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Abstract. We prove that the isomorphism problem for finitely gener-
ated fully residually free groups (or F-groups for short) is decidable. We
also show that each freely indecomposable F-group G has a decomposi-
tion that is invariant under automorphisms of G, and obtain a structure
theorem for the group of outer automorphisms Out(G).
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1. Introduction

The isomorphism problem - find an algorithm that for any two finite pre-
sentations determines, whether or not the groups defined by these presen-
tations are isomorphic - is the hardest of the three algorithmic problems in
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group theory formulated by Max Dehn at the beginning of the 20th century.
Another algorithmic problem formulated by Dehn is the word problem (find
an algorithm to determine, whether or not a given product of generators
of a group represents the trivial element of the group). The fundamen-
tal result proved independently by Novikov, Boone, and Britton, tells that
there exist finitely presented groups with unsolvable word problem. Further
results of Novikov and Rabin allow one to deduce that the isomorphism
problem is unsolvable in the entire class of finitely presented groups. One
can still try to solve the isomorphism problem restricted to a certain class
C of finitely presented groups: find an algorithm that for any two finite pre-
sentations of groups from the class C determines, whether or not the groups
defined by these presentations are isomorphic. There are only few classes of
groups for which the isomorphism problem is known to be solvable. This is
a classical result that the isomorphism problem is solvable for finitely gen-
erated Abelian groups. Solvability of the isomorphism problem for finitely
generated free groups has been known since 1950ties due to the work of
Nielsen. Among the most significant results in this area is Segal’s solu-
tion to the isomorphism problem for polycyclic-by-finite groups [30]. One
should also mention the positive solution to the isomorphism problem for
finitely generated nilpotent groups, which is an earlier result obtained by Se-
gal and Grunewald [31]. Another profound result was obtained by Sela [32]
who proved that the isomorphism problem is solvable for torsion-free word
hyperbolic groups which do not split over a cyclic subgroup. One of the
most important ingredients of Sela’s solution to the isomorphism problem
is the decidability of equations over free groups proved by Makanin [22]
and Razborov [27], and extended by Rips and Sela [28] to torsion-free word
hyperbolic groups.

We consider the class of finitely generated fully residually free groups (F-
groups for short) defined as follows.

Definition 1.1. [2] A group G is called fully residually free if for any finite
number of non-trivial elements g1, . . . , gn in G there exists a homomorphism
G → F from G to a free group F that maps g1, . . . , gn to non-trivial elements
of F .

The first examples of non-free fully residually free groups are due to Lyn-
don [19], where he introduced free Lyndon’s Z[t]-groups and proved that
they are fully residually free. In the same year 1960, in a very influential
paper [20] he used these groups to describe completely the solution sets of
one-variable equations over free groups.

Our main result is the following theorem, that answers a question from
Sela’s problem list [35].

Theorem 4.13. Let G ∼= 〈SG | RG〉 and H ∼= 〈SH | RH〉 be finite pre-
sentations of fully residually free groups. There exists an algorithm that
determines whether or not G and H are isomorphic. If the groups are iso-
morphic, then the algorithm finds an isomorphism G → H.
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The most important ingredients of our proof are computability of a JSJ
decomposition of an F-group, and solvability and the structure of the solu-
tion sets of equations over F-groups, obtained by the second and the third
authors [14], [15] (see also Theorem 3.12 and Section 4 in the present pa-
per). To deduce solvability of the isomorphism problem, we prove that a
one-ended F-group G has a canonical Abelian JSJ decomposition that is in-
variant under automorphisms of G. Moreover, using results obtained in [15],
we deduce that the canonical decomposition can be constructed effectively.
More precisely, in Theorem 3.13 we define an Abelian JSJ decomposition
Γ(V,E) of G that has the following property.

Theorem 1.2. Let G be a one-ended F-group, and let Γ(V, E) be an Abelian
JSJ decomposition of G that satisfies the conditions of Theorem 3.13. If a
graph of groups ∆(U,P ) is another Abelian JSJ decomposition of G that
satisfies the conditions of Theorem 3.13 also, then ∆ can be obtained from
Γ by conjugation and modifying boundary monomorphisms.

Theorem 1.2 follows from Theorem 3.17. Hyperbolic groups have canon-
ical JSJ decompositions over virtually cyclic subgroups as was shown by
Bowditch [4], this result was first proved by Sela [32] for torsion-free hyper-
bolic groups. Another class of groups that possess canonical JSJ decomposi-
tions was introduced by Forester [9] (Guirardel [12] gave an alternate proof
of this latter result). Not all finitely presented groups have canonical JSJ
decompositions, as shown by Forester [10]. Using Theorem 1.2, we obtain
the following structure theorem for Out(G) (cf. Theorem 5.3).

Theorem 1.3. Let G be a one-ended F-group. Out(G) is virtually a direct
product of a finitely generated free Abelian group, subgroups of GLn(Z), and
the quotient of a direct product of mapping class groups of surfaces with
boundary by a central subgroup isomorphic to a finitely generated free Abelian
group.

Recall that similar results for torsion-free hyperbolic groups were obtained
by Sela [33] and for a more general class of groups by Levitt [18, Theo-
rem 1.2].

The first author wishes to thank Ilya Rips, Zlil Sela and Daniel Wise for
numerous useful conversations preceding the work on the present paper.

2. Graphs of groups and splittings

Definition 2.1. A directed graph (V, E,O) consists of a set of vertices V , a
set of edges E and an orientation O determined by two functions i : E → V
and τ : E → V . For an edge e ∈ E the vertex i(e) is the initial vertex of e,
and τ(e) is the terminal vertex of e. We call i(e) and τ(e) the endpoints of
e.

Definition 2.2. A graph of groups Γ(V,E,O) is a directed graph (V,E,O)
where to each vertex v ∈ V (or to each edge e ∈ E) we assign a group called
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Gv (or Ge) so that for each edge e ∈ E there are monomorphisms

α : Ge → Gi(e) and ω : Ge → Gτ(e)

called the boundary monomorphisms from the edge group Ge to the vertex
groups Gi(e) and Gτ(e). We refer to Gv and Ge the stabilizer of v and e,
respectively.

Definition 2.3. By a splitting of G we mean a triple Σ = (Γ(V, E,O), T, ϕ)
where Γ(V, E,O) is a graph of groups, T is a maximal subtree of the graph
(V, E) and ϕ : π1(Γ(V, E,O);T ) → G is an isomorphism.

We recall that the fundamental group of a graph of groups π1(Γ(V, E,O);T )
with respect to a maximal subtree T is given by

〈Gv(v ∈ V ), te(e ∈ E0) |∀e ∈ E0(tetē = 1, α(g)te = teω(g), ∀g ∈ Ge),

∀e ∈ T (α(g) = ω(g), ∀g ∈ Ge)〉
where E0 = {e ∈ E | e /∈ T} denotes the set of edges that do not belong to
the maximal tree.

Let G be a group and let G be a set of splittings of G into a graph
of groups. One introduces an equivalence relation on G generated by the
following operations (we refer the reader to [29] and to [15, Section 2.4] for
more details):

(1) Conjugation is a usual conjugation;
(2) Modifying boundary monomorphisms by conjugation is defined as

follows. Let G = 〈A, t | tα(c)t−1 = ω(c)∀c ∈ C〉. For an arbitrary
element a ∈ A one defines α′ : C → A by α′(c) = a−1α(c)a, and re-
places α by α′. One replaces also the isomorphism ϕ by the isomor-
phism ϕa defined by ϕa(t) = ϕ(ta) and ϕa(g) = ϕ(g) for all g 6= t.
If G = A ∗C B, then one replaces the monomorphism α : C → A by
α′ : C → A defined as above and ϕ by the isomorphism ϕa defined
by ϕa(g) = ϕ(g) for g ∈ A and ϕa(g) = ϕ(a−1ga) for all g ∈ B.
For a general graph of groups, let e be the edge stabilized by C; one
collapses all edges but e and defines α′ and ϕa as above, with the
only restriction that a ∈ Gi(e).

(3) Sliding corresponds to the relation

(A ∗C1 B) ∗C2 D ∼= (A ∗C1 D) ∗C2 B

in the case when C1 ⊆ C2.
(4) By a refinement of ∆ ∈ G at a vertex v ∈ ∆ we mean replacing v by

a non-degenerate graph of groups γ(Vγ , Eγ) which is compatible with
∆ and has the fundamental group Gv (where Gv is the stabilizer of
v in ∆). A vertex v is flexible if there exists a refinement of ∆ at v;
otherwise, v is rigid.

In what follows, by a splitting of G we mean a graph of groups Γ(V, E);
when there is no ambiguity, we identify the groups assigned to edges Ge

with their images α(Ge) ⊆ Gi(e) and the groups assigned to vertices with
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their images in G under the isomorphism ϕ. Usually, we do not specify a
maximal tree and an orientation in the graph (V,E). Observe that conjuga-
tion corresponds to an inner automorphism of G, whereas operations (2)- (4)
change the presentation of G as a graph of groups and usually do not lead
to an automorphism of G. However, there is an exception. If we have an
operation of type (2) so that a is in the centralizer CA(α(C)) of α(C) in A,
then α′(C) = α(C) which means that we actually do not modify the graph
of groups. Then, in the above notation, the composition of the isomor-
phisms ϕa ◦ ϕ−1 is well-defined and results in an automorphism of G called
a generalized Dehn twist. More precisely, we have the following definition.

Definition 2.4. Let Γ(V,E) be an Abelian splitting G of a group G, and
let e ∈ E be an edge with the endpoints i(e) = v and τ(e) = u and the
stabilizer Ge. By a generalized Dehn twist along the edge e we mean an
automorphism βa : G → G with a ∈ CGv(Ge), defined as follows.

