Partial isometric representations of semigroups

Charles Starling

Joint work with Ilija Tolich

Carleton University

June 8, 2021

Starling joint w/ Tolich (Carleton University)Partial isometric representations of semigroup

June 8, 2021 1 / 14

Semigroups

P countable semigroup (associative multiplication)

Cancellative: $ps = pq \Rightarrow s = q$ $sp = qp \Rightarrow s = q$

Principal right ideal: $rP = \{rq \mid q \in P\}$ Principal left ideal: $Pr = \{qr \mid q \in P\}$

Assume $1 \in P$ (ie, P is a monoid)

Semigroups

Study *P* by representing on a Hilbert space, similar to groups. $\ell^2(P)$ – square-summable complex functions on *P*. δ_x – point mass at $x \in P$. Orthonormal basis of $\ell^2(P)$.

 $v_p: \ell^2(P) o \ell^2(P)$ bounded operator $v_p(\delta_x) = \delta_{px}$ (necessarily isometries)

 $\{v_p\}_{p\in P}$ generate the reduced C*-algebra of P, $C_r^*(P)$

 $v: P
ightarrow C^*_r(P)$ is called the left regular representation

Unlike the group case, considering all representations turns out to be a disaster

Nica, Li: we have to care for ideals.

The solution

For $X \subset P$, then $e_X : \ell^2(P) \to \ell^2(P)$ is defined by $(e_X \xi)(p) = \begin{cases} \xi(p) & \text{if } p \in X \\ 0 & \text{otherwise.} \end{cases}$

Note: $v_1 = e_P$

Note that in $\mathcal{B}(\ell^2(P))$,

$$v_p e_X v_p^* = e_{pX} \qquad v_p^* e_X v_p = e_{p^{-1}X}$$

If $p \in P$ and X is a right ideal, then

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

are right ideals too.

The solution

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

 $\mathcal{J}(P)$ – smallest set of right ideals containing P, \emptyset , and closed under finite intersection and the above operations – constructible ideals.

These are the ideals which are "constructible" inside $C_r^*(P)$.

The solution

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

 $\mathcal{J}(P)$ – smallest set of right ideals containing P, \emptyset , and closed under finite intersection and the above operations – constructible ideals.

These are the ideals which are "constructible" inside $C_r^*(P)$.

•
$$e_X e_Y = e_{X \cap Y}$$
• $e_P = 1, e_{\emptyset} = 0$
• $v_p e_X v_p^* = e_{pX}$ and $v_p^* e_X v_p = e_{p^{-1}X}$

Definition (Li)

 $C^*(P)$ is the universal C*-algebra generated by isometries $\{v_p \mid p \in P\}$ and projections $\{e_X \mid X \in \mathcal{J}(P)\}$ satisfying the above (and $v_pv_q = v_{pq})$.

ヘロト ヘヨト ヘヨト

Partial isometric representations

 $\pi: P \to A$ is a partial isometric representation if $\pi(qr) = \pi(q)\pi(r)$ and $\pi(q)$ is a partial isometry for all $q \in P$.

 $\implies \pi(p)^n$ is a partial isometry for all *n* (power partial isometry). Hancock–Raeburn (1990) $P = \mathbb{N}$ (a single power isometry)

$$J_n : \mathbb{C}^n \to \mathbb{C}^n$$
$$J_n(\delta_i) = \begin{cases} \delta_{i+1} & i < n \\ 0 & i = n \end{cases}$$
 truncated shift

They defined $J := \bigoplus_{n=2}^{\infty} J_n : \bigoplus_{n=2}^{\infty} \mathbb{C}^n \to \bigoplus_{n=2}^{\infty} \mathbb{C}^n$

They showed $C^*(J)$ is universal for partial isometric representations of $\mathbb N$

Partial isometric representations

 $\bigoplus_{n=2}^{\infty} \mathbb{C}^{n} \cong \ell^{2}(\Delta), \text{ where } \Delta = \{(n, i) \in \mathbb{N} \times \mathbb{N} : n \ge 2, i \le n\}$ $J : \ell^{2}(\Delta) \to \ell^{2}(\Delta)$ $J(\delta_{(n,i)}) = \begin{cases} \delta_{(n,i+1)} & i < n \\ 0 & i = n \end{cases}$

Partial isometric representations

$$P = \mathbb{N}$$
: $\Delta = \{(n, i) : i \leq n\}$. Note that $i \leq n \iff i + \mathbb{N} \supseteq n + \mathbb{N}$

For P a general cancellative monoid, let

$$\Delta = \{(a, x) \in P imes P : Px \supseteq Pa\}$$

$$J: P
ightarrow \mathcal{B}(\ell^2(\Delta))$$
 $J_p(\delta_{(a,x)}) = egin{cases} \delta_{(a,px)} & Ppx \supseteq Pa \ 0 & ext{otherwise} \end{cases}$

We define $C_{ts}^*(P, P^{op})$ to be the C*-algebra generated by the J_p .

