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Abstract

A transversal cover (packing) is a set of gk points in £ disjoint groups of size g and
a minimum (maximum) collection of transversal subsets, called blocks, such that any
pair of points not contained in the same group appear in at least (most) one block. A
central question is to determine, for given g and k, the minimum (maximum) possible

b, denoted tc(k, g) (tp(k, g))-

Transversal covers are applicable to software testing, data compression and error
free communication. The case g = 2 was previously solved. Asymptotic results are
known for all g, but little was understood for small values of k. We develop con-
structions, yielding upper bounds by four methods: incomplete transversal designs,
concatenation techniques, generalized Wilson’s constructions and group divisible de-
signs. We develop three general lower bounds: tc(k,g) > [(glogk)/2] + g + 1,
2[ 5] +on

b
9

k< {((%_((;_2)) -y, (’Z) (3_5:8_2)» /g(gi)J, when all points appear equally of-

ten, using a set packing argument. In addition, we investigate lower bounds for small

using a construction; k£ < %( ) from the study of intersecting set-systems; and

k that reduce or eliminate the gap between lower and upper bounds.

Transversal packings are significantly less studied, but Abdel-Ghaffar and Abbadi
found the maximum & admitting b > ¢, upper bounds and some optimality results,
and discussed an application to optimal disk allocation. We develop constructions,
yielding lower bounds, from incomplete transversal designs, Wilson’s method, and
techniques applied to an equivalent matching problem for graphs. Upper bounds are
derived from coding theory, standard packing arguments, and consideration of sets

of disjoint blocks.

We give tables and figures of the values obtained from these bounds for both

transversal covers and packings, in the two appendices.
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Chapter 1

Introduction

Motivated by transversal covers’ utility, much recent discussion, and the lack of in-
vestigation of small parameter values, we discuss this natural extension of transversal
designs to larger block sizes, covering conditions replacing strict uniform pair occur-
rence. The complementary problem, transversal packings, is a natural investigation
also with some applications. The object of this thesis is to calculate both upper
and lower bounds for both these objects, produce good instances, optimal if possible,
and investigate their structure. As a consequence, we have also produced algorithms

which recursively and directly construct these objects.

While it would seem the appropriate time to discuss the history of these problems,
the various different methods used to approach these topics would require the reader
to be able to translate between these disparate viewpoints. Considering the time it has
taken to make these translations ourselves during the last four years as we encountered
each new viewpoint, I would not expect this of any interested reader. We want the
reader to proceed through the history comfortably, understanding beforehand why
seemingly inapplicable results are mentioned in connection to transversal covers and
packings. Therefore, we will plunge directly into definitions and notation, explaining

the variety of perspectives on this subject and establishing their equivalence.



1.1 Definitions and Notation

1.1.1 Miscellaneous Notation

We begin with some common notation found in this work. We use log for log,;
logarithms to any other base will be explicitly noted as such. |z| will denote the
largest integer < x. [x] will denote the smallest integer > z. If x has a distribution
of values, T will refer to the mean of the distribution. When we remove z from a set,

we use = for emphasis.

A g-set is a set of cardinality g. It will usually be either {0,1,...,9 — 1} or
{1,2,..., ¢} and which of these is used should be clear from the context. A g-set will
sometimes be referred to as a g-ary alphabet. This is usually when the particular set

is not one of the above.

1.1.2 General Incidence Structures

Many incidence structures will be mentioned and used throughout this thesis. These

definitions come from either [7] or [12].

Definition 1.1. Let K be a subset of positive integers. A pairwise balanced design
(PBD(v, K)) of order v with block sizes from K is a pair (V, B), where V is finite set,
of cardinality v, and B is a family of subsets (blocks) of V' which satisfy the following:
if B € B then |B| € K and every pair of distinct elements of V' occurs in exactly one
block. If K = {k} then we will denote this as PBD(v, k).

A PBD can also be called a (v, K, 1)-design, where the 1 refers to the fact that
every pair appears exactly once amongst the blocks. When every pair appears at
least once amongst the blocks we will refer to the structure as a (v, K, 1)-cover. When
every pair appears at most once amongst the blocks, we will refer to the structure as

a (v, K, 1)-packing. These will sometimes be called standard or pairwise packings.



Definition 1.2. Let k, g and n be positive integers. A group divisible design of order
ng (k-GDD of type g") is a triple (V, G, B) where V is a finite set of cardinality ng, G
is a partition of V' into n groups of size g, and B is a family of subsets, called blocks,
of V which satisfy the properties:

1. If B € B then |B| = k;

2. every pair of distinct elements of V' occurs in exactly one block or one group

but not both; and
3. n>1.
Definition 1.3. Let B be a set of blocks of some incidence structure. A resolution
class is a collection of blocks which partitions the point set of the incidence structure.
A k-GDD of type g™ is called resolvable and denoted k-RG DD of type g™ if its

blocks can be partitioned into resolution classes.

Definition 1.4. A transversal design of order g, block size k, denoted TD(k, g) is a
k-GDD of type g*. TD(k) will denote the set of all g € N such that there exists a
TD(k, g).

Definition 1.5. [12] An incomplete transversal design (ITD(k,n;by,bs, ..., bs)
0<b;, >.; b <n)isa quadruple (V, G, H, B), where

1. V is a set of kn elements;

2. G is a partition of V into k£ groups, each of size n;

3. H is a set of disjoint subsets Hq, H,, ..., H, of V', called holes, with the property
that, for each 1 <7 < s and each G € G, |G N H;| = b;;

4. B is a collection of k-subsets of V' called blocks; and

5. every unordered pair of elements from V' is



e contained in a hole, and contained in no blocks; or
e contained in a group, and contained in no blocks; or

e contained in neither a hole nor a group, and contained in exactly one block.

A TD(k,g) is equivalent to k£ — 2 mutually orthogonal latin squares (MOLS) of
order g. Incomplete transversal designs are equivalent to k£ — 2 incomplete, or holey,

MOLS of order n with holes of size by, ..., b;.

Definition 1.6. An existential array (EA(c; g1,---,9r)) is a r X ¢ array, where row i
has entries from a g;-ary alphabet, and given any two columns, j and £, there exists

at least one row, 7, where the symbols in the two columns differ.

It is clear that 7 < []'_, ¢;, and that this is achievable.

There are a number of parameters associated with any incidence structure. In
any incidence structure v will denote the number of points, b will be the number of
blocks in the structure, r, will denote the replication number of z, i.e., the number of
blocks incident with the point z, and kg will denote the size of block B, the number
of points with which it is incident. A;, will denote the number of blocks on which
the pair of points z and y occur together. If this is a constant on the entire incidence
structure it will simply be referred to as A. And finally p4 p will be the number of
points that blocks A and B have in common, in other words, viewing A and B as

sets, uap = |AN B|. If this is constant it will be denoted as simply p.

1.1.3 Transversal Covers

We now define our objects of study.

Definition 1.7. Let k, ¢ and n < g be positive integers. A transversal cover
(TC(k,g:n)) is a triple (X, G, B) where |X| = kg, G = {G1,Gs,...,Gy} is a par-

tition of X into k sets of size g, B is a collection of subsets of X, called blocks or



transversals, each block has size k and intersects each G; in exactly one point, and
each pair of points of X not in the same G; occurs in at least one block. Further,
there is a set of at least n disjoint blocks in B. The smallest number of blocks possible
in a TC(k, g : n) is denoted by tc(k, g : n). The largest number of groups possible in

a transversal cover with b blocks is denoted by kc(b, g : n).

Example 1.1. Let V ={0,1,2,3,4, 5,6, 7} partitioned into groups G; = {0,1},Gs =
{2,3},G3 ={4,5},G4 = {6,7}. Then the following blocks form a transversal cover:

{0,2,4,6},{1,3,5,6},{1,3,4,7},{1,2,5,7},{0,3,5, 7}

A TC(k,g : n) with g* blocks is obviously a transversal design. We will call a
TC(k,g : n) with the n disjoint blocks removed an incomplete transversal cover or

ITC(k,g:n). It is clear that

te(k,g:i) <tc(k,g:j) < te(k,g:i)+j—i, forany 1 <i<j<n. (1.1)

Treating transversal covers as b x k arrays of elements from a g-ary alphabet,
allows easy translation among the many ways that these objects have been viewed
and approached in the literature. The array is formed by placing the same g-ary
alphabet on each group and then listing the blocks explicitly as the rows of the array.
The groups become the columns and a set of disjoint blocks becomes a set of rows

with pairwise Hamming distance k. With this in mind, we define:

Definition 1.8. A covering array (CA(k, g : n)) is an array with £ columns of values
from a g-ary alphabet such that given any two columns, ¢ and j, and for all ordered
pairs of elements from a g-ary alphabet, (g1,92), there exists a row, r, such that
a;r = g1 and a;, = go. Further, there is a set of at least n rows that pairwise differ

in each column; they are disjoint.

It is obvious that row and column permutations, as well as permuting symbols

within each column, leave the covering conditions unchanged.

5



Example 1.2. The transversal cover from Example 1.1, with the 2-ary alphabet
{0, 1} placed on each group, yields the following covering array:

00
10
01
11
11

= e =)
o B = O

Before showing the third equivalent formulation of the problem we make two new

definitions:

Definition 1.9. A g-partition , A, of a b-set, B, is a collection of subsets {A;}]_; of
B such that A; N A; =0 for i # j and U}_; A, = B.

Definition 1.10. A family of g-partitions, { A*}¥_, of a b-set B is called ¢-independent
if whenever one chooses t distinct g-partitions and one part from each, then the
intersection of these parts is non-empty. In other words for all 7; < 190 <+ -+ < 14,

APNAZN- - NAYL £

t

for any set {ji,...j;} where 1 < jy <gforalll<I[<t.

We can see that a covering array is equivalent to a set of 2-independent g-partitions
of a b-set. Each column defines a g-partition of a b-set in the obvious way. Then the
covering conditions of the transversal cover imply 2-independence. When speaking
in terms of transversal covers or covering arrays one sometimes refers to strength ¢
instead of t-independence. This thesis will not address the question of t-independence

for t > 3.

Example 1.3. To present the transversal cover from Example 1.1 we label the blocks,



in order, B = {a,b,c,d, e} then the family of 2-independent 2-partitions of B is

AL = {{a,e},{b,c,d}}
A? = {{a,d}, {b,c,e}}
A* = {{a,c}, {b,d, e}}
A = {{a,b},{c,d,e}}

We may require more structure on a transversal cover, in particular that each

point is in an equal number of blocks.

Definition 1.11. A point-balanced transversal cover (PBTC(k, g : n)), is a transver-
sal cover such that r, is constant for every z € X, i.e. every point appears equally
often. The smallest number of blocks possible in an PBTC(k,g : n) is denoted by
pbte(k, g :n).

1.1.4 Transversal Packings

Definition 1.12. Let k£, g and n < g be positive integers. A transversal packing
(TP(k,g:n))isatriple (X, G, B) where | X| = kg, G = {G1, G, ..., G} is a partition
of X into k sets of size g, B is a collection of subsets of X, called transversals or blocks,
each block has size k and intersects each G; in exactly one point, and each pair of
points of X not in the same G; occurs in at most one block. Further, there is a
set, of at least n disjoint blocks in B. The largest number of blocks possible in a
TP(k,g : n) is denoted by tp(k,g : n). The largest number of groups possible in a
transversal packing with b blocks will be denoted by kp(b, g : n).

Example 1.4. Let V = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14} partitioned into
groups G; = {0,1,2}, Gy ={3,4,5},G3 = {6,7,8}, G4 = {9,10,11}, G5 = {12, 13, 14}.



Then the following blocks form a transversal packing:

{0,3,6,9,12},{0,4,8,8,10}, {1,3,7,11, 14},
{2,4,6,10,14},{2,5,7,9,13},{1,5,8, 10, 12}

Viewing the transversal packing as a b x k array of values from a g—set, in exactly

the same way as for transversal covers give the equivalent object:

Definition 1.13. A packing array (PA(k, g : n)) is an array with k columns of values
from a g-ary alphabet such that given any two columns, ¢ and 7, and for all ordered
pairs of elements from a g-ary alphabet, (g1, ¢2), there is at most one row, r, such
that a;, = g1 and a;, = go. Further, there is a set of at least n rows that pairwise

differ in each column: they are disjoint.

Row and column permutations, as well as permuting symbols within each column,

leave the packing condition intact.

Example 1.5. The transversal packing from Example 1.4, with the 3-ary alphabet
{0,1, 2} placed on each group, yields the following covering array:

=N N RO O
N N = O = O
N = O = N O
= O = N N O
O = NN = O

1.2 Historical Remarks

1.2.1 Transversal Covers

We restate the two most common questions:

1. What is the minimum b given k (tc(k, g : n))?



2. What is the maximum k given b (kc(b, g : n))?

These two questions are equivalent and can be translated into each other. Indeed,
te(k, g : n) = min{blkc(b,g : n) > k}

and

kc(b, g : n) = max{k|te(k,g : n) < b}.

Performing these inversions can be difficult. Asymptotically, they can often be alge-
braically inverted; but, for finite values the inversion is usually algorithmic and com-
putational. In Chapter 3, we will see this difficulty in action. We develop two lower
bounds on tc(k, g : n), one of which is derived from an upper bound on kc(k, g : n).
Even though this lower bound is better, it is less useful because of the difficulty

inverting it.

In 1928, Sperner asked the question: what is the largest cardinality of a family,
{A;}2,, of subsets of an n-set with the property that A; C A; never holds for i # ;57

s () 2

and that this maximum is attainable [39]. This question is equivalent to asking

He showed that

for the largest anti-chain of subsets of an n-set where the partial ordering is given
by inclusion. In our language, with the addition of two new points, one always in
each set and one never in any set A;, (equivalent to adding two new rows to the
corresponding covering array: one with all zeros and one with all ones), we have the

result that if f(t) = ([21), then we conclude that
2

te(k,2:2) =min{t: f(t) > k} + 2. (1.3)



Independently, Katona [22] and Kleitman and Spencer [23] solved the analogous
problem where

are all non-empty. They showed that

< ( n—1 )
m — n
51 —1
and again that this was attainable. If g(t) = ({zﬁl), then this translates into

te(k,2:1) = min{t : g(t) > k}. (1.4)

Rényi, who also solved the above problem for even b, first asked an important gen-
eralization of this question: If, instead of a 2-partition of the n-set into A; and A§,
we g-partition the set and require that any two parts from two different partitions

intersect, then what is the maximum number of partitions [36].

The next mention of transversal covers, by Poljak and Rodl, made reference to
both covering arrays and maximal g-partitions [30]. In this article, they proved a

number of results, including:

te(k,g190 : 1) < te(k,g1:1) te(k, g2 : 1) (1.5)
te(kike,g: 1) < te(ky,g: 1) +te(ke,g: 1) (1.6)
te(k,g:1) < (g) te(k,2: 1), (1.7)

if g is a prime power then

tc(gkle gag ]- Zag 1 (18)

I Mm

10



if g is a prime power and «; are non-negative integers (1 < i < j) then

J i1

i gl : -
tC(H[(Q +1)¢ 2999’1 1%,g:1) < ;g +ajo1g Tt g+
i=2

if te(ky, 91 : 1) < b and te(kq, g2) < g then
te(kika, go 1) < b.

These results have the corollaries that for £ large

2
1)< ? log(k)
log(g+ 1)
4g%log(k)
2g

te(k, g if g is a prime power and

te(k,g:1) < when g is composite.

They also proved the lower bound on b: If f(t,g) = (Lf_ll J) then
g9

te(k, g : 1) > min{t|f(t,g9) > k}.

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

In this article, they also relate tc(k, g : 1) to graph theoretical parameters. If W(G)

is the minimum number of independent sets such that every pair of non-adjacent

vertices is contained in at least one of them [6, 48] then

W(kK,) =tc(k,g:1).

(1.14)

Also, if there exists a TC(k,g : 1) with gr blocks, having an additional property

(called the permutation property) then

dim(kK,) <r.

11

(1.15)



These transversal covers are not necessarily point-balanced, even though they satisfy
the necessary condition on b. In a later paper, Poljak, Pultr and Rédl [29] improved
these results, showing for £ sufficiently large and g arbitrary

9¢2

5 log(k)

te(k,g:1) < W7 (1.16)

also proving a lower bound for & large:

g(log, (k) +log,(g))

te(k,g:1) >
ol g:1) 2 log,(g) +1

(1.17)

Later Poljak and Tuza [31] proved some additional results. This paper was the
first to make use of more than one disjoint block, specifically, n = g for g > 3. They

showed

te(k,g:1)+g > te(k,g:g9) > te(k,g: 1) (1.18)

te(kika, g:g) < te(ki,g:g) +te(ka, g: g). (1.19)

Their other results are more simply stated as upper and lower bounds on the maximum

k achievable given b (the equivalent formulation discussed above).

1
kc(b,g:1) < 3

(LE’JJ) = O (4957172) (1.20)

which translates to a lower bound on b, and

b
262g72+1

ke(b,g:1) >
( ) p

(1.21)

which translates into

te(k, g : 1) < 2¢%(log, (k) — loge(%e)). (1.22)

12



When g is a prime power and (g — ¢)|(b — g)

b—g

k> g, (1.23)

a direct application of Inequality 1.19, and finally when g = 3
1/]%
k> = (L?,;J). (1.24)

5]
Many of the above mentioned papers also consider and prove results about the

more general problem of r-independent k-partitions of an n-set.

Korner and Simonyi in 1992 [25] started considering the asymptotic size of transversal

covers. Motivated by one of Shannon’s results, they define

logke(b,g: 1)

¢, = limsup . (1.25)
b—o0 b
In these terms, the results of Poljak and Tuza [31] are
L < g3 < 2 (1.26)
3= 43 > 3 .

Using binary sequences with no consecutive 1’s and the Fibonacci numbers, Korner
and Simonyi show that

0.409 < gs. (1.27)

The beauty of this result is the original and innovative construction used. Transversal
covers that attain this bound always exist, but it is only useful for large b (and
consequently for large k) and behaves badly for small parameter values. In this
paper, the authors also reveal a new motivation and approach to transversal covers,
Shannon’s conception of a zero-error communication along a noisy channel. In brief,
the problem is to find the maximum b such that any two columns are covered for a
given set of pairs of letters, rather than all possible pairs. These pairs are represented

by the edges of a graph of order g. Kérner and Simonyi call solutions for this general
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class of problems Sperner Capacities. This motivation will be discussed along with

other applications in Section 1.3.

Gargano, Korner and Vaccaro [15], published in the same year, gave another

construction that yields slightly better values for g3 and new bounds for higher g:

gs > 0.4833 ¢4 > 0.2556 ¢5 > 0.1823
gs > 0.1116 ¢7 > 0.0870 g5 > 0.0628
q9 > 0.0541 ¢q19 > 0.0392 ¢4, > 0.0351
q12 > 0.0274 g3 > 0.0253.

(1.28)

The results for g > 4 come from the very valuable Two Word Lemma (TWL) proved in
their paper; the results show that a particular sets of words formed from concatenation
of two prescribed subwords must satisfy the same coincidence conditions as the two
subwords. If the subwords satisfy the condition that they cover all ordered pairs of
letters from a g-ary alphabet, then the set of words formed from them will as well,
forming the columns of a covering array. The result given above for ¢; is found using
a four subword analogue of the TWL. Like Kérner and Simonyi’s [25] construction,
this theorem and construction technique is elegant but restricted to large b and k.
The TWL can be used for many of the Sperner capacity problems. Indeed, this paper
concerns itself with Sperner capacities of cycles in addition to the complete graphs
which yield results on transversal covers. In a paper published a year later [16], the

same authors, using probabilistic techniques, were able to prove that

2
0=" (1.29)
for every g. This can be reformulated:
. te(k,g:1) g
1 =2 1.
koo logk 2’ (1.30)

and thus solves completely the asymptotics of the transversal covers problem. In

this paper, they also calculate the Sperner capacities of other graphs, including stars.
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There are further results on general Sperner capacities in their 1994 paper [17].

Sloane reports on many results for ¢ = 3 and small &: Ostergfird’s result that
te(5,3: 1) > 11; Applegate’s result from integer programming that tc(5,3: 1) < 11,
showing that

te(5,3:1) =11 (1.31)

(the first nontrivial optimal solution known); and Cook’s integer programming demon-
stration that tc(6,3 : 1) < 12. Sloane himself offers a construction along the same

lines as Inequality 1.7 that yields

kc(3a,3:1)§< ¢ ) (1.32)

[45]

and he gives a table of the best known values at the time of publication

k- ‘23456789101112131415161718...

(1.33)
te(k,3: 1) g‘g 991112151515 15 15 15 18 18 18 18 21 21 ...

Sloane’s focus in his article was the binary 3-covering arrays, equivalent to the 3-

independent 2-partitions from Definition 1.10 .

We conclude with the connection to combinatorial block designs. From a block
design theoretic approach, transversal covers are natural extensions of transversal
designs to standard covering requirements (that pairs appear not only once amongst
the blocks but at least once). This extension allows the consideration of block sizes
known to be impossible for transversal designs or not currently known to admit
transversal designs. Transversal designs give the trivial lower bound tc(k, g : n) > g
(tc(k,g : n) > g*> + 1 for k not admitting transversal designs) and much has been
studied about them and their equivalent formulation: sets of mutually orthogonal
latin squares [7]. Of particular note are the various transversal design constructions.

The foremost is Wilson’s construction and its generalizations [7, 13]:

Theorem 1.1. Let T = (V,A,G) be a TD(k + 1 : g) with block set A C (k‘—/H) and
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group set G = {G1,...,Gy, Hy,...,H;}. Let S be an s-subset of Hy U ---U H; and
Vo := G U---Gy. For each block A € A we write

Ag:=ANVy, A :=ANS, us :=|A"1=|ANS|.

