for most cases. Unix uses a similar method, to be described in more detail later on.

Advaniages:
1. Noexterna fragmentation.
2. Thefile may be mexlified by changing the index and the affected data blocks (no need to copy the entire file))

3. It is relatively easy to locate the ith block of afile. In particular this can be done without sequentially access-
ing al previous blocks. Thus this method can be used for direct access.

Disadvantages:
L Space must be devoted to ihe index block(s).
Physica contiguity of the blocks in the same file is got guaranteed.

Corupared to segmented allocation, finding the ith block¥§ afile is more time consuming. (A simple calcula-
tionis sufficient in segmented allocation; accessing index blocks is required in indexed allocation.)

w e

~
)

"

FILE DIRECTORIES

A file system keeps track of its files and other relevant information in a structure caled a file directory. Each
fileis described by adirectory entry that contains information such as:

o The symbolic name of the file (the name given by the user).

. Information on how to locate the file. This depends on the allocation technique. For instance, in segmented .
alocation or linked alocation, a pointer to the first block of the file may be given; in indexed allocation a
pointer to the (root) index block may be supplied

. The size of thefile.
. Access information: Who and when last read/wrote the file?

. Ownership and access privileges: Who owns the file? Who can read/write the file?

The tile directory must be kept on disk because it is too large and because it must survive crashes, system
shutdowns etc. Thus, the directory itself must be kept in one or more files.

On the directory file(s) we want to perform the following operations: insert an entry (when afile is created);
delete an entry (when afile is deleted); modify an entry (when afile is accessed, its access privileges are changed
etc.); and display all entriesin the directory.

It is imperative to be able to perform these operations extremely efficiently because the directory entry for a
file must be consulted and/or modified for every single operation on that file. The desired efficiency is usually
achieved in the following manner:

. The system maintains an Active File Table (AFT) in main memory. When a user opens afile F, the file sys-
tem finds the directory entry for F and inserts it to the AFT. It then returns to the user a pointer to the AFT
copy of F'sdirectory entry. From that point on, the user refers to the opened file, not by its name but rather
through the AFT pointer supplied by the file system.

. When the user performs an operation on F that requires changing infc rmation in the directory entry (e.g.
because the size of the file was changed), it is the AFT, not the disk, copy of F's directory entry that is
modified. When the file isfinally closed, the AFT entry (as possibly modified by the operations the user per-
formed on the file while the latter was open) is written back to disk.

In this manner, the directory entry that describes a file resides in main memory (in the AFT) while a user is operat-
ing on that file.

FILE DIRECTORY STRUCTURES

It is possible to have a single directory that contains all the files in the system. This, however, isonly practical
in very small, one-user environments. The main problem is that it does not allow multiple users to use the same
name for different files. For example, only one file called “temp” could exist in the entire system. However, in any
multi-user system, virtually all users have a filethey'd like to call *‘temp**!

A simple solution to this problem is to give each user a separate directory. Then different users can call different
files by the same name — aslong as these files are in different directories. To refer to one's own files, one can use
just their names. To refer to another user’s file, one must specify both the user’s name and the name of the file in

question.

Tree-structured directories

A more generd and flexible aternative is to give a hierarchical (tree) structure to the file system. When a
user is registered in the system (obtains an account), s/he is assigned a directory. Within that directory the user can
store files and/or create subdirectories. A subdirectory is just like 2 directory: its owner can put files and/or other
subdirectoriesiniit.

Thus, we can imaginethe entire file system as atree, where the leaves correspond to filesin the system, while
the internal (non-leaf) nodes are directories. A fragment of such atree structured directory isillustrated in the figure
below, where directories are shown as circular nodes and files as square nodes.

To name a directory or file in such atree, one must specify the (unique) path from the root to the node that
corresponds to that directory or file. Since this is inconvenient, file systems that employ this type of directory struc-
ture Use the concept of “working directory”. At any time a user is assigned a “working directory”. The user can
then specify files by giving their names relative to her/his present working directory, rather than their full path
names.

Generalised directory structures

Sometimes it is useful to allow different users to share common files. For example, two programmers wak-
ing on the same programme should share the file(s) that contain that programme. For the same reason, it is useful to
alow users to share directories. (In the rest of this handout, we'll use the term “file” to mean “directory or file”,
unless otherwise specified.)

