Simplicity of algebras associated to non-Hausdorff groupoids

Charles Starling

Joint work with L. O. Clark, R. Exel, E. Pardo, and A. Sims

Carleton University

September 12, 2019

 $X=\{0,1\}$

$$X^* = \bigcup_{n \ge 0} X^n$$
 — finite words in 0, 1

 $Aut(X^*) = length-preserving bijections of X^*$

\supset graph automorphisms of the rooted binary tree

The **Grigorchuk group** is the subgroup of $Aut(X^*)$ generated by the following elements.

For $w \in X^*$, define $a, b, c, d \in Aut(X^*)$ recursively by

$$a \cdot (0w) = 1w$$
 $c \cdot (0w) = 0(a \cdot w)$
 $a \cdot (1w) = 0w$ $c \cdot (1w) = 1(d \cdot w)$

$$b \cdot (0w) = 0(a \cdot w)$$
 $d \cdot (0w) = 0w$
 $b \cdot (1w) = 1(c \cdot w)$ $d \cdot (1w) = 1(b \cdot w)$

The group $\Gamma = \langle a, b, c, d \rangle$ is called the **Grigorchuk group** (Grigorchuk, 1980).

Some relations:

 $a^2 = b^2 = c^2 = d^2 = e$

bc = cb = d, cd = dc = b bd = db = c

 \implies reduced words alternate between *a* and elements from $\{b, c, d\}$ E.g. *abaca, bacad*

Note: these are not all the relations, for example $(ad)^4 = e$.

 $\Gamma = \langle a, b, c, d
angle \subset \operatorname{Aut}(X^*)$

Theorem (Grigorchuk)

 Γ is an infinite, finitely generated torsion group.

Theorem (Grigorchuk)

 Γ is just infinite (all quotients are finite).

Theorem (Grigorchuk)

 Γ is amenable, but not elementary amenable.

Theorem (Grigorchuk)

Γ has intermediate word growth.

Self-similar groups

Suppose we have an finite set X, a countable discrete group G,

a faithful action G × X* → X* which preserves lengths, and
 a restriction G × X → G

$$(g,x)\mapsto g|_x.$$

such that the action on X^* can be defined recursively

$$g(x\alpha) = (gx)(g|_x \alpha)$$

The pair (G, X) is called a self-similar action.

Restriction extends to words

The action extends to infinite words X^{I}

Starling joint w/ Clark, Exel, Pardo, Sims (Ca

Self-similar group C*-algebras

Nekrashevych defined a C*-algebra $\mathcal{O}_{G,X}$ from (G,X).

 $\mathcal{O}_{G,X}$ is the universal C*-algebra for

a Cuntz family of isometries {s_x}_{x∈X} and
 a unitary representation {u_g}_{g∈G},

subject to

$$u_g s_x = s_{g \cdot x} u_{g|_x} \qquad x \in X, g \in G.$$

$$\mathcal{O}_{G,X} = \overline{\operatorname{span}\{s_{\alpha}u_{g}s_{\beta}^{*}: \alpha, \beta \in X^{*}, g \in G\}}$$
$$\supset \overline{\operatorname{span}\{s_{\alpha}u_{g}s_{\beta}^{*}: \alpha, \beta \in X^{*}, g \in G, |\alpha| = |\beta|\}}$$

Exel and Pardo extended the idea of a self-similar group action to act on a graph rather than an alphabet.

This idea unified Nekrashevych's algebras with Katsura algebras associated to a pair $A, B \in M_N(\mathbb{N})$.

Each $\mathcal{O}_{A,B} \cong \mathcal{O}_{\mathbb{Z},E_A}$.

Katsura: Every UCT Kirchberg algebra is modeled by some $\mathcal{O}_{A,B}$.

Self-similar group C*-algebras

For the Grigorchuk group Γ , it was left open whether $\mathcal{O}_{\Gamma,X}$ is simple or not.

 $\mathcal{O}_{G,X} = C^*(\mathcal{G}_{G,X})$ for an étale groupoid $\mathcal{G}_{G,X}$.

Nekrashevych showed $\mathcal{G}_{G,X}$ Hausdorff $\implies \mathcal{O}_{G,X}$ simple.

The issue: $\mathcal{G}_{\Gamma,X}$ is not Hausdorff.