Assume

h; = ‘SQHA ETD(k) fori=1,...1,

and the existence of a positive integer m satisfying the condition that for each block

A € A there is a TDlk;m + ua] with us disjoint blocks. Then one has

mg+s € TD(k). (1.34)

What we can conclude from this history is that although the asymptotics, some
good constructions for large parameters and one lower bound are known, very little
else is understood about transversal covers. The asymptotic limit is not constructive
and only one non-trivial optimal transversal cover was known at the time of Sloane’s
paper. Design theory offers a number of approaches that construct transversal covers
for all parameter values, some of which are new and some are generalizations of

constructions appearing in earlier papers.

1.2.2 Transversal Packings
We restate the two most common questions:

1. What is the maximum b given k, (tp(k, g : n))?

2. What is the maximum k given b (kp(b, g : n))?
These two questions are equivalent and can be translated into each other. Explicitly

tp(k, g : n) = min{blkp(b, g : n) > k}
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and

kp(b, g : n) = min{k|tp(k, g : n) > b}.
Again, as mentioned for transversal covers, these inversions are hard to perform.

Much less has been explicitly written about transversal packings. The rows of
the corresponding b x k packing arrays form the maximal set of words from a partial
maximum distance separable code (M DS code) with minimum Hamming distance
k — 1. Much has been studied concerning these codes and therefore, implicitly about
transversal packings. There are a number of coding theory bounds applicable to
transversal packings: the Plotkin, Singleton, Elias and Hamming bounds. The reader
is referred to [26] or [46] for comprehensive books on coding theory or to [45] or [9]

for an introductory level discussion. All these books have extensive bibliographies.

The large minimum distance of the code corresponding to transversal packings
forces g < b < ¢g2. One explicit mention of these particular parameter values in codes
has been made by Abdel-Ghaffar and Abbadi [2]. In order to obtain bounds on the
sizes of partial M DS codes, they prove that

@ +yg

tp(k,g:1)>g+1 = k< 5 (1.35)
or in other words
4+ g+2
to(I——=,9:1) =g. (1.36)

They also illustrate the equivalence between such codes and sets of pairwise orthogonal
partial latin squares. The reader is referred again to work on latin squares [7, 12]. In
a later paper, Abdel-Ghaffar solves the question for n = 1 and b < 2¢g and presents

some additional bounds [1].

Transversal packings are related to other packing structures and some bounds
for these packing structures are applicable to transversal packings. Two important
bounds for packings are the residual and derived bounds. The reader is referred to

Mills and Mullin’s survey on this subject [28].
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Complete determination of either tp(k,g : 1) or te(k, g : 1) for all £ would deter-
mine, as a consequence, the number of mutually orthogonal latin squares of side g
and solve the existence question for all transversal designs. This is known to be an

exceedingly difficult problem.

1.3 Applications

1.3.1 Transversal Covers

One of the reasons for the plentiful research on transversal covers (and related struc-
tures) has been their many and varied applications, both to other mathematics and
perhaps more importantly, to problems in industry, including software testing and
data compression. In fact, in recent years a number of individuals and groups
have proposed their use in commercial projects or developed software that gener-
ates transversal covers for use in applications. We will discuss three of their major

applications and mention some others.

Software Testing

One of the most discussed applications is the utility of transversal covers for designing
test protocols. This application appeared in Sloane’s 1993 paper although the example
that he used was not software testing but testing switch settings (those switches
on the backs of printers and modems). Recently, a proposal was made to IBM to
implement an online program for generating software test protocols [27]. Williams
and Probert[49] and Cohen et al. [11, 10] have developed such software. Williams
and Probert are interested in the interaction between various hardware components
that interact over a network. Cohen et al. have developed a system called AETG
(Automatic Efficient Test Generator) which is already being used at Bellcore for unit,

system and interoperability testing [11, 10].
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Consider a new piece of software which has k£ inputs each taking one of g values.
It is desirable to test all possible g* input strings for software failure, but if k or g
are large, this may be infeasible. One common solution to this time constraint is
testing a large but feasible number of random input strings, cutting down on the
number of test strings. This solution has some risk of incompleteness. Random test
protocols can reduce the likelihood of failure to low levels, if the random numbers used
are independent. However, most applications requiring many random numbers use
pseudo-random number generators which often do not produce independent random

numbers so the risk is large that the software will not be tested comprehensively.

However, if we use the smallest number of strings that contain between them, all
possible input combinations for each t-set of input variables, then we have achieved
some measure of comprehensiveness and also reduced the number of test strings.
This minimal set is exactly the blocks of a strength t transversal cover. Cohen et
al. did an empirical study of user interface software at Bellcore and discovered that
most software faults were cause by “either incorrect single values or by an interaction
of pairs of values”[11]. This evidence confirms the power of strength 2 transversal
covers for this application. Another encouraging report from the Bellcore researchers
was their system’s detection of faults that had been missed by the standard testing
protocols on software just about to be released on the market. Using transversal
designs or covers in place of random test strings is often called derandomization and

a good discussion of it can be found in Gopalakrishnan and Stinson’s chapter in [12].

Example 1.6. To illustrate this application, we consider the program used by most
universities when hiring recent graduates. The program asks four questions of the
job candidate in order of importance: “Is your supervisor famous or unknown?”; “Do
you have an external grant?”; “Do you have teaching experience?”; “Was your thesis
passed with corrections or modifications?”. To test this software against failure for
all pair interactions, the test strings generated from the transversal cover given in

Example 1.2 would be
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test 1| famous |external grant |teaching experience corrections

test 2| unknown |no grant no teaching experience | corrections

test 3| unknown |no grant teaching experience modifications

test 4| unknown |external grant |no teaching experience | modifications

test 5| famous |no grant no teaching experience | modifications

Both Williams and Probert and Cohen et al. were motivated by concrete prob-
lems. Often in these scenarios, there are pairs of input values (or hardware units in
Williams and Probert’s study) that are known to be independent and do not inter-
act. Alternatively, early entry of some values may bypass the entry of other input
variables entirely. The variables may not all take values from a set of fixed size. Most
variables could interact in pairs but some may be known to interact in sets of three
or more. Other complex relations between input variables or nodes on a network can
be imagined. These additional relationships can lead to either a strengthening or a
relaxation of the conditions required in test cases. The AETG system developed at
Bellcore can take into account a wide range of constraints and relationships: differing
group sizes, forbidden pairs, intensive interactions, complex relations, and developer

required test sets. It is in part based upon a greedy algorithm [11, 10].

To maximize the effectiveness of such an online test case generator, we would
ideally like to have software that could generate the best known transversal covers
(this could be a module inside a more comprehensive system that could generate test
sets for software that meet certain requirements, as discussed above). An excellent
model for such an implementation is Colbourn and Dinitz’s automated table generator
for MOLS [13]. The program knows all the constructions and is fed input of all known
structures. It runs through all the constructions and generates new structures which
it then adds to its database. These and any newly discovered structures are then
fed back into the algorithm which proceeds recursively to generate more and more

instances.

The ideal format would include a comprehensive algorithm which contains all
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known constructions, and a large database of known transversal covers. When new
transversal covers are found, they could be sent by e-mail to the system, which
would verify them and then cascade through all the constructions. The resulting
new transversal covers would be given a construction stamp (a short description of
how this particular cover was constructed: thus allowing the database to store only
the cover’s size and its construction method rather than the cover itself, saving large
amounts of storage space and algorithmic efficiency). This software, coupled with
some form of randomized search program, could find its own instances of transversal
covers and yield improved results. Researchers could also request given covers for
their particular needs and applications. Although a large and formidable project,
an implementation of this kind would no doubt justify its own cost. We have al-
ready developed a simulated annealing algorithm and a limited implementation of

the recursive algorithm described above for finding transversal covers.

Compressing Inconsistent Data

The second large application of these structures is in compression theory. Korner
and Lucertini discuss the inability of Shannon theory to deal with the compression

of contradictory data [24].

In the Shannon theory (sic) information appears as a substance without
shape and hence (sic) measurable by a scalar called entropy. Entropy
is the limit of compressibility of information. Likewise, in the Shannon
approach (sic) the communication link or storage device is characterized
by the scalar called capacity that indicates the volume of information the

link or storage device is able to safely transmit or store. [24]

Because information is shapeless, contradictory information cannot be represented.
Hence Koérner and Lucertini developed a new paradigm to cope with compressing

inconsistent data.
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If overlapping fragmentary observations of a large and complex system are made
by many observers and some of the information gathered about the large system is
contradictory, we may want to store all observations now and try to resolve the incon-
sistencies later. It may also be possible that the inconsistencies accurately represent
the system. A large research project, like the Human Genome Project, is an apt
example of such a system. The job is too large for any one research group or lab, so
the genome is split up into fragments and these are distributed to different labs to
be mapped. However, we must require that several labs sequence each section of the
genome, so that we have reliable data. DNA taken from two cells of a single individ-
ual may differ due to different mutations in the two somatic cell lineages. The labs
sequencing a given portion of the genome may arrive at different results, even if they
are perfect at sequencing. They also may arrive at different data because of normal
experimental error. In either of these two situations, we may want to maintain the
contradiction, in the first case because the difference represents the actual state of
the system (and we are interested in somatic mutation rate for example) or in the
latter because we may not be able to resolve which lab is in error for some time and

we need to store the data efficiently now.

The model that Kérner and Lucertini developed to deal with this situation involves
a large k-set (the genome in this case with £ immensely large) and a family of func-
tions, each with a restricted domain within the set. For each function, we have a set of
range vectors for the possible observations made on the domain set (the observation
alphabet). In the Human Genome Project, the function domains would probably be
large, overlapping consecutive sets and the range is all vectors {4, C, G, T}|domain|_
The minimal number of complete descriptions of the whole system, such that each
fragmentary observation occurs wholly in at least one of them, gives a good mea-

sure of the amount of information in the system. This number also represents the

maximum compressibility of the data fragments.

If the observation fragments are all possible t-sets of observation values and their

possible ranges to g’ is unrestricted, then a strength ¢ transversal cover is the solution
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to the problem. Considering all t-sets is a simplified example of the overall question,
but solutions to these problems may contribute to the answer of more realistic formu-
lations and certainly give upper bounds. Korner and Lucertini survey many different
families of maps and many different permitted range vectors and give the best results
known as of 1994. Their survey is an excellent presentation of the current state of

these problems and the methods used to solve them.

Zero-Error Noisy Channel Communication

The last, large application of transversal covers fits well into Shannon’s information
theory: in particular, as mentioned in Subsection 1.2.1, Shannon’s zero-error noisy
channel problem [25]. We can represent a series of noisy communication channels
by a family of graphs. Each graph has the same vertex set representing the letters
that can be sent across the channel. For a particular channel, an edge, (z,y), in the
corresponding graph represents the fact that the probability of z and y being received
as identical is zero (i.e. in this channel x and y are distinguishable). An edge missing
denotes that the two letters incident to it could be indistinguishable at the receiving
end of the channel. We do not know which channel we are going to be using, so
in order to obtain error-free transmission, we must find the maximum set of code
words that hits an edge in every possible graph. Formally this is: given any two code
words, = and y, for every graph, G, there exists an edge (z,y) € G and an index i
such that u; = r and v; = y. This guarantees that these two codewords will remain

distinguishable after reception.

The graphs could be any family of graphs on b vertices. The columns of a covering
array correspond to a code for the worst case when the family of graphs is all possible
one edge graphs on the b set. The covering conditions guarantee that any pair of words
can be used distinguishably. In fact, what we actually need to use is the transversal
cover with a set of ¢ disjoint blocks removed, the IT'C', because we don’t need to

cover the pairs (a, a) since these are clearly indistinguishable. The code derived from
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the ITC will transmit faithfully across any channel with any noise pattern as long
as each channel has at least one edge. As discussed in Subsection 1.2.1, Kérner and
Simonyi [25], and Gargano, Korner, Vaccaro [16, 17| have solved Sperner capacity

problems for general graphs and some specific families of graphs.

Others

Katona, in his paper solving the transversal covers problem for ¢ = 2 and n =1,
showed that the solution determines the minimum length of any monotonically in-
creasing truth function in disjunctive-normal form [22]. Koérner and Lucertini also
mention applications to testing of logic circuits, computer architecture design, ran-

dom access communications and have references to other uses [24].

1.3.2 Transversal Packings

In their paper, Abdel-Ghaffar and Abbadi [2] use M DS codes to allocate large
database files to multiple hard disk systems so that the retrieval time is optimal.
Although their application used M DS codes and not partial M DS codes and only
considered alphabets of prime power cardinality, the partial M DS codes correspond-
ing to transversal packings could possibly be used for optimal disk allocation to a
large number of disks, specifically at least g* 2, where, in their terminology, g is the
number of sets into which each attribute of the database is divided. If transversal
packings were used for optimal disk allocation in this model, any search with at least

two specified attributes would yield search time one.

In general, the codes corresponding to transversal packings could be useful for
any of the standard applications for codes: error detection; error correction. One
would imagine that transversal packings would be most useful in a situation where
the error rate in the information channel was exceedingly high requiring that the

minimum distance between codewords be large as it is in these partial M DS codes.
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By such a brief mention of the coding applications of transversal packings, we do not
wish to indicate that either transversal packings or their applications are limited or

uninteresting.

In Subsection 4.1.1, we discus the structure of transversal packings that meet
generalized Plotkin bounds. The duals of these transversal packings are resolvable
block designs. The group structure of the transversal packings ensures that each
resolution class has the same number of blocks and often also implies that the same
number of each block size appear in each resolution class. This type of resolvable PBD
is important for its application to experimental design. Resolvability gives unbiased
estimates of error, some efficiency guarantees, and design management benefits [44].
The added condition of a constant number of blocks in each resolution class adds to
the management benefits. Each block of experimental treatments may be sent out to
separate labs and it is more efficient to use each lab as much as possible. Additionally,
each lab may be dedicated to a fixed block size, so designs that cater to this constraint
are useful. These structures are currently being investigated by the author and Peter

Danziger.

1.4 Outline of Thesis

The determination of tc(k,2 : n) has been completely solved, independently, by Ka-
tona [22] and Kleitman and Spencer [23]. This thesis investigates the cases where
g > 3. Most of the work previously done on this problem produces asymptotic re-
sults. Korner and Simonyi [25] developed a constructive technique as did Gargano,
Korner and Vaccaro [15], but these constructions are only useful at extremely large
values. Sloane reports a construction for ¢ = 3 (a generalization of this appears
herein) and presents the best known covers for small values of k. We develop tech-
niques that can produce instances for any parameter sets, large and small. To this

end, we have approached the subject from design theory.
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In the first part of the thesis, we examine transversal covers and in the latter part,
transversal packings. In each case, we are interested in both upper and lower bounds.
The two chapters addressing transversal covers deal with upper bounds (constructed
examples) and lower bounds. The chapters on transversal packings deal with upper

bounds and then lower bounds (constructions).

In the second chapter, we present five constructive methods. The first uses incom-
plete transversal designs and is only applicable to a small range of cases. The second
method is a generalization of one of Poljak and Tuza’s constructions and demonstrates
itself to be very effective. The third and fourth generalize Wilson’s construction and
use GDD’s, respectively to construct transversal covers. We then briefly discuss how
well these constructions perform asymptotically. The last section is a discussion of
a simulated annealing algorithm we developed to find instances of transversal covers

and the recursive algorithm that implements all the constructions.

The third chapter presents a number of lower bounds on the size of transversal
covers. We derive three generally applicable lower bounds (valid for all parameter
sets), one from the known asymptotic sizes and a construction, one an improvement
on Poljak and Tuza’s lower bound and the last using PBT'C’s. There follows a section
investigating lower bounds for very small 7°C’s. In this section, we prove that many

of the known small covers are, in fact, optimal.

The fourth chapter starts the consideration of transversal packings. Many cod-
ing theory bounds can be directly applied producing upper bounds on the sizes of
transversal packings. Some of these can be modified to include information about sets
of disjoint blocks. Finally, structural information of transversal packings can lead to
some additional bounds. The fifth and final research chapter deals with constructing
transversal packings. Several of the constructions used for transversal covers can be
analogously applied to transversal packings. In addition to these, we consider the case
when b < 2¢g and solve a wide range of transversal packings with these parameters by

translating the problem to colouring or decomposition problems on graphs.
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Chapter 2

Transversal Covers: Constructions

and Upper Bounds

In this chapter, we derive four constructions for transversal covers. The first is based
on filling the holes of incomplete transversal designs. This construction has a severely
limited range of applicability, but it can be used to construct an optimum cover
for ¢ = 6. The second construction, the blocksize recursive method, is a recursive
concatenation technique that increases k for a fixed ¢g. The third set of constructions
is increases g and generalizes Wilson’s construction. These three constructions appear
in a forthcoming paper by the author and Eric Mendelsohn[42]. The last construction
is a direct construction using GDD’s and extending their blocks. At the end of the
chapter, we discuss a computer implementation of these constructions, a simulated
annealing algorithm for finding transversal covers, and the relative efficacy of these

constructions.
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2.1 Incomplete Transversal Designs

In this section, we use incomplete transversal designs to construct transversal cov-
ers. Incomplete transversal designs are good starting objects for the construction of
transversal covers because most of the pairs (those not inside a hole) appear in only
one block rather than at least one. If we can avoid covering these pairs again in the

construction then we are producing a cover which is predominantly a design.

2.1.1 Presentation of the Method

Given an ITD(k, g;b1, b, ..., bs), we fill the holes with covers of order b; and length
k.

Definition 2.1. A filling of an ITD(k, g;b1,bs,...,bs) by TC(k,b;) is a set of bijec-
tions {fe, fii, fous -5 fri} 1 <@ <s. fa; is a bijection between the groups of the
ITD and the groups of the TC(k, b;). f;; is a bijection between the points of H;N G,
and the points of the jth group of T'C'(k,b;). The images of all the blocks of the
TC(k,b;) under these bijections are then added to the blocks of the ITD.

Theorem 2.1. If there exists an ITD(k, g; b1, ba, ..., bs) then

te(k,g: i) < min (g2 — Z (b]2 + te(k, b; z]))) )

ibip oty =i :
15 <bj Jj=1

Proof. Fill the holes. The holes are disjoint, thus the union of the sets of disjoint
blocks from the T'C'(k, b; : i;) will also be a set of disjoint blocks. O

Counting the disjoint blocks in covers produced by this construction is not trivial,
and at the moment, we know of no formula for the maximum number. The number
of disjoint block might depend, not only on the individual structures used, but also
on the bijections chosen in the filling. The result above, on the number of disjoint

blocks, is therefore a lower bound on the total number.
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2.1.2 Example

In particular, the existence of ITD(4,6;2) and ITD(6,10;2) [12] yield tc(4,6) = 37
and tc(6,10) < 102. TC(4,6) is explicitly

0000001111112222223333334444555544555
0123450123450123450123450123012345455
4523011054235401323245100312213045545
0145235401323254014532101320201345554

where the last five rows are the filled hole. We observe that this is actually a
TC(4,6:5): blocks 1, 8, 18, 27 and 35 are a maximal set of disjoint blocks. We
have verified by computer that no more than five disjoint blocks arise no matter what

bijections are used in the filling.

2.1.3 Limits on the Use of the Construction

Lemma 2.2. [13] An ITD(k,n;h) exists only if h = n or (k — 1)h < n. When
(k — 1)h = n, all blocks have exactly one point in the hole. O

This lemma holds for IT Ds with more than one hole as well. Thus k < n/h+ 1,
where h is the size of the largest hole, and this lemma shows that the incomplete
transversal design method can never be used to find transversal covers with k bigger
than n/2 + 1, since a hole of size one implies the existence of a transversal design.
In particular, this construction is only useful for non prime power values of g. When
(k — 1)h < n, it is known that there are at least two disjoint blocks, both disjoint
from the hole [13]. So in this case we get

1+ 2) < i Z2_ p? 11)).
te(k,g:1+ )_{h\afrTnzl)I(lk,g;h)}(g h + te(k, h : 1))

Filling a hole with a non-minimal cover produces a cover that is also clearly too big.
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Even if we fill a hole with an optimal cover, there is still no guarantee of producing an
optimum cover although it may be close to optimal. However, this method is still one

of the best known for finding transversal covers with large groups and small blocks.

The CRC handbook [12] has a vast table of incomplete transversal designs which
can be used to find transversal covers which have bigger k£ than the largest known
block size of transversal designs with the same order: ITD(7,22;3), ITD(8,36;5),
ITD(7,39;4), ITD(7,54;5), ITD(8,58;2), and ITD(8,60;4) to name just a few.
The tables in Appendix A can be very useful in this construction for group sizes

listed in the CRC tables.

2.2 Blocksize Recursive Method

2.2.1 Presentation of the Method

Using the sets of disjoint blocks to their fullest advantage, we can formulate a con-
struction that is similar to Inequality 1.6 and Inequality 1.19 but better and more

general.

Theorem 2.3. Let n,m < g. Then,
te(k,g:n) < Izl|ikn(tc(d,g :n) +te(k/d, g : m) —m). (2.1)

Proof. We construct a cover of the required size. The proof is easier if we represent
the transversal cover as a covering array. Then, for a divisor, d, of k we write the k/d

identical arrays of length d next to each other.

TC(d,g:n)| |TC(d,g:n)
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We index the columns in the following way: the i¢th column of the jth array is labeled
by j;. Since the arrays are covering arrays and they are all identical, all pairs of
columns are covered except for pairs with the same subscript. Within these pairs it
is evident that we have covered the pairs (k, k) for 0 < k¥ < g — 1. Here is an example
with g = 3. The first column of the first cover and the second column of the second

cover are covered, but the two first columns are not except for the pairs (1,1), (2,2)

and (3,3).