If e is a separating edge, let ∆v (or ∆u) denote the connected component
of (V, E) \ {e} that contains v (or u). Then βa(g) = g for g ∈ Gw with
w ∈ ∆v and βa(g) = aga−1 for g ∈ Gw with w ∈ ∆u.

If e is a non-separating edge, then one can choose a maximal tree T in
(V, E) so that e /∈ T . Let t be the stable letter that corresponds to e. We
set βa(t) = at and βa(g) = g for all g 6= t.

In particular, if the edge group C is cyclic and α(C) = CA(α(C)), then
Definition 2.4 coincides with the definition of a Dehn twist (see [29]).

Definition 2.5. A splitting is elementary if the graph Γ(V, E) is either an
edge of groups or a loop of groups so that either G ∼= A ∗C B, or G ∼= A∗C .
A splitting is called Abelian if the edge groups are all Abelian.

2.1. G-tree. By a tree we mean a simplicial tree i.e., a graph with no cir-
cuits. One assigns unit length to each edge of a tree, to make a tree into a
geodesic metric space.

Definition 2.6. A tree equipped with an action of a group G is called a
G-tree. An action G × X → X is Abelian, if edge stabilizers in X are all
Abelian subgroups of G. A G-tree X is minimal if it contains no G-invariant
proper subtrees. Two vertices (or edges) x1 and x2 in X are G-equivalent,
if they belong to a G-orbit.

By the fixed set of g ∈ G we mean Fix(g) = {x ∈ X | g.x = x}. A G-tree
is k-acylindrical, if diam(Fix(g)) ≤ k for all g ∈ G.

Convention 2.7. In what follows, we consider Abelian splittings and Abelian
actions, only.

The central result of the Bass-Serre theory [36],[1] tells that to each split-
ting Σ = (Γ(V, E), T, ϕ) of a group G one can associate a minimal G-tree,
which is the covering space of the graph of groups Γ(V, E), and vice versa, G
inherits a splitting from its action on a minimal G-tree with no inversions.
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2.2. Extended fundamental domain and natural lift.

Definition 2.8. An extended fundamental domain D is a finite subtree of
X so that the G-orbit of D is the whole tree X, and different edges of D
belong to different G-orbits.

Lemma 2.9. Vertices v and u 6= v of an extended domain D are G-
equivalent if and only if either v = t.u or u = t.v, where t is a stable
letter in the presentation of G determined by ∆.

Proof of this lemma is straightforward and we omit it.

Definition 2.10. A graph of groups ∆ is reduced, if for each vertex v of
valency one or two, Gv properly contains the groups of adjacent edges. We
say that ∆ is semi-reduced, if for each edge e ∈ E with the endpoints v and
u, the equality Ge = Gv implies that v 6= u, val(v) ≥ 2 and Ge  Gu. We
say that a G-tree X is (semi-)reduced, if the corresponding graph of groups
∆ = G\X is (semi-)reduced.

Definition 2.11. Let X be 2-acylindrical and semi-reduced. A natural lift
λ of ∆ to X is defined as follows. The image of a vertex v ∈ ∆ with the
stabilizer Gv is the vertex λ(v) ∈ X with Stab(λ(v)) = Gv. Let e be an edge
with the endpoints i(e) = v and τ(e) = u. If e ∈ T , then λ(e) is the edge
of X joining λ(v) and λ(u), and if e /∈ T , then λ(e) is the edge of X joining
λ(v) and te.λ(u) where te is the stable letter corresponding to e.

Lemma 2.12. (1) The natural lift of ∆ to X is well-defined.
(2) The natural lift of ∆ to X is an extended domain.

Proof. Assume that there are two vertices x1 and x2 in X with Stab(x1) =
Stab(x2) = Gv. The path p joining x1 and x2 in X is stabilized by Gv.
Since X is 2-acylindrical, the length of p is either 1 or 2. If p is an edge, we
get a contradiction as X is semi-reduced. Let the length of p equal 2, and
let v = π(x1) and u = π(x2) be the natural projections of x1 and x2 to ∆.
Assume that val(v) > 1. The stabilizer of an edge f /∈ π(p) incident on v is
a non-trivial subgroup B of Gv. The edge f ∈ ∆ lifts to an edge qf ∈ X so
that qf /∈ p with Stab(qf ) = B, so that the subgroup B fixes 3 edges in X,
a contradiction. Therefore, val(v) = val(u) = 1 while X is semi-reduced,
a contradiction. Thus, the image of each vertex in ∆ under a natural lift
is defined uniquely. Since the images of edges are determined uniquely by
the images of their endpoints, the assertion (1) follows. Furthermore, the
definition of the Bass-Serre tree X as a covering space of ∆ implies the
assertion (2). Indeed, the G-orbit of the natural lift of ∆ is the whole X.
Moreover, the edges of ∆ are representatives of different G-orbits of edges
in X, hence their lifts to X are not G-equivalent. ¤
2.3. Morphisms of graphs.

Definition 2.13. Let (V, E) and (U,B) be two graphs. A map χ : (V, E) →
(U,B) is simplicial, if χ maps each vertex v ∈ V to a vertex u ∈ U and each
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edge e ∈ E to a (possibly, empty) path in (U,B) so that the incidence rela-
tions are preserved. A simplicial map χ : (V, E) → (U,B) is an isomorphism
of graphs if χ maps each edge e ∈ E to an edge b ∈ B and is bijective on
both the set of vertices and the set of edges.

Remark 2.14. It follows immediately from the definition that for finite
graphs (V,E) and (U,B) one can find effectively the (possibly, empty) set
of all isomorphisms χ : (V, E) → (U,B).

Definition 2.15. Let G and H be two groups, and let Γ(V, E) (or ∆(U,B))
be a splitting of G (or H) into a graph of groups. Assume that there exists
an isomorphism ν : (V, E) → (U,B) between the graphs. The isomorphism
ν is called a locally extendable isomorphism of graphs, if Gv

∼= Hν(v) for each
v ∈ V and Ge

∼= Hν(e) for each e ∈ E.
Now, assume that G and H are isomorphic, and let ψ : G → H be an

isomorphism. With the pair of isomorphisms (ν, ψ) as above, we associate a
splitting Λ(U,B) of H called the image ψ

(ν)
∗ (Γ) of Γ(V,E), where we assign

the group ψ(Gv) ⊂ H to the vertex ν(v), for each v ∈ V , and the group
ψ(Ge) ⊂ H to the edge ν(e), for each e ∈ E.

Remark 2.16. A locally extendable isomorphism of graphs [of groups] does
not necessarily extend to an isomorphism between the fundamental groups
of those graphs, as the following example shows: G ∼= 〈a, b, c, d | [a, b][d, c]〉 ∼=
〈a, b | −〉 ∗〈[a,b]=[c,d]〉 〈c, d | −〉 and H ∼= 〈a, b | −〉 ∗〈[a,b]=(cd)3〉 〈c, d | −〉. It
is easy to see that G and H are not isomorphic: for instance, the surface
group G is one-ended, whereas H ∼= 〈a, b, cd | [a, b] = (cd)3〉 ∗ 〈c〉.
2.4. Universal decomposition of a group.

Definition 2.17. [6] By a universal decomposition of G we mean a decom-
position of G into a graph of groups Γ = Γ(V, E) that has the following
property. Given a minimal G-tree T , one can find refinements at flexible
vertices of Γ and obtain a decomposition Γr of G so that there exists a
G-equivariant simplicial map from the Bass-Serre tree Γ̃r onto T .

Example 2.18. Obviously, every group G has a trivial universal decompo-
sition that consists of a unique flexible vertex stabilized by G. It can be
readily seen that if G is a free (Abelian or non-Abelian) group or a closed
surface group, then in fact, the only universal decomposition of G is the
trivial decomposition. More precisely, G is indecomposable in the sense of
Definition 2.20 below.

In what follows, we will be interested in an Abelian universal decompo-
sition of a group G with maximal number of vertices. For instance, the
Grushko free decomposition is a maximal universal decomposition in the
class of all free decompositions of G. For a freely indecomposable group,
a JSJ decomposition has the universal property (see Section 3 for more
details).
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Definition 2.19. We say that a graph of groups ∆ is non-degenerate, if ∆
is semi-reduced and the set of edges of ∆ is not empty.

Definition 2.20. A group G is decomposable if G has a non-degenerate
universal decomposition. Otherwise, G is indecomposable. In particular, if
G is an indecomposable group which is not a free non-Abelian group, then
G is freely indecomposable.

3. Properties of fully residually free groups

As before, we denote by F the class of finitely generated fully residually
free groups (also called limit groups by Sela [34]), and say that G is an F-
group if G belongs to the class F . In Theorem 3.1 below we mention only
those properties of F-groups which we use in our proof.

Theorem 3.1. Let G be an F-group. Then G possesses the following prop-
erties.

(1) G is torsion-free;
(2) Each subgroup of G is an F-group;
(3) G has the CSA property. Namely, each maximal Abelian subgroup

of G is malnormal, so that if M is a maximal Abelian subgroup of
G then M ∩ gMg−1 6= {1} for g ∈ G implies that g ∈ M ;

(4) Each Abelian subgroup of G is contained in a unique maximal finitely
generated Abelian subgroup, in particular, each Abelian subgroup of
G is finitely generated;

(5) G is finitely presented, and has only finitely many conjugacy classes
of its maximal Abelian subgroups.

(6) G has solvable word problem, conjugacy problem and uniform mem-
bership problem.

(7) G has the Howson property. Namely, if K1 and K2 are finitely gen-
erated subgroups of G, then the intersection K1 ∩K2 is finitely gen-
erated. Moreover, for given finitely generated subgroups K1 and K2

of G, there is an algorithm to find the intersection K1 ∩K2.
(8) There is an algorithm to find the centralizer of a given element g ∈ G.