Such sharing isimpossible if the files are structured in the hierarchical way described previoudly. Thisis clear
by the properties of trees: if afile is within one user’s directory, it can't smultaneously be in another user’s direc-
tory too.

Of course, it is possible to store copies of the samefilein directories of different users. But thisisnot the
same as sharing a common file: for one thing, more storage is needed to have many copies of a single file; more
significantly, if one copy of afile is changed, the modification is not carried to the other copies, while if anyone
changes a shared file, al other users of the file will automatically “see” the change.

A common solution to this problem is to allow users to create links to other files. A link is a pointer to afile,
There are two kinds of links:

o hard links, which specify the actual location of afile; and

o symbolic links, which specify the (full path) name of the file, using which the file system can determine the
location of thefile.

When auser creates alink, an entry for that link is made in the user’s present working directory, asif anew file had
been created.

The figure below illustrates afile system in which users can create links. A link is drawn as a broken node
from which emanates a broken edge. The node contains the name of the link and the edge indicates the file to which
the link is pointing.

Note that a link may be pointing to another link. This engenders the possibility of cycles in the directory structure.
For instance, in the figure we have file “here” pointing to file “there” and file “there’ pointing to file “here”.
This is a meaningless situation: what would it mean to print file “here” or “there’? Aswe'll seg, cyclesin the
directory structure are abig hasse.

The fact that files can be shared by the use of links implies that there are multiple ways of referring to the
same file. For instance, in the file system shown above, the path names (root, u, fred, csc 228, grades) and
(root, u, cupid, grades),t refer to the same file. Let’s call references to afile all the different names for that file.

Consider a file with two references, say R ;and R ; and suppose a user issues the command “Delete fileR .
There are two possible interpretations for such a command:

(@ Forget about this file (and both its references).
(b) Forget about reference R | (but the file can be gtill accessed using referenceR 3).

It turns out that usually the proper meaning is (b), and that's what most systems that allow for multiple references
take the meaning of deletion to be. The problem isthat the file system must be able to tell when the last reference to
afile has been removed. In that event, it should return to the free pool al the space alocated to the file.

A simple solution would be to maintain, for each file, the number of references to it. This number is called the
reference counter (for that file). Whenever a new referenceto afileis created, the reference counter is incremented;
whenever a reference to the file is deleted, the reference counter is decremented. If the reference counter should
ever become zero, the space allocated to that file is returned to the free pool, as no references to the file remain.

Unfortunately this simple solution does not always work. Thisis because if cycles can be formed, it's possible
that some files have no references to them, yet their reference counters are non-zero. For instance, in the last figure,
the reference counters for files “here” and “there” are 2. If we delete references (root, u, fred, csc 228, here) and
(root, u, fred, there), the two files are not accessible (there are no proper path names for them), yet their reference
counters are 1, not O!

In principle, it is possible to make sure that cycles are not allowed to be formed. Each time a user triesto
create alink, we can check whether the link would cause a cycle to be formed If so, an error message could be
returned to the user; otherwise the link would be created. This can be done because the directory can be viewed as a
directed graph (see the figure above) and there are agorithms for detecting cycles in a graph. Unfortunately, how-
ever, doing so is considerably expensive, so most file systems do not attempt to prevent cycles.

Another way of dealing with the problem of returning space to the free pool is to not bother until we have to.
That is, until a user needs space for afile but the free pool does not have enough room. At that time, the file system
starts aspecial procedure, called garbage collection. The task of this procedureisto find all the disk blocks that are
not allocated to any file (that can be referenced), and return these blocks to the free pool.

1 In Unix notation these path names would be: **/u /fred /csc 228/grades’” and **/u /cupid /grades", respectively.

INbrief outine, garbage collection works as follows. Each disk block has a special bit, used by the system for
garbage collection purposes only. When the bitis zero, the block 1s unmarked; otherwise, it is marked. Initially, the
garbage collection procedure makesall blocks unmarked. Then it examineseach file in the directory and marksiits
blocks. When this is done, the only blocks that are s'ill unmarked are those that are not allocated to any file. These
blocks can therefore be returned to the free pool. It should be clear that garbage collection is a very time-consuming
Operation.

