
/ ;: :’
:iJ:.-mversity of Toronto
Scarborough Campus lGl4 Computer Science E328

ALGORITHMS FOR DYNAMIC HASHING

%Luux(K) % Find record with key K
1 := root of tree h(K)
2 := 0
loop

exit when 1 is a leaf of the directory
if d(K,i) = 0 then 2 := left(Z)
else I := right(l) end if
t:=i+l

end loop
fetch bucket b pointed by 1 into main memory
if b contains record with key K then success
else failure end if

3. (10 points) The figure below shows the state of a direct fYe implemented using dynamic
hashing. The hash function is h(K) = K mod 4 and the first few bits of the in&rite bit
string associated with each key in the file is given in the table below- Each bucket can
hold up to 3 records.,

Key Bit string

5 1101.. .
6 0110.. .
9 0100. - .
11 1101.. .
16 1011. f -
l-8 1010.. .

UUO UUY

Key Bit string

21 0101.. f
22 0010.. .
24 1100.. .
33 0000.. .
37 0101. *.
41 1000.. .

au2 me3

L6 1822 1,11
In the space below draw the state of the fle after a record with key 17 is inserted, assuming
the frrst few bits of the i&mite bit string associated with 17 are 0100. _ _ Only those parts
of the directory and the data file which have changed as a result of the insertion need to
h, CL,,“-

INSERT(R) % Insert record R
K := key of R
1 := h(K)
i := 0
loop

exit when I is a 1ea.f of the directory
if d(K, i) = 0 then 1 := Zeft(Z) else 2 := right(Z) end if
i := if1

end loop
fetch bucket b pointed by I into main memory
if b is not full then

insert R in b
write b back into secondary storage

else % split of b is necessary
done := false
loop

get two new directory nodes 1~ and 1~
set left(I) := 2~ and right(l) := fR
get a free block b’ % b’ will become b’s buddy
make IL point to b and IR poix& to b’
i:=i+l
for each record R’ in b do

K’ := key of R’
if d(K’, i) = 0 then leave R’ in b else move R’ to b’ end if

, end for
if d(K, i) = 0 then

if b is not full then
insert R into b
write b, b’ back into secondary storage
done := true

else
write b’ back into secondary storage
I<= IL

end if
else % d(K, i) = 1

if b’ is not ful3 then
insert R into b’
write b, b’- back into secondaq storage
done := true

else
write b back into secondary storage
1 := iR

end if
end if
exit when done

end Ioop
end if