Proof. Properties (1) and (2) follow immediately from the definition of an
F-group. A proof of property (3) can be found in [3]; property (4) is proven
in [13]. Properties (4) and (5) are proved in [13]. Alternative proofs of
properties (3), (4) and (5) can be found in [34]. Solvability of the word
problem is shown in [23], an algorithm to solve conjugacy problem can be
found in [25]. Recall that by a theorem proved by Dahmani [7], F-groups are
relatively hyperbolic which allows one to use alternative algorithms to solve
word problem [8] and conjugacy problem [5]. Observe that results proved
in [8] imply finite presentability of F-groups, and a theorem proved in [26]
implies solvability of the conjugacy problem. Solvability of the uniform
membership problem and properties (7) and (8) are proved in [16]. ¤
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The following Lemma 3.2 asserts that we can consider only those Abelian
splittings of an F-group G where each maximal Abelian non-cyclic subgroup
of G is elliptic. We denote by D(G) the set of all Abelian splittings of G
that have this latter property.

Lemma 3.2. Let G be an F-group, let M be a maximal Abelian non-cyclic
subgroup of G, and let A be an Abelian subgroup of G. If G = G1 ∗A G2,
then M can be conjugated into either G1 or G2. If G = G1∗A, and the
intersection M ∩Ag is a proper subgroup of M for some g ∈ G, then M can
be conjugated so that G = G1 ∗A M . If G = G1∗A and for any g ∈ G, the
intersection M ∩ Ag is either trivial or coincides with M , then M can be
conjugated into G1.

Proof. The first statement follows from the description of commuting ele-
ments in a free product with amalgamation. Now, let G have the presenta-
tion as follows: G = 〈Gv, t | tat−1 = ω(a)∀a ∈ A〉.

If M ∩ gAg−1 is not trivial, then by Theorem 3.1(4), g−1Mg is the max-
imal Abelian subgroup containing A. Denote by Mt the maximal Abelian
subgroup containing tAt−1. Since the intersection g−1Mg ∩ t−1Mtt = A
is not trivial, by Theorem 3.1(3), we conclude that Mt = tg−1Mgt−1. If
t /∈ g−1Mg, then A = g−1Mg, so that g−1Mg is elliptic, as claimed. In this
case, G = 〈Gv, t | tat−1 = ω(a)∀a ∈ M1〉 and ω(M1) = M2 where both M1

and M2 are maximal Abelian subgroups of Gv.
If t ∈ g−1Mg, then g−1Mg ⊆ CG(t), where CG(t) is the centralizer of t

in G. According to the presentation of G as an HNN-extension, CG(t) =
〈A, t〉 ⊆ g−1Mg, hence 〈A, t〉 = g−1Mg, in particular A is a proper subgroup
of g−1Mg and G = G1 ∗A g−1Mg (cf. also [11, Theorem 5]).

If M intersects no conjugate of A and M is hyperbolic when acting on the
Bass-Serre tree corresponding to the splitting of G as the HNN-extension,
then M inherits a non-trivial splitting as a free product, a contradiction. ¤
Definition 3.3. We say that an Abelian splitting S = (G(V,E);T, θ) of a
group G is an Abelian cycle of groups if the following conditions hold:

(1) G can be obtained as a series of amalgamated products

G̃ = (((G1 ∗A1 G2) ∗A2 G3) ∗ . . . ) ∗An−1 Gn

and an HNN-extension G = 〈G̃, t | A = t−1α(An)t〉 with A ⊂ G1

and α(An) ⊂ Gn. In particular, the graph (V, E) is a cycle.
(2) The edge groups A1, . . . , An (n ≥ 1) are all subgroups of a maximal

Abelian subgroup M ⊂ G.
We also call such a splitting S an M -cycle of groups to stress that all edge
groups in Γ are subgroups of the group M . Thus, if G is an M -cycle, then
G has the following presentation:

G = 〈G1, . . . , Gn, t | α(Ai) = ω(Ai), i = 1, . . . , n− 1, A = t−1α(An)t〉,
where α(Ai) ⊆ Gi∩M (for i = 1, . . . , n), ω(Ai) ⊆ Gi+1 (for i = 1, . . . , n−1)
and A ⊂ G1.
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Definition 3.4. A graph of groups Υ(V,E) is a star of groups, if (V, E) is a
tree T which has diameter 2. If Υ is a star of groups, then the fundamental
group of Υ is as follows:

π(Υ) = 〈M, K1, . . . , Kn | α(Ai) = ω(Ai), i = 1, . . . , n〉,
meaning that α(Ai) ⊆ M and ω(Ai) ⊆ Ki. The vertex v0 ∈ V with the
stabilizer M is called the center and vertices vi with stabilizers Ki are called
leaves of Υ(V, E). If Υ(V,E) is an Abelian star of groups, then M is a
maximal Abelian subgroup of G.

Definition 3.5. A graph of groups Ψ(V, E∪Es) is a constellation of groups,
if Ψ(V,E ∪Es) can be obtained by taking finitely many amalgamated prod-
ucts of stars of groups over leaves and HNN-extensions where both associ-
ated subgroups are stabilizers of the centers of those stars. In other words,
Ψ(V, E ∪ Es) can be obtained by iterations of the following construction:

π(Ψ) = 〈π(Υ1), π(Υ2), t | K(1)
i = K

(2)
j ,M (1) = tM (2)t−1〉,

where π(Υl) = 〈M (l),K
(l)
1 , . . . , K

(l)
nl | α(A(l)

i ) = ω(A(l)
i ), 1 ≤ i ≤ nl〉 for

l = 1, 2 is a star of groups as in Definition 3.4. We call an edge e a silver
edge if e corresponds to an HNN-extension where associated subgroups are
maximal Abelian. Es denotes the set of all silver edges in Ψ.

Remark 3.6. In what follows, we focus on Abelian stars of groups and
constellations of groups, meaning that edge groups are all Abelian.

(1) Since maximal Abelian subgroups of G are malnormal by Theo-
rem 3.1(3), two Abelian stars of groups are never amalgamated over
two different pairs of leaves, and the silver subgraph of (V, E ∪ Es)
is a tree.

(2) We do not consider an amalgamated product of two stars of groups
with no HNN-extension a constellation of groups. However, it is
convenient to regard a star of groups as a particular case of a (trivial)
constellation of groups. We also regard an edge of groups M ∗A Gv

with A ⊆ M and M a maximal Abelian subgroup of G as an Abelian
star of groups.

Lemma 3.7. If G is an F-group and ∆(V, E) is a splitting of G which is
an Abelian cycle of groups, then one can effectively modify ∆ so as to obtain
a splitting Ψ of G which is an Abelian constellation of groups.

Proof. Contract all edges of ∆ but one to a point. The new splitting of G
that we obtain is an HNN-extension G = Gv∗A, hence G has the presentation
as follows: G = 〈Gv, t | tat−1 = ω(a)∀a ∈ A〉. Let M be the maximal
Abelian subgroup containing A.

First, assume that A & M . By Lemma 3.2, G = Gv ∗A M . Furthermore,
Gv is an F-group that splits into a series of amalgamated products over
Abelian subgroups. Observe that all these Abelian subgroups and also A are
contained in a maximal Abelian subgroup Mv ⊂ Gv. Lemma 3.2 implies that
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Mv can be conjugated to a vertex group in the splitting of Gv, in particular
A is elliptic in this splitting. Therefore, the splitting of Gv extends to a
splitting of the whole group G into a graph of groups that has a tree as
the underlying graph, with a vertex stabilized by M . Since all edge groups
in the graph are subgroups of M , by a sequence of slidings one obtains a
star of groups in the sense of Definition 3.3, as follows. If there is a vertex
v ∈ V such that M = Gv, then define u = v, otherwise add a vertex u with
Gu = M and an edge f with Gf = M so that i(f) = u and τ(f) = v (this
is a refinement of ∆ at the vertex v). Having introduced the vertex u with
the stabilizer Gu = M , we make the following finite sequence of slidings in
∆. Let vi ∈ V be a vertex adjacent to u (we set v1 = v), denote by fi the
edge connecting them (clearly, f1 = f), and assume that val(vi) > 1 (for
otherwise, we are done). Choose an edge e 6= fi in Star(vi) and slide this
edge to u. W.l.o.g., we can assume that we had i(e) = vi, so that having
made the sliding we have i(e) = u. If Gτ(e) ⊆ M , then collapse e, so that u
and τ(e) get identified. None of these operations changes the fundamental
group of ∆. We end up with a star of groups centered at u.

Now, let A = M . Since M is malnormal in G, M t 6= M for each t ∈ G\M .
Therefore, by the property (1) of an Abelian cycle (see Definition 3.3 for the
notation), there is a unique edge e ∈ E with i(e) = vn and τ(e) = v1, so
that the boundary monomorphisms are as follows: α(Ge) = An = M and
ω(Ge) = A = M t. To modify ∆, we add a vertex u stabilized by M and a
vertex ut stabilized by M t, join u to vn by an edge fn with the edge group
Gn = M and join ut to v1 by an edge ft with the edge group Gt = M t.
Next, we slide the edge e along the edges fn and ft so that i(e) = u and
τ(e) = ut; so e becomes a silver edge in the meaning of Definition 3.5.
Clearly, none of the above operations changes the fundamental group of ∆.
The graph spanned by the vertices v1, . . . , vn, u is now a linear tree (with
no branch points) with all edge groups being subgroups of M , hence one
can transform this subgraph by a series of slidings to an M -star of groups.
Observe that M ⊂ G1, since G1 contains M t and intersects with M non-
trivially. Therefore, each edge group in this star of groups equals M . The
graph spanned by v1 and ut is an edge of groups which is a particular case
of a star of groups with the center ut and a unique leaf v1. Thus, we have
obtained a splitting Ψ of G which is an Abelian constellation of groups.