A good practical Solution combines the reference counter technique and garbage collection. Cycles in the
directory structure are fairly rare and thus the reference counter technique will succeed in returning unused blocks to
the free pool most of the time. Periodically (e.g. once a week, during a time that the system is not heavily used) the
system runs the garbage collection procedure to collect any unused blocks that the reference counter method failed
to return.

ACCESS CONTROL

Another important function of the file system is to protect files from unauthorised access.
Each user has a certain set of access privileges relative to afile. Possible access privileges are;
. The ability to read thefile.
o The ahility to write thefile.
o The ability to append to the file (special case of previous).
. The ability to execute the file (that contains executable code).
. The ability to grant access privileges to other users for the file.
. The ability to revoke access privileges from other users for thefile,

In general, we can & scribe the access privileges of users by means of atable with rows corresponding to
users and columns corresponding to files. Entry (i, /) in the table contains the list of access rights that the user in
row i has for the file in column j. This table is known as the privilege matrix (or access control matrix). An €Xam-
ple of such atable is shown below:

w lib grades [asgnl.t
user

read read

fr ,
ed write | write g
read
cupid | read read
append
read
a228stu| read 4 _
write

The privilege matrix is quite large and most of its entries are empty. It istherefore inefficient to store it in the
matrix form presented above. There are two common methods for storing the information contained in the privilege
matrix:

1. Store the information with the files. In particular, for each file F we have alist containing (a) the users that
have some access privilege(s) for £; and (d) for each such user, the set of privileges s/he has for F. The list is
usually stored at the directory entry for F. When user U makes a request to perform an operation on file F, the
file system checks that U isin the list for F and that U has the access privilege needed to perform the
requested operation. If so, the system performs the operation; otherwise it returns an error message. This is
the access fist approach to file security.

-8-

2. Storethe privilege information with the users. Associate atoken, calied a capability with each (file, privilege)
combination. A user U who isto have privilege P onfile F is given the capability (F, P). When U wantsto
perform an operation on F, she must present the (F. P) capability to the system. The system will perform the
operation only if it is presented with such a capability and P is the privilege needed for performing the opera-
tion; otherwise it will return an error message. This is the capability approach to file security.

The following analogy is auseful way of conceptualising the difference between these two approaches. To
protect afile, we build awall around it, and put adoor in the wall. |n the access list approach, we post aguard to the
door. The guard has alist of the people who are allowed to enter. A person requesting entry is allowed in only if
s/he is on the guard's list. In the capabilities approach, we put a lock on the door and distribute keys to those who
should have access to the file. Thereis no need for aguard only people with keys can enter.

From this analogy it is easy to see the advantages and disadvantages of the two methods:

Entering through thedoor: istime consuming in the access list approach, because the guard must check the
list; it is fast in the capability approach, because no checking of any sort is needed: the key allows direct
entry.

Grunting and revoking access: is very easy in the access list approach: one has only to change the guard'slist.
It's difficult in the case of capabilities because the file system must find the users to give or take away keys.

To appreciate this last point consider the following scenario: Alice grants an access privilege to Bob; Bob further
grantsthat privilegeto Carol. Now, if Alice revokes Bob's privilege. Carol’s privilege should also be removed
(since she only has it be virtue of Bob's having it and Bob just lost the privilege). But Alice does not know that
Carol has the privilege — she must rely on Bob's remembering that Carol has it and being kind enough to tell Alice
about it Clearly, implementing such a policy requires a substantial amount of bookkeeping.

A good practical solution is obtained by combining the two approaches. More specifically, the system main-
tains an access list. When user U opens file F for reading or writing, the file system checks once the access list to
make sure the user has the appropriate privilege. |If so, it returns a capability to the user. The user can use this capa-
bility for subsequent accesses to the file, so that the file system does not have to check over and over again if the
user has the privilege to access the opened file. This capability can be viewed as a temporary key: it will be good
until the fileis closed. At that time the lock will change and the user effectively loses the capability (until s/he
opens the file again). This “key” is usually implemented as a pointer to the AFT entry of the file being opened,
together with an indication whether the holder of the key (pointer) can read or write thefile.