N NN = RO O O
N = O N = O N = O
N NN = RO O O
N = O N = © N = O

To cover these remaining pairs we put an ITC(k/d,m : m) on the d sets of k/d
columns with the same subscript. The pairs from the set of m disjoint blocks removed

have been covered already, see Figure 2.2.1. O

Since tc(k, g) < te(l, g) for kK < I, we may be able to generate a better TC(k, g)
by considering block sizes larger than k, say [, which have more divisors or where the
transversal covers with block sizes of the divisors of [ are better than the covers with
block sizes of divisors of the original k. For example, to construct TC'(5, g), it may
be better to construct 7’C'(6, g) since 6 has more divisors than 5, and drop one group.
With this in mind, the theorem is more generally stated as

te(k,g:n) < 2<r§1<i?&1(tc(z',g :n) +te([k/i],g : m) —m). (2.2)

This recursive procedure can, of course, be iterated.

Sometimes the incomplete transversal cover, ITC(k/d, g : m), may have another
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Figure 2.1: Columns extended to cover remaining pairs

set of ¢ disjoint blocks. If i > n, we will use this set of disjoint blocks and have
generated a T'C(k, g : i) instead. This extra set will always exist when we are using a
transversal design of prime power order and k£ < g. For example, ITC(3,3 : 3), has
an additional set of three disjoint blocks even after the first set has been removed.

This will allow us to construct

te(k,3:3) <tc(3,3:3) +tc([5],3:1) — 3.

2.2.2 Example

This construction applied to a TC(3,3:1) and an ITC(2,3:3) produces a TC (6, 3:3):
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2.2.3 An Alternative Formulation

There is another way to view this construction. In Definition 1.6, we have defined
the existential array which was used implicitly by Sloane several times to construct

strength 3 covering arrays [38].

For the first row of an FA(c,g1,.-.,9,), we label the columns of the covering
array corresponding to a T'C(gy, g : 1) with the g;-ary alphabet used in the first row
of the FA. Likewise, for each of the rows of the FA and its alphabet, we label the
columns of the covering array corresponding to an ITC(g;,g : g). Then, we replace
each symbol in the £ A with the column it indexes from the appropriate cover. The
fact that any two columns in the FA have some row where they differ means that
the columns from the covering array replacing the two values there will cover these
two columns in the final array. The columns inserted into the first row of the FA
guarantee that all pairs of columns contain the pairs (4,7). Theorem 2.1 implicitly
uses an FA(k;d,k/d). The existential array encompasses the r-fold iteration of this

method.
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2.3 Generalizing Wilson’s Construction to Covers

2.3.1 Presentation of the Method

Theorem 2.4. Let C be a TC(k + 1,t) with groups G1,Gl,...,Gy, Hi,Ho, ..., H.
Let § be any subset of Hy U Hy U --- U H; of cardinality u, m be any nonnegative
integer, and h; = |H; NS|. For any block A of C let ua = |SN A|. Then

c(k,mt +u) < Ztckm-l—uA UA) — Un) +Ztckh)
A

=1

Proof. The proof is a straightforward generalization of Wilson’s construction. U

There are many other generalizations of Wilson’s construction that generate de-
signs with holes, for example [13]. These constructions can similarly be extended to

covers with holes.

2.3.2 MacNeish’s Theorem for Covers

If [ = 0 in the preceding theorem, this is exactly the same as multiplying groups of

size t and m. In an obvious generalization of MacNeish’s theorem, we get

Theorem 2.5.

te(k,g:n) < min ((te(k, i - g) te(k, [g/il = [n/1)) -

2<i<[4]
max(1, =) <j <min(n,q)
1

Not much need be said about this method. The complicated subscripts arise for
two reasons. As in previous method, te(k, g1 : n) < te(k, go : n), for g1 < go. Thus we

may benefit from constructing transversal covers with larger group sizes than g, when
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g has few divisors. The strict inequalities above are true since we may assume, by
relabeling, that one block is (g2 — 1,92 — 1,..., g2 — 1). This block may be removed,
and every other occurrence of the letter go — 1 arbitrarily changed to any letter from
the gi-ary alphabet. The second complication of indexing stems from the need to
guarantee that the number of disjoint blocks is less than the alphabet size in each of

the smaller covers.

2.3.3 Probabilistic Implementation

The essential problem in using Theorem 2.4 is that we need to know the cardinality of
the intersection between each block and the set S, which requires substantially more

information than just tc(k + [,). In the case [ = 1, however, we get, for 0 < u <t

te(k,mt+u) < Y te(k,m:1)+ > (te(k,m+1:1) = 1) +te(k,u: 1) (2.3)
A|ANS=0 A|ANS#D

and we can reduce this problem to knowing the number of blocks that intersect S and

the number of blocks that intersect S¢. Further, by calculating the expected number

of blocks that intersect S, we can remove this aspect totally from the formula and

express it as a recursion in the covering numbers alone.

We calculate the expected number of blocks that intersect a set S of size u, where

S is a subset of one group, say G.

1 1
— Z number of blocks intersecting S = — Z ZT’”

z,) SCG,|S|=u (ft) SCG zeS
[S|=u}

_ (}—)Zm{s: S| = u,z € S}

u/ xeG

_ %(z:);:

zeG

= %tc(k +1,1).
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Therefore, there must exist a set S with | {A|JANS # 0} |< %te(k + 1,t). As
te(k,m : 1) < te(k,m + 1 : 1) — 1, this value for tc(k, mt + u) in Inequality 2.3, is
minimized if | {A|ANS # 0} | is as small as possible. Using this expected value, and
the fact that disjoint blocks in the original cover in Wilson’s construction contribute

blocks to disjoint point sets in the final cover, we can achieve:

t—u

te(k,mt +u:n) < min  te(k,u:l) +
ij+i>n
1<i<u
120t
1<53m

te(k +1,t :d)te(k,m : j)
+%tc(k F1,t i) (te(kym+1:+1)—1).  (2.4)

If the variance is zero then each subset of a group with cardinality v must be
incident with exactly (u/g)tc(k+ 1,t: i) blocks. A variance of zero implies that each
point is incident with te(k + 1,¢ : i)/g blocks. For the variance to be zero, g must
divide tc(k + 1,t : i) and r, must be constant for all points z; in other words, we
have a PBTC. In the few examples where tc(k + 1,¢ : 7)/g is an integer, the covers
have constant r,, so it may not be possible to prove in general that the variance is
greater than zero. We believe that optimal covers that are also point-balanced are
rare. However, if tc(k 4+ 1,t : ) is not a multiple of g then the variance must be

positive and we can improve the bound.

2.3.4 Generalization of Sloane’s Construction

By setting m = 0 in Theorem 2.4, we can achieve another explicit upper bound. When
m = 0, the groups G4, Gy, ..., Gy contribute nothing and without loss of generality,
k = 0. The construction then yields

Theorem 2.6. If there is a GDD on u points with group sizes hy, hs, . .., h; and block
set B, then

te(k,u) <> (te(k,|B| : |B|) — |B)) +Ztc(k,hi).

BeB
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O

If we did not remove the disjoint blocks from the cover put on the blocks we would

cover the pairs of these points too often. This motivates a generalization.

For group size g, to construct a TC(k, g), take any PBD on g points (in Theo-
rem 2.6 with m = 0 the PBD has a resolution class, in other words, a GDD). Then
for each block, B, of this PBD, consider the C'A(k, |B|) with the |B|-ary alphabet
being the points in block B. Vertical concatenation of these arrays forms a CA(k, g).
The transversal that covers the pair (7,7) in columns k£ and [ is the transversal that
covers this pair in the covering array placed on the block from the PBD that contains

7 and 7.

However, as mentioned above, we cover the pairs (7,7), 0 < i < g—1 each time that
1 appears on a block of the PBD. In Theorem 2.6, we avoided this overlap by only
allowing the blocks from the resolution class to cover these pairs, and removing the
disjoint blocks from the other subcovers that redundantly covered these pairs. But,
in a given PBD we may not always have a resolution class. We can avoid overlap

appropriately even without a resolution class:

Lemma 2.7. In a PBD on v points, with at least one block of size less than v, there
ezists a set of distinct representatives for the point, i.e. for each point, x, there exists

a block B, with x € B, and all the B, distinct.

Proof. For there to be a set of distinct representatives, it is necessary and sufficient

that for each collection of n points, there are at least n blocks induced by them.

Assume that there is no set of distinct representatives. Pick the smallest set of
points, say S, of order n, that induce fewer than n blocks. Clearly n > 2. If we
remove the points not in S from these blocks we get a PBD on n points with less
than n blocks. When we remove these points we cannot get a singleton block. If we
did, say the point was x, then consider the n — 1 points in S \ z. Since S\ z is a

smaller set than S there must be at least n — 1 blocks through these points. These
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account for all the blocks of the PBD on S, so there can be no additional block that

is just {z}.

Since we have a PBD with more points than blocks, we have violated Fisher’s
inequality. So in the PBD on point set S, there is a block with n points on it. Now
consider any n — 1 subset, T, of S. The PBD induced by these points must have
have at least n — 1 blocks, and since the PBD induced by S has less than n blocks,
both have exactly n — 1 blocks. The induced structure on 7" must be a symmetric
PBD with at least one block of size n — 1. If there were blocks of more than one size,
then by Ryser and Woodall’s theorem, the other size would have to be one [7]. This

was shown impossible above.

Thus, all the blocks in the induced PBD on T are of size n — 1. Since A in the
induced design is the same as A in the original design, A = n — 1 and for any point,
z € S,r=n—1as well. Since A = r, any point y ¢ S must be on these n — 1 blocks.
Since there are n — 1 blocks with every point on them and A = n—1, clearly these are
all that we have in the original PBD. Considering that we must have at least one
smaller block, this contradicts the assumption that no set of distinct representatives

exists. ]

This means that if the PBD is not trivial, for each point we can pick a block
that will represent that point. We put ITC(k,g : g — 1)’s on each block where the
removed disjoint blocks can be assumed to be (i,1,. .., 1), where i is any symbol other
than the one represented by this block, and put ITC(k, g : g)’s on every other block.
The removal of these disjoint blocks still leaves a T'C' because the only blocks lost are
of the form (7,4,...,4). Each pair (i,7) will still be covered because there is a block
that represents the point ¢ and we have avoided overcovering. The T'C' placed on
this block covers all of these pairs because only disjoint blocks representing the other

points were removed from this 7'C'.

A set of distinct representatives is not the only scheme that avoids overlapping to

optimize this construction. We could have blocks representing more than one point,
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and thus we should require some covers with fewer disjoint blocks and some with more.
The C' A we put on each block would still have disjoint blocks for each non-represented
point, which would be removed. However, the set of distinct representatives may be
better since the sizes of ITC(k,g : ¢ — 1) and ITC(k,g : g) are no bigger than
ITC(k,g : n) for all other n. Thus we have:

Theorem 2.8. Given a (v,{2,3,...,9—1},1)-design, and for each point z, a chosen
block, By, with x € By, we can construct a TC(k, g). For each block, B, of the design,

we define ug to be the number of points on this block not represented by it. Then
te(k, g) < Ztc(k, |B|: ug) — up. (2.5)
B

O

Optimization

The size of the resulting cover depends on the scheme of point representation. There
may be better or worse methods to pick which blocks represent which of its points.
As yet, it is unknown if there is a simple scheme of representations that yields the

best cover. However, we can eliminate some schemes of representation.

Lemma 2.9. A system of representatives that has a block representing all its points

18 not optimal.

Proof. In the construction, we would put a cover on this block that had zero disjoint
blocks, but all covers have at least one disjoint block. It is possible to shift the
representation of one of these points to another block that would not then represent
all of its points. This shift would reduce the number of disjoint blocks required for
the transversal cover on the block to which we have shifted, while not increasing the
number of disjoint blocks in the transversal cover used on the block from which we

have shifted. If it were not possible for a point x on the first block to be so shifted,
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then this scheme of representation is simply the following: all blocks incident with x
represent each of their points, with the exception of x which is represented by only
one of them and all other blocks (a non-empty set by Fisher’s inequality) represent
none of their points. In this case, some other point on the block that represents all

its points can be shifted to one of the blocks that represent none of their points. [

It will be shown in Section 2.6.2 that (v,{2,3,...,9 — 1}, 1)-covers yield better
results than (v, {2,3,...,g — 1}, 1)-designs, for sufficiently large k, and the optimum

incidence structure is known.

Sets of Disjoint Blocks

In general, it is a non-trivial task to find how many disjoint blocks the PBD con-

struction yields. For g = 3, we give one illustrative example.

Example 2.1. Consider the case where ¢ = 3 and £k = 6. The blocks of the only
PBD on three points are {{0,1},{1,2},{2,0}} and we say that each block repre-
sents its first point. The blocks and their represented points are cyclically permuted
so the covers placed on each one can be the same with the symbols cyclically per-
muted: letters 1 and 2 in the T'C placed on the second block wherever letters 0 or
1, respectively, appeared in the T'C' placed on the first block. So if, for example,
the block (0,0,2,1,0,2) appeared in one of them then the other two would contain
(1,1,0,2,1,0) and (2,2,1,0,2,1) which are clearly disjoint. Since this is true of each

block, we get many different sets of disjoint blocks.

This generalization of Sloane’s example suggests the following theorem which can

guarantee the existence of some set of disjoint blocks:

Theorem 2.10. In the construction from Theorem 2.5, if there exists a set of n blocks

1. all of the same size;
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2. all representing the same number of points, s; and

3. for each block we can chose an ordering of the points, og such that the points
that the block represents are the first points (0p(1),05(2)...) in the ordering
and the ith point of the ordering for two different blocks are different,

then the construction yields a TC(k, g : n).

Proof. We pick the subT'C to put on B; with the appropriate disjoint blocks (covering
the points not represented by this block). We determine the T'C’s to put on the
remaining disjoint blocks of our specified collection by using the orderings to generate
maps between the points of two blocks: 0p(i) = op (i), 1 <14 < |B|. The TC we put
on block B’ is the isomorphic image of the T'C put on block B under the map defined
above. Pick any block from the first 7'C'. This block together with all its image blocks
in the other T'C’s will be disjoint. In fact, we will have tc(k, |By| : |Bi| —s) — |Bi| —s

such sets of disjoint blocks. O

Additionally, by using only T'C'(k, g : g) instead of TC(k, g : n) as subcovers, we
can achieve the maximum number of disjoint blocks. The construction is the same,
but for each point z, a block of the form {z,z,...,x} remains. This block will be
from the sub7'C' placed on the block of the PBD that represents x. This method
may not increase the number of total blocks because the TC(k, g : g) may be as good

as the T'C’s called for in the construction.

2.4 Group Divisible Design Construction

2.4.1 The Basic Construction

Of the three constructions previously discussed, two are recursive and one is direct.

The direct IT' D construction is severely limited in the range of values for which it is
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useful. Using group divisible designs, we can formulate another direct construction.
The work in this section will appear in a paper co-authored with Alan Ling [41].
Because all pairs of points not on the same group are covered by blocks it is obvious

that

Theorem 2.11. If a k-GDD of type g" exists then

2
g*n(n —1)
t ) < =7
O
Proof. Arbitrarily extend each block to a transversal. O

Using the block size recursive construction we can show that

logn

0 < |Gy

1(92—g)+g-

Let m be the maximum number of idempotent MOLS known of order g. Using
Fisher’s theorem on the number of blocks in a design [7], it is necessary, for the GDD

construction to yield results better than already known, that

g*n(n —1) logn 0
(9—1n< Rk —1) < [log(m+2)w (9° —9)+g. (2.6)

If g is a prime power then m = g — 2.

For g a prime power, we can show that for this construction to be better than
what we already know it is necessary that g + 2 < n < 2¢g. Checking the divisibility
conditions for ¢ < 7 and comparing the results to the best covers known, the only
possibilities that could come from this construction, for g < 7, are n = g+ 2 which is

dealt with in section 2.4.3.
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2.4.2 Adding More Groups

The restrictions on the GDD’s enabling them to yield better covers, are quite strong.
In all the cases except those mentioned above, the number of blocks is far too large.
However, if we can extend the covers by a significant number of groups then we may
be able to produce covers better than we already know. If we start with a RGDD

then we can add a number of new groups.

Theorem 2.12. The transversal cover constructed from a k-RGDD of type g™ can

be extended by at least e groups, where

(n=1)
| () -
€ = g—1

Proof. There are
g(n—1)
k—1

resolution classes each with ng/k blocks. Viewing the resulting transversal cover as

a covering array on symbol set {0,1,..., g — 1}, and defining
(n—1)
() -
e=|——F——
g—1

add e zeros to the rows of the array that correspond to the blocks of the first resolution
class. In the first of the new e columns place the symbols 1,2,...,g—1 on the rows of
the next g—1 resolution classes, a different symbol for each class. On the rows of each
additional resolution class place the symbols 1,...,g—1, so that every resolution class
has at least one row which gets each symbol. This can be done since each resolution
class has ng/k > g blocks. On the second of the new e columns, place the symbols
1,2,...,9 — 1 on the rows of the g + 1% to 2¢g — 1% resolution classes, a different
symbol for each class. On all the other rows, place the symbols 0,1,...,9g — 1, so
that every resolution class has at least one row which gets each symbol. On the ith

new column place the symbols 1,2,...,g — 1 on the rows of the (: — 1)g — i + 3" to

43



the original array the added groups

0---0--0---0 ---
The first resolution class : : : :
0---0---0 0
1
The second resolution class
1
0 1
The g + 1st resolution class
g 1
0 1
The 2gth resolution class
: o ]
0 1
The 3g — 1st resolution class
g 1

Figure 2.2: Method for Adding New Groups

1g — 1 + 1% resolution classes, a different symbol for each class. On all the other rows,
again place the symbols 0,1, ..., g — 1, so that every resolution class has at least one

row which gets each symbol. See Figure 2.2. This is a covering array. O

Theorem 2.13. The transversal cover constructed from a k-RGDD of type g™ can
be extended by e groups where e is the maximum integer such that

n—1 n
tc(e,g:g) < <%_g)?g+g.

Proof. Again, we will think of the covers as covering arrays and extend by e columns.
On the rows corresponding to the first g resolution classes we put the symbols
0,1,...,9 — 1 in each of the e columns, one symbol per class. We have covered
all pairs of columns, one from the original set and one from the new set, and because

we started with a covering array, all pairs of columns from the original set of columns.
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All we must do is now cover all pairs of columns from the new set. We have

gln—1) g) "

kE—1 k
rows empty on the set of new columns. In each pair of new columns, we have covered
the pairs of identical symbols (i,7) and so we place in the set of unfilled rows, the

largest ITC (e, g : g), that has fewer than this number of rows, which is exactly the e
required. 0

Theorem 2.14. The transversal cover constructed from a k-RGDD of type g™ can

be extended by e groups where e is the maximum integer such that

g(n

1)
p :

-1

te(e,g:9) <
Proof. On the rows from each resolution class, we will always place the same symbol.

This will guarantee that we cover all pairs of columns, one from the original array

and one from the new set of columns. Then to cover all pairs of columns, both from

g(n—-1)
k1

the new set, we put the largest covering array that has fewer than rows, on
the new columns treating each resolution class as a single column, and arbitrarily

completing any empty cells. O

We do not actually need a resolvable GDD to use any of these methods of adding
groups. All we actually require is that we can partition the blocks into classes such
that, after they have been extended, (Theorem 2.4.1) they cover each point of the
original GDD at least once. However, finding the sufficient conditions for this is hard.
The condition of resolvability on the original GDD is sufficient. Unfortunately there
are not many families of RGDD’s known. We do not know many RGDD’s with
relatively large block size with respect to n. We have looked for RGDD’s that might
give good covers using these theorems, but so far we have been unable to find any.
The next family of GDD’s, although not resolvable, has large block size and at least

one new group can be added.
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2.4.3 An Infinite Family from the Construction

As mentioned above, when n = ¢ + 2, the divisibility conditions are met and the
number of blocks is reasonably small. An affine plane of order ¢ with one point
removed is a ¢-GDD of type (¢q—1)?"!. From this we can construct a TC(¢+1,¢—1 : 1)
with g2 — 1 blocks. The blocks of this GDD can be partitioned into ¢+ 1 sets of ¢ — 1
blocks which are mutually disjoint. Each of these sets of blocks misses one group
entirely, so when we are extending the GDD to a T'C' we can choose the new points
of these blocks so as to maintain the property of them being sets of disjoint blocks.

We can extend this T'C' by one group to get

Theorem 2.15. If g is one less than a prime power then tc(g+3,9 : g) < ¢*>+2g. [

This gives
te(7,4:4) <24
tc(9,6 : 6) < 48 (2.7)
tc(10,7:7) < 63

where the previous constructions only give

te(7,4:4) <28
te(9,6 : 6) < 64 (2.8)
te(10,7:7) < 91,

but in a few cases we can take advantage of the structure of these GDDs to add more
than one group. These GDD’s come from the 1-rotational presentation of the affine
plane [12, 8], that is, the ¢ points of the affine plane are co and the points of Z,2_;.
The blocks are generated additively from two base blocks. The first is the short block
Go = {oo}U{a(g+1) : 0 < a < g—2} and the second is By = {dy, ..., d,} where
di =0 and pd =1+ @2 for j =2,... ¢, p a primitive element of F2 and u
an integer not a multiple of ¢+ 1 [12]. The GDD is just this design with co removed,
the groups generated by the short base block, Gy, and the blocks generated additively
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from B,. The points are labeled as shown, where columns represent groups.