It remains to notice that an Abelian M -cycle ∆ can be transformed to a
constellation of groups (and not to a star of groups) if and only if each edge
group in ∆ equals M .

To show that Ψ can be found effectively, observe that we need to use the
following algorithms. First, for a given Abelian subgroup A of G which is
an edge group in a splitting of G, one should find effectively the maximal
Abelian subgroup M containing A. Existence of this algorithm follows from
Theorem 3.1 (8), as by Theorem 3.1 (4), M is the centralizer of any non-
trivial element of A. The other problem which is to be solved effectively is
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to find the intersection of two given finitely generated subgroups of G. This
algorithm is provided according to Theorem 3.1 (7). ¤

Corollary 3.8. Let G be an F-group, and let M be a maximal Abelian
subgroup of G. If G does not split as an HNN-extension where M is one of
the two associated subgroups, then each splitting of G contains at most one
Abelian M -cycle.

Proof. By the proof of Lemma 3.7, G = Gv∗M if and only if G has a splitting
with an Abelian M -cycle where A1 = · · · = An = M . Assume there are two
Abelian cycles in a splitting of G. One can find in each cycle an edge
(denoted by e1 and e2) that does not belong to the other cycle, so that the
edge group of both e1 and e2 are proper subgroups of M . Choose a maximal
tree T in the underlying graph so that e1, e2 /∈ T . Let t1 and t2 be stable
letters corresponding to e1 and e2. Since each edge group in both cycles is a
subgroup of M , according to the proof of Lemma 3.7, both t1 and t2 belong
to M , a contradiction. ¤

3.1. Universal decomposition. The following Theorem 3.12 which is the
main result of [15] is crucial for our proof. Before we state the theorem, we
need to introduce some more definitions.

Definition 3.9. [29](QH-vertex) Let P be a planar subgroup of G which
admits one of the following presentations:

(1) 〈p1, . . . , pm, a1, . . . , ag, b1, . . . , bg |
∏m

k=1 pk
∏g

j=1[aj , bj ]〉;
(2) 〈p1, . . . , pm, v1, . . . , vg |

∏m
k=1 pk

∏g
j=1 v2

j 〉.
Let Γ(V, E) be a graph of groups. Let v ∈ V and let e1, . . . , em be all edges
with i(ei) = v. We suppose that Gv = P and that α(ei) = pi. Such a vertex
v is called a QH-vertex.

Definition 3.10. [29](QH-subgroup) A subgroup P of G is a QH-subgroup,
if there is a splitting G(V, E) of G and a QH-vertex v ∈ G (see Definition 3.9)
such that P can be conjugated into the stabilizer of v. A subgroup P of
G is a maximal QH-subgroup (denoted by MQH-subgroup for short), if for
each elementary cyclic splitting G = G1 ∗C G2 either P can be conjugated
into G1 or G2, or C can be conjugated into P in such a way that there is
an elementary splitting of P over a cyclic subgroup C1 so that this splitting
extends to an elementary splitting of the whole group G, and C is hyperbolic
with respect to the splitting of G over C1.

Definition 3.11. We say that ∆ is almost reduced, if the equality Ge = Gv

implies that u is a QH-vertex (in particular, Ge is cyclic), val(v) = 2 and
for the other edge f incident on v we have that Gf  Gv and the other
endpoint of f is a QH-vertex as well.

Recall that if G is an F-group, then D(G) denotes the set of all Abelian
splittings of G where each maximal Abelian subgroup of G is elliptic.
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Theorem 3.12. [15, Theorem 0.1 and Proposition 2.15]. Let H be a freely
indecomposable F-group. There exists an almost reduced unfolded Abelian
splitting D ∈ D(H) of H with the following properties:

(1) Every MQH-subgroup of H can be conjugated to a vertex group in
D; every QH-subgroup of H can be conjugated into one of the MQH-
subgroups of H; non-MQH subgroups in D are of two types: maximal
abelian and non-abelian, every non-MQH vertex group in D is elliptic
in every Abelian splitting in D(H).

(2) If an elementary cyclic splitting H = A ∗C B or H = A∗C is hyper-
bolic in another elementary cyclic splitting, then C can be conjugated
into some MQH subgroup.

(3) Every elementary Abelian splitting H = A ∗C B or H = A∗C from
D(H) which is elliptic with respect to any other elementary Abelian
splitting from D(H) can be obtained from D by a sequence of col-
lapses, foldings, conjugations and modifying boundary monomor-
phisms by conjugation.

(4) If D1 ∈ D(H) is another splitting that has properties (1) and (2),
then it can be obtained from D by slidings, conjugations, and modi-
fying boundary monomorphisms by conjugation.

Moreover, given a presentation of H, there is an algorithm to find the split-
ting D.

In our proof, we use the slightly modified version of Theorem 3.12, stated
in Theorem 3.13 below. It follows from [13, Theorem 6] (cf. also [34, The-
orem 4.1]) that an indecomposable F-group G is one of the following: the
fundamental group of a closed surface, a free Abelian or a free non-Abelian
group (cf. Example 2.18).

Theorem 3.13. Let G be a one-ended decomposable F-group. G has a
semi-reduced Abelian splitting Γ = (Γ(V,E), T, ϕ) ∈ D(G) called a JSJ de-
composition of G that satisfies the following properties:

(1) The decomposition Γ is universal, in the meaning of Definition 2.17.
(2) The Bass-Serre tree Γ̃ corresponding to Γ is 2-acylindrical (see Def-

inition 2.6).
(3) Each rigid vertex group in Γ is of one of the following two types: a

maximal Abelian subgroup (we call such a vertex elementary), or a
non-Abelian subgroup.

(4) (V, E) is a bipartite graph: two elementary vertices and two non-
elementary vertices are never joined by an edge e ∈ E.

(5) Each flexible vertex of Γ is a maximal QH-vertex. Let G = G1 ∗C G2

or G = G1∗C be a cyclic splitting of G. C can be conjugated into
the stabilizer of a flexible vertex of Γ if and only if the splitting in
question is hyperbolic with respect to another splitting of G.

Moreover, there is an algorithm to obtain Γ.



ISOMORPHISM PROBLEM 14

Proof. Properties (1) and (5) follow immediately from Theorem 3.12 and
the definitions.

Let ∆ ∈ D(G) be an Abelian splitting which is the output of the algorithm
mentioned in Theorem 3.12. We modify the graph of groups ∆ so as to
obtain a new splitting Γ satisfying properties (3) and (4).

Let M be a maximal Abelian subgroup of G that contains either α(Ge)
or ω(Ge) for some e ∈ E. Consider the set EM of all edges ei of ∆ with
α(Ai) ⊆ M . Since M is elliptic in ∆, the union ∆M of all edges e ∈ EM is a
connected subgraph of ∆. It is easy to see that ∆M can be found effectively.
Indeed, it follows from Theorem 3.1 (4) that an edge with the stabilizer A
belongs to ∆M if and only if a non-trivial element of A commutes with a
non-trivial element of α(A1). By Theorem 3.1 (6), the word problem in G
is decidable so that this latter problem is decidable also. If ∆M is a tree,
then by a series of slidings it can be transformed to an M -star of groups
(cf. the proof of Lemma 3.7). Otherwise, ∆M contains Abelian cycles. It
follows immediately from Definition 3.3 that the union of all edges ei of ∆M

with α(Ai) = ω(Ai) form a maximal tree of ∆M . Since M t ∩ M s = 1 for
two different stable letters t 6= s, the proof of Lemma 3.7 shows that ∆M

can be transformed effectively into an Abelian constellation of groups ΨM .
More generally, we have the following procedure. Since M is elliptic in

∆, there exists a vertex v ∈ V with M ⊆ Gv. If M 6= Gv for each Gv

that contains it, then we add to V an elementary vertex z stabilized by
M and connect z to v by an edge f with Gf = M . When we have a
vertex for each maximal Abelian subgroup M , then we produce a sequence
of slidings as follows. If α(Ge) and ω(Ge) are both subgroups of a maximal
Abelian subgroup M , then we slide e so that i(e) = z with Gz = M and
don’t change τ(e). If α(Ge) ⊆ M and ω(Ge) ⊆ N for N 6= M , then we
slide e so that i(e) = z with Gz = M and τ(e) = y with Gy = N and
declare e a silver edge. The reason to introduce the more general procedure
is that in Γ one can have cycles formed by an M -tree and an N -tree. In
this latter case we have silver edges that do not belong to Abelian cycles
in the sense of Definition 3.3. But the argument mentioned in Remark 3.6
remains valid in this case also, and we conclude that the silver subgraph
of the modified graph ∆′ is a forest. Therefore, we can collapse each silver
M -subtree to a point stabilized by M . We denote by Γ the graph obtained
from ∆′ by collapsing all silver trees. Obviously, the fundamental group
of the new graph Γ is isomorphic to G, Γ ∈ D(G), and also properties (3)
and (4) hold. Furthermore, in Γ each non-trivial Abelian subgroup fixes a
subgraph of diameter at most 2 which, together with the CSA property (see
Theorem 3.1) implies the assertion (2). ¤

Corollary 3.14. Each edge group of Γ is elliptic in any splitting of G.

Proof. Let Λ be a splitting of G, and let Ge be an edge stabilizer in Γ.
We identify the edge e with its lifting to the Bass-Serre tree Γ̃. By Theo-
rem 3.13 (1), there is a G-equivariant simplicial map κ from Γ̃ onto Λ̃. The
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image κ(e) ∈ Λ of the edge e ∈ Γ̃ is a path λ in Λ̃; the path λ may be
degenerate. As κ is G-equivariant, Ge is a subgroup of the stabilizer Gλ of
λ, in particular, Ge fixes a point when acting on Λ̃, hence is elliptic in Λ, as
claimed. ¤
Corollary 3.15. Let T be a simplicial G-tree so that G acts on T with
Abelian edge stabilizers.

