
- .
University of Toronto
Scarborough Campus

Computer Science B28
Spring 1990

ALGORITHMS FOR B+ TREES

FI.uD(I’)
% This algorithmreturns the block where the record with key K is
% stored, if it is in the tie at all.

b := root of the B+ tree (this may be stored in a special location)
loop

read b into main memory (if it is not already there)
exit when b is a data (not index) block
let b contain P&r&. . . P-1 K,P,
let i be the number in the range 0 5 i 2 r such that Ki 5 K < Ki+i

(where we take Ko = -oo and K-1 = +oo)
let b be the block pointed to by Pi

end loop
return b

INSERT(R)
% This algorithm inserts record R to the appropriate data block.
% If the insertion of R causes the block to overflow, that block
% is “split” by moving half of its records to a new block that
% becomes its sibling in the B+ tree. To make the new block accessible
% through the index the algorithm INSERTTOINDEX is called to add
% to the index a pointer to the new block and the key that separates the
% block that overflowed and its new sibling

K := keyofR
b := FIND[K)
read 71 -mto main memory (if it is not a&+&y there)
if b contains a record with thesame key as K then duplicate key error
elsif b has room for one more record then

put R in b, rearranging records to maintain key sequence
write Q back to disk

else % b would overflow with the insertion of R
let Rl,Rz,...,R,, bethe records of b together with R in key sequence
get a free block b’ from the free pod
put &,Rz,..-J&/z1 in b
put Q+z~+J++J+~ - - -R, in v
write 4, b’ back to disk
let K be the minimum key of a record in b’ (i.e. the key of Rf,,pl+l)
INSERTTOINDEX(K, b, b’)

end if

Note: In the algorithm below, the symbol M refers to the order of the B+ tree.

INSERTTOINDEX(K, splitBlock, newBlock)
% This algorithm makes an insertion to an index block, to account for the
% insertion of newBlock which is a block created to accommodate overblows
% that occurred as a result of an earlier insertion to splitBlock.
% Hence, splitBlock and newBlock will be sibling nodes in the B+ tree
% when the insertion is completed. The key that will separate splitBlock
% and.newBZock in their (common) parent will be K. Note that splitBlock
% can be either a data block (the first time INSERTTOINDEX is called) or an
% index block (in the recursive calls).

if splitBlock is presently the root of the B+ tree then
get a block newRoot from the free pool
put in newRoot a pointer to splitBlock and a pointer to newBlock ‘separated by K
write newRoot back to disk

else
let parBlock be the parent of splitBlock
read parBlock into main memory (if it is not already there)
let PO 1C, Pr . . . P,-r&P, be the contents of parBlock together with

K followed by a pointer to newBlock spliced in so as to maintain key sequence
if T < M then % parBlock has room for one more child

put PO&PI . . . P-1 K, P, in parBlock
write parBlock back to disk

else % parBlock was full and must be split; in this case r = M
I get block newParBZock from free pool

put PO KI PI . . . PrMpl--1 K~M/ZJ J’pq21 in parBlock:
put prM/21+lI~rM/2)+2prM/M/21+2.. - Ru-lJhup~ in newParBz&

- write parBlock, newParBZock back to disk
INSERTTOINDEX(~~rM/2l+r,parBZ~k, newParBfock) c

end if
end if

Note: In the algorithm below, the symbol M refers to the order of the B+ tree.

DELETEFROMINDE~(K, b,emptyBZock)
% This algorithm removes from index block b the pointer to emptyBZock
% and the separator key I< (which used to separate emptyBlock from a
% sibling with which emptyBlock was merged). If this removal c&s& b
% to underflow, we resolve the problem by borrowing or mergiug, as in the
% DELETE algorithm described above. In the case of a merge,
% DELETEFROMINDEX is called recursively, to remove the reference to a newly
% empied index block. Thus, emptyBlock may have been either a data block
% (the first time DELETEFROMINDEX is called) or an index block
% (in the recursive calls).

read b into main memory (if it is not there already)
remove K and the pointer to emptyBlock from b

return emptyBlock to the free pool
if b now has at least [M/21 children then % no underflow

write b back to disk
else % underflow

if b has a sibling b’ with more than [M/21 children then % resolve underflow by borrowing
let parBlock be the parent of b (and b’)
read parBlock into main memory (if it is not already there)
let L be the separator if b and b’ in parBlock
if b is to the left of b’ then

let P be the leftmost pointer of b’
let N be the leftmost key of b’
add L as the rightmost key of b
remove P from b’ and move it as the rightmost pointer of b
remove N from b’ and replace L by N in parBlock

else % b is to the right of b’
let P be the rightmost pointer of b’
let N be the rightmost key of b’
add L as the leftmost key of b
remove P from b’ and move it as the leftmost pointer of b
remove N from b’ and replace L by N in parBlock

end if
write b, b’,parBlock back to disk

elsif b has a sibling b’ then % resolve underflow by merging
let parBlock be the parent of b (and b’)
lot L-be the separator of b and b’ in parBlock
move the pointers and keys of b’ into b, separating them from those already there by L
if parBlock was the root and b, b’ were its only children then

b becomes the new root of the B+ tree
return b’ and purBZock to the free pool

else
DELETEFROMINDEX(L,~WB~OC~,~')

end if
end if

end if

DELETE(K)
% This algorithm deletes the record with key I<, if one exists.
% If, upon deletion, the block that contained the record underflows
% (i.e. is less than half full) that condition is fixed in one of two
% ways: borrowing some records from a sibling, or merging the block
% with a sibling. In the latter case, the algorithm DELETEFROMINDEX
% is called to remove from the index the pointer to the emptied sibling
% block and the key that separates the two blocks that were merged
% into one.

b := FIND(K)
read b into main memory (if it is not already there)
if b does not contain a record with key K then

return % done: nothing to delete!
else

delete the record with key IC from b, maintaining the remaining records in key sequence
if b is now at least half full then % no underflow

write b back to disk
else % b underflows

if b has a sibling b’ which is more than half full then % resolve underBow by borrowing
move a record from b’ to b
% find the key L that should separate b and b’ in their parent
if b is to the left of b’ then let L be the minimum key in b’
else let L be the minimum key in b B
end if
let parBlock be the parent block of b (and b’)
read parBlock into main memory (if it is not already there)
change the key in parBlock that separates b and b’ to L
write b, b’,prBZock back to disk

elsif b has a sibling b’ then % resolve underflow by merging
let parBlock be the parent block of b (and b’)
read purBZock into main memory (if it is not already there)
let L be the separator of b and b’ in purBZock
put all records in b and b’ into b, maintaining key sequence
write b back to disk
DELETEFROMINDEX(K,parBZock,b’)

end if L
end if

end if