0 1 e g
g+1 g+2 - 20+1

¢-q-2¢—-q-1-- ¢-2

To make the blocks transversals, we need to add a point to By. We will determine this
point later. Now with this presentation, the sets of disjoint blocks mentioned earlier
are P, ={By+ k(¢+1)+ i}Z;ﬁ where j = 0,1,...,¢. But consider also the sets of
blocks Q; = {By+ k(g —1)+j}{_, where j =0,1,...,¢—2. If ¢ is a power of 2 then
g — 1 and ¢ + 1 are relatively prime. Define the extension by two new groups in the
following way. For any block B add symbol j in the first new column if B € ); and ¢
in the second new column if B € P;,. That ¢ — 1 and ¢ + 1 are relatively prime means
that the last two columns are covered. This method will cover all pairs of columns,
one from the original set and one from the new set of two as long as every point in
Z—, appears in each of the );. We have not yet extended the blocks, nor added
symbols in the second column if B € P; for 1 > ¢ — 1 (we did not need to put the
symbols in the second new column from the first ¢ — 1 P;, but we could have chosen
any ¢ — 1 of the P; in any order). These flexibilities may allow us to extend by more

than two rows.

The base block, By, from the GDD contains ¢ points and the pairwise differences
cover every element of Z,._; that are not multiples of ¢+ 1. The g positive differences
that are multiples of ¢ — 1 will be covered, and the pairs of elements of By whose
differences are multiples of ¢ — 1 will generate the same point sets under development
in the @);. In each @);, we will generate the same point set twice if ¢ = 4 and at least
three times if ¢ > 4. Since we can still add a point to the By to cover all the points
by each ();, we need at least ¢ — 2 different point sets generated which is impossible
when ¢ > 4. Hence, this construction can only work if ¢ = 4 and indeed, it does:

use base block By = {0,2,3,11} and add the point 1 to it, then each @); will cover
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each point at least once. The P; cover each point exactly once and so we can add an

additional two columns.

However, in this case, we can do even better by taking all possible sets of three
P;’s (as mentioned above we can pick any ¢ — 1 of the P;) and adding the following

columns:

000000O0OT1ITI1Z2
11110210002
22011211120
00212212211
10121122222
20000001021
01111020001
12101221110
21202112111
01022121222
10000002200
21112100000
02221201100
12222012011
22220120222

The first column is from the (); and the remaining ten columns are from the ten
possible triples of P;’s which are ordered lexicographically as the ten possible triples
from a 5-set. These additional columns gives us that ¢t¢(16,3 : 1) < 15 which is better

than 17, the value obtained from other methods.

When ¢ is an odd prime power, we can do the same sort of construction to try
to get two additional groups. Because ¢ — 1 and ¢ + 1 are not relatively prime then
we will not automatically get that the two new columns (from the P; and @),) are
automatically covered. We won’t have filled in all of the columns determined by the
P; (the second new one). This flexibility may allow us still to succeed. Because we
need all the points to be in each Q;, a similar argument to that above shows that
g = 3 and g = 5 are the only possibilities. When g = 3, we are constructing a cover
with ¢ = 2 which is uninteresting since we know what optimal covers for g = 2 look

like. It is, however, worth mentioning that a total of 31 groups can be added which
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is the most possible and achieves the optimal cover with block size 35.

When ¢ = 5, we have By = {0, 2,15, 16,19} to which we add the point 1. The Q)
each cover all the points and so we must only worry about covering all the pairs on

the two new rows. This can be done with two new columns:

T
012301230123012301230123

012310012310012332012332

so we get that tc(8,4 : 2) < 24 which is better than 27, the value from other
methods. By this method, we can only extend by two groups because we cannot
add another column from a different set of four P;’s. Some variation of these

methods may get beyond two new columns for these restricted values of q.

2.5 A Recursive Algorithm and Simulated

Annealing

2.5.1 A Recursive Algorithm

In Appendix A, the tables of upper bounds on tc(k, g : n) are the results of all the
above methods being applied to construct transversal covers with 3 < g < 7 and
2 < k < 50. A recursive algorithm implementing all the constructions was written for
Mathematica. The values of te(k,2 : i) and some additional results from simulated
annealing and hand calculation were given as the starting point for the construc-
tive program. The group multiplication, blocksize recursive method, and Wilson’s

generalization for [ = 1 can be directly programmed.

The other generalizations of Wilson’s construction are more complicated to imple-
ment. When m # 0, [ # 1, this constructive method relies on knowing the replication

numbers of points in the cover and on the intersections of blocks. Without storing all
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the covers generated, this method is of limited value. Additionally without searching
for optimal values of the replications and intersections of blocks, the covers that it
constructs may be bad. The time and space constraints of these facts led us to decide
that the initial implementation of this method would only be done for the cases m = 0

and | = 1.

The necessary information for the case m = 0, as discussed above, is the systems
of representatives for each PBD on g points. Not knowing, a priori, which PBDs
and which system of representatives on them yield the best values. This necessitates
investigation of each PBD and all systems of representatives on it. This process could
be automated, but for the present consideration, hand calculation was easier. We also
chose to investigate the (v, K, 1)-covers discovered to yield the best asymptotic result
in Theorem 2.16. Additional features, all (v, K, 1)-covers, and full automation of the

PBD construction, may be implemented in the future.

For each value of g, all PBDs were enumerated. The PBDs that were worse than
others were eliminated from consideration. This elimination can be done whenever a
set, of blocks of small size, say two or three, can be replaced by one block of larger
size, say p; since the PBD on p points, with only blocks of the small size, yields a
constructive method for tc(k,p : ¢) and our value of tc(k,p : i) must be at least as

small as the one yielded by this subPBD.

After these PBDs were eliminated, the systems of representatives were enumer-
ated, again eliminating ones that were clearly non-optimal. This elimination is de-
scribed in Corollary 2.9. However, systems of representatives were not discarded when
they increased the number of disjoint blocks that the method produces. Once the
search had been narrowed, we explored by hand the number of disjoint blocks that
each individual PBD and system of representation generated. All these methods
were input directly. The program first calculated the best upper bounds for g = 3

and used the smaller values calculated to calculate values of higher k£ and then higher
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g- The last step for any set of values for the same k£ and g was to use the fact that

te(k,g:i) <tc(k,g:j) <teclk,g:i)+j—i

to lower some values of tc(k,g : i) using te(k,g : j). This process is repeated a
number of times since one change in value may force another which would, in turn,
force others. This iteration was also used to take advantage of the fact that for
g1 < g2, tc(k, g1 2 m) < te(k,go : n). When g + 1 is a prime power and TD(k, g + 1)
exists, then tc(k,g : g) < (¢9+ 1) — 1. Since we can assume that one of the blocks
is (g,9,...,9), we are able to remove that block. Every other block intersects the
removed block. The g blocks, which intersected this block in the first group, are
disjoint elsewhere so replacing the symbol g in these g blocks by the g different
symbols from the smaller alphabet gives a cover with ¢ disjoint blocks. This is an

instance of the GDD construction.

Finally, the methods generating a cover with 7 disjoint blocks may actually create
more, but determining the exact number is too expensive. The methods used just

guarantees us at least .

2.5.2 Simulated Annealing

The previously mentioned ad hoc results, used as starting values for the construction,

are of two kinds. Those that we discovered by hand were

tc(6,3:3) < 14, tc(7,3: 1) < 14, tc(13,3:1) < 15, tc¢(14,3 : 1) < 16.

We have also written a simulated annealing algorithm to find other instances of cov-
ers. This program is similar to standard simulated annealing in most regards. The
actual simulated annealing loop moves to a neighbor incidence structure by randomly
choosing one block and changing one letter in it to another. The “goodness” or “bad-

ness” of this move is determined by the number of pairs that remain uncovered. If
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this new structure is better, we use it. If it is worse, we use it with a probability
decreasing exponentially with time (temperature) [19]. We have adapted an algo-
rithm given to us by Peter Gibbons [18]. The significant change from a design search
is that we do not know how many blocks a minimum cover has. We overcome this
problem by finding a random, but probably very large, cover, which is used as an
initial upper bound on the number of blocks; g2 is used as an initial lower bound.
The simulated annealing searches, by bisection, for a cover with the number of blocks
half way between the upper and lower bound. If it finds one, this number of blocks
is now the upper bound, if not, it is the lower bound and the process repeats with
the new value halfway between the two bounds. In a completely automated system,
the upper bounds from the recursive algorithm would be fed back to the simulated

annealing program.

In the runs of this algorithm, we have opted to use a heuristic inspired by D.
Ashlock in a slightly different context [3]. Ashlock developed genetic algorithms to
find designs. Although larger population sizes are more likely to succeed, he found
that running ten ecologies in parallel, with a population size of 60 would find
designs faster than one ecology with a population size of 600. This is a result of the
large standard deviation in search time. The algorithm described above halts after a
certain number of trials. We have opted to use a small cutoff value but run many
trials. Say that there is a T'C(6, 3 : 3) with 11 blocks; any particular run of the
simulated annealing may get caught in a local optimum and fail to find it. If we run
the algorithm to find ten covers, nine of them may fail to find it, but one may

succeed.

2.6 Previous Constructions and Asymptotic

Upper Bounds

Besides developing these constructions to generate covers for small and medium
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parameter values, we are also interested in how they behave asymptotically. The
limited range of use of the IT'D construction means that this construction has no
asymptotic behavior. It is unclear how to describe the asymptotic behavior of the
GDD construction since that behavior depends on settling the existence of GDD’s
with large £ with respect to the number of blocks. The asymptotic existence of GDD’s
by Wilson’s theorem is not appropriate for this construction. Wilson’s theorem states
that for a fixed block size, k, there exists a size for which all GDD’s with larger point
sets exist. This is the very opposite of the kind of GDD useful in this construction,
where we need large k£ with respect to the point size. The asymptotic behavior
for transversal covers is known (Equation 1.30) but this is non-constructive. The

asymptotic behavior discussed in this section is constructive asymptotics.

2.6.1 Block Size Recursive Method

If one starts with a maximum transversal design, the block size recursive method

yields the following asymptotic bound in the case where g is a prime power:

te(m, g g) < ([log"ﬂ (g% — g)) g (2.9)

log g

However, the Inequality 2.9 is not the best asymptotic bound derivable by this
method. If t¢(m, g : g) = x then

te(m™,g:1) <i(x —g)+z

which yields the asymptotic result

te(k,g: 1) Py
logk = logm

(2.10)

which can be much better depending on the choice of m. For example, when g = 3,

te(k,3:1)
logk

= 1.5, Inequality 2.9 gives limy_,o, <831 < 3 79,

where the asymptotic limit is o

but if we pick m = 12 in Inequality 2.10, we get limy_, ., tc%é?’,f) < 3.3475. Using
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tc(20,4;4) < 28 we can construct limg e tcgf;:l) < 5.553. Neither of these values
are as good as the values obtained by Gargano et al. (Inequalities 1.28). But, as
we improve the known values for transversal covers, the asymptotic behavior of the

construction will improve, possibly beyond the constructions described in [15].

In particular, if tc(ki,g: 1) = % and tc(ke,g: 1) = 910—231” then this construc-
tion produces a tc(kiks, g : 1) S 28552 However, one should not get too excited
about this. This statement is rigorously examined in Section 3.1.1. There we show
that this construction cannot generate covers meeting the asymptotic limit. However,
if this construction starts with covers that are less than ¢ times as big as the asymp-
totic limit then it produces covers that are this good as well. This construction will
produce tighter asymptotic sizes as we know more good covers, which we expect even

by randomized search.

2.6.2 Generalizations of Wilson’s Construction

MacNeish’s Theorem

If we use the analogue of MacNeish’s theorem and have two covers T'C'(k, g, : 1) and
TC(k,gs: 1) with
te(k,g1:1) = %logk

and

te(k,go: 1) = %logk

then we obtain tc(k, gigs : 1) = %2 log® k which differs from the asymptotic value

logk
2

only by a factor of . But, by only increasing the group size, we will eventually
reach a g after which transversal designs always exist [7]. Constructions that only
increase group size behave badly because for a fixed k, tc(k,g : 2) = ¢* as long as

g 2 (k, _ 2)14.8.
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Generalization of Sloane’s Construction

Asymptotically, in the PBD construction we do know the optimal incidence structure
to use. It turns out to be not a PBD but a cover. We are also able to derive the

asymptotic efficiency of this construction.

Theorem 2.16. In the PBD construction, covers yield better results than designs
for sufficiently large k. The best result attainable is te(k, g) =~ glogk which is double
both the asymptotic limit and the lower bound from Inequality 3.1.

Proof. For a given large k, all covers with group size ¢’ < g have close to the asymp-
totic number of blocks, tc(k,g') =~ (¢'/2)logk. Then the incidence structure that

yields the best construction will be the one that minimizes

> %logk=#2k3

blocks, B, in the incidence structure B

so we need to minimize
E kB = E Ty
B T

If there exists a point x with r, = 1, then the PBD consists only of one block which
is forbidden in our construction (the construction would yield tc(k, g) = te(k, g)). If
there are no points with » = 1, but there is a point, z, with r, = 2, then the PBD
consists of two blocks of size k£ and g — k + 1 intersecting in the point z, and all other

blocks of size two. Then
Y kp=g+1+2(k—1)(g— k).
B

Now, g + 1 is constant so we need only minimize the second half, the quadratic in
k. This parabola is concave downwards and the range of £ is 2 < k < g — 1 so the

minimum values occur at 2 and g — 1. It can be seen that both of these values yield
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a degenerate projective plane for which

Zk‘B = 3(g— 1)

When used in the construction, this gives

3(g—1)logk

te(k,g) <

If there are no points, z, with r, = 1 or 2, then clearly

ZkB:er > 3g.
B T

so the best result obtainable with a PBD is the degenerate projective plane described
above. But the following (v, {2,3,...,9 — 1}, 1)-cover yields glogk.

B={{0,1,....,g—2},{1,2,...,9 — 1},{0,g — 1}}.

The fact that for all z, r, > 2 shows )y kg = > r; > 2¢. This demonstrates that

glogk is, in fact, the best that can be done with this construction. O

Even though, asymptotically, this method is not optimal, it is still valuable. For
small k£ it can yield good results, and together with the other generalizations of
Wilson’s construction, these are the only two methods that allow us to increase the

group size.
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2.7 The Difference Between tc(k,g : n) and

te(k+1,9:n)

The block size recursive method tends to construct many covers with the same
number of blocks for large ranges of k. Because of this, the difference between the
upper bounds for consecutive £ tends to be either zero or large. If we had an upper
bound on what this difference could be, we could smooth out this gross step-like

behavior in the upper bound.

Theorem 2.17.

< 39> — 49+ (g mod 2)

te(k+ 1,9 :n) —te(k,g:n) < 1

Proof. We start with a TC(k, g : n) and construct a cover with block size k£ + 1 and
no more than the desired number of new blocks. We choose one group, G, arbitrarily
and for each x € G, consider the families of blocks B,, the blocks through x € G.
There are g of these families and we will divide them into two collections, one with
g — 1 of the B, and the other with 7. Without loss of generality, these are the first
g — ¢ families and the last ¢ families, respectively. To each B; (1 < j < g—1), we will
add one block from each of the By (¢g—i+1 < k < g). We additionally add g —7 —1
new blocks with arbitrary values on the other groups but at their intersection with
G, containing the points {1,2,...,5—1, j',j—i- 1,...,9—1}, i.e. every other point than
j from the first g — 7 points of GG, each point in exactly one block. The blocks of each
of the augmented B; (1 < j < g — 1) (which have more blocks than it started with),
cover every point of the design. To the blocks remaining in each B; (9—i+1 < j < g),
we need add only g — 1 new blocks to each one to ensure that each of these sets cover
all the points. We can extend this enlarged cover by one group, the blocks from B;

intersecting the jth point of this new group.

We have added (g—i)(g—i—1)+i(g—1) = g —ig— g+1i? new blocks. Minimizing

this quadratic over integer values i (0 <14 < g), yields the desired maximum value of
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increase for extension by one group. [

This bound is quadratic in g. It is notable that tc(k + 1,2 : n) — tc(k,2 : n) < 1,
and in the tables, tc(k + 1,3 : n) — te(k,3 : n) < 2. We conjecture that the actual
value might be linear in g. Smaller values would have the effect of further reducing

the large jumps that exist in the tables.

Conjecture 2.18. The worst size difference between consecutive optimal covers,
max (te(k+1,9:n) —te(k,g:n)) (2.11)

s linear in g and, in fact, may be as low as g — 1.

2.8 Discussion

Although the constructive methods given here are valuable, we believe that the cur-
rent bounds are not the best possible, both because other constructions may exist
and recursive constructions do depend heavily upon starting values. Any new, smaller
covers discovered will cascade throughout the methods presented here and improve
most known values for higher £ and g. It appears, by inspection, that the construction
which produces the best overall results is the block size recursive method (see Ap-
pendix A). This method is also notable because given covers that are proportionally

close to known lower bounds, it constructs covers that are equally close.

Certainly one interesting direction would be to find transversal covers, by sim-
ulated annealing or other randomized methods, that are close to the asymptotic
bound. These would improve our knowledge of the constructive asymptotic behavior.
It seems, at this time, that this is the best way to proceed to obtain good constructive
asymptotics. This only requires finding one good cover to show that the constructed

behavior for larger covers on the same group sizes is equally good.
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We should like to make more use of Wilson’s method in its full generality. The
PBD construction needs to be better understood for small k£, namely which PBD’s
work best and which systems of representation of the points are optimal. And as
noted above, reducing the upper bound on tc(k + 1,9 : n) — te(k, g : n) would have a

large impact, reducing the magnitude of jumps in the upper bound.
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Chapter 3

Transversal Covers: Lower Bounds

The bulk of this chapter will appear in a paper with Lucia Moura [43]. In this chapter,
we derive several lower bounds on the number of blocks in a transversal cover. In
Section 3.1, we develop three general lower bounds. The first one (Theorem 3.1) is
proved using the block size recursive construction and the known asymptotic results.
The second bound (given in Inequality 3.3) is proved by studying set systems with
some intersection properties, and it can be seen as a generalization of the results for
g = 2. The third general lower bound (Corollary 3.9) is shown using a set packing
argument and establishing a relationship between point-balanced transversal covers
and standard transversal covers. Figures comparing these lower bounds and known
upper bounds for g = 3,5,7 are given in Appendix B. The set packing argument is
also used to derive bounds when we have more information on the replication numbers

in the covers (Corollary 3.7 and Corollary 3.12).

In Section 3.2, we develop upper bounds on £ for small fixed b, which lead to
lower bounds on b for small £’s. This proved useful in reducing or eliminating the
gap between lower and upper bounds on the size of small covers. For instance, the
results in Section 3.2.1 give, as a corollary, an alternative short proof of Applegate
and Ostergard’s result that t¢(5,3 : 1) = 11, and the analysis in Section 3.2.2 implies,
among other results, that tc(6,3 : n) = 12 for all n and that t¢(7,3 : 1) = 12. This
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method is further expanded and a conjecture is made.

3.1 General Lower Bounds

In this section, three general lower bounds on tc(k, g : n) are exhibited (Theorem 3.1,

Inequality 3.3, and Corollary 3.9). They are illustrated by the figures in Appendix B.

3.1.1 The Block Size Recursive Construction Bound

One upper bound obtained from the block size recursive method is given in Theo-

rem 2.1. This theorem, along with the asymptotic behavior demonstrated by Gargano

et al. [16], is used to prove the following lower bound:

Theorem 3.1. For any k, g and n > g, we have

te(k,g:n) > [gl(;gk—‘ +n

Proof. Assume the contrary, i.e., that there exists a kg for which

< glog kg
2

te(ko, g i n) +n—a,

where @ is a positive real number.

Then, using Theorem 2.1, we get

2
1
= z'(g ngo—a)-l—n.

, log k
te(kg,g:n) < i(g °8 0+n—a> —(i—-1n

2

The numbers tc(kf, g : n)/logkj, for ¢ > 1, form a subsequence of the sequence of all
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te(k, g : n)/logk, and so must have the same limit. Thus

i o
LT RED)
2 inoo logky
- glogk
<t 20 b0
i—00 log kj
-rglogko
i z(—2‘ a)+n
i—00 ilog ko
) g a n
=1 I _
oo (2 log ko * ilogko)
_9 a
2 logk
g
< —.
2

This is the desired contradiction and we conclude that

glogk

te(k,g:mn) > + n, for all £,

and since tc(k, g : n) is an integer, we have

glogk

te(k,g:m) > ’V -‘ + n, for all k.

O

If a ko existed with tc(kg, g : n) = £1%% 4, then by setting a = 0 in the above
equation, the covers achieving the asymptotic limit are constructible by the block size

recursive method. However, we will show later that this is not possible.

3.1.2 The Set Systems Bound

The known lower bounds (which are also exact values) for ¢ = 2 were proved by
associating a system of intersecting sets and their complements to a transversal cover
[39]. This idea can be generalized by a family of k£ 2-independent g-partitions of a b

set [16]. Here, we introduce an equivalent definition using a more convenient notation
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for use in this section.

Definition 3.1. We say that a k£ x g array of subsets of [1,b], say M = (A{), is a

(k, g,b) intersecting array if it satisfies the following properties:

1. sets in the same row form a partition of [1, 5], i.e., for any 1 < i < k, the sets

A} A2 ..., AY form a partition of the set [1, b];

2. sets in different rows intersect, that is, A7 N AL # 0, for all j,1,i # 7.