(1) Let t ∈ T be an edge with the stabilizer St. If St is elliptic in any
splitting of G, then St can be conjugated into an elementary vertex
group of Γ.

(2) If for each edge t ∈ T , the stabilizer St is a subgroup of G which is
elliptic in any splitting of G, then each flexible vertex stabilizer of Γ
fixes a point in T .

Proof. By Theorem 3.13 (1), there is a G-equivariant simplicial map κ from
Γ̃ onto T . If e is an edge of Γ̃ such that κ(e) contains t, then Ge can
be conjugated into St; in particular, Ge and a conjugate of St belong to
a maximal Abelian subgroup of G. By Theorem 3.13 (4), one of the two
endpoints of e in Γ is an elementary vertex with the stabilizer M which is an
Abelian subgroup of G. By Lemma 3.7, M is a maximal Abelian subgroup
of G, hence St can be conjugated into M , and the first assertion follows.

To prove the second assertion, assume that a flexible vertex stabilizer Gu

of Γ does not fix a point in T . In this case, Gu inherits a non-trivial splitting
Λ from its action on T . The edge groups in Λ are subgroups of the edge
stabilizers of T . Collapse all the edges of Λ but one and denote by Λ1 the
obtained elementary splitting of Gu. By Corollary 3.14, the edge groups
of G are elliptic when acting on T , so that Λ1 extends to a splitting of G.
Observe that the edge group of Λ1 is elliptic in any splitting of G, which
contradicts Theorem 3.13(5). ¤

3.2. Uniqueness of a universal decomposition.

Lemma 3.16. Let G and H be two one-ended F-groups, and let ϕ : G → H
be an isomorphism. Let Γ (or Ξ) be an Abelian JSJ decomposition of G (or
H). Then there exists a simplicial map µ : X → Y between the Bass-Serre
trees X = Γ̃ and Y = Ξ̃ so that the following diagram is commutative:

G×X −−−−→ X

(ϕ,µ)

y
yµ

H × Y −−−−→ Y

Proof. Observe that there are faithful actions G × Y → Y defined by
ρ(g, y) = ϕ(g).y for all g ∈ G and y ∈ Y , and H × X → X defined by
σ(h, x) = ϕ−1(h).x for all h ∈ H and x ∈ X. Furthermore, by Corol-
lary 3.14, each edge group He of H fixes a point in X. Therefore, by Corol-
lary 3.15(1), each flexible vertex group of X fixes a point (i.e., is elliptic)
when acting on Y . Observe that each rigid vertex group of X is elliptic
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also, by the definition. Each elementary vertex group M of X is a max-
imal Abelian subgroup of G, hence its image ϕ(M) is a maximal Abelian
subgroup of H. Since Γ ∈ D(G) and Ξ ∈ D(H), ϕ(M) fixes a vertex in Y .
Moreover, since G splits over a subgroup A ⊆ M , we have that H = ϕ(G)
splits over ϕ(A), so that according to the proof of Lemma 3.7 and Theo-
rem 3.13, ϕ(M) fixes a unique elementary vertex in Y .

Our argument above allows one to define a simplicial map µ : X → Y as
follows. If v ∈ X is a vertex with the stabilizer Gv, then µ(v) = y is the
vertex with ϕ(Gv) ⊆ Hy. If e ∈ X is an edge with the endpoints v and u,
then µ(e) = f is the path joining µ(v) and µ(u). Furthermore, we claim that
the diagram in the assertion of the theorem is commutative. Let g ∈ G be a
non-trivial element, and let v ∈ X be a vertex with the stabilizer Gv. The
image u = g.v ∈ X is the vertex with the stabilizer Gu = g−1Gvg, hence
µ(g.v) = yu ∈ Y so that ϕ(g−1Gvg) ⊆ Hu, where Hu denotes the stabilizer
of yu. On the other hand, µ(v) = yv with ϕ(Gv) ⊆ Hv, and g maps yv ∈ Y
to the vertex ȳv = ϕ(g).yv with the stabilizer Hv̄ = ϕ(g)−1Hvϕ(g). Observe
that both Hu and Hv̄ contain ϕ(g−1Gvg) as a subgroup. If Gv (hence,
ϕ(Gv)) is non-elementary, then it cannot fix an edge in either X or Y . If Gv

is elementary, then g.v, yu = µ(g.v), yv = µ(v) and ϕ(g).µ(v) are elementary
vertices. In either case, we conclude that Hu = Hv̄, and since the vertex of Y
stabilized by Hu is unique, we have that µ(g.v) = ϕ(g).µ(v), as claimed. ¤
Theorem 3.17. Let ϕ : G → H be an isomorphism of two one-ended F-
groups, and let Γ = Γ(V, E) and Ξ = Ξ(U,B) be Abelian JSJ decompositions
of G and H, respectively. Then the equivariant map µ : Γ̃ → Ξ̃ between the
Bass-Serre trees, defined in Lemma 3.16, is a one-to-one isometry.

Proof. Denote X = Γ̃ and Y = Ξ̃. First, observe that the length of the image
µ(e) ∈ Y of an edge e ∈ X does not exceed 2 since Y is 2-acylindrical.
Moreover, according to Theorem 3.13 (4), one of the endpoints u and v
of e is an elementary vertex, so that the image of this endpoint in Y is
an elementary vertex as well. As Ξ is a bipartite graph (hence, Y is a
bipartite tree) and different elementary vertex stabilizers have only trivial
intersections, it follows that µ(e) has length 1 or 0.

Now, we claim that the non-degenerate images of two edges of X cannot
get folded in Y . More precisely, let e and f be two edges of X, both incident
on a vertex v so that i(e) = i(f) = v, hence α(Ge), α(Gf ) ⊆ Gv, with
different terminal points: τ(e) = u and τ(f) = w. Assume that the images
of e and f under µ get folded, so that µ(e) = µ(f) = c and µ(u) = µ(w) = y.
Let µ(v) = yv. Since ϕ(g).µ(x) = µ(g.x) for all x ∈ X and g ∈ G, both
ϕ(Ge) and ϕ(Gf ) are subgroups of Hc. Since the edge stabilizers in Y are
Abelian, Hc is an Abelian subgroup of H and therefore, Hc is a subgroup
of a unique maximal Abelian subgroup of H which we denote by MH . It
follows that both ϕ(Ge) and ϕ(Gf ) are subgroups of MH , so that both
Ge and Gf are subgroups of a maximal Abelian subgroup M = ϕ−1(MH).
Hence, by our construction, v is an elementary vertex of X (and M = Gv).
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Therefore, Gu and Gw are non-elementary, and neither is Hy as both ϕ(Gu)
and ϕ(Gw) are subgroups of Hy. On the other hand, Hy inherits a non-trivial
elementary splitting from its action on X, a contradiction.

Next, we show that the image of an edge e ∈ X cannot have length 0
in Y . Assume that µ(v) = µ(u) = y, where u and v are the endpoints
of e, and i(e) = v is an elementary vertex. If α(Ge) & Gv, then we get
a contradiction, because Hy acts non-trivially on X, hence splits over an
Abelian subgroup. Let Ge = Gv. In this case the valence of v is at least
2 since X is semi-reduced; let f 6= e be another edge incident on v. As we
have just shown, the images of edges incident on an elementary vertex in
X cannot get folded in Y . If the image of f under µ collapses also, then
we have three vertices of X mapped to a vertex y ∈ Y , so that Hy acts
non-trivially on X, a contradiction. Thus, µ(f) is not degenerate, so that
in Y there is an edge stabilized by ϕ(Gf ) ⊂ ϕ(Gv). By our construction of
the graph Ξ in Theorem 3.13, there is an elementary vertex z in Y with the
stabilizer ϕ(Gv). By the definition of µ, z = µ(v) 6= µ(u), a contradiction.

So far, we have shown that µ is a local immersion. Finally, assume that
there are two edges (or vertices) of X which are mapped to the same edge
(or vertex) in Y . Consider the path p connecting them in X and its image
µ(p) in Y . Since µ(p) is a closed path in Y , p has either an edge e incident
on a vertex v so that µ(e) = µ(v), or two edges e and f incident on v so that
µ(e) = µ(f). In either case, µ is not a local immersion, a contradiction. ¤

3.3. Isomorphism of groups and splittings of the groups.

Theorem 3.18. Let G and H be two F-groups, and let ϕ : G → H be an
isomorphism. Let Γ = Γ(V, E) (or Ξ = Ξ(U,B)) be the Abelian JSJ de-
composition of G (or H). There exists a locally extendable isomorphism
µ : (V,E) → (U,B) between the underlying graphs, so that the image ϕµ

∗ (Γ)
of Γ (see Definition 2.15) can be obtained from Ξ by conjugation and modi-
fying boundary monomorphisms.

Proof. Fix the natural lift D of Γ into X = Γ̃ (see Definition 2.11), and let
µ(D) be the image of D in Y = Ξ̃, where µ is the G-equivariant isometry
defined in Lemma 3.16 (see also Theorem 3.17); recall that G acts on X by
left multiplications and on Y via the isomorphism ϕ and left multiplications.
Observe that µ(D) is a fundamental domain of Y . Indeed, since X = G.D,
and the map µ is G-equivariant and onto, we conclude that Y = G.µ(D).
Moreover, as µ is G-equivariant, x1 = g.x2 iff µ(x1) = ϕ(g).µ(x2) for all
x1, x2 ∈ X and g ∈ G, so that two vertices (or two edges) of X are
G-equivalent if and only if their images in Y are ϕ(G) = H-equivalent.
Therefore, two different edges of µ(D) are never H-equivalent, and two ver-
tices µ(v) and µ(u) of µ(D) are H-equivalent if and only if v and u are
G-equivalent. This latter argument shows that the underlying graph of Γ
is the underlying graph of Ξ. Therefore, we can assume that the maximal
trees of Γ and of Ξ coincide and the orientation of edges is the same. It can
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be readily seen that ϕ∗(Γ) can be obtained from µ(D) by identifying the
H-equivalent vertices.