A situation one must consider in this solution isthat a user’s privileges to afile may be revoked while the user
isstill in possession of the temporary capability. For this reason, when a user's privileges to afile are revoked, all
“temporary keys' given to that user for the file must be destroyed.

Non-discretionary access control policy

In the access control methods discussed so far, the owner of afile controls the granting and revoking of access
privileges to that file. Such methods are called discretionury. A non-discretionmy method is onein which granting
and revoking of access privileges to afile is controlled by the system, not any user. Such methods are used in
environments with high standards of security — military establishments, government agencies, certain aspects of
business etc.

Following is a description of the non-discretionary access control scheme used by the US Department of
Defense. Each file is assigned a security classification defined as a pair (L, C) where L is called the level and C the
category of the security classification. The level has one of the following values, ordered as indicated:

unclassified < confidential < secret < top secret

The category is a set of user groups. Each user is also assigned a security classification (or “clearance”) —i.e. a
(level, category) pair.

If (L, C) and (L’,C") are security classifications we write (L, C) 2 (L', C) (read: (L, C) is at least as strong as
(L, CYif L2 L and C supset C' (recall that C, C’ are sets of user groups).

The access control method consists of two rules;

® The read up rule: A user with security classification (L,.C,) can read a file with security classification

-9-

. The writedcan rule: A user who has access to a file can't copy the file into another with weaker
classification So a user with access to a file can’'t compromise the security of the file indirectly, by making a
copy of the fiiz available to other users with weaker security clearances.)

SOME ASPECTS OF THE UNIX FILE SYSTEM

In this sectior. we concentrate on the file system of the Unix operating system. In no small measure, the suc-*
cess enjoyed by Unix, is owed to its very well designed file system.

In Unix, disk space is alocated using the indexed method. Each file is described by an index block, called
inode in Unix parlance. The (approximate) information stored at an inode is illustrated below.

name

owner, privileges

file type

reference coumtar

porer) dhet > | poigters
fo data” — | blocks

blocks

~——b

.
/' N
=
pointer 12 /‘ /
sing+e indirection ptf/ - T~ .
inters
doubie indirection ptr +— ~

0 data
> 33— blocks

tripwe r-direction ptr

-,.\’-‘

In addition to information such as the name, owner, type and reference counter, the inode contains 15 pointers to
other blocks. The £irst 12 pointers are direct pointers to (the first 12) data blocks of the file. Pointer 13 is asingle
indirection pointer:1.e. it points to a block that contains pointers to the file's subsequent data blocks. Pointer 14 isa
double indirection pointer; i.e. it points to a block that contains single indirection pointers. Finally, pointer 15 isa
triple indirection peinter; i.e. points to a block that contains double indirection pointers.

Inthe 4.2BSD implementation of Unix (the one that our computers are running), the block size is 4Kb (i.e.
212 bytes); apointer to ablock is 32 bits (4 bytes). Thus ablock can hold 2!° block addresses. Therefore, in this
implementation

12 x 2'2 bytes are accessible directly.

2'9x 22 byies are accessible by single indirection.

20 x 219 % 2* bytes are accessible by double indirection.

219% 219x 2:%x 212 bytes are accessible by triple indirection.
The total number of bytes accessible directly, by single and double indirection exceeds 2% (4Gb!). This s the limit
on the size of files allowed in Unix.t Thus, the triple indirection pointer is never used.

With this method, blocks of short files (with up to 12 x2'2, i.e. 49,152 bytes) can be found directly from
information in the inode; for larger files one or two additiona block accesses are required to locate a block of the
file.

t The reason for this li=itis that Unix uses a 32-bit word to store the value of the cursor (present byte offset) for an opened file. Thus, no more
than 232 bytes can be acdressed.

- 10-

Layout of blocks on disk

As always we think of the disk as alarge linear array of blocks. The overall layout of blocks on adisk in the
Unix system is shown below.

superblock

inodes

data blocks

(NB: The indirect blocks to which pointers 13.14 and 15 in an inode may point are data blocks, not modes.)

The superblock contains general information about the blocks on this disk. In particular, it contains the free
pool (in the form of abitmap, or in the form of alist).

