
Aperiodic Tilings

Charles Starling

Carleton University

November 1, 2019

Charles Starling (Carleton University) Aperiodic Tilings November 1, 2019 1 / 57



Overview

Motivation and History

Tiling the plane

Quasicrystals

Aperiodic Tilings

Constructing aperiodic tilings

Spaces of tilings

Charles Starling (Carleton University) Aperiodic Tilings November 1, 2019 2 / 57



Tiling the plane

A tiling is a cover of R2 (or more generally Rn) by polygons.

Question 1: given a finite set of polygons, can they tile the plane?

Single parallelogram X

Single triangle X

Regular hexagon X

4-gon X

These can all tile the plane periodically.
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Tiling the plane

Question 2: are there any sets of polygons which can only tile the plane
aperiodically?

Dominos — square tiles with colored sides, indicating allowed adjacencies.
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Tiling the plane

Claudio Rocchini - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12128873
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Tiling the plane

Conjecture (Wang 1961) — if a finite set of square dominos can tile the
plane, then they can tile it periodically.

False — Berger (1966) found a set of 20426 dominos which only tile the
plane aperiodically!

Since then, smaller so-called “aperiodic sets” have been found. (The 13
tiles on the previous slide).
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Penrose tilings

Sir Roger Penrose (1974)

Solarflare100 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9732247
Geometry guy at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30621932
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Penrose tilings
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Example: Penrose Tiling

“So often we read of very large companies riding rough-shod over small
businesses or individuals. But when it comes to the population of Great
Britain being invited by a multi-national to wipe their bottoms on what
appears to be the work of a Knight of the Realm without his permission,
then a last stand must be made.”
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Quasicrystals

In 1984, Shechtman et al discovered an alloy with the following diffraction
pattern.

The strong peaks mean that the
atoms must be configured in an
orderly way.

This diffraction pattern has 5-
fold rotational symmetry.

“The most interesting thing
about 5 is that it is not 3, 4,
or 6”

– John Hunton.
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Quasicrystals

Only 3-, 4-, and 6-fold rotational symmetry is allowed for diffraction
patterns of periodic crystals.

Shechtman had discovered quasicrystals, a discovery for which he was
ridiculed and fired.

“Danny Shechtman is talking nonsense. There is no such thing as
quasicrystals, only quasi-scientists,”

– unattributed.

In 2011 he was given the Nobel Prize in Chemistry for his discovery.

Mathematical models?

Charles Starling (Carleton University) Aperiodic Tilings November 1, 2019 11 / 57



Quasicrystals

Charles Starling (Carleton University) Aperiodic Tilings November 1, 2019 12 / 57



Tilings

Definition

A tiling T of R2 is a countable set T = {t1, t2, . . . } of subsets of R2,
called tiles such that

Each tile is homeomorphic to the closed ball (they are usually
polygons),

ti ∩ tj has empty interior whenever i 6= j , and

∪∞i=1ti = R2.

If T is a tiling, x ∈ R2, T + x is the tiling formed by translating every
tile in T by x .

T is aperiodic if T + x 6= T for all x ∈ R2 \ {0}.
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Tilings

There are uncountably many Penrose tilings, even up to tranlsation.

However, all Penrose tilings look similar locally.

For any r > 0, there are only a finite number of patches of radius r
possible in Penrose tilings — finite local complexity.

For any patch P, there is an R > 0 such that every ball of radius R
contains a copy of P — repetitivity.

Aperiodicity + Finite local complexity + Repetitivity = Aperiodic order
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Substitution rules

One common way of creating aperiodic tilings is through substitution rules.

A substitution rule is:

Finite set of tiles

+ rule ω for subdividing them into smaller copies

+ scaling factor λ > 1 to make the smaller copies the original size
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Substitution rules
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Substitution rules
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Example: Penrose Tiling

φ φ

1

φ φ

φ2

ω−→
scaling factor =φ
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Example: Penrose Tiling

p

ω−→

ω(p)

ω−→

ω2(p)
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Producing a Tiling from a Substitution Rule

{p} ⊂ ω4(p) ⊂ ω8(p)

ω4n(p) ⊂ ω4(n+1)(p)
Then

T =
∞⋃
n=1

ω4n(p)

is a tiling.
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Octagonal Tiling

−→
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Octagonal Tiling

Tilings encyclopedia http://tilings.math.uni-bielefeld.de/substitution/ammann-beenker-rhomb-triangle/
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Chair Tiling

Tilings encyclopedia http://tilings.math.uni-bielefeld.de/substitution/chair/
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Chair Tiling

Tilings encyclopedia http://tilings.math.uni-bielefeld.de/substitution/chair/
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Pinwheel Tiling

Prof. Michael Whittaker, michaelwhittaker.ca
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Pinwheel Tiling

Prof. Michael Whittaker, michaelwhittaker.ca
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Pinwheel Tiling — Federation Square, Melbourne

Weisstein, Eric W. ”Aperiodic Tiling.”http://mathworld.wolfram.com/AperiodicTiling.html
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Substitution Tiling Properties

If the tiles meet full-edge to full-edge, then any tiling this way has finite
local complexity

A substitution is primitive if there is an n ∈ N such that ωn(p) contains a
translate of q for any two tiles p and q.