Now, let K be the natural lift of Ξ into Y . Fix a vertex d ∈ D. There is
a vertex k ∈ K so that d and k are G-equivalent. Observe (cf. Lemma 2.9)
that there may be more than one vertex G-equivalent to d. To specify
our choice, we also require that there is an isomorphism of graphs λ with
λ(k) = d that maps each vertex (or edge) of K to a G-equivalent vertex (or
edge) in D.

The stabilizers Hd and Hk are conjugate in H, let Hd = Hh
k for some

h ∈ H. (From now on, by Cg we mean g−1Cg.) Let ek be an edge in K
incident on k, and let k1 be the other endpoint of ek. Recall that by our
construction, precisely one of the vertices k and k1 is elementary, so that k
and k1 are never G-equivalent. Denote ed = λ(ek) and d1 = λ(k1). We have
that Hd1 = Hh1

k1
for some h1 ∈ H, so that Hed

= Hd ∩Hd1 = Hh
k ∩Hh1

k1
=

(Hk ∩Hh1h−1

k1
)h = (Hhh−1

1
k ∩Hk1)

h1 . Since the tree Y is 2-acylindrical and
λ is an isometry, this latter intersection is non-empty if and only if either
h1h

−1 ∈ Hk so that Hed
= (Hh1h−1

ek
)h = Hh1

ek
, or h1h

−1 ∈ Hk1 so that
Hed

= Hh
ek

. In either case, we need to modify a boundary monomorphism.
Consider a particular case when the natural projections of d and d1 into Γ

are joined by two edges. We use the above notation. Let f 6= ed be the other
edge joining d and d1 in (V,E), and let t be the stable letter that corresponds
to f in Γ. W.l.o.g., we can assume that i(f) = d. Since the graphs (V, E)
and (U,P ) are isomorphic, there is a unique edge p ∈ P so that λ(f) = p;
the edge p joins (the natural projections of) k and k1 in (U,P ). We denote
by s the stable letter that corresponds to p in Ξ. Let A = α(Gf ) ⊆ Gd and
B = ω(Gf ) ⊆ Gd1 , so that At = B. As we have just shown, l = h1h

−1 is
either in Hk or in Hk1 . If l ∈ Hk, then s = ϕ(t)lhf with hf ∈ Hk being
non-trivial if we need to modify the boundary monomorphism as follows:
α(Hµ(f)) = hfα(Hp)h−1

f . If l ∈ Hk1 , then s = l−1ϕ(t)hf with hf ∈ H l
k and

α(Hµ(f)) = hfα(Hp)lh−1
f .

We proceed with the other edges incident on k and check that the assertion
holds for Star(k). The assertion follows by induction on the number of
vertices. ¤

4. Algorithm to solve the isomorphism problem

Our algorithm is based on the following result.

Theorem 4.1. [15, Theorem 0.1 and Theorem 13.1] Let 〈S | R〉 be a finite
presentation of an F-group G; we regard this presentation as the input of
Elimination process. The Elimination process determines whether or not G
is freely indecomposable, and the output of the process is a finite presentation
〈S | R〉 of G that can be described as follows:

(1) If G is a free non-Abelian group, then R = ∅.
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(2) If G is freely decomposable but not free, then there are partitions S =
S1t ...tSktSk+1 and R = R1t ...tRk, so that 〈S | R〉 = 〈S1 | R1〉∗
· · ·∗〈Sk | Rk〉∗〈Sk+1 | −〉, where 〈Si | Ri〉 is a presentation of a freely
indecomposable non-cyclic group for 1 ≤ i ≤ k, and #Sk+1 ≥ 0. In
other words, the presentation 〈S | R〉 corresponds to the Grushko
decomposition of G.

(3) If G is freely indecomposable, then the output of the Elimination pro-
cess is a presentation of G as a JSJ-graph of groups. If G is also
indecomposable in the meaning of Definition 2.20, then the presen-
tation 〈S | R〉 of G has the following properties.
(a) If G is the fundamental group of a closed surface, then R is a

set of quadratic words, in the standard form.
(b) If G is a free Abelian group, then the cardinality of S is mini-

mum possible; in other words, #S = rank(G).

In what follows, we assume that we are given a presentation of G = 〈SG |
RG〉 and a presentation of H = 〈SH | RH〉, both presentations are output
of the Elimination process.

Lemma 4.2. Let G and H be indecomposable F-groups. There exists an
effective procedure to decide whether or not G and H are isomorphic.

Proof. We apply the Elimination process to both presentations of G and of H
to determine whether or not the corresponding group is a free group. If both
G and H are free, then they are isomorphic if and only if the cardinalities
of their generating sets coincide. Now, assume that neither of G and H is
a free group. Since the equalities [gi, gj ] = 1 for all pairs of generators of G
hold in G if and only if G is a free Abelian group, and the word problem for
F-groups is solvable by Theorem 3.1(6), one can effectively decide whether
or not G and H are free Abelian groups. Moreover, if G is a free Abelian
group, then by Theorem 4.1(3b), one can effectively determine the rank of
G. If both groups G and H are free Abelian, then they are isomorphic if and
only if their ranks are equal. If neither of G and H is free Abelian, then both
G and H are fundamental groups of closed surfaces. By Theorem 4.1(3a),
one can effectively find standard quadratic presentations for both G and
H. The groups are isomorphic if and only if their standard presentations
coincide, up to permutation of generators. ¤

In what follows, we assume that both G and H are decomposable groups.
Lemma 4.3 below allows us to reduce the problem to the case when both G
and H are freely indecomposable groups.

Lemma 4.3. [17] Let G = G1∗G2∗ ...∗Gk ∗Fr and H = H1∗H2∗ ...∗Hl∗Fs

be the Grushko decompositions. The groups G and H are isomorphic if and
only if k = l, r = s and there exists a permutation σ of the set {1, . . . , k} so
that Gi is isomorphic to Hσ(i) for each i = 1, . . . , k.
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4.1. Freely indecomposable groups. Our solution to the isomorphism
problem relies upon Theorem 3.18. According to Theorem 4.1(3), the above
presentations define G and H as fundamental groups of graphs of groups:
G w π1(Γ) and H w π1(Ξ), which are Abelian JSJ decompositions of G and
H, respectively. Our algorithm is built so as to compare the two graphs
of groups and conclude whether or not their fundamental groups are iso-
morphic; the algorithm is described in Theorem 4.13 below. It consists of
a sequence of smaller procedures, some of these we describe now. First, we
classify and compare the vertex groups.

Lemma 4.4. There is an algorithm to determine the type of a given vertex
Gv in an Abelian JSJ decomposition Γ of an F-group.

Proof. If each pair of generators commute, then Gv is free Abelian. If Gv is
flexible, then the given presentation of Gv is a presentation of a QH-subgroup
of one of the two possible kinds 3.10, up to permutation of the generators.
If Gv is neither Abelian nor flexible, then according to Theorem 3.13, Gv is
rigid non-elementary. ¤
Definition 4.5. Let G and H be two isomorphic groups, let A1, . . . , An be
subgroups of G, and let B1, . . . , Bn be subgroups of H. An isomorphism
φ : G → H is an extendable isomorphism (or e-isomorphism for short), if
there is one-to-one correspondence Ai → Bji between the sets of the sub-
groups so that φ maps Ai onto a conjugate of Bji . Pairs (G, {A1, . . . , An})
and (H, {B1, . . . , Bn}) are called e-isomorphic, if there is an e-isomorphism
φ : G → H.

To find e-isomorphisms of QH-subgroups, we use the Elimination process
that gives their standard presentations, and the following classical result.

Lemma 4.6. Let Gv ⊂ G and Hu ⊂ H be two QH-subgroups in the Abelian
JSJ decompositions of one-ended F-groups G and H, and let A1, . . . , An ⊂
Gv and B1, . . . , Bn ⊂ Gu be their sets of peripheral subgroups. Then Gv and
Hu are e-isomorphic if and only if their standard presentations (see Defini-
tion 3.10) are the same, up to permutation of generators. In particular, if
ϕv is an e-isomorphism, then ϕv(Ai) = Bi for all i = 1, 2, . . . , n.

4.2. Rigid vertices. To find out whether or not two rigid vertex groups
are e-isomorphic, we use Theorem 4.9 below. To state the theorem, we need
some more definitions.

Definition 4.7. Two monomorphisms ψ : G → H and φ : G → H are equiv-
alent if ψ is a composition of φ and conjugation by an element from H.

Definition 4.8. Let G be a group and K = {K1, . . . ,Kn} be a set of
subgroups of G. An Abelian splitting ∆ of G is called a splitting modulo K
if all subgroups from K are conjugated into vertex groups in ∆.

Observe that a rigid vertex group in an Abelian JSJ decomposition of a
group has no non-degenerate Abelian splittings modulo its peripheral sub-
groups.



ISOMORPHISM PROBLEM 21

Theorem 4.9. [15, Theorem 15.1] Let G (or H) be an F-group, and let
SA = {A1, . . . , An} (respectively, SB = {B1, . . . , Bn}) be a finite set of non-
conjugated maximal Abelian subgroups of G (respectively, H) such that the
Abelian decomposition of G modulo SA is trivial. The number of equiva-
lence classes of monomorphisms from G to H that map subgroups from SA

onto conjugates of the corresponding subgroups from SB is finite. A set of
representatives of the equivalence classes can be effectively found.