In addition, we say that a (k, g, b) intersecting array M = (Af ) is n-avoiding, if there
exists a subset L of [1,b] with |L| = n such that no pair of elements in L appear
together in any of the sets A{ , for all 7,5. Moreover, given an integer r, we say that a

(k, g,b) intersecting array M = (A7) is r-uniform, if |AJ| = r, for all 7,j.

These arrays correspond to transversal covers with a set of n disjoint blocks.
The proof of the following proposition is similar to the equivalence shown in Subsec-

tion 1.1.3:

Proposition 3.2. For any k, g, b and n < g, we have that

1. there exists a TC(k, g : n) with b blocks if and only if there exists an n-avoiding

(k,g,b) intersecting array;

2. there exists a PBTC(k,g : n) with b blocks if and only if there exists an n-

avoiding g—uniform (k, g,b) intersecting array.

Unfortunately, the maximum number of rows for such an array of sets is not easy
to determine. However, we will develop an upper bound on their number of rows,
producing a lower bound on the number of blocks of the corresponding transversal

covers. In order to do so, we prove the following variation of a theorem by Katona [21]
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and Jaeger and Payan [20]. We follow the proof given by Fiiredi [14, Theorem 1.4].
Then we reduce the right-hand side by a factor of two, by imposing extra intersection

conditions among A;’s, as well as among B;’s.

Theorem 3.3. Let Aq,..., Ay and By, ..., By be finite sets such that
ANB; =0, AinB;#0, AinA; #0 and B;NB; #0, for all i # j.

Then,

1
< -
° -2

k
1=

1
- (‘Ai||:4:“Bi‘)
Proof. Let X = (UF_,A;) U (UE B)), |Ai| = ai, |B;] = b; and | X| = n. Let m be a
permutation of X. We say the type of 7 is the set {i| A; precedes B; in 7}. We claim
that 7 has at most one type. Indeed, suppose on the contrary that 7 has two types
i and j, for ¢ # j. Assume w.lo.g. that r; = maxses, * < maxgea,; r. Then, each

element of A; precedes each one of Bj, yielding A; N B; = () which is a contradiction.

Now, let ™ be a permutation of some type ¢, and let us define 7 to be the permu-
tation of X that inverts the order of 7. So 7 makes every element of B; precede every
element of A;. We claim that 7 has no type. Indeed, suppose by contradiction that
7 has type j. Let y; = max,ep, ¥, and x; = maxgeqa,. If y; > x;, then A; N A; = 0,

and if z; > y; then B;N B; = (), which are both contradictions.

Moreover, we observe that m; # my if and only if 77 # 7. Now, counting the

permutations of type i, we get (aiibi) X (n — a; — b)la;lb;! = W Therefore,

ag

summing up all permutations 7 of some type and their corresponding 7’s, we have

Now, we are able to deduce the following corollary.

64



Corollary 3.4. Let Ay,..., A and By,..., By be finite sets with |A;| + |B;| < ¢,
|A;| < a<c¢/2, and such that

ANB; =0, AinBj#0, AinA; #0 and B;N B; #0, for all i # j.

Then,

Proof. 1t’s easy to see that

> > , for all s.
<a> (|Az|> ( Y

k k 1 1
— < s <o,
ARG HIRE

Thus,

=1

from which the result follows. O

This leads to the following upper bound on £ for fixed number of blocks which is
close to but slightly better than Inequality 1.20. Let us first denote

1 ift=-1( mod g),
575,9 =
0 otherwise.

Theorem 3.5. For any k, g, and n > g, we have

9 \‘tc(k,g:n)J 46 . \‘Ztc(k,g:n)J
1 te(k,g:n), 1
k<—( g ! g><_< . ) (3.2)

- 92 \‘tc(k,g:n)J
g9

Proof. Let M = (A7) be the (k, g, b) intersecting array corresponding to a T'C (k, g : n)

with tc(k, g : n) blocks. For every i, 1 < i < g, let x; be the index of the set with
minimum cardinality and y; be the one with the next larger cardinality among the

Ag, 1 < j < g. Then, since the minimum must be no larger than the mean, for each
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1 < i <k, we have |A%| < {WJ Similarly, | A%| < LMJ Thaus,

g—1
apag < [ARLEA an
L g—1
_ | telk, g :m) + (9 — 2)| A7
L g—1
te(k,g:n) + (g —2) {MJ
< 9
< —

Let ¢ and [ be the quotient and remainder of the division of tc(k, g : n) by g. So,
te(k,g:n)=qg+1, with 0 <1< g—1. Then,

AV + A7 < Vﬁ”(g_?)qJ

g—1
2(g—1)g+1 !
= |22 2 —9 -
{ g—1 J q+LJ—1J
te(k,g:n
=2 \‘%J + 5tc(k,g:n),g-

We observe that A7',..., A7* and AY',..., A}* satisfy the conditions of Corol-
lary 3.4 for a = {@J and ¢ = 2 {@J + Ote(k,g:n) g- d

The previous theorem can be alternatively expressed as a lower bound on tc(k, g : n).

(1) = % (2 UH %) :

te(k, g :m) > min{t : hy(t) > k}. (3.3)

If we define

then,

3.1.3 Comparison Between the Two Previous Lower Bounds

We now ask when each of these lower bounds is better than the other. The largest

that the lower bound from Inequality 3.1 can be for a given g and & is [%] +g.
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Using this value for b, if
(i)
- <k,
A3

then the bound from Inequality 3.3 is strictly better. When [gJ > 3, or equivalently,

b > 3g, then

L2y easalil

— <

2 {QJ 2

g

— 625 ol3 75
< 6252:1 7%
< 625 Qlosktg

625k 27

which for g > 3 implies

{_J) < .625 x 1.59k < k.

So, when b > 3¢, Inequality 3.3 is strictly better. For g > 3, we have b > ¢ > 3g.
Therefore, Inequality 3.3 is always strictly larger than Inequality 3.1 in the region
where either bound gives any information at all, i.e., the range of £ for which either

bound is larger than g¢°.

An obvious question to ask is why Inequality 3.1 is discussed and proved at all. It
is in a far more tractable form and is therefore more useful. This bound is often very
close to Inequality 3.3, and both bounds converge to the known asymptotic limit.
So, having Inequality 3.1 in such a useful algebraic form permits quick and useful

calculations.

The fact that, for ¢ > 3, Inequality 3.3 is always better than the bound from
Inequality 3.1, independently of n, allows for the following strengthening of the bound
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from Inequality 3.1:

log k
te(k,g:n) > "g (;g -‘ +g+ 1 (3.4)

3.1.4 Set Packing Bounds
Point Balanced Transversal Cover Lower Bound

Throughout this subsection, we use the convention that (Z) = 0, whenever =z < y,

z<0ory<0.

Let 7., and 7,4, denote the minimum and maximum replications of elements of

a transversal cover.

Theorem 3.6. In a TC(k, g : n) with b blocks, we have

()< ) S0 ) e

reX

Proof. Let M = (A?) be the (k, g,b) intersecting array corresponding to the given
TC(k,g : n). We claim that any (7. — (9 — 2))-subset of [1,b] cannot appear in
more than one of the Ag , 1 <i<k, 1< 75 <g. Indeed, suppose that two distinct
sets AJ' and A% contain a set P C [1,b] with |P| = 14, — (9 — 2). Then, we know
that 4, # i, and that A‘le N Ag; # 0 foralll <j<g. Since A ,...,A? is a partition

of [1,b], we have that

Tmaz > A N1 = A N (AL, U...UAL) |

= (A NA) U uA N AL > (9= 1) +|P| = Tyas + 1,
which is a contradiction. Therefore every (7. — (9 — 2))-subset of [1, ] occurs in at
mostoneoftheAg, 1<i<k 1<j5<g.

Let L C [1,b] be the n-set that is avoided by M. Counting, on one hand, the
number of (T — (9 — 2))-subsets of [1, ] that are covered by the A?’s, and, on the
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other hand, the total number of (7. — (¢ — 2))-subsets of [1,b] that avoid L, we
obtain the theorem. O

The previous theorem does not give a general upper bound on k. It does imply

an upper bound on £ for point-balanced transversal covers.

Corollary 3.7. If there exists a PBTC(k, g : n) with b blocks, then

(é—(Z—Q)) B Z?:Q (TZ) (375:872))

k< |2 . . (3.6)
9(932)
Proof. A PBTC(k,g : n) with b blocks has 7, = rpee = g, for all z € X. 0

General Transversal Cover Bound

We want this bound to yield a bound on arbitrary transversal covers so we need to

relate PBTC's to TCs. We have:
Proposition 3.8. For any integers k, g, n < g, we have

pbtc(k, g : n)

p +g(g—1) <tec(k,g:n) < pbte(k,g:n).

Proof. The second inequality follows from Definitions 1.7 and 1.11. All we have to
prove is the first inequality. Let (X, G, B) be a TC(k, g : n) with tc(k, g : n) blocks.
Let R = maxgzex 7. We claim we can construct a PBTC(k, g : n) with gR blocks.
Indeed, just add gR — te(k, g : ) blocks to (X, G, B) so that r, = R for every x € B.
For each group G; € G, arbitrarily select R — r, of the new blocks to contain x, for
any x € G;. The result is clearly a TC(k, g : n) with uniform replication R and gR
blocks. Thus pbtc(k,g : n) < gR. Now we just have to find an upper bound on the
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size of the maximum replication R. In the original transversal cover r, > g, for all

z € X. So, R<te(k,g:n)— (g —1)g. Then,

pbtc(k, g :n) < g (te(k,g:n) —(g—1)g),
which implies the first inequality. O

This result and the set packing bound leads to the following general bound for

transversal covers.

(b*(bng))_ ?=2(7)(Q75:n¢72))
Corollary 3.9. Let f(b) = | -2 T . Then,

9(,2,)

te(k,g:n) >minf{t : k< f(t-g)} +g9(g—1). (3.7)

Proof. The proof is a combination of Corollary 3.7 (rewritten as a lower bound on

pbtc(k, g : m)) and Proposition 3.8. O

Now, we want to get another upper bound on k£ when we have some information
on the replication numbers. We will need the following well known results, which are

probably folklore:

Lemma 3.10. All but the two outermost diagonals of Pascal’s triangle are concave

up, i.e., if fi(j) = (Z), then fi(j —1) > W, fori> 2.

Proof. Since f;(j) = fi—1(j — 1) + fi(j — 1), we see that all diagonals but the first

(¢ = 0) are strictly increasing. So if 7 > 2 then

fiG) = fiG=1) = il -+ fiaaG—1) = fiG = 1)
= fia(j—1)
> fi1(G = 2)
= fiG=2)+ fina(G—2) = fi(G — 2)
= fiG—1) = fi(j — 2).

70



O

Lemma 3.11. If >  a; = a then Y ;| fi(a;) is minimized when the a; are as equal
as possible. Namely (n(|a/n| +1) —a of the a;’s are equal to |a/n] and a — n|a/n]
of them are equal to [a/n].

Proof. If any two of the a; differ by more than one, say a; — ay > 1, then we can
replace a; by a; —1 and a; by a;y +1 and we will have made Y- | f;(a;) smaller since

fj is a concave up function. O

Since the values of Pascal’s triangle on the left hand side of the Inequality 3.5 are
all on the (74 + g — 2)-th diagonal we know a lower bound for the left hand side
yielding the following corollary:

Corollary 3.12. If 7oz — Tmin < g — 2 in a TC(k, g : n) with b blocks, then

k<®in,
Yy

where

() (SO ) ()
(100 (|5 | 1) s (L5 ) -
(1t |7 ) ( 155°] )

and

(G R RO [T R G ) [

Proof. Without loss of generality, the first group contains a point x with 7, = 7,45-
The sum of the rest of the replication numbers from this group is a constant b — 7,4,

so we can apply Lemma 3.11 for a = b — r,,4,. On each other group, the replication
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numbers sum to a constant b, so each of the other k¥ — 1 groups can be minimized

similarly. Algebraic manipulation produces the desired equation. O

3.2 Upper Bounds on k£ for Small Fixed b

The lower bounds developed in Sections 3.1.1 and 3.1.2 are useless for values of &
between the last k£ for which a transversal design exists and the first k& for which these
bounds are bigger than ¢ (approximately 229~2). One way to find more information
for small values of k is to investigate the maximum k for a fixed number of blocks.

The case with g2 + 1 blocks is the most straightforward.

3.2.1 Transversal Covers with g2 + 1 Blocks

When there are g> + 1 blocks in a TC(k,g : n), the following fact is clear: in each
group G; there is one point, say z;, incident with g + 1 blocks and all other points
are incident with g blocks. Clearly, A;, »; = 2 for any i # j, and A, = 1 for all other
x,y not in the same group. If we define a; to be the number of blocks incident with

j of the x;, then we get
k

Zaj=g2+1,

=0

and counting the number of times each z; appears

Zjaj (9+ 1)k

Finally, counting the number of times two x;’s appear together on a block we get

Zaj ‘7_1 Z Aaio; = k(k—1)

Jj=0 {1,3}C[1,k]
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which leads to

k

k k
> ifa; = ai(i— 1)+ aj=k(2k+g—1).
=0

J=0 J=0

From this we can calculate that the mean, over all blocks, of the number j of x;’s

(9+Dk
g 41

on each block is j =

We now pick a block A containing j of the z;’s. Then counting the flags (z, B)

with z € A and € B we get

Y pap=jg+k-j)g-1)=kg—k+j
B#A

and counting triples (z,y, B) with x # y, z,y € A and z,y € B we get

> pap(pas—1) =34 - 1),

B#A
We then obtain the mean value of p14 g, for B # A,

X _kg—Fk+7
A 92

3

and further

0< Z(MA,B —T4)’

B#A
= ¢*04 —204kg—k+5)+3i(G— 1)+ kg — k+ 7,

which reduces after some calculation to
0<7%(¢"—1) = j2k(g — 1)+ g°k(g — 1) — k(g — 1)*.

The first two derivatives with respect to j are 2j(g?—1) —2k(g—1), and 2(¢g>—1). So,

this parabola is concave up in j; moreover, we know there exists a block A containing
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j of the z;’s with 0 < j < j = o+ Dk So, we have an upper bound on

(g —1)—2k(g— 1)+ ¢°k(g—1) — k*(g—1)% for 0< j <j

k(g+1)
9°+1

which is the larger of its values at j =0 or j = j = which are, respectively

9%k(g — 1) — k*(g — 1)? and,
—k*(g —1)*(¢° +3)

1 1) + k(g —1).

After some elementary calculation we find that the first is the larger and we get

2

1
I g1+ —

k<
Tg-—1 g—1

since k is an integer and g > 3 we get

k<g+1. (3.8)

Therefore, we can conclude that tc(k,g: n) > g+ 2, for all k > g+ 2 and g > 3.

The range for £ from Inequality 3.8 is the same as the range of k£ for transversal
designs. The consequences of Inequality 3.8, for g a prime power, are that we can
only have transversal covers with g2 + 1 blocks where we already have a transversal
design. This does not mean that such covers do not exist, but, clearly for these £,
te(k, g : 1) = g2 so minimum covers with g2+1 blocks must have a set of more than one
disjoint block. From this and the fact that transversal designs with g a prime power
and k < g have g disjoint blocks, the only possible optimal covers with exactly ¢+ 1
blocks are TC(g+1,¢g : n) where n > 2. For g not a prime power, there may be other
optimal covers with g? + 1 blocks and k < g. An example of this is tc(4,6 : 5) = 37.
Another possibility is 7C(6,10 : 1). We know that 100 < t¢(6,10 : 1) < 102. We
suspect that there are a great many covers with ¢g? + 1 blocks for g composite and &

slightly bigger than the maximum k for this order of transversal designs. Applegate
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used integer programming to first prove that tc(5,3 : 1) = 11 [38]; our result offers
a short alternative proof of that. It is also worth mentioning that the corresponding
bound for ¢ = 2 and b = 5 is actually £ < g+ 2 = 4 and a cover attaining this
bound exists [23]. The only other optimal cover for g = 2 with g? + 1 = 5 blocks is
TC(3,2:2).

3.2.2 Transversal Covers with ¢? + 2 Blocks

Although a more complex case, a similar analysis of g? + 2 blocks also gives some
information. Now on each group there can be either two points with replication g+ 1

or one point with replication g + 2, all of the rest having replication g.

We now pick a block, say A, with 7 points with replication g+ 1 and j points with
replication g + 2. Then counting the flags (z, B) with z € A and x € B we get

D map=ig+ilg+1)+(k—i—j)g—1)=kg—k+i+2j,
B£A

and counting triples (z,y, B) with z,y € A and =,y € B we get

S has(pap — 1) < i(i —1) +24(j — 1) + 23,
B#A

We then obtain the mean value of p g, for B # A

. kg—k+i+2

)

and further
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0 < Z(,UA,B_.UA)2
B#£A
(kg —k+1+25)* PR
< — po +i° +25° + 215 + kg — k. (3.9)

The following lemma will be useful in analyzing the implications of this result.

Lemma 3.13. For g > 4, a transversal cover with k = g + 2 and g* + 2 blocks must

have at least one block with at least g points on it with replication number g.

Proof. We will show that if every block has fewer than ¢ points with replication
number g, then we derive a contradiction. Assume that every block has at most g —1
such points. Now each group has at least g — 2 points with replication number g. So
there are at least (932) (g—2)? pairs of such points. There are g°+2 blocks with at most
g — 1 such points, making at most (¢* + 2) (951) such pairs represented in the cover.

In a cover all pairs must be represented, but for g > 4, (93’2) (g—2)2> (4> +2) (9;1)

which is a contradiction. O

The following theorem summarizes some implications of Inequality 3.9.

Theorem 3.14. If k> g+ 2 and g > 3 then
te(k,g:n) > g° + 3,
with the only exception being tc(5,3 : 1) = 11.

Proof. Case 1. g > 4. It is enough to prove the result for a transversal cover with
k = g+ 2. By Section 3.2.1, we know that such a transversal cover has at least g + 2
blocks. Suppose that the transversal cover has exactly ¢? + 2 blocks. We will derive
a contradiction. By Lemma 3.13, there must exist a block with at least g points of

replication number ¢g. On this block 7 + 7 < 2. All six pairs of ¢ and j that satisfy
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this inequality contradict Inequality 3.9. Therefore, for ¢ > 4 and k > g+ 2, we have
te(k,g:m) > g%+ 3.

Case 2. g = 3. First, we analyze the case £ = 5. As noted in Section 3.2.1, we know
te(5,3: 1) = 11. So, we concentrate on n > 2. We assume there exists a transversal

cover with 11 blocks, and will derive a contradiction.

We claim there is no point with replication number 5 = g 4+ 2. Suppose there
is such point. There are at least 14 pairs of points with replication number 3 = g.
If there were no more than one pair of such points on each block, the cover would
represent only 11 pairs which is impossible. We conclude that there exists a block
with at least three such points on it. On this block 7 + j < 2 and it is easy to check
that the only ¢ and j that satisfy this inequality and Inequality 3.9 is 7 = j = 0. Such
a cover must have a block consisting completely of points with replication number 3
and by simple counting, all other blocks must have exactly one of these points. We

then conclude that no such cover has a point with replication 5.

Thus each group must have one point with replication number 3 and two with
replication number 4. Again using Inequality 3.9 we can see that the only admissible
1 are 0,3,4, and 5. If a; is the number of blocks with ¢ points with replication number

4, then we get

5
4 =ay=a5=0, Y _a; =11, 10a, + a3 = 10. (3.10)
1=0

From this it easy to see that ap = 1 and a4 = 10. Recalling that n = 2, we conclude

that we must be able to complete, w.l.0.g., the following transversal cover

groups \ blocks 1/2 3456789 10 11
1 1111232323 2 3
2 1123117227272 77
3 1123231177 7 7
4 112323727211 7 7
5 1123237777 1 1
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However, simple case enumeration shows that it is not possible. This shows that

for k> 5 and n > 2, tc(k,3 : n) > 12.

Now we analyze the case k = 6. Similar calculations show that there must exist a
block with at least three points of replication number 3. This implies that ¢ +j < 3
which together with Inequality 3.9 produces a contradiction. This means that for

k>6,tc(k,3:n) > 12. O

The lower bound given by Theorem 3.14 implies that t¢(5,3 : 2) = t¢(5,3 : 3) =

tc(6,3 :n) =tc(7,3: 1) = 12, since it coincides with known covers.

3.2.3 Similar Bounds for Larger b

When b > g% + 3, this method of proof gets much harder because we would have to
consider points with replication numbers g,g + 1,9 + 2,9 + 3 and possibly higher.
However, if we know some results about some blocks in the transversal cover then we

can still obtain some results.

More Calculations

Lemma 3.15. If for every group, G, there exists vq,yc € G zg # Yo and ry, =
Tye = g, then there exists a block in the cover with at least four points with replication

number r, = g.

Proof. Consider one such point in a particular column of the associated covering
array. This is in exactly g rows. There are at least g + 1 remaining columns. By the
covering condition there must be at least 2g + 2 points with replication number g in

the remaining columns of these g rows. So there must be a row with

[29—!—2

p W+124 (3.11)

78



such points in it. O

Lemma 3.16. In a TC(k,g : n), withk > g+ 2 and b = ¢*> + z < g*> + g, if there
exists a block with at most two points on it with replication number greater than g

then

te(k,g:n) > g*+gifk>g+3 and (3.12)

te(g+2,g:n) > g*+g— 1. (3.13)

Proof. Let A be the block with at most two points with replication number greater
than g Say those two points have replication number g+ a and g + b respectively and

a <b. Then

S has =klg—1) +a+b (3.14)
B#A
_ k(g—1)+a+b
= 1
7] pra— and (3.15)
Z,UA,B(,UA,B—l) <a<z. (3.16)

B£A
So we can conclude that

—(k(g—1 b)?
0< > (has—1)° = (@g JFa+O 1) +2a+b. (3.17)
BiA g°+z—-1

The domain of the right hand side are the lattice points of the triangle with vertices

(a,b) = (0,0), (0, 2), (z, 2).