If we form T from a primitive substitution, then T is repetitive.

Aperiodic when the substitution is “invertible”
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Tiling Space

Given a Penrose tiling, any translate will also be.

 Consider the set of all Penrose tilings.

This will have the translation action of R2 on it.

Given T , one obtains the set of all Penrose tilings by completing T + R2

in a metric.

The tiling metric satisfies the following: T1 and T2 are close if

1 T1 = T2 + x for some small x .
2 T1 agrees with T2 exactly on a large ball around the origin, then

disagrees elsewhere.

Or any combination of 1 and 2. In most cases, 1 looks like a disc while 2
is totally disconnected (in nice cases, a Cantor set).
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Example: Penrose Tiling

T1
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Example: Penrose Tiling

T2
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Example: Penrose Tiling

T2 is a small shift of T1 ⇒ T1 is close to T2
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Example: Penrose Tiling

T1
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Example: Penrose Tiling

T2
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Example: Penrose Tiling

T1 and T2 agree around the origin, disagree elsewhere.
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Example: Penrose Tiling

d(T1,T2) < (radius of the ball above.)−1
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The Continuous Hull

The continuous hull of a tiling T , denoted ΩT , is the completion of
T + R2 = {T + x | x ∈ R2} in the tiling metric. This is also called the
tiling space.

It’s not obvious, but the elements of ΩT are tilings.

ΩT is the set of all tilings T ′ such that every patch in T ′ appears
somewhere in T .

Finite local complexity =⇒ ΩT compact. (Radin-Wolff)

Repetitivity =⇒ every orbit is dense in ΩT . (Solomyak)
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Example: Grid

Infinite grid in R2
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Example: Grid

Placement of the origin in any square determines the tiling.
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Example: Grid

Placement of the origin in any square determines the tiling. T = T − x

Charles Starling (Carleton University) Aperiodic Tilings November 1, 2019 40 / 57



Example: Grid

a and b are the same in the tiling space =⇒ ΩT
∼= T2
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Example: Equilateral Triangles

Infinite tiling of the plane with equilateral triangles.
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Example: Equilateral Triangles

Space of “origin placements” ΩT
∼= T2
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Example: Modified Grid

T , same as usual grid with a larger square at origin.
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Example: Modified Grid

T + (1, 0)
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Example: Modified Grid

T + (2, 0)
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Example: Modified Grid

T + (51, 0)
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Example: Modified Grid

T + (n, 0) is a Cauchy sequence converging to the periodic grid.
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Aperiodicity

How can we tell when a substitution tiling is aperiodic?

The substitution ω induces a map ω : ΩT → ΩT .

One can show that this map is surjective and continuous.

ω is injective ⇔ every tiling in ΩT is aperiodic. In this case, ω is a
homeomorphism.
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Approximating the tiling space

For periodic tilings, we made ΩT by building a space out of the prototiles.
We “glued them together” along their edges if those edges could touch in
the tiling.

Idea: do this for aperiodic tilings → obtain a space Γ, but not ΩT .
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Approximating the tiling space

Γ for the Penrose tiling.
Jared E. Anderson and Ian F. Putnam. Topological invariants for substitution tilings and their associated C∗-algebras. Ergodic

Theory Dynam. Systems, 18(3):509–537, 1998.
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Approximating the tiling space

For periodic tilings, we made ΩT by building a space out of the prototiles.
We “glued them together” along their edges if those edges could touch in
the tiling.

Idea: do this for aperiodic tilings → obtain a space Γ, but not ΩT .

Anderson, Putnam (1998) – Γ approximates ΩT in an appropriate sense
(ΩT is an inverse limit of such spaces).
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Research

(ΩT , ω) has “local hyperbolic coordinates” – Smale space (chaos).

(ΩT ,R2) is a dynamical system, so we can form the crossed product
C*-algebra C (ΩT ) oR2.

Its selfadjoint elements are “observables” of a particle moving
through a quasicrystal. (Kellendonk, Bellisard)

This C*-algebra is interesting in its own right – it is simple, nuclear,
has a unique trace, real rank zero.

The K-theory describes the spectrum of the quasicrystal.

T gives rise to an interesting inverse semigroup. This is a motivating
example for so-called “noncommutative Stone duality” (Exel, Lawson)
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The einstein problem

“ein” = one

“stein” = stone

The einstein problem: does there exist a single tile which can only tile
the plane aperiodically?
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The einstein problem

Taylor (2009)

Tilings encyclopedia http://tilings.math.uni-bielefeld.de/substitution/hexagonal-aperiodic-monotile/
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The einstein problem

Socolar-Taylor (2012)

Parcly Taxel - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38657342
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The einstein problem

Walton-Whittaker (2019)

J. Walton and M. Whittaker, An aperiodic tile with edge-to-edge orientational matching rules, arXiv 1907.10139
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