Corollary 4.10. Let G be an F-group, and let S = {A1, . . . , An} be a finite
set of maximal Abelian subgroups of G. Denote by Out(G; S) the set of those
outer automorphisms of G which map each Ai ∈ S onto a conjugate of it. If
Out(G;S) is infinite, then G has a non-trivial Abelian splitting modulo S.
There is an algorithm to decide if Out(G;S) is infinite and if it is, to find
the splitting.

Lemma 4.11. Let G (or H) be an F-group, and let SA = {A1, . . . , An}
(respectively, SB = {B1, . . . , Bn}) be a finite set of non-conjugated maximal
Abelian subgroups of G (respectively, H) such that the Abelian decomposition
of G modulo SA is trivial. Then there is an algorithm to decide whether or
not G and H are e-isomorphic, and if they are, then the algorithm finds all
the equivalence classes of extendable isomorphisms from G to H.

Proof. We apply Theorem 4.9 and find all the representatives φ1, . . . , φk (if
exist) of the equivalence classes of monomorphisms from Gv to Hu that map
subgroups from SA onto the subgroups from SB.

If a monomorphism φ : Gv → Hu that maps the edge groups of Gv onto the
conjugates of the corresponding edge groups of Hu exists, one can effectively
check whether or not it is onto. First, we apply [15, Theorem 3.21] to obtain
a presentation for the image φ(G) ⊆ H which is the subgroup of H generated
by x1, . . . , xk. Now, we apply [25] to see whether or not hj ∈ φ(G) for each
j. The monomorphism φ is onto if and only if φ is an isomorphism. ¤

4.3. Algorithm. Let Γ̂(V, E) and Ξ̂(U,P ) be Abelian JSJ decompositions
of two one-ended F-groups G and H, respectively (see Theorem 3.13). As-
sume that there is an isomorphism of graphs λ : (V, E) → (U,P ). We denote
the image λ(e) of an edge e by the same letter e. For each vertex v ∈ V , we
order all the edges incident on v end fix the same order for the edge sub-
groups of Gv, so that Ai = α(Gei). (Since our ordering is local and the graph
is bipartite, we can always assume that i(ei) = v.) Similarly, we order all the
edge subgroups of Hu where u = λ(v) when we assume that λ respects the
ordering of edges incident on v and on u. Further, we assume that for each
v ∈ V and u = λ(v), there is an e-isomorphism ϕv : Gv → Hu that preserves
ordering of the edge subgroups of Gv and Gu, so that ϕv(Ai) is conjugate
to Bi in Hu. This latter assumption means, in particular, that λ is a locally
extendable isomorphism of graphs (see Definition 2.15). By Remark 2.16,
existence of such an isomorphism does not necessarily imply that G and H
are isomorphic. Even though we assume that local isomorphisms between
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vertex groups are e-isomorphisms i.e., preserve the peripheral structure of
vertex groups, G and H may be not isomorphic still. In Lemma 4.12 below
we state a necessary and sufficient condition for G and H to be isomorphic.
To state the lemma, we need to introduce some more notation. We fix a
maximal tree T in (V, E) (hence, in (U,P )) and introduce comparative la-
belling of edges L

(ϕ)
u : P ∩ T → Hu defined as follows. Let v ∈ V be a rigid

non-elementary vertex, and let A1, . . . , An ⊂ Gv be the edge subgroups. For
u = λ(v), let B1, . . . , Bn ⊂ Hu be the edge subgroups. Fix an e-isomorphism
ϕv : Gv → Hu and set L

(ϕv)
u (pi) = hi ∈ H if pi ∈ P is an edge incident on

u with the edge group Bi and ϕv(Ai) = hiBih
−1
i . Notice that labelling de-

pends on the e-isomorphism ϕv. We assign the trivial label 1 ∈ H to each
edge e ∈ T incident on a flexible vertex. By a star of a vertex v in the tree
T we mean the subgraph Star(v) of T where the set of edges consists of the
edges of T incident on v and the set of vertices consists of the endpoints of
those edges.

Lemma 4.12. With the above notation and assumptions, e-isomorphisms
between vertices of Γ(V, E) and Ξ(U,B) can be extended to an isomorphism
between the fundamental groups π1(Γ) and π1(Ξ) if and only if there are
e-isomorphisms of vertices so that in the star of each elementary vertex, at
most one label hi is not trivial.

Proof. To show that the condition is necessary, suppose there is an elemen-
tary vertex u with two different edges e1, e2 ∈ Star(u) stabilized by B1, B2,
so that their labels h1 and h2 are not trivial. Observe that B1, B2 ⊂ Hu, so
that Bhi

i ⊂ Hhi
u for i = 1, 2. Therefore, Hh1

u = Hh2
u , hence h1h

−1
2 ∈ Hu, a

contradiction.
To show that the condition is also sufficient, we argue as follows. First,

we extend e-isomorphisms ϕv : Gv → Hλ(v) between vertices of the graphs
of groups Γ(V, E) and Ξ(U,B) to an isomorphism between the fundamental
groups of the trees of groups ϕT : Γ̂(T ) → Ξ̂(T ). These trees of groups
are obtained from the graphs of groups Γ and Ξ by removing the edges
that do not belong to T . The map ϕT defines the images of the vertex
groups Gv of Γ under an isomorphism ϕ : G → H that we are constructing.
Having defined images of Gv in H, we assign images to the stable letters
in the presentation of G as the fundamental group of Γ(V, E), and get the
isomorphism ϕ : G → H.

Fix elementary vertices u ∈ U and v ∈ V so that u = λ(v). First,
we extend e-isomorphisms between vertices of Star(v) and Star(u) to an e-
isomorphism between the fundamental groups π1(Star(v)) and π1(Star(u)).
Assume that in Star(u), precisely one label h is not trivial. Let uo = τ(e0)
where e0 is the edge with non-trivial label h, and let Tu denote the con-
nected component of T \{e0} that contains u. We replace the e-isomorphism
ϕx : Gx → Hλ(x) by ĥ ◦ ϕx where ĥ is conjugation by h, for each x with

λ(x) ∈ Tu. Let v0 ∈ V be so that u0 = λ(v0) and ϕ
(0)
v : Gv0 → Hu0
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be the e-isomorphism that corresponds to the labelling in question. Ob-
serve that all vertices of Star(u) but u0 are in Tu, and e-isomorphisms
ĥ ◦ ϕv and φ ∈ {ϕ(0)

v , ĥ ◦ ϕx | x ∈ Star(v), x 6= v0} agree on edge sub-
groups. Observe that replacing e-isomorphisms at the vertices x ∈ V
with λ(x) ∈ ∆u, does not affect the labelling of P . Therefore, the e-
isomorphisms ĥ ◦ϕv and ϕ

(0)
v , ĥ ◦ϕx (x ∈ Star(v), x 6= v0) define an isomor-

phism ψv : π1(Star(v)) → π1(Star(u)). Moreover, if we collapse all edges
in Star(v) and Star(u) so as to contract each one of these subgraphs to
a point (we call these vertices x and y, respectively), then ψv will be an
e-isomorphism ψv : Gx → Hy, in the meaning of Definition 4.5. This obser-
vation allows one to consider e-isomorphisms of subgraphs of groups.

If there is no non-trivial label in Star(u), then the e-isomorphisms ϕx

where x ∈ Star(v) agree on edge subgroups, hence extend to an e-isomorphism
ψv : π1(Star(v)) → π1(Star(u)).

We proceed to other elementary vertices by induction on the distance
from v in T and end up with the isomorphism ϕT . Now, let e ∈ E do not
belong to T , and let t (or s) be the stable letter that corresponds to e in G
(or H). Let v = i(e) and x = τ(e) be the endpoints of e, and A = α(Ge)
and C = ω(Ge). Recall that α(Ge) = ω(Ge)t in G and α(He) = ω(He)s

in H. Our assumptions and the above procedure imply that ϕT (α(Ge)) =
α(He)h and ϕT (ω(Ge)) = ω(He)b for some h and b in H. Hence, we can set
ϕT (t) = b−1sh to preserve the relations in the presentations of G and H as
the fundamental groups of Γ and Ξ. Obviously, the map ϕ : G → H that we
obtain is an isomorphism. ¤
Theorem 4.13. Let G ∼= 〈SG | RG〉 and H ∼= 〈SH | RH〉 be finite pre-
sentations of fully residually free groups. There exists an algorithm that
determines whether or not G and H are isomorphic. If the groups are iso-
morphic, then the algorithm finds an isomorphism G → H.

