University of Toronto Computer Science B28
Scarborough Campus Spring 1990

ALGORITHMS FOR B+ TREES

FiND(K)
% This algorithnreturns the block where the record with key K is

% stored, if it is in the file at all.
b := root of the B+ tree (this may be stored in a special location)
loop
read b into main memory (if it is not already there)
exit when b is a data (not index) block
let b contain PyK1P; ... Paoy K P,
let ¢ be the number in the range 0 £i<r such that K; < K < K;+,
(Where we take Kg=—00 and Kp4; = +00)
let b be the block pointed to by P;
end loop
return b

INSERT(R)
% This algorithm inserts record R to the appropriate data block.

% If the insertion of R causes the block to overflow, that block

% is “split” by moving half of its records to a new block that

% becomes its sibling in the B+ tree. To make the new block accessible
% through the index the algorithm INSERTTOINDEX is called to add

% to the index a pointer to the new block and the key that separates the

% block that overflowed and its new sibling

K =%eyof R
b := FIND(K)
read 3 Into main memory (if it is not already there)
if b contains a record with the same key as K then duplicate key error
elsif b has room for one more record then
put R in b, rearranging records to maintain key sequence
write & back to disk
else % b would overflow with the insertion of R
let Ry, Ra,...,Rn be the records of 4 together with Rin key sequence
get a free block b’from the free pod
put R13R2, “e 1an/2] inbd
put an/2]+1an/z]+z ...Rpin¥
write 4, b back to disk
let K be the minimum key of a record in b*(i.e. the key of Rfn/21+1)
INSERTTOINDEX(XK, b, b')
end if

Note: In the algorithm below, the symbol M refers to the order of the B+ tree.

INSERTTOINDEX (K, splitBlock, newBlock)

% This algorithm makes an insertion to an index block, to account for the
% insertion of newBlock which is a block created to accommodate overflows
% that occurred as a result of an earlier insertion to splitBlock.

% Hence, splitBlock and newBlock will be sibling nodes in the B+ tree

% when the insertion is completed. The key that will separate splitBlock

% and-newBlock in their (common) parent will be K. Note that splitBlock
% can be either a data block (the first time INSERTTOINDEX is called) or an
% index block (in the recursive calls).

if splitBlock is presently the root of the B+ tree then
get a block newRoot from the free pool

put in newRoot a pointer to splitBlock and a pointer to newBlock Separated by K

write newRoot back to disk
else
let parBlock be the parent of splitBlock
read parBlock into main memory (if it is not already there)
let Py Ky Py ... P—1 K. P, be the contents of parBlock together with

K followed by a pointer to newBlock spliced in so as to maintain key sequence

if r<M then % parBlock has room for one more child
put Po K1 Py ... P—1 K, P, in parBlock
write parBlock back to disk

else % parBlock was full and must be split; in this case r=M
get block newParBlock from free pool
put Po Ky Py . . | Pragya1-1 Ky Pratsz1 in parBlock
put Perg]+11([M/2‘|+2P|’M/2]+2 P PM_]KMPM in newParBlock

_ write parBlock,newParBlock back to disk

INSERTTOINDEX(Kas/21+1, par Block, new Par Block)

end if

end if

Note: In the algorithm below, the symbol M refers to the order of the B+ tree.

DELETEFROMINDEX(K, b, emptyBlock)

% This algorithm removes from index block b the pointer to emptyBlock

% and the separator key K (which used to separate emptyBlock from a

% sibling with which emptyBlock was merged). If this removal causes b

% to underflow, we resolve the problem by borrowing or merging, as in the

% DeLETE algorithm described above. In the case of a merge,

% DELETEFROMINDEX is called recursively, to remove the reference to a newly
% empied index block. Thus, emptyBlock may have been either a data block
% (the first time DELETEFROMINDEX is called) or an index block

% (in the recursive calls).

read b into main memory (if it is not there already)
remove K and the pointer to emptyBlock from b
return emptyBlock to the free pool
if b now has at least [M/2] children then % no underflow
write b back to disk
else % underflow
if b has a sibling b>with more than [M/2] children then % resolve underflow by borrowing
let parBlock be the parent of b (and b?)
read parBlock into main memory (if it is not already there)
let L be the separator if b and b’ in parBlock
if b is to the left of b”then
let P be the leftmost pointer of b~
let N be the leftmost key of b~
add L as the rightmost key of b
remove P from b”and move it as the rightmost pointer of b
remove N from b”and replace L by N in parBlock
else % b is to the right of ¥
let P be the rightmost pointer of b~
let N be the rightmost key of b~
add L as the leftmost key of b
remove P from b”and move it as the leftmost pointer of b
remove N from b”and replace L by N in parBlock
end if
write b, &', par Block back to disk
elsif b has a sibling b”then % resolve underflow by merging
let parBlock be the parent of b (and b?)
let L-be the separator of b and b”in parBlock
move the pointers and keys of b”into b, separating them from those already there by L
if par Block was the root and b, b*were its only children then
b becomes the new root of the B+ tree
return b’and parBlock to the free pool
else
DELETEFROMINDEX(L, parBlock, b')
end if
end if
end if

DELETE(K)
% This algorithm deletes the record with key K, if one exists.
% If, upon deletion, the block that contained the record underflows
% (i.e. is less than half full) that condition is fixed in one of two
% ways: borrowing some records from a sibling, or merging the block
% with a sibling. In the latter case, the algorithm DELETEFROMINDEX
% is called to remove from the index the pointer to the emptied sibling
% block and the key that separates the two blocks that were merged
% into one.
b := FiND(K)
read b into main memory (if it is not already there)
if b does not contain arecord with key K then
return % done: nothing to delete!
else
delete the record with key K from b, maintaining the remaining records in key sequence
if b is now at least half full then % no underflow
write b back to disk
else % b underflows
if b has a sibling b>which is more than half full then % resolve underflow by borrowing
move a record from b’to b
% find the key L that should separate b and b”in their parent
if b is to the left of &' then let L be the minimum key in b~

else let L be the minimum key in b -

end if
let parBlock be the parent block of b (and b?)
read parBlock into main memory (if it is not already there)
change the key in parBlock that separates b and b”to L
write b, b, parBlock back to disk

elsif b has a sibling b”then % resolve underflow by merging
let parBlock be the parent block of b (and b?
read parBlock into main memory (if it is not already there)
let L be the separator of b and b”in parBlock
put all records in b and b”into b, maintaining key sequence
write b back to disk
DELETEFROMINDEX(K, parBlock, ")

end if

end if
end if

A — e e