It is easy, but tedious, to check that the only possible values of a and b that let

Inequality 3.17 be at least zero are a = b = 0 and additionally the variance is zero. [J

Lemma 3.17. In a TC(k,g : n), if there exists a block with at most three points on
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it with replication number greater than g and k > g + 2 then

te(k,g:n) > g*+g—1. (3.18)

Proof. We only need to prove that tc(g + 2,9 : n) > ¢g* + g — 2 since all covering
arrays with more columns can be truncated to have k = g + 2, and the same number
of blocks. We will assume that b = g> + g — 2 = k(g — 1) and derive a contradiction.
This proof is exactly the same as the proof above except that we now have possibly
three points on the block with replication number larger than g, say g + a, g + b and

g+ cwhere 0 <a <b<c<g— 2. In this case we have

Y pap =klg—1)+a+b+c (3.19)
B#A
_ klg—=1)+a+b+c
- 3.20
Iz P — (3-20)
Z/,LAB(/J,A,B—l) < 2a + b and (3.21)
B#£A
_ —((9+2)(g—-1)+a+b+c)?
0< S (uas— 1) < ((g )(g2+ )_3 )
oy 9> +y
+(g+2)(g—1)+3a+2b+c. (3.22)

The domain of this function are the lattice points of the tetrahedron defined by the
points (a, b,c) = (0,0,0),(0,0,9g—2),(0,g—2,9—2),(¢g—2,9—2,9—2). Lemma 3.16
already deals with the case where a = 0. This leaves only the interior, three edges,
three faces and one vertex to check. The three partial derivatives of the right hand
side of Inequality 3.22 can never be simultaneously zero, which suffices for the interior.
That the right hand side is negative on the rest of the boundary follows from simple

but tedious calculations. O

We introduce the general method of solution here. We assume that £ = g + 2
and that there are g + g — 2 blocks. We will derive a contradiction showing that
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there must be at least one more block. We always know that there will exist a block,
A, with at least four points with replication g. We use this block to perform the
analogous calculations as above, assuming that the replication numbers (r,) of points
in A increase from left to right. For the block A, we define a vector a of length g + 2
and the a; equal to the “excess” replication numbers (r, — g) of points, x € A. Then

we have

g+2
> pas =klg-1)+) a (3.23)
B#A i=1
_ k(g—1)+ Z?ff a;
= i= 3.24
[z pEa— (3.24)
g+2
Z pa(pap—1) < Z(g —2—1i+1)a; and (3.25)
B#A i=1
_ —((g+2)(g— 1)+ X9 ;)
0< Y (uap—1)? < ((g )(g+ )_ 321_1 )
= 9> +yg
g+2
Hg+2)(g-1+> (9+2—i+Da.  (3.26)
=1

We will attempt to show that the right hand side of Inequality 3.26 is negative
and derive a contradiction on the number of blocks. The contradiction will generate a
lower bound on the number of blocks possible. In certain cases, it will not be possible
to show that the right hand side of Inequality 3.26 is negative. In these case we will
show that the left hand side is positive and the right hand side is still less than it.

We need one more lemma before we state the main result. This lemma will
consider the number of points with replication g in A and show that, under certain
conditions, the replications numbers on A imply the existence of another block with
more points with replication g. In these cases, we do not eliminate the block under

consideration, but consider the other block which behaves better for our calculations.

Lemma 3.18 (Reduction Lemma). Let A be the block in the transversal cover
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with the most points with replication g, say m. Then the sum:

9+2

Zai <(m—-2)g—(m-—1). (3.27)

i=1

Proof. Suppose not. A point with replication  in A is represented in a as the value
r — g. There must be at least g — (9 —2—(r—g)) —1=7r—g+ 1= a; + 1 points
in this group with r = g, i.e. no “excess.” Performing the same calculation as in

Lemma 3.15 we see that if there are 7 points on the block with » = g then

>y ale + 1) + (i = 1)(2)

+1< (3.28)
g
which is violated if
g+2
D a; > (i—2)g—(i-1). (3.29)
j=1
O
These allow us to prove the following theorem:
Theorem 3.19.
For2<g<b5,te(g+2,9g:n) =¢g*+g—1 (3.30)
and for g =6,7tc(g+2,9:n) > ¢* +g— 17. (3.31)

Proof. Consider the following base blocks for the cases 2 < g < 5:

0111 (3.32)
01221 (3.33)
012232 (3.34)
0123224 . (3.35)

We develop them in the following way. Produce g blocks by applying the permutation
(0)(1,2,...,9—1) to each block and then develop these as circulants. Add a final block
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of all zeros. Because each of these blocks covers each difference at each separation,

they produce the desired covering arrays.

To show the lower bounds for 2 < g < 7, we simply apply the lemmas. We
assume that A is the block with the most points with replication g, which has, by
Lemma 3.15 at least four points. The case ¢ = 2 was done by Katona and Kleitman
and Spencer (see Equation 1.4). Ostergard solved g = 3 (Equation 1.31). In the
case ¢ = 4 and g = 5, just apply Lemma 3.17. In the case ¢ = 6, we need to apply
both Lemma 3.17 and Lemma 3.18. All the possible choices for A can either be
eliminated by Lemma 3.17 or direct calculation that the variance is negative or be
reduced to such cases by Lemma 3.18. For ¢ = 7, we use Lemma 3.17, Lemma 3.18
to similarly reduce or eliminate the number of cases that need to be checked. After
this enumeration and elimination, we have 20 remaining cases where the variance
calculation yields a positive number. The blocks, A, that admit a positive variance

are represented by the vectors a:

C © O ©O O O O © O OO ©o o o o o o o <o <o o
o © O O O O © o O o o o o o o o o o o o
S © O ©O O O O © O o ©o o o oo o o o <o o o
o © O O O O © o O o o o o o o o o o o o
N B R B R H R R B R H ©O C OO 0 o ©o ©
NN FE O HE R R W W W NN NN
NN NN NN R H R R R HE R R W W W NN
N N N W NN W NN~ = B k& B w w Ww N N =
N W N W W N W W N W N~ B bW W Ww N =

We eliminate these cases by noting that the variance cannot be zero because 1
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1+ a;
53

is not an integer. In fact, from Equation 3.24, 1z is 1 + . In these cases the

143 ai)(52=3 ai)
53

variance must be at least & and that each of these blocks produces a

variance too small. Therefore t¢(9,7: 1) > 54. O

This type of analysis fails for ¢ = 8 because although we can eliminate or reduce a
great number of cases, we do have cases where the variance is higher than the minimal
possible variance. The investigation of these remaining cases could yield structural
contradictions or we may find that the lower bound on the variance is actually larger
and thus derive the same contradiction. In any case, by elimination and reduction
we gain information about the types of blocks that must occur in transversal covers

with g2 4+ g — 2 if they exist.

Examples and a Conjecture

The construction used in the preceding proof is very interesting. The transversal
covers meeting the bound are formed from a base block which has all its symbols
other than 0 permuted to produce a total of g—1 base blocks and the final transversal
cover is generated by the circulants of these blocks. The best formulation of such a
base block is a list of length g+ 2 on symbols Z, ; Uoco. We consider the block to be
cyclically ordered. The conditions that the block must satisfy are that all elements of
Z4,_1 must appear as a difference between some pair of elements for each separation
of positions in the list. More than one example (not immediately non-isomorphic) of
such a block exists for 3 < g < 5 as was checked by an exhaustive search. We do not
know if they produce isomorphic transversal covers. We have checked exhaustively
that no such base blocks exist for g = 6,7,8 or 9 so this method will not produce the
desired covers for larger groups. The simulated annealing has similarly failed to find

covers with these parameters and desired sizes. They may exist, but be extremely

difficult to find.

The possibility that there might be a general base block method for generating

transversal covers is exciting. A quick, but inexact, calculation will justify that it
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may be unlikely. This sort of base block construction produces 1+ k(g — 1) blocks. If
we want this construction to be better than the block size recursive method for prime

powers then we need

g9(g —1)logk
1+k(g—1) < ——F—— .
k(- 1) < T (336)
and for large g this reduces to
klogg < glogk (3.37)

which clearly does not hold. The known asymptotic limit implies that if some other

different base block method were to be known which just developed in Zg4, not using

log k
2

circulants, then it would have to have about points. This is a strange number
for the number of points and might discourage one from accepting the possibility of

such a construction method being useful, but we believe this may yet be possible.

In Theorem 3.19, both the methods used to establish upper and lower bounds
stop working after ¢ = 5, 7 respectively. Either these covers have at least g2 + g — 1
blocks or they have fewer. We believe that not having been able to find any with
either the base block method or the simulated annealing is strong evidence for the

following conjecture:

Conjecture 3.20.
te(g+2,g:n) > g*+g— 1. (3.38)

This conjecture is related to our previous Conjecture 2.18. This conjecture implies
that although the minimum difference of cover sizes for consecutive £ may be linear
in g, it is certainly at least g — 1 (the values that seem true from the tables) at least

when ¢ is a prime power.
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3.2.4 Transversal Covers with ¢g?> + z Blocks, z < g — 2

Another way to obtain upper bounds for £ when there are few blocks is to note that
when b < g% + g — 2 then 70z — Tmin < ¢ — 2 and so we can use the set packing

method described in Section 3.1.4.

Corollary 3.21. In a TC(k,g : n) with b= g*+ z, where 2 < g — 2, if "oz = g+ 2,
then

(05) = (S () - €5) - (0= 1(.%)

G-(7) + () i R

Proof. Corollary 3.12. O

If rpae < g+ 2, then z + 2 sets still cannot appear more than once and so we also

get 2 2
(%) = > (D50
(9—2)(,1a) +2()

However, this bound is much weaker than the one in Inequality 3.39. Another way

k<

to deal with the case 7,,., < g+ z is to use the maximum upper bound achieved over

g+ 1 S Tmaz S g+z, na’mely

k< maz ) 3.40
- g+1§£?n%§§g+zf(r ) ( )
where

‘o - () — (T (O (E5m) — (o) — =212, — - +0) (711 »

(g - Z) (r—g+2) + (Z) ('r g;_}_g)

By inspection of this value for small g, it seems that the largest value is produced
when 7,,,; = g + z and so it is likely that the bound in Inequality 3.39 is true even
when 7,,,, < g+ z. For z = 1, this bound is not as good as the same case explored
in Section 3.2.1. For z > 2, the bound from Inequality 3.40 is sometimes better than

the set systems bound from Inequality 3.2; but as z increases for a fixed g, a point
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is reached where Inequality 3.2 is better. The following table shows all the values for
which the bound from Inequality 3.40 is stronger than the one on Inequality 3.2, for
g<10and n=1:

g |z |Inequality 3.40|Inequality 3.2
712 793 1716
812 1072 6435
9|2 1411 24310
913 20417 24310
10]2 1816 92378
103 27790 92378

Increased knowledge of the distribution of r, in small covers would likely improve this

bounds since 7,4 < g + z improves the Inequality 3.40.

3.3 Discussion

We have derived three lower bounds for transversal covers in general. Even though the
bound derived from the block size recursive construction is always worse than the set
systems bound, its form is more suitable for calculations and so is still useful. The set
packing bound from Inequality 3.7 is stronger for smaller £’s, while the set systems
bound is stronger for larger values of k£ (Appendix B). Although the previously
published constructions [38, 15] and the constructions shown here are effective, no
known covers (except transversal designs) attain these general bounds, which indicate
that more research needs to be done. Some known covers do attain the less general

bounds calculated in Section 3.2.

The lower bounds calculated here can help us in two ways. The first gives us
some idea of how well our constructions are performing, both in particular cases and
asymptotically. The lower bounds also give us access to the structure of covers. The

set packing bound depends heavily on the replication numbers of the covers, and thus
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explicitly gives structural information about covers that attain the bounds generated.
The point balanced version further restricts the structure. In this same vein, the
calculation of upper bounds on k£ when we hold b fixed, as noted in Section 3.2.2, can
eliminate certain structures which would imply a contradiction in Inequality 3.9 or

similar equations for other fixed b.
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Chapter 4

Transversal Packings: Upper

Bounds

When we consider the complementary problem of packing instead of covering, the
natural goals are finding the largest b given a fixed k, tp(k,g : n) or finding the
largest k possible for a fixed number of blocks kp(b,g : n). Again, we shall talk
mainly in terms of ¢p(k, g : n) and we want to find both upper and lower bounds on
these values. Because transversal packings are an inverse problem, constructions will
contribute lower bounds instead of upper bounds as in the transversal covering case,
although the structure forced by meeting some of the upper bounds will allow us to

state existence results.

In this chapter, several upper bounds on transversal packings are derived. The first
set of bounds consists of applications of standard coding theory bounds to transversal
packings. Bounds in the second set are analogues of block design packing bounds.
The third set comes from an observation on the constraints that sets of disjoint blocks

place on these structures. We will also compare the relative utility of these bounds.
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4.1 Coding Theory

If we view the transversal packing as a packing array, the packing conditions do not
allow two rows to intersect in more than one point. Thus the rows of a PA(k, g : n)
is a maximum code on a g-ary alphabet with word length £ and Hamming distance
at least £ — 1. The set of n disjoint blocks form a set of n codewords with mutual
Hamming distance k. Since transversal packings are codes, we can apply the many

coding theory bounds.

4.1.1 Plotkin Bound

One of the most potent coding theory bounds is the Plotkin bound [9].

Theorem 4.1 (Plotkin bound). Let § =1 — %, and suppose that d > 0k. Then a

g-ary code with length k and minimum distance d has at most ﬁ codewords. O

Direct Application of the Plotkin Bound

In our application, we have d = k — 1 and the necessary condition in Theorem 4.1

becomes k — 1 > k(1 — é), or k > g. The Plotkin bound will only be useful in this

range. The full statement of this direct application is

Corollary 4.2. For k > g,

glk=1) (4.1)

When equality is reached in the Plotkin bound, strong implications on the struc-
ture of the code arise [9]. In this case, the Plotkin bound must be an integer; the

number of words must be a multiple of ¢g; any two code words must intersect; and each
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symbol must appear equally often in each column. Let us examine these consequences

for packing arrays.

We will dualize the transversal packing: we now consider the block set as a set
of points, and the points of the original transversal packing are now considered as
blocks. A new point, B, is said to be on a new block, z, if x € B in the original

transversal packing.

If the number of blocks in the transversal packing meets the Plotkin bound then

the dual is in fact a resolvable PBD(b,b/g,1). This gives a new existence corollary:
Corollary 4.3. If there exists a resolvable PBD(v, k,1) then

v—1 v

tp (ﬁ = 1) = . (4.2)

For a comprehensive survey on these objects see [12]. In particular, the standard

1-factorization of the complete graph, K4, gives

tp(2g—1,9:1) =2g. (4.3)

The Plotkin Bound Modified to Consider Sets of Disjoint Blocks

The straightforward application of the Plotkin bound to transversal packings does
not take into account the sets of n disjoint blocks. We can modify the bound to use

this information

Theorem 4.4. A TP(k,g : n) with b blocks and n > 1 satisfies

bQ(S —1)+b(1—k)+n(n—1)<0. (4.4)
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Proof. Let N be the number of ordered pairs of different symbols in the columns of
a PA(k,g : n). Since pairs of rows from the set of n disjoint blocks never intersect
(i.e. never have the same symbol in the same position) and any other pair of rows

can share a common symbol in the same position in at most one place, we get

N>bb—-1)(k—1)+n(n—1). (4.5)

On the other hand, we can determine this value, N, in another way. Let r;; be
the number of times the symbol ¢ appears in column j. There are b — r; ; rows where

a different symbol occurs. So the contribution of this column to N is

Zr” —Tij)- (4.6)

We know »"7r; ; = b, which implies that

2

Zg:rm —rij) =b — Zr 2, < b — (4.7)
i=1

with equality if each each symbol appears equally often. This gives

szk:zg:r ) < B =), (4.8)

j=1 i=1 9

These two bounds on N give

kb2 (1 - 1) > b(b—1)(k = 1) + n(n—1) (4.9)

9

which reduces to

b’ ((k/g) —1) +b(1—k)+n(n—1)<0 (4.10)

with equality if each symbol appears equally often in each column and each pair of

rows (except when both are from the set of disjoint blocks) share exactly one symbol
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in one position.

Again, we can give a characterization of the packings that meet this bound. All
pairs of rows not explicitly forbidden to do so must share exactly one symbol in exactly
one column. In addition, each point has the same replication number. Consideration

of the dual structure shows that equality can never be reached in this bound.

The dual structure would be a resolvable PBD(v, k,1) with a hole of order n.
Since each point would appear exactly the same number of times (the number of
resolution classes), we have only one block size and the fact that pairs within the hole
do not appear in any block imply that this structure cannot exist. This completes

the proof. O

Bi-Regular Plotkin Bound

Equality in Corollary 4.2 implies that all the point replication numbers are the same
and therefore, the number of blocks is a multiple of the group size. This is a strong
restriction, We would like to know some bounds that integrate the possibility that the
replication numbers vary. A simple case of this is when there are only two replication

numbers, r; and ry = 1 + 1.

If a transversal packing has such a structure then a derivation similar to the proof

of the Plotkin bounds yields

Theorem 4.5. If, in a transversal packing, b = ug + v where 0 < v < g, then
k(g —v)u®+v(u+1)%) <b* —b—n®+n+ kb. (4.11)
O

Abdel-Ghaffar derives a similar bound for the case n = 1 in his paper on mutually
orthogonal partial latin squares [1]. If equality is attained, then the dual structure

has different block sizes and these structures can exist. In fact, for n = 1, these
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structures are a subclass of a particular design:

Definition 4.1. A restricted resolvable design (R, RP(p, k)) is a resolvable design on
p points with block sizes r and r + 1 such that each point appears k£ times in the

design.

Pullman [32] and Stanton et al. [40] have solved the case where = 1, and Rees
(33, 34, 35] solved the case r = 2. However, the dual of a transversal packing must
have a constant number of blocks in each resolution class. Only R,RP’s with this
condition apply to transversal packings. The dual structures meeting this requirement

are a direction of future research.

Although this bound is generated by consideration of a structure with two repli-
cation numbers, this bound applies in general to transversal packings that may have
more than two replication numbers. In the proof of Theorem 4.4, we need a bound
on the sum Y7 r?. subject to knowing Y 7 _ r; ;. We know that

Sz, Tkt 2 (112
, g g

with equality if each r; ; is equal to (37, 7;,)/g. This follows from the proof of the
Plotkin bound. If we know that this constancy is not possible, as in this case because
b/g is not an integer, then we can replace this inequality by the one that assumes
that each r;; is [b/g] or [b/g]. Inequality 4.12 is useful in general. If the replication

numbers are more varied then the bound derivable from this method will be tighter.

4.1.2 Other Bounds from Coding Theory

The Singleton bound from coding theory gives tp(k, g : n) < ¢g? [37], which we already
know. However, the sphere packing or Hamming bound can be applied to transversal

packings [37].
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Theorem 4.6.

tp(k,g:n) < =3 J I where t = {—J ) (4.13)

The related Elias bound also gives a bound for transversal packings.

Theorem 4.7. Let 0 = (g — 1)/g. If m is a positive number satisfying m < 0k and
m? — 20km + 0k(k — 1) > 0 then

0k(k —1)g*
(m? = 20km + 0k(k — 1)) iy (5) (9 — 1)

tp(k,g:n) <

4.2 Residual and Derived Bounds

Some of the techniques developed to give upper bounds on PBD packings also give
upper bounds for transversal packings, in particular, the point residue method. To

fully explain this method we introduce a new object.

Definition 4.2. A transversal packing of type g1g- - - - gi is the same as a transver-
sal packing except that the group sizes may vary. We denote this structure by

TP(g192- - gx : n) and the optimal number of blocks by tp(g1g2- - gk : n).

Although we use this definition only here, varying the group sizes is a very useful
and interesting variation on either the packing or cover problem. The variable group
sizes could come directly from one of the many applications, see Section 1.3. In
particular, transversal packings with this more general structure would be useful
for disk allocation of large database files where different fields have variable sizes.

Williams and Probert[49] and Cohen et al. [11, 10] have investigated the analogous
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generalization for transversal covers, including their applications. With this new

definition we have

Theorem 4.8. For any group, g;, in a TP(g1g2--- gk : 1)

gi
g;i—1

tp(g1g2--- gk 1) < { tp(gl---gi—l---gk:n—l)J- (4.15)

Proof. Let z € G;. By removing this point and all the blocks through it we have a
packing on the same structure with one less point in this group, and consequently
less than tp(g; ---gi—1--- g : n— 1) blocks remaining. By taking the union of these
block sets over each point in G; we will have g;tp(g1---¢; — 1---gx : n — 1) blocks
and each one will have been repeated exactly g; — 1 times. Since the bound must be

an integer the result follows. O

This is similar to bounds derived for other packing incidence structures, see [28].

This bound can be iterated to yield

tp(k,g:n)g{ J { J { J tp(k,g—l:l)J---JJ. (4.16)

g—1lg—-1 |g—-1

Transversal packings are in fact ordinary packings of a vk set with k£ sets, so we

get:

Theorem 4.9. If g > k then

tp(k, g :n) < D(kg,k,2) — k(D(g, k,2)) (4.17)
and if k > g then
tp(k,g:n) < 4.1

where D(v, k,t) denotes the standard packing number for a v-set by k-subsets where

every t-set appears at most once [28].