The groupoids of some Katsura algebras are also non-Hausdorff (as well as some Li semigroup algebras, foliations, pseudogroups).

Our question: can we characterize simplicity for C*-algebras of non-Hausdorff groupoids?

Groupoids

- Let ${\cal G}$ be a second countable topological groupoid such that ${\cal G}^{(0)}$ is Hausdorff.
- We say G is ample if G has a basis of compact open bisections.
 Ample groupoids are always locally compact and étale.
- We say \mathcal{G} is minimal if every orbit is dense.
- We say \mathcal{G} is topologically principal if the units with trivial isotropy are dense in $\mathcal{G}^{(0)}$.
- We say \mathcal{G} is effective if the interior of the isotropy bundle is $\mathcal{G}^{(0)}$.
- If \mathcal{G} is Hausdorff and second countable, then effective and topologically principal are equivalent.

Non-Hausdorff groupoids

Suppose \mathcal{G} is an étale groupoid such that $\mathcal{G}^{(0)}$ is Hausdorff.

Then $\mathcal{G}^{(0)}$ is open in \mathcal{G} .

 $\mathcal{G}^{(0)}$ is closed in $\mathcal{G}\iff \mathcal{G}$ is Hausdorff

 ${\cal G}$ not Hausdorff \implies there is a sequence of units that converges to something outside the unit space

Elements of $\overline{\mathcal{G}^{(0)}} \setminus \mathcal{G}^{(0)}$ are isotropy.

 \implies principal étale groupoids are Hausdorff.

Non-Hausdorff groupoids

"I feel like I just don't speak non-Hausdorff, and when I try, I have a terrible Hausdorff accent." — Aidan Sims

If \mathcal{G} is not Hausdorff, then compact sets might not be closed and the intersection of compact sets might not be compact.

Many authors take "compact" to include Hausdorff.

If $\mathcal G$ is not Hausdorff, then effective and topologically principal are different.

Étale groupoid C*-algebras

Renault, Connes: $\mathcal{G} o C^*(\mathcal{G})$

 $C_c(U) =$ compactly supported continuous functions on U

C(G) = linear span of the $C_c(U)$ as U ranges over all bisections.

WARNING: $f \in C_c(U)$ might not be continuous on \mathcal{G} !

$$u \in \mathcal{G}^{(0)} \longrightarrow L_u : \mathcal{C}(\mathcal{G}) \to \mathcal{B}(\ell^2(\mathcal{G}u)) \text{ satisfying}$$

 $L_u(f)\delta_\gamma = \sum_{\alpha \in \mathcal{G}r(\gamma)} f(\alpha)\delta_{\alpha\gamma} \text{ for } f \in \mathcal{C}(\mathcal{G}).$

 $\mathcal{C}^*_r(\mathcal{G}) = ext{closure of the image of } \mathcal{C}(\mathcal{G}) ext{ under } igoplus_{u \in \mathcal{G}^{(0)}} L_u$

 \exists universal $C^*(\mathcal{G}) \to C^*_r(\mathcal{G})$

Étale groupoid C*-algebras

 $\mathcal{C}(\mathcal{G})$ dense in $C^*_r(\mathcal{G})$

We view elements of $C_r^*(G)$ as functions from $\mathcal{G} \to \mathbb{C}$:

For $a \in C^*_r(\mathcal{G})$, define $j(a) : \mathcal{G} \to \mathbb{C}$ by

$$j(a)(\gamma) = (L_{s(\gamma)}(a)\delta_{s(\gamma)} | \delta_{\gamma}).$$

 $j: C^*_r(\mathcal{G}) \to \ell^\infty(\mathcal{G})$ linear, contractive, identity on $\mathcal{C}(\mathcal{G})$.

 $supp(f) = \{\gamma \in \mathcal{G} : f(\gamma) \neq 0\}$ "open support" may not be open.

We say f is singular if interior of supp(f) is empty.

Simplicity of étale groupoid C*-algebras

Theorem (Renault, Brown-Clark-Farthing-Sims)

Let \mathcal{G} be a Hausdorff étale groupoid. Then $C^*(\mathcal{G})$ is simple if and only if

- *G* is minimal (every orbit is dense)
- G is effective (the interior of the isotropy group bundle is the unit space), and
- \mathcal{G} satisfies weak containment ($C_r^*(\mathcal{G}) \cong C^*(\mathcal{G})$).