Proof. We apply the Elimination process to the given presentations. The
output of the Elimination process are presentations G ∼= 〈SG | RG〉 and
H ∼= 〈SH | RH〉 described in Theorem 4.1. If both G and H are indecompos-
able, then we apply Lemma 4.2. If both G and H have non-trivial Grushko
decompositions with the same number of factors, then by Lemma 4.3, it
is enough to compare the factors Gi and Hj of these decompositions. If
Gi and Hj are free groups, then they are isomorphic if and only if their
generating sets have the same cardinality. Otherwise, Gi and Hj are one-
ended groups (in what follows, we still denote these groups by G and H),
and we consider their Abelian JSJ decompositions Γ(V,E) and Ξ(U,P ).
Theorem 3.17 gives rise to the following algorithm. We find all possible
isomorphisms between the graphs (V, E) and (U,P ). If there are not any,
then we are done as the groups are not isomorphic. Otherwise, fix an iso-
morphism λ : (V, E) → (U,P ) and try to find an extendable isomorphism
ϕv : Gv → Hλ(v) that preserves the ordering of the edge subgroups (see the
beginning of this section), for each v ∈ V . This latter procedure depends



ISOMORPHISM PROBLEM 24

on the type of the vertex group in question: Abelian (elementary), flexible
or rigid non-elementary. Recall that by Lemma 4.4, we are able to deter-
mine the type of each vertex group effectively. If Gv and Hλ(v) are either
elementary or flexible groups, then it suffices to compare their canonical
presentations that are output of the Elimination process. The groups are
isomorphic if and only if a map sending the generators of Gv in the canoni-
cal presentation to the generators of Hλ(v), sends the peripheral subgroups
of Gv onto the peripheral subgroups of Hλ(v), so that it remains to check
that the ordering of the peripheral subgroups is preserved. An algorithm
for rigid groups is the content of Lemma 4.11. Observe that each rigid non-
elementary subgroup is an F-group with the trivial Abelian decomposition
modulo the set of peripheral subgroups, which makes Lemma 4.11 appli-
cable in this case. If for each isomorphism of graphs λ there is a pair of
vertices (v, λ(v)) with no e-isomorphism between Gv and Hλ(v) preserving
the ordering (which we can find out in a finite time), then G and H are
not isomorphic. Otherwise, we fix λ and an e-isomorphism ϕv for each pair
(v, λ(v)) and associate the comparative labelling as defined above, to each
set of e-isomorphisms between the non-elementary vertices of (V, E) and
(U,P ). Since by Corollary 4.10, the set of e-isomorphisms between two rigid
vertices is finite, we can apply Lemma 4.12 and obtain the claim. ¤

5. Structure of the automorphism group

Let G be a one-ended F-group, and let Γ(V,E) be an Abelian JSJ de-
composition of G. By an e-automorphism of a vertex group Gv we mean
an automorphism ψ ∈ Out(Gv) that maps each edge subgroup of Gv onto
a conjugate of itself (cf. Definition 4.5). By Theorem 3.18, an Abelian JSJ
decomposition of G and its image under an automorphism of G differ by
conjugation and modifying boundary monomorphisms. We apply this result
to study the structure of Out(G). To state our result, we introduce one
more definition.

Definition 5.1. Let G be a freely indecomposable F-group, and let Γ(V, E)
be the Abelian JSJ decomposition of G. We define the group OutΓ(G) to be
the subgroup of Out(G) generated by automorphisms of the following types:

(1) Generalized Dehn twists along edges in Γ (see Definition 2.4).
(2) E-automorphisms of an elementary vertex group.
(3) E-automorphisms of a flexible vertex group Gu (geometrically, these

are Dehn twists along simple closed curves on the punctured surface
Σ with π1(Σ) ∼= Gu).

Lemma 5.2. With the notation of Definition 5.1, |Out(G) : OutΓ(G)| < ∞.

Proof. According to Theorem 3.18, each automorphism ψ ∈ Aut(G) pre-
serves the maximal tree T of Γ. Therefore, ψ is the composition of e-
automorphisms of vertices, automorphisms of type (1), and conjugation.
Observe that the e-automorphisms of elementary and flexible vertices belong
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to OutΓ(G). Furthermore, according to Corollary 4.10, each rigid vertex has
only finitely many e-automorphisms. Also observe that e-automorphisms of
different vertices commute; the assertion follows. ¤

We denote by VM ⊂ V the subset of all elementary vertices and by VQ ⊂
V the subset of all flexible (or QH-)vertices of Γ. With each vertex v ∈
VM ∪ VQ we associate the subgroup of e-automorphisms of Gv denoted by
Mv if v ∈ VM and by Qv if v ∈ VQ. Since Gv is a finitely generated free
Abelian group, Mv is a subgroup of GLn(Z), where n is the maximal rank
of an Abelian subgroup of G. Each flexible vertex group is the fundamental
group of a punctured surface, so that Qv is the mapping class group of a
surface with boundary. Let Q =

∏
v∈VQ

Qv and M =
∏

v∈VM
Mv. Since

the structure of OutΓ(G) is well understood, we have the following result
(cf. [18, Theorem 1.2]).

Theorem 5.3. Let G be a one-ended F-group. The group Out(G) is virtu-
ally a direct product Zd ×M× Q̂ where Q̂ is the quotient of Q by a central
subgroup isomorphic to a f.g. free Abelian group Zm.

References

[1] H. Bass, Group actions on non-Archimedean trees, Arboreal group theory (Berke-
ley, CA, 1988), 69–131, Math. Sci. Res. Inst. Publ., 19, Springer, New York, 1991.

[2] B. Baumslag, Residually free groups, Proc. London Math. Soc., 17(3) (1967),
402–418.

[3] G. Baumslag, A. Miasnikov, V. Remeslennikov, Algebraic geometry over
groups I. Algebraic sets and ideal theory, Journal of Algebra, 1999, v.219, 16–79.

[4] B. Bowditch, groups, Geom. Topol. 7 (2003) 933-963.
[5] I. Bumagin, The conjugacy problem for relatively hyperbolic groups, Algebraic

and Geometric Topology, to appear.
[6] I. Bumagin and D. Wise, Coherence of coherent-by-cyclic groups, preprint.
[7] F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933-963.
[8] B. Farb, Relatively hyperbolic groups, GAFA, 8(1998), 810–840.
[9] M. Forester, Deformation and rigidity of simplicial group actions on trees,

Geom. Topol. 6 (2002) 219–267.
[10] M. Forester, On uniqueness of JSJ decompositions of finitely generated groups,

Comment. Math. Helv. 78 (2003) 740–751.
[11] D. Gildenhuys, O. Kharlampovich and A. Myasnikov, CSA-groups and sep-

arated free constructions, Bull. Aistral. Math. Soc., 52(1995), 63–84.
[12] V. Guirardel, A very short proof of Forester’s rigidity result, Geom. Topol. 7

(2003) 321–328.
[13] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free

group II, J. of Algebra, 200(1998), 517–570.
[14] O. Kharlampovich and A. Myasnikov, Implicit function theorem over free

groups, to appear in Journal of Algebra.
[15] O. Kharlampovich, A. Myasnikov, Effective JSJ decompositions, to appear

in Group Theory: Algorithms, Languages, Logic (A. Borovik editor), Contemp.
Math., Amer. Math. Soc., 2004.



ISOMORPHISM PROBLEM 26

[16] O. Kharlampovich, A. Myasnikov, V. Remeslennikov, D. Serbin, Sub-
groups of fully residually free groups: algorithmic problems, Group theory, Sta-
tistics and Cryptography ( A.G. Myasnikov and V. Shpilrain, editors), Contemp.
Math., Amer. Math. Soc., Vol.360, 2004.

[17] A. G. Kurosh, The theory of groups, Translated from the Russian and edited by
K. A. Hirsch. 2nd English ed., 1960, Chelsea Publishing Co., New York.

[18] G. Levitt, Automorphisms of hyperbolic groups and graphs of groups, preprint,
available at http://xxx.arxiv.org/abs/math.GR/0212088.

[19] R.C. Lyndon, Groups with parametric exponents, Trans. Amer. Math. Soc.,
96:518–533, 1960.

[20] R.C. Lyndon, Equations in free groups, Trans. Amer. Math. Soc., 96:445–457,
1960.

[21] R.C. Lyndon and P. Schupp, Combinatorial Group Theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 89. Springer-Verlag, Berlin-New York,
1977.

[22] G.S. Makanin, Equations in a free group, Math. USSR Izvestiya, 21 (1983).
[23] G.S. Makanin, Decidability of the universal and positive theories of a free group

(Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 48(1):735–749, 1985. transl. in Math.
USSR Izv., V. 25, 1985; MR 86c:03009.

[24] B. Mal’cev, On the faithful representation of infinite groups by matrices, Math.
Sb. (N.S.), 8(50) (1940), 405–422; English translation in Amer. Math. Soc.
Transl., 45(2)(1965), 1–18.

[25] A. Myasnikov, V. Remeslennikov, D. Serbin, Regular free length functions

on Lyndon’s free Z[t]-group F Z[t], to appear in Contemp. Math. AMS
[26] D. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties,

and algorithmic problems , preprint.
[27] A. Razborov, On systems of equations in a free group, Math. USSR-Izv. 25(1),

(1985), 115–162.
[28] E. Rips and Z. Sela, Canonical representatives and equations in hyperbolic

groups, Invent. Math. 120(1995), no. 3, 489–512.
[29] E. Rips and Z. Sela, Cyclic splittings of finitely presented groups and the canon-

ical JSJ decomposition, Annals of Mathematics, 146 (1997), 53–104.
[30] D. Segal, Decidable properties of polycyclic groups, Proc. London Math. Soc. (3)

61 (1990), no. 3, 497–528.
[31] D. Segal and F. J. Grunewald, Some general algorithms. II. Nilpotent groups,

Ann. of Math. (2) 112 (1980), no. 3, 531–617.
[32] Z. Sela, The isomorphism problem for hyperbolic groups. I. Ann. of Math. 141(2)

(1995), no. 2, 217–283.
[33] Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups

in rank 1 Lie groups II, GAFA 7 (1997), 561–593.
[34] Z. Sela, Diophantine geometry I, Publications Mathematiques de l’IHES,

93(2001), 31-105.
[35] Z. Sela, A list of research problems, http://www.ma.huji.ac.il/zlil
[36] J.P. Serre, Trees, Springer-Verlag, Berlin and New York, 1980.

Department of Mathematics and Statistics, McGill University, Montreal,
QC, Canada, H3A2K6

E-mail address: bumagin@math.mcgill.ca

E-mail address: olga@math.mcgill.ca

E-mail address: alexeim@att.net