96



Proof. The first bound follows from the fact that transversal packing with a £ packing
of the groups is still a packing. The second arises from putting a g packing on each
block of the transversal packing and then adding the set of groups to yield a standard
packing. 0

Lastly if we remove all the points from one block we get
tp(k,g:n) <tplk,g—1:n—-1)+k(g—1)+1 (4.19)

but this bound is probably very bad and almost certainly performs worse than In-

equality 4.16.

4.3 Disjoint Block Bound

If we have a point in a TP(k, g : m) with replication number n > m, then by deleting
the group that this point is on we have a TP(k — 1,9 : n). Therefore, bounds on
the sizes of transversal packings can be translated into bounds on the admissible
replication numbers for transversal packings with block size one larger. To this end,
we calculate the maximum number of groups possible in a transversal packing with

n disjoint blocks and at least g + 1 blocks.

4.3.1 The Maximum k£ Admitting n Disjoint Blocks

Theorem 4.10.

kp(g+1,9:n) = — . (4.20)

Proof. We will build the desired transversal packing, row by row, considering it as a

packing array. The first n rows of the packing array are the row of all 0’s, the row
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of all 1’s and so on up to the row of all (n — 1)’s. Since, within each column, we can
permute the symbols, when we add each new row, i, (except the last) the symbols in
this row can be all the symbols that we have used in previous rows and at most one

new symbol.

Define [; , to be the largest number of previously used symbols that can be used
in building row ¢ if we are building a transversal packing with a set of n disjoint
blocks. Clearly l,41, = n. After the n disjoint blocks have been laid down, we can
add each symbol in them at most one time in each new row. These numbers satisfy
the recursion: /41, = l;, + ¢. For, if we think of all the old symbols added in the
left-most part of each new row and the new symbols (symbol i, in row i + 1) only in
the right-most section of the new row, then we see that at most the first /; , symbols
of row ¢ will be old symbols and the remaining £ — [; , will be the new symbol 7 — 1.
Thus the right-hand side of the packing array under construction will look like a large
set of disjoint blocks and the only intersections will be on the left-hand side. When
building the new row 7 + 1, we use new symbol i; we are able to add at most 7 of the
old symbols to this row underneath the right hand part. This portion, along with the
first [; , positions in this new row, is the largest possible set of positions in which we

could conceivably place old symbols.

and l;, = @ — @ If we are going

i(i—1) n(n-=1)

Iterating, we see that /;, = = o)

to be able to add a g + 1°! row, we will not be able to use any more new symbols,
and so we must have a set of at most g right-most columns, restricted to which, the

array so far constructed, consists of disjoint rows. So k — 1, , < g, or

To see that there is an array achieving this bound, we use the following algorithm
for adding the old symbols to each new row. In row i, the first /,_;, columns will
have the old symbol, i — 2 (new in the last row, i — 1). The next i — 1 columns will

9(g+1) _ n(n—1)

have each of the old symbols, 0,1,...,7—2, once. The remaining =5= — =5— —1; ,
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columns of this row will have the new symbol, ¢ — 1. The last, g + 1% row, follows
the same pattern but will have no columns remaining for new symbols (which is good
seeing as there aren’t any). Each row intersects every other in at most one point and

thus satisfies the packing conditions. O

Corollary 4.11. In a TP(k, g : n) with more than g blocks we have

k < g(g;— 1) _ TL(TL2— 1). (4'22)

Equation 1.36 is equivalent to this result for n = 1.

4.3.2 Bounds on b

Theorem 4.12. If, in a TP(k,g : n) with more than g blocks, we define rmey =

maXgcy Ty, then

]{I -1 S g(g;— 1) _ Tma:c(n;a:c - 1) ) (423)

Proof. Remove any group which has a point achieving 7,,4;.

This yields a TP(k — 1,9 : max(n, rmqz)) O
Observing that if a TP(k, g : n) has more than mg blocks, it must have a point

with replication number at least m + 1, we have

Corollary 4.13. For i positive

1 -1
kp(mg+1i,g9:n) < g(g;— ) — m(m2 ) +1, (4.24)
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or alternatively, noting that tp(k, g : n) is non-increasing in k, we have

9(g+1) m(m—1)
tp( 2 2

- +2,9: n) < mg. (4.25)

One notable consequence of this is the fact that

tp(g+2,9:n) <g*—g. (4.26)

4.4 Transversal Packings with Large Sets of
Disjoint Blocks

When the transversal packing has a set of g disjoint blocks, Theorem 4.10 states
that if ¥ > ¢g + 1 then tp(k,g : g) = g. If g is a prime power, then for k£ < g,
tp(k,g : g) = g*. If g is not a prime power, then the construction method from

Theorem 4.10 clearly allows at least 2g blocks to be constructed.

When there is a set of g—1 disjoint blocks, the transversal packing is considerably
constrained. In particular, remembering the construction technique of adding new
rows to a packing array from the proof of Theorem 4.10, we see that every row besides
the set of g — 1 disjoint rows can have each of the first g — 1 symbols, 0,1,...,9 — 2,
occurring at most once. The symbol g — 1 must appear at least £ — g + 1 times in
each row. These rows can never intersect in more than one coordinate position. This
means that the last b — g + 1 rows of the packing array with the first ¢ — 1 symbols
replaced by 0’s and the last symbol, g — 1, replaced by 1, are the incidence vectors
of a standard packing on k points with block size at most £ — g + 1. This gives us a
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bound
tp(k,g,9—1)<g—14+D(k,k—g+1,2). (4.27)

This bound cannot be achieved in general because we have only forbidden the rows
from intersecting more than once on the last symbol. Replacing the 0’s from the set
of the first g — 1 symbols and maintaining the packing conditions cannot always be
done. The simplest example is PA(4,3,2). The bound gives us tp(4, 3,2) < 8, but
we can only replace the 0’s in the incidence matrix of the affine plane on four points
for the rows corresponding to four of the blocks, not all six. In fact, this does give

the true value tp(4,3,2) = 6.

However, when /g — 1 is a prime power, the packing used is a projective plane

and the replacement can be done.

Theorem 4.14. If p is a prime power then

tp(p® +p+1,p*+1,p°) =2p> +p+ 1. (4.28)

Proof. The first p? rows of the packing array are the p? constant rows with symbols
0,1,...,p?> — 1. The remaining p? + p + 1 rows have the symbol p? wherever a 1
appears in the incidence matrix of the projective plane of order p. Now each row is
empty in p? cells and each column empty in the same number. Form the bipartite
graph with the rows and columns as the bipartitions and an edge wherever a cell is
empty. The maximum degree is p? and so we can edge colour this graph with colours
0,1,...,p> — 1. We put symbol k into row g — 1 + 4 and column j, when the edge

between vertices ¢ and j in the two partitions of the graph is coloured k. O

We end by noting a few small results. By Theorem 4.10, the maximum k such

that a transversal packing can have more than g blocks is 2¢g — 1.
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Theorem 4.15.

and for g > 4, tp(29 — 2,9,9—1) = g+ 1. (4.30)

Proof. Under the conditions stated and following the proof of Theorem 4.10, it is easy
to see that only one additional block can be added. O

As mentioned above, tp(4, 3,2) = 6, and by the same method of adding rows it is
easy to check that tp(6,4,3) = 7.

4.5 Comparison of Upper Bounds

We have derived a number of upper bounds on the size of transversal packings. How
do these bounds compare? We have tested all of these bounds except the ones that
depend on D(v, k,2). In these tests, the dominant (smallest) bounds are the Plotkin
and the disjoint block bounds. We calculated the bounds for all g up to seven and the
full range of n, and all £ where transversal packings with more than g blocks could

exist.

The sphere packing bounds only yield numbers below ¢? for relatively large k by
which point the Plotkin bound or the disjoint block bounds are already smaller. The
residual bound must be iterated k£ times and therefore, this bound is probably more
useful for smaller k, although we have not found instances yet where this bound is
better than any others. Even for small &, the iterations quickly yield values bigger

than g¢2.

The Plotkin bounds are overwhelmingly the best when & or n is small. However,
the Plotkin bounds do have some weaknesses. In particular, they are still above g+ 1
after the point at which this value is no longer attainable. The Plotkin bounds also

do not work well for transversal packings with large n.
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Since the packing numbers, D(v, k, 2), have only been investigated for small k£ and
the transversal packings bound that depend on it require large k£, we cannot currently
calculate the values of these bounds. We do not know whether these bounds will be

useful when more is discovered about D(v, k, 2).
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Chapter 5

Transversal Packings:

Constructions and Lower Bounds

Because the size of transversal packings is non-increasing as k increases, constructions
yield lower bounds instead of upper bounds as with transversal covers. Some of the
constructions used for transversal covers can be used to build transversal packings,
with packings as ingredients instead of covers. We review these methods and present
a direct construction using matchings in graphs. Finally, we present a set of recursive

constructions based on this matching problem.

5.1 Analogues from Transversal Cover
Constructions

Both the incomplete transversal design method and the generalizations of Wilson’s

construction construct transversal packings. The ingredient designs must be either

designs or packings instead of covers or designs, but the constructions translate di-

rectly.
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If, instead of filling the hole of an incomplete transversal design with a transversal

cover, we fill it with a transversal packing, we get

Theorem 5.1. If there exists an ITD(k, g;b1,ba, ..., bs) then

S
tp(k,g:1) > L (g ij +tp(k, b, : zj)> )
ij<bj j=1

Proof. Fill the holes. The holes are disjoint and thus the sets of disjoint blocks from
the TP(k,b; : i;) will also be disjoint. O

The ITD(4,6;2) and ITD(6,10;2) yield tp(4,6 : 5) > 34 and tp(6,10) > 98. If a
transversal packing has g> — 1 blocks then there will be exactly one point from each
group which has replication number g — 1. Simple counting shows that the pairs of
points not covered are exactly these pairs. Adding the block containing these £ points
will complete the packing to a transversal design. This shows that tp(4,6 : 5) = 34
and tp(6,10) = 98 or 100 but cannot be 99.

The same restrictions (Lemma 2.2) on the admissible k£ apply to this packing
construction. Also similar to the case of covers, when (k — 1)h < n, there at least
two disjoint blocks, both disjoint from the hole in the I7T'D [13]. In this case we get

tolk, g :i+2)> 2 h2 +tp(k. h:i)).
plk g et )_{n\afl%l%,g;h)}(g *tp(k; b :5))

All the generalizations of Wilson’s construction also apply to transversal packings.
Besides noting that the ingredient structures must be designs or packings, we will just

review the results.

Theorem 5.2. Let C be a TP(k + l,t) with groups G1,Gs,...,Gg, Hi,Hy, ..., H.
Let § be any subset of Hy U Hy U --- U H; of cardinality u, m be any nonnegative
integer, and h; = |H; N'S|. For any block A of C, let uy = |SN A|. Then
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!
p(k, mt + u) Z tp(k,m+us:us) —ua) —l—th(k,hi).
A i=1

Theorem 5.3. In analogy to Theorem 2.5 we get

tp(k,g:mn) > max ((tp(k,i - 5) tp(k, Lg/il = [n/51)),

2<z<LgJ

max(1, % 3] )<j<min(n,3)

and in analogy to Inequality 2.4 we get

tp(k,mt +u:n) > max tp(k,u:l)+ t_Tutp(k +1,t:9)tp(k,m: j)

ij+l>n
1<I<u

1<t

1<j<m

+%tp(k + 1L, t:0)(tp(k,m+1:7+1)—1).

(5.1)

(5.2)

O

Theorem 5.4. Given a (v,{2,3,...,9—1},1)-design, and for each point z, a chosen

block, By, with x € By, we can construct a TP(k, g). For each block, B, of the design,

we define ug to be the number of points on this block not represented by it. Then

p(k,g) > th(k, |B| : ug) — up.
B

106

(5.3)

O



5.2 Direct Construction for b < 2g

5.2.1 Formulation of Transversal Packings as a Graph

Problem

If b < 2¢, consideration of the Plotkin bound from the last chapter implies that this
transversal packing will achieve its maximum when the only two replication numbers
are two and one. In this case, there will be b — g points in each group with replication
number two, and 2¢g —b points with replication number one. The dual of this structure
is a packing of pairwise edge disjoint (b — g)-matchings into a K, — K, (which can
also be viewed as K, ,, V I,), a kind of restricted resolvable design if the packing is a

decomposition.

With this in mind, we ask the question: Given ¢ < b < 2gand 1 < n < g,
what is the largest number, k, of disjoint (b — ¢g)-matchings that can be packed into
a Ky — K,,? When we dualize this packing we will have tp(k,g : n) > b. We have a

number of results about these packings.

5.2.2 Results on the Solution of the Graph Problem

From previous results about the decompositions of graphs into cycles [12] we have

the following result.

Definition 5.1. We call parameters b, n, g, cycle admissible if the following conditions

hold:

b=n=1 (mod2)
(b—n)(b+n—1) =0 (mod 4(b— g))

(29 —b)(b—1) > n(n—1).

(b—n)(b+n—1)

=) (b — g)-matchings

Theorem 5.5. We can fully decompose K, — K,, into
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when 2 < b—g < 7 for all cycle admissible b and n and for any other cycle admissible

parameter sets where v =n (mod 4(b — g)). O

Theorem 5.6. Ifb(2g —b— 1) > n(n — 1), then we can pack

{(b — Z)(ébj;; — DJ (5.4)

(b — g)-matchings into Ky — K, which is the mazimum possible.

Proof. Arbitrarily remove

(b—m)(b+n—1) {(b—n)(bntn—l)

: = 6-0) 55)

edges from the graph. If (29 — b — 1) > n(n — 1), then the maximum degree in the
graph is b — 1, so there will be a

b—n)(b -1
2(b - g)

edge colouring since this number is at least b. An augmenting path algorithm makes

this an equitable colouring. The colour classes are now the desired set of disjoint

(b — g)-matchings. O

Since b < 2¢g and using the existence of the 1-factorization of Ky, and near 1-

factorization of Ko,,11, we get the following corollary:

b(b—1)
2(b—g)

achievable. O

Corollary 5.7. Forn = 1 the mazimum number of (b— g)-matchings, 15 always

Abdel-Ghaffar has also shown this corollary [1]. This value meets the generalized
Plotkin bound and thus we know the exact sizes of transversal packings for these
parameters. Abdel-Ghaffar and Abbadi [2] asked and answered the question: when

does a transversal packing have more than g blocks? We have extended this definite
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result to include sets of disjoint blocks in Theorem 4.10. Theorem 5.6, and the gen-
eralized Plotkin bound, Theorem 4.5, give us the necessary and sufficient conditions

for a transversal packing to have more than g 4+ 1 blocks:

Corollary 5.8.
@P+39g+2—-n’>+n
1 :

kp(g+2,9:n) =

Theorem 5.9. We can always pack at least b —n (b — g)-matchings into Ky — K,,.

Proof. Cyclically permute the b — n vertices on the left, while keeping the n vertices

on the right fixed.

When b — n is an odd prime and 2g — b — n > 0, we can pack in an additional

2—b+n—-1|b—n
. L)_QJ (5.8)

(b— g)-matchings by simply decomposing the b—n cycles remaining after the removal
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of the matchings given in the proof. The condition 2g — b — n > 0 guarantees that

the cycle is large enough to contain a (b — g)-matching.

5.3 A Recursive Construction

5.3.1 Presentation of the Method

If we start with two transversal packings with the same k, and b < 2¢ in each packing,

then we can use the graph theory translation to construct larger transversal packings.

Theorem 5.10. Suppose we have two graphs Ky, — K,,, and K,, — K,,, both with k
disjoint copies of (b; — g;)-matchings inside them. Suppose additionally that by > b,

and
ning

g1+9g2> b + b
1

(5.9)

biba—nin2

Then we can construct a packing of k + {bﬁbrgl_m

J (b1 + by — g1 — g2)-matchings

mnto Kb1+b2 — Kn1+n2.

Proof. Take the disjoint union of the two graphs and the union, in pairs of the existing
k matchings. We must pack the remaining bipartite Kj, 5, — K, n, into matchings
of the appropriate size. Since bipartite graphs can be A edge coloured, the condition

stipulated guarantees that we can do this to obtain the maximum. O

Theorem 5.11. Suppose we have two graphs Ky, — K,, and K, — K,,,, both with k
disjoint copies of (b; — g;)-matchings inside them. Suppose additionally that by > by

and
91+ g2 2 b (5.10)
Then we can construct a packing of k + {%J (b1 + by — g1 — g2)-matchings

mnto Kb1_|_b2 - Kmaxni-
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Proof. The proof is the same except that we no longer remove the edges connecting

the two holes from the bipartite graph. O

In the situation of Theorem 5.10, we can pack in at least as many matchings as
the maximum degree over all regular subgraphs which are large enough to contain
the matching. If by — ny is larger than the desired matching, we can clearly pack
in b; additional matchings. In fact, because the graphs are nearly complete bipartite

graphs, we can probably do much better in general.

These theorems translate into the transversal packing numbers in the following

way. In all cases, g; < b; < 2g; and n; < g;.

Corollary 5.12. Under the hypotheses of Theorem 5.10 we have

biby —
tp <k+ { 2~ Tl J , 01+ g2,m +n2> > tp(k, g1, 1) + tp(k, g2, n2). (5.11)
bi +bs— g1 — 92

O
Corollary 5.13. Under the hypotheses of Theorem 5.11 we have
tp (k + L b1bz J , 91 + go, max nz) > tp(k, g1,m1) + tp(k, g2, m2). (5.12)
bi+b2—g1— g2
O
When g; = g5 the hypotheses from Theorem 5.11 are always met, and we get
Corollary 5.14.
tp (k + {&J ,29,maxni> > tp(k, g,n1) + tp(k, g, no). (5.13)
b1+ by — 2g
O

If a transversal packing in the range of parameters, b < 2g, has any replication

numbers greater than two, then in the dual this corresponds to some of the resolution
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classes having complete graphs larger than an edge as components. But this will not

affect the constructions given above as long as the hypotheses are met.

5.3.2 Examples

An example of Theorem 5.11 is given here. We start with two copies of a TP(4,3 : 2),
vertically concatenated.

B Ot O Wk W H NN O
Tt W O R W NN O N == O
[ B N S N R R e B O R )
W Ut Ot W O N H N RO

We find the maximum number of 6-matchings (6 is the new b — g) in the resulting
K and fill in the array to the right. The edges in the matching correspond to two
rows (which are the points in the graph) sharing the same symbol in a column.

0000 O0OOOOOO
1111 111111
0122 222222
2201 333333
2012 4444414
1220 555555
3333 054321
4 444 105432
3455 210543
5534 3210054
5345 432105
4553 543210

Thus we get that ¢p(10,6 : 2) > 12 which is the best possible by the Plotkin
bound.
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To perform this construction with the same starting ingredients, but to achieve
a set of four disjoint blocks, we do the same concatenation. However, we must pack
6-matchings into K¢g — Ky2. In this case, the conditions in Theorem 5.10 are not
met but, as always, a maximal packing must exist and we know that the minimum

degree is achievable. So we can extend the array by four, not five columns:

L L B L B L R R o B e
T W Utk R W NN O
Tt i W Ut xR W N RO N O
w ot ks Ot WO N H N O
= O Ot W N Ot W N = O
N H O Otk W Otk W N~ O
W N H O Ut Ot W NN O
O W A N OOt R W NN = O

and we have found #p(8,6 : 4) > 12. This is the largest TP(8,6 : 4) known. The
Plotkin bound for these parameters is 18 which is probably too large.

5.4 Utility of the Constructions

We used Mathematica to program a recursive construction of the transversal packing
lower bounds using many of these methods. We only considered 3 < g < 7. The

constructions that were programmed were

The generalization of MacNeish’s theorem (Theorem 5.1)

The probabilistic implementation of the generalization of Wilson’s construction

(Inequality 5.2)
e The PBD construction (Theorem 5.4)

e The existence of an appropriate sets of MOLS
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e The existence of transversal packings reaching equality in the Plotkin bound

(Corollary 4.2)
e The removal of one group to obtain larger sets of disjoint blocks
e The construction obtained from Theorem 5.6
e The existence facts discussed in Section 4.4

e The knowledge about covers with b = g + 1,9 + 2, from Corollary 5.8 and
Theorem 4.10

e The monotonic behavior in k, g and n
e Theorem 5.10
e Theorem 5.11

e Theorem 5.9.

Except for the optimum existence results (Corollary 4.2, Corollary 5.8, Theo-
rem 4.10, and the existence of MOLS), the relative utility of these constructions is
not obvious. Appendix A contains tables of the constructions used to obtain the
current lower bounds, and Corollary 5.8 and Theorem 4.10 obviously dominate the
tables; but these existence results are for a very restricted size of transversal pack-
ings. The other constructions are more interesting. A brief scan of the tables shows
that the constructions from Theorem 5.6 and Theorem 5.9 produce a large number of
the best currently known lower bounds. The constructions most useful for construct-
ing transversal packings with more than 2g blocks seem to be the Plotkin bound,
Wilson’s construction or the PBD construction (when g is not a prime power) or

packings obtained from removing blocks or groups.

Theorem 5.10 and Theorem 5.11 are applicable only in the range b6 < 2g. For
values outside this range, the duals of the bi-regular transversal packings (discussed

in Subsection 4.1.1) are expected to dramatically improve these tables. There may
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also be analogues to Theorem 5.10 and Theorem 5.11 for larger block sets. Abdel-
Ghaffar has previously solved the transversal packing problem for g = 34 and n = 1.