Proof: (\Leftarrow) uses a Cuntz-Krieger uniqueness theorem saying an ideal intersects $C_0(\mathcal{G}^{(0)})$.

(\Longrightarrow) gives effective, not topologically principal.

Simplicity of étale groupoid C*-algebras

Theorem (Clark, Exel, Pardo, Sims, S)

Let \mathcal{G} be an étale groupoid. Then $C^*(\mathcal{G})$ is simple if and only if

- **1** *G* is minimal (every orbit is dense)
- G is effective (the interior of the isotropy group bundle is the unit space),
- **③** G satisfies weak containment ($C_r^*(G) \cong C^*(G)$), and

• for all $a \in C^*(\mathcal{G})$, supp(j(a)) has nonempty interior

$$j: \mathcal{C}^*(\mathcal{G}) o \ell^\infty(\mathcal{G})$$
, norm-decreasing, identity on $\mathcal{C}(\mathcal{G})$.

To get (\Leftarrow) we prove a new uniqueness theorem.

$$(1) + (2) + (4) \implies C_r^*(\mathcal{G})$$
 is simple.

Simplicity of étale groupoid C*-algebras

If \mathcal{G} is ample (= has a basis of compact open bisections), then

"every compact open subset of \mathcal{G} is regular open" \implies (4)

Corollary

Let \mathcal{G} be an **ample** étale groupoid. If \mathcal{G} is minimal, effective, and every compact open subset of \mathcal{G} is regular open, then $C_r^*(\mathcal{G})$ is simple.

This is much easier to verify than $\operatorname{supp}(j(a))^{\circ} \neq \emptyset \forall a \in C^*(\mathcal{G})$

Even in the case $C_r^*(\mathcal{G}) \cong C^*(\mathcal{G})$, the converse does not hold. Counterexample?

The Grigorchuk Group!

Steinberg algebra

K a field, \mathcal{G} an ample groupoid

 $A_{\mathcal{K}}(\mathcal{G}) =$ linear span of characteristic functions of compact bisections.

 $A_{\mathbb{C}}(\mathcal{G})$ is a dense subalgebra of $C^*(\mathcal{G})$.

Theorem

Let \mathcal{G} be an ample groupoid. Then $A_{\mathcal{K}}(\mathcal{G})$ is simple if and only if \mathcal{G} is minimal, effective, and supp(f) has nonempty interior for all nonzero $f \in A_{\mathcal{K}}(\mathcal{G})$

Singular elements: $S(\mathcal{G}) = \{f \in A_{\mathcal{K}}(\mathcal{G}) : \operatorname{supp}(f)^{\circ} = \emptyset\}$ is always an ideal.

Our results on the Grigorchuk group

Theorem

Let Γ be the Grigorchuk group and $\mathcal{G}_{\Gamma,X}$ the associated groupoid. Then

9 $\mathcal{G}_{\Gamma,X}$ contains a compact open set which is not regular open, but...

- $C^*(\mathcal{G}_{\Gamma,X}) = \mathcal{O}_{\Gamma,X} \text{ is simple.}$
- $A_{K}(\mathcal{G}_{\Gamma,X})$ is simple for any characteristic zero field K, but...
- $A_{\mathbb{Z}_2}(\mathcal{G}_{\Gamma,X})$ is not simple. (Nekrashevych '16)

Theorem (Clark, Exel, Pardo, Sims, S)

Let \mathcal{G} be an étale groupoid. Then $C^*(\mathcal{G})$ is simple if and only if

- **1** *G* is minimal (every orbit is dense)
- G is effective (the interior of the isotropy group bundle is the unit space),
- **§** \mathcal{G} satisfies weak containment ($C_r^*(\mathcal{G}) \cong C^*(\mathcal{G})$), and
- for all $a \in C^*(\mathcal{G})$, supp(j(a)) has nonempty interior

Question 1: is (4) needed? Question 1: is (4) needed? By modifying the Grigorchuk group, get $\mathcal{G}_{G,X}$ minimal, effective, amenable, but with singular functions.

Question 2: Can (4) be replaced by a condition on G?

Question 3: $\mathcal{O}_{\Gamma,X}$ is simple, purely infinite, and nuclear. Does $\mathcal{O}_{\Gamma,X}$ satisfy the UCT?