Thisisthe layout used in the implementations of Unix Versions 6 and 7. It has two problems:

1) Rédiahility: System crashes and operating system bugs occasionally cause the superblock to be destroyed. In
that event, we lose dl the information about which disk blocks are free and which aren’t The free pool must
be reconstructed by atime-consuming examination of all disk blocks.

2) Efficiency: Data blocks of any given file might be scattered all over the disk, so in processing afile much time
may be spent on seeks.

The 4.2BSD implementation of Unix uses a more sophisticated space alocation method to aleviate these
problems. Each disk is partitioned into a number of cylinder groups. A cylinder group consists of all the blocksin a
number of consecutive cylinders. The overall layout of cylinder groups within a disk and the structure of a cylinder
group is shown in the figure below.

cylinder group 1

data blocks

cylinder group 2

superblock

cylinder group block

inodes
cylinder group 3

data blocks

\

cylinder group 4

Each cylinder group contains a copy of the disk’s superblock. Thus there are several copies of that block. This
redundancy is introduced to enhance réiability: if one copy is destroyed we can use another to reconstruct it.+ Also,

t In fact, the superblock copies arekepton different relative positions in different cylinder groups, to minimise the chance of a disk head crash

/0

S11-

each cylinder group has its own cylinder group block, describing the state of the blocks (free or used) in that group.

In alocating blocks to a file, the system tries to alocate as many as possible from within acylinder group.
When no more blocks are available, it continues the allocation at another cylinder group (choosing one that's as
empty as possible — so as to reduce the chance of having to alocate blocks in yet another cylinder group for the
same file — and as close as possible to the present cylinder group — 0 as to reduce the seek time in moving from
oneto the otherj.

In this manner, the blocks of afilereside in relatively few different cylinder groups that tend to be close
together. This reduces the amount of time spent on seeks.

This implementation has dramatically improved the performance of the Unix file system.

The Unix directory structure and its implementation

Basically the Unix file directory is structured as a tree. However, links can aso be created, and thus shared
files/directories can be created and even cycles in the directory structure introduced

Thereis no single file that contains the entire file directory structure. Rather, each node in the tree (directories
included) is implemented as an ordinary file. The inode of afile that's actually a directory has an indication to that
effect in the “type” field.

The file that represents directory D, contains one entry for each file, directory and link in D. In addition, it
contains two special entries, denoted **.”* and “*..’*. The former is an entry for the directory D itself (self-reference)
and the latter isan entry for D's parent in the tree structure.

Links

Unix allows the creation of both hard and symbolic links. Hard links can be created for files only; symbolic
links can be created for either files or directories. As was said before, the creation of (symbolic) links can introduce
cycles to the directory structure. Unix deals with this problem in a rather crude way: if the file system tries to find
an actua file or directory following a path that contains more than a certain number of symbolic links (eight), it

gives up and returns an error message! Thisis, of course, crude, but is better than winding up in an infinite loop fol-
lowing directory cycles.

Access privileges in Unix

Unix uses the access list method. One problem with that method is that if many users have access privileges
on some particular file, the access list for that file will be quite long. Thisis inconvenient since the access list must
be stored at an inode (and be brought to the AFT in main memory, when the file is opened).

In Unix thisis solved as follows: Each file has a unique owner (typicaly the user who created it). The set of
users (currently registered in the system) is partitioned into groups. Each user belongs to one and only one group.
(All accounts for a course, for instance, are in the same group.)

As far as the protection of a particular file goes, the population of users is divided to three (digjoint)
categories:

1. Theowner of thefile.
2. All other users in the Same group as the owner (but excluding the owner).
3. Everybody else (al usersin different groups than the owner).

There are three access privileges in Unix read, write and execute (x). For afile F, the owner can specify which
privilege-s each of the previous 3 categories has. Thus the access list for a file consists of nine bits:

rwx rwx rwkx

damaging all copres of the superblock.

/

.12-

Only the owner of afile can change these bits. (Thus only the owner can grant and revoke access privileges.)

In this way the access list is kept short. This not only solves the problem of space, but also makes it easy to
check whether a user has access to a file.

References

Quarterman, J.S., Silberschatz, A., and Peterson, JL., **4.2BSD and 4.3BSD as Examples of the UNIX System,”
ACM Computing Surveys 17(4), 1985, pp. 379-418.

i