He found tp(6,4:1) =9 [1].
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Chapter 6

Conclusion

6.1 Summary of Results

For transversal covers, we have developed a number of constructions, which yield
upper bounds on the sizes of these objects. We have filled the holes of incomplete
transversal designs to obtain transversal covers for non prime power group sizes. In
some cases, these covers are clearly optimal, or close to optimal. We have improved
and extended a construction of Poljak and R6dl (Inequality 1.6) taking into account
sets of disjoint blocks. We have also generalized and discussed the application of Wil-
son’s construction to transversal covers, yielding a number of useful constructions. In
addition, we have extended the blocks of group divisible designs to obtain transversal
covers extending them by additional groups to improve this construction. The block
size recursive method is the best in practice, and has the best potential of constructing

covers that are close to the known asymptotic bounds.

Lower bounds have also been calculated, of which three are applicable in general.
Although Inequality 3.4 is never as good as Inequality 3.3, it is more practical because
it is in a directly calculable form and thus easier to manipulate algebraically. The

bound from Corollary 3.9 is more useful for small k, but also gives us good bounds
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for transversal covers with constant replication number. The set packing argument
is more generally applicable when we have additional information about the range
of replication numbers. In addition to these generally applicable bounds, we have
investigated lower bounds when the number of blocks is not much larger than g?. We
proved that a number of known transversal covers are, in fact, optimal, and made

Conjecture 3.20.

te(g+2,9:n) > g +g—1. (3.38)

For transversal packings, upper and lower bounds were also presented, the latter
coming from constructions. The two dominant upper bounds were the generalization
of the Plotkin bound (Theorem 4.5) and the bound derived from the consideration of
sets of disjoint blocks (Theorem 4.10). Both the incomplete transversal design con-
struction and the generalizations of Wilson’s construction can be applied to transver-
sal packings. Using the dual of the transversal packing, we formulated this problem
as a problem of matchings in certain families of graphs. For a restricted range of
parameters, we solved this problem and obtained two recursive constructions from

this viewpoint.

Much research was conducted on transversal covers prior to this thesis. We con-
tend that the two most important contributions that distinguish this work from pre-
vious investigations are the application of combinatorial block design constructions
and structures to these problems, and the consideration of sets of disjoint blocks. Al-
though the constructions obtained from design theory may not meet the asymptotic
limit, they allow for the construction of transversal covers with small &, one of the
gaps in the existing literature. However the success of viewing both these structures
as designs does not detract from the power of the many viewpoints used to approach
transversal covers and packings. They are best considered from as many viewpoints

as possible. Each approach has its particular strength.

As this thesis demonstrates, the consideration of sets of disjoint blocks is perti-
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nent. First, this consideration permits the constructions to be optimized by reducing
excess point coverage for transversal covers and guarantees the maintenance of the
packing conditions for transversal packings. In either case, removing a group from
a transversal structure can produce a smaller structure with a large set of disjoint
blocks. Restrictions on the size of structures with large n, can translate to restrictions
on the size of the larger structure, producing bounds or non-existence results. For
transversal packings, consideration of sets of disjoint blocks produced bounds in and
of itself, showed the equivalence of some transversal packings to projective planes,

and restricted the replication numbers that can appear in a packing.

6.2 Further Work and Conjectures

A great deal of possible future work remains to be done on both these structures. The
utility of transversal covers motivates further research on them. The particulars of
the applications also stimulate the investigation into a number of related structures.
Transversal packings prompt a number of inquiries which are very intriguing despite

lack of immediate application.

When generalizing Wilson’s constructions, we were only able to fully state a sim-
ple recursion on the covering numbers. Using this construction in more generality,
not just for [ = 1 would greatly enhance our power of construction. This may require
understanding more about the internal structure of transversal coverings or proba-
bilistic argument more complex than the one discussed in Subsection 2.3.3. From
Wilson’s construction, we developed a PBD construction. We would like to compre-
hend why certain PBDs are more useful in this construction and better understand

which systems of representation are optimal.

The lower bounds on transversal covers could be improved by using more than
two of the partitions in the set systems bound. We have briefly examined this and

recognize that this problem requires more sophistication than we have at the moment.
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We would need to generalize the argument made about the types of permutations to
include at least three sets instead of two. However, even the enumeration of the ways

of ordering possibilities of the three sets in the permutation was difficult.

We would also like to prove both the conjectures previously stated:

Conjecture 2.18. The worst size difference between consecutive optimal covers,

max (te(k+1,9:n) —tc(k,g:n)) (2.11)

is linear in ¢ and, in fact, may be as low as g — 1.

Conjecture 3.20.
te(g+2,9:n)>g*+g—1. (3.38)

One consequence of Conjecture 3.20 is the following: when g is a prime power,
there is a jump of at least g — 1 between the size of two consecutive transversal covers.
This would also imply a similar behavior to that known for transversal packings:
when g is a prime power, tp(g + 2,9 : 1) < ¢g?> — g. Conjecture 3.20 is related to
Conjecture 2.18, because we believe that the difference in size between consecutive
transversal covers is at most linear in ¢ and is probably less than g — 1, the value
achieved in Conjecture 2.18. The methods for attacking Conjecture 3.20 may be

similar to those used to prove the same result for several small g.

The study of transversal packings led to two very interesting combinatorial prob-
lems. The first is the dual structure of a transversal packing which meets the gen-
eralized Plotkin bound, Theorem 4.5. This is a resolvable PBD on b points with
a hole of size n where each resolution class has the same number, g, of blocks in it
and the structure has k resolution classes: a subclass of restricted resolvable designs.
Investigation by the author and Peter Danziger is underway for the case where n =1

and the block sizes are restricted to £ and k& + 1.
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The second noteworthy problem that has arisen from the study of transversal
packings is the question of the maximum number of edge disjoint m-matchings that
can be packed into a graph G? If ¢ < b < 2¢g,n < g, m = b—g, and the graph G is K,
with the edges of a K, removed, then the dual is a transversal packing. Techniques
similar to cycle decomposition and packing of graphs would apply here. See [12] for
more details of cycle systems. From observing the tables of upper and lower bounds
on transversal packings, a proof that these coincide for £ > 2g — 1, or even for b < 2g,
should be within our grasp. Lastly, for transversal packings, we would like to extend

the graph constructions beyond the restriction that b < 2g.

When developing upper bounds for transversal packings, we mentioned the equiv-
alent object but with variable group sizes. The analogue of these generalizations for
transversal covers would be extremely useful from the point of view of applications.
Either the software testing or the inconsistent data compression problems often re-
quire multiple alphabet sizes. Most instances of these problems are bound to have

this property.

Another generalization that is motivated by applications is the following: In test-
ing software we may know, a prior:i, that two inputs do not interact. In the data
compression problem, we may pick the observation sets to preclude certain overlaps.
This is equivalent to dropping the requirement that ordered pairs of points from two
groups be covered. We can use a graph to describe which pairs of groups need be

covered.

Given a graph, GG, describing which groups must interact, what is the minimal
number of blocks in the resulting generalization of transversal covers? This number
falls between tc(w(G), ¢ : 1) and te(x(G), g : 1), so the question is already answered for
cliques, interval graphs, bipartite graphs, complements of connected bipartite graphs,

perfect graphs and any other graphs where w(G) = x(G).

For both transversal covers and packings we would like to develop the automated

systems described in Subsection 1.3.1 and Subsection 2.5.1. As mentioned before, the
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motivating example for this implementation would be Colbourn and Dinitz’s recursive
algorithm for generating complete and incomplete transversal designs. Their article
on designing this program [13] cogently discusses the difficulties in such a project:
including the automation of which recursions to use when given a new ingredient
design and the data structures needed to save the results economically. However,
as mentioned before, having such a system would immensely benefit people needing

these objects for applications.
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Appendix A

Tables of Upper and Lower

Bounds.

We include here tables showing the values for the upper bounds on transversal covers
and the upper and lower bounds on transversal packings. To see data on the lower
bounds for transversal covers, see the graphs in Appendix B. These general lower
bounds were not displayed in table form because they are uninformative for the range
of the tables. In the transversal covers tables, we have calculated the upper bounds
for 3 < g <7 and k£ < 50. In the tables for transversal packings, we have calculated
upper and lower bounds for 3 < g < 7 and the entire range of k£ for which packings
with more than g blocks exist. In all cases we supply corresponding tables of the
methods used to obtain these values and the values that are known to be optimal are

emphasized.
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4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

9 11 12 12 13 13 15 15 15 15 15 15 15 18 18 18 18 18 18 18
10 12 12 13 14 14 15 15 15 16 16 16 16 18 18 18 18 18 19 19
11 12 12 14 14 14 15 15 15 17 17 17 17 18 18 18 18 18 19 19

4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

=N~

16 16 19 21 23 24 25 28 28 28 28 28 28 28 28 28 28 31 31 31
16 17 20 21 23 24 25 28 28 28 28 28 28 28 28 28 28 31 31 31
16 18 20 22 23 24 25 28 28 28 28 28 28 28 28 28 28 31 31 31
16 19 20 22 23 24 25 28 28 28 28 28 28 28 28 28 28 31 31 31

4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Gtk N~

25 25 25 29 34 37 42 45 45 45 45 45 45 45 45 45 45 45 45 45
25 25 26 30 34 37 42 45 45 45 45 45 45 45 45 45 45 45 45 45
25 25 27 31 34 37 43 45 45 45 45 45 45 45 45 45 45 45 45 45
25 25 28 31 35 38 44 45 45 45 45 45 45 45 45 45 45 45 45 45
25 25 29 31 35 39 45 45 45 45 45 45 45 45 45 45 45 45 45 45

4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

€cl

OOl N~

37 46 46 48 48 48 62 67 67 69 69 69 69 76 76 76 76 76 76 76
37 46 46 48 48 48 62 67 67 69 69 69 69 76 76 76 76 76 76 76
37 46 47 48 48 48 62 67 67 69 69 69 69 76 76 76 76 T7 77 TV
37 46 48 48 48 48 62 67 67 69 69 69 69 76 76 76 76 78 T8 T8
37 46 48 48 48 48 62 67 67 69 69 69 69 76 76 76 76 78 T8 T8
38 46 48 48 48 48 62 68 68 70 70 70 70 76 76 76 76 78 78 78

4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

TN oo oT oot olT b b T o w w|T

~ O O W N~

49 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
50 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
51 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
52 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
93 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
94 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91
95 63 63 91 91 91 91 91 91 91 91 91 91 91 91 91

[ SN NN SN S S N
OOV
LSNP N S N N N
LUQOOVOOO

Table A.1: Upper Bounds for Transversal Covers for 4 < k < 27.
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Table A.2: Upper Bounds for Transversal Covers for 28 < k£ < 50.



Abbreviation | Construction Method

Transversal designs exist

Generalization of MacNeish’s theorem, Theorem 2.5
te(k,g:n) <te(k,g+1:n)

Wilson’s construction, Inequality 2.4

PBD construction, Theorem 2.8

Simulated annealing

Group divisible design construction, Subsection 2.4.3
Circulant method, Theorem 3.19

Incomplete transversal design method, Theorem 2.1
Found by hand

Block size recursive method, Inequality 2.2
te(k,g:n) <te(k+1,9:n)

te(k,g:n) <teclk,g:n+1)

te(k,g:n) <tclk,g:m)+n—mform<n

UE‘_‘W‘“““"U‘O’Q o o0 oW

Table A.3: Abbreviation List of Methods Constructing Transversal Covers.
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9¢l

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
tc(k,3:1)Ja h flm f fA f efklmklm klm jI T 1 g klm klm kimklm kim kI kI k klm klm km kI
tcgk,3 :2)nflmn fm fn flmnfmneflm Im m In In In n klm klm Im Im m klmnklmnklmn Im Im m eklmn
te(k,3:3)n 1l f fin i f efkl kI k klnklnkln n kI kI kI kI k kI kI kI kI kI k ekl

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
tc(k,4:1))Ja a h fm fm fm fm klm klm klmklmklmklm klm klm klm km klm klm klm klm k kI kIl kil
te(k,4:2)la n fomn f fm fm fm klm klm klmklmklmklm Im Im Im m Im Im Im m kn klmnklmn klmn
te(k,4:3))a fn fm fon fm fm fm klm klm klmklmklmklm Im Im Im m Im Im Im m klmn Im Im m
te(k,4:4))a fm £ £ £ £ f kI kI kI kI kI kI kI kI kI k kI kl kI k kI kI kI k

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
tc(k,5:1))]a a a h fm fm m klm klm klmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
tc(k,5:2))Ja a n fn fm fm e klm klm kimklmklmklm klm klm klmklm klm klm klm klm klm Im Im Im
te(k,5:3)la a n fmn f f n  klm klm klmklmklmklm klm klm klmklm klm klm klm klm klm Im Im Im
tc(k,5:4))]a a n fm fmn n n kim klm kimklmklmklm klm klm klmklm klm klm klm klm klm Im Im Im
tc(k,5:5))a a =n f f n kln kI kI kI kI kI kI kI kI kI kI kI kI kI kI kI kI kI kil

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
tcgk,ﬁ :1l)mdim m clmclm m cm klm km kimklmklmkm klm klm Im Im Im Im Im Im Im Im Im Im
te(k,6 : 2)mdelm e clmclm m cm klm km klmklmklm km eklmeklmelmelm el el el el e el el el
tc(k,6:3)m m n clmclm m cm klm km klmklmklmkm Im Im Im m In Im Im Inm In In In In
tc(k,6:4)m m clmnclm clm m cm klm km klmklmklmkm Im Im Im m kilmnklmnklmnklmnklmnklmnklmn In
tc(k,6:5)|i em clm clmclm m cm kI k kIl kIl kIl k elm elm elm em klm klm klm klm klm klm km kln
te(k,6:6)n e ¢l ¢l ¢ g ¢ kin kn klnklnkln kn el el e e kI kI kI kI kI kI k kln

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
te(k,7:1)Ja a a a a clm m klm klm kimklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
te(k,7:2)|la a a a n clm m klm klm klmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
te(k,7:3)la a a a n clm m eklmeklmklmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
tc(k,7:4)|la a a a n clm m eklmeklmklmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
te(k,7:5)la a a a n clm m eklmeklmklmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
tcgk,'? :6)la a a a n clm m klm klm klmklmklmklm klm klm klmklm klm klm klm klm klm klm klm klm
te(k,7:7))a a a a mn c g ekl ekl kI kI kI kI kI kI kI kI kI kI kI kI kI kI kI kI

Table A.4: Methods Used to Obtain Values for Upper Bounds for Transversal Covers for 4 < k < 28.



L2l

k 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
te(k,3:1)] kl kl kl kl kl kl kl k  klm klm klm klm klm klm klm klm klm klm klm km ki kl
tc(k, 3 : 2)leklmneklmn eklmneklmneklmneklmneklmnklmn Im Im Im Im Im Im Im Im Im Im Im m klmn klmn
te(k,3:3)] ekl ekl ekl ekl ekl ekl ekl kI kI kI kI kI kI kI kI kI kI kI kl k kl kl

k 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
tcgk, 4:1) kl k kl kl kl kl k kI kI kI kI k kI kI kI kI k kl kI kI kI k
tc(k,4:2)] kiIn  kn klmn klmn kln kln kn klmn kln kln kln kn kln kln kln kln kn kln kln kln kln kn
tc(k,4:3) klIn  kn klm km klmn klmn klmn km klmnklmnklmn kmn klmnklmn kln kln kn klmn klmn klmn kln kn
tc(k,4:4)] kln  kln kI k kl kl kl k kI kI kI k kI k kin kln kin kil kl k kin kln

k 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
tc(k,5:1) klm km klm klm klm klm klm k kI kI kI kI kI k kI kI kI kil kI ki k kl
te(k,5:2)| Im m Im Im Im Im m kn kln kln kln kln kln kn kin kln kiln kln kln kln kn klmn
te(k,5 : 3)| Ilm m Im Im Im Im m kn kln kln kln kln kln kn klmnklmnklmn klmn klmn klmn kmn kI
te(k,5:4)| lm m Im Im Im Im m kn klmnklmnklmnklmn kln kn klm klm klm klm klm klm km klmn
tc(k,5:5)| kl k kl kl kl kl k kn kI kI kI k kln kn kI kI kI kil kl kl k kl

k 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
tcgk,ﬁ 1)) Im m klm klm klm klm klm km klm klm klm klm klm klm klm klm klm klm klm klm klm klm
te(k,6 :2)| el e klm klm klm klm klm km klm klm klm klm klm klm klm klm klm kil kl kl kl kl
tc(k,6:3) In n klm klm klm klm klm km klm klm klm klm klm klm klm klm km kin kln kin kln kln
tc(k,6 :4) In n klm klm klm klm klm km klm klm klm klm klm klm klm klm km cklmncklmncklmncklmncklmn
tc(k,6:5) kln  kln kil kl kl kl kl k klm klm klm klm klm klm klm klm km cklm cklm cklm cklm cklm
tc(k,6:6)] kin kln kln kln kln kln kin kn kI kI kI kI kI kI kI kI k ckl «ckl «ckl ckl ckl

k 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
tc(k,7:1) kim klm klm klm klm klm kIm klm klm klm klm klm klm klm kIm klm klm klm klm klm kIm km
tcgk,7 :2) klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm m
te(k,7:3) klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm m
tc(k,7:4) klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm m
tc(k,7:5) kim klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm m
tcgk,7 :6) klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm klm m
te(k,7:7) kl kl kl kl kl kl kI kI kI kI kI kI kI kI kI kI kI kil kl kl kl k

Table A.5: Methods Used to Obtain Values for Upper Bounds for Transversal Covers for 29 < k < 50.
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Table A.6: Lower Bounds for Transversal Packings.



Abbreviation

Construction Method

H@’UOSB‘_‘W‘“"‘“U‘U‘Q o a0 oW

tp(k,g:n)>tplk,g—1:n)

Generalization of MacNeish’s theorem, Inequality 5.1
Transversal designs exist

Wilson’s construction, Inequality 5.2

The PBD construction, Theorem 5.4

First recursive graph construction, Theorem 5.10

Second recursive graph construction, Theorem 5.11

Incomplete transversal design method, Theorem 5.1

Projective plane method, Theorem 4.14

Existence of appropriate resolvable design as dual, Corollary 4.3
tp(k,g:n)>tp(k+1,9:n)

tp(k,g:n)>tp(k,g:n+1)

Removal of group to increase n, see proof of Theorem 4.12

At least g + 2 blocks possible, Corollary 5.8

Only g or g + 1 blocks possible, Theorem 4.10 and Corollary 5.8
Graph construction, Theorem 5.9

Graph construction, Theorem 5.6

Construction of Abdel-Ghaffar [1]

Table A.7: Abbreviation List of Methods Constructing Transversal Packings.

129



0€¢T

k 4 567

,3:1)| ¢j jpoo

,3:2)mp o o o0

,3:3)| o o 0o

k 4 5 6 7 891011
tp(k,4:1)|ckl ¢ klp r oo o o
tp(k,4:2)| cl mklp mp nqoo o o
tp(k,4:3){cl p nq o oo o o
tp(k,4:4)lcm o 0O 0 00O O O

k 4 5 6 7 8 9 10 11 12 13 14 15 16
tp(k,5:1)| ckl ckl c¢j j klp jpnlg o o o o o o
tp(k,5:2){ckl ¢ I Il mp q ng o o o o o o
tp(k,5:3){ckl ¢l m I q ng o o o o o o o
tp(k,5:4){ ckl ¢l mki o o o o o o o o0 o
tp(k,5:5){cmkcm o o o o o o 0o 0O O O O

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
tp(k,6:1 1 adekl  ael ael klp klp klpgjp q nklgngg o o o o o o o o
tp(k,6: 2 1 adekl ae ae  mklp mklp mp gq nmklg nmq o o o o o o o o o
tp(k,6:3 1 al aml amklp mklp p q gq ngq 0 O 0 0 O 0 0 0 O O
tp(k,6:4 1 al a amklp p mkq q nfq o 0 O 0 0 0O 0 0 0 O O
tp(k,6:5 h aeml admklp ap nmkq nq o o 0 0 0O 0 0 0 0 0 0 0 O
tp(k,6:6)|ademk ae p 0 o 0 o o 0 0 0O 0 0 0 0O 0O 0O 0 O

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
tp(k,7:1)| ckl ckl ckl ckl ¢ ] j klp klp jp klg q nklg ngklgng o o o o o o o o o
tp(k,7:2)| ckl ckl ckl ¢l 1 I mklp mklp mp q mlq nmklq nmkly nmq o o o o o o o o o o
tp(k,7:3)| ckl ckl ckl ¢l 1 m mklp p lg q gq nmklq ngq O O 0 0 0 0 0 0 0 0 O
tp(k,7:4)| ckl ckl ckl ¢ m mklp p mkq q gq nmkq nq 0 O O 0 0O 0 0 0 0 0 0 O
tp(k,7:5)| ckl ¢kl ¢kl ¢l mklp p mkq q nmkq nfq o 0 0 0 O 0 0O OOO 0 0 O
tp(k,7:6)| ckl ckl ckl ¢l p mkq ¢ 0 o 0 0 o 0 O 0O O 0 0 0 0 0 O 0 O
tp(k,7:7)|cmk cmk cmk ecm o o o 0 o 0 0 o 0 O 0O O 0 0 0 0 0 0 0 O

Table A.8: Methods Used to Obtain Values for Lower Bounds for Transversal Packings.
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Table A.9: Upper Bounds for Transversal Packings.



Abbreviation

Upper bound

— R = TR D A0 T

Only g or g + 1 blocks possible, Theorem 4.10 and Corollary 5.8
Disjoint block bound, Theorem 4.12

Hamming bound, Theorem 4.6

Plotkin bound, Theorem 