The universal algebra

As in Nica/Li, we care for the projections "constructible" inside $C^*_{ts}(P, P^{op})$. For any subset $Y \subseteq \Delta$ and $p \in P$, let

$$\begin{array}{rcl} Y_p & = & \{(a, px) : (a, x) \in Y\} \\ Y^p & = & \{(a, x) : (a, px) \in Y\} \end{array}$$

For the projections $e_Y \in \mathcal{B}(\ell^2(\Delta))$ we have

$$J_p e_Y J_p^* = e_{Y_p}$$
$$J_p^* e_Y J_p = e_{Y^p}$$

 $\mathcal{J}(P) =$ smallest subset of $\mathcal{P}(\Delta)$ closed under finite intersection, $Y \mapsto Y^p$, $Y \mapsto Y_p$, containing Δ and \emptyset —constructible subsets.

The universal algebra

 $\mathcal{J}(P) =$ smallest subset of $\mathcal{P}(\Delta)$ closed under finite intersection, $Y \mapsto Y^p$, $Y \mapsto Y_p$, containing Δ and \emptyset —constructible subsets.

Definition

Let P be a cancellative monoid. Then $C^*(P, P^{op})$ is the universal C*-algebra generated by partial isometries $\{S_p\}_{p\in P}$ and projections $\{e_Y\}_{Y\in \mathcal{J}(P)}$ such that

$$e_Y e_Z = e_{Y \cap Z} \text{ for all } Y, Z \in \mathcal{J}(P).$$

$$\ \, {\bf 0} \ \, e_{\Delta}=1, e_{\emptyset}=0,$$

•
$$S_p e_Y S_p^* = e_{Y_p}$$
 for all $Y \in \mathcal{J}(P)$, $p \in P$, and

$$S_p^* e_Y S_p = e_{Y^p} \text{ for all } Y \in \mathcal{J}(P), \ p \in P.$$

LCM monoids

Definition

A cancellative monoid P is called LCM if

- $pP \cap qP = rP$ for some $r \in P$, or is empty (right LCM)
- $Pp \cap Pq = Pk$ for some $k \in P$, or is empty (left LCM)

Example: Free semigroups

Example: Zappa-Szép products associated to recurrent self-similar groups Example: Baumslag-Solitar monoids

If P embeds in an amenable group, then $C^*_{\mathrm{ts}}(P,P^{\mathrm{op}})\cong C^*(P,P^{\mathrm{op}})$

LCM monoids

In the LCM case, the set

$$\mathcal{S}_{P} = \{S_{p}S_{q}^{*}S_{r}: q \in Pp \cap rP\} \cup \{0\}$$

is closed under multiplication, *, and consists of partial isometries, and so forms an inverse semigroup.

We give an abstract characterization of this inverse semigroup and show $C^*(P, P^{\text{op}}) \cong C^*_u(\mathcal{S}_P)$, Paterson's universal C*-algebra for \mathcal{S}_P .

In this setting, the natural boundary quotient is Exel's tight C*-algebra of S_P , so we take this as the definition, i.e.

$$\mathcal{Q}(P, P^{\mathsf{op}}) := C^*_{\mathsf{tight}}(\mathcal{S}_P)$$

In turn, this gives our algebras groupoid models

LCM Monoids

$$S_p S_q^* S_r \mapsto egin{cases} S_p S_r S_r > S_p S_p^* S_r^* S_r & q = rp \ 0 & ext{otherwise} \ extends to a faithful conditional expectation. \end{cases}$$

 $S_p S_p^*$, $S_r^* S_r$ commute.

$$pP \cap qP = rP \implies S_p S_p^* S_q S_q^* = S_r S_r^*$$
$$Pa \cap Pb = Pc \implies S_a^* S_a S_b^* S_b = S_c^* S_c$$

 \implies the spectrum of the range of the conditional expectation is a product of (ultra)filter spaces, from the two semilattices

$$\{pP: p \in P\} \cup \{\emptyset\} \qquad \{Pq: q \in P\} \cup \{\emptyset\}$$

Free semigroups

X – finite set with n elements, X^* finite words in X.

 X^* is an LCM monoid under concatenation

$$C^*(X^*)\cong C^*_r(X^*)\cong \mathcal{T}_n$$

 $\mathcal{Q}(X^*)\cong \mathcal{O}_n$

 $\mathcal{Q}(X^*,X^{\mathrm{sop}})\cong \mathcal{C}(X^{\mathbb{Z}})
times_{\sigma}\mathbb{Z}$ where σ is the left shift

Here the ultrafilter space is the product $X^{\mathbb{N}} \times X^{\mathbb{N}}$, one copy each from $\{\alpha X^* : \alpha \in X^*\} \cup \{\emptyset\}$ and $\{X^*\beta : \beta \in X^*\} \cup \{\emptyset\}$