Utﬁversity of Toronto
Scarborough Campus

424

Computer Science B28

ALGORITHMS FOR DYNAMIC HASHING

SEARCE(K) % Find record with key K

1 := root of tree h(K)
2:=0
loop

exit when [is a leaf of the directory
if d(K,2) = 0 then [:= left({)

else ! := right(l) end if

1:=1+41
end loop

fetch bucket & pointed by !/ into main memory
if & contains record with key K then success

else failure end if

3. (10 points) The figure below shows the state of a direct file implemented using dynamic
hashing. The hash function is A{X) = K mod 4 and the first few bits of the in&rite bit

string associated with each key in the file is given in the table below- Each bucket can

hold up to 3 records.

Key
5

6

9

11
16
18

Bit string

1101.. .
0110.. .
0100. ..
1101.. .
1011. ..
1010.. .

tree 1

Key

21
22
24
33
37
41

] LI GalE Gla] Gl fTLI'_!

Bit string

0101...
0010.. .
1100.. .
0000.. .
0101. ..
1000.. .

In the space below draw the state of the file after a record with key 17 is inserted, assuming
the first few bits of the 1nfinite bit string associated with 17 are 0100. .. Only those parts
of the directory and the data file which have changed as a result of the insertion need to

hao chAavm

INSERT(R) % Insert record R
K := key of R
l ;== h(K)
i:=0
loop
exit when lis a leaf of the directory
if d(K,i) =0 then ! :=left(1) else I := right(Z) end if
1:=1+1
end loop
fetch bucket b pointed by ! into main memory
if bis not full then
insert Rinb
write b back into secondary storage
else % split of b is necessary
done := false
loop
get two new directory nodes Iz and lg
set left(l):= I and right(l) := Igr
get a free block & % ¥ will become b3 buddy
make Iy, point to b and I point to &'
1:=1+4+1
for each record R”in b do
K' .= key of R
if 4(K', i) = 0 then leave R”in b else move R”to b”’end if
| end for
iIf d(K, i) = 0 then
if b is not full then
insert R into b
write b, &' back into secondary storage
done := true

else
write b”back into secondary storage
l-=1

end if

else % d(XK, i) =1
if b”is not full then
insert R into &'
write b, &' back into secondary storage
done := true
else
write b back into secondary storage
[= IR
end if
end if
exit when done
end loop
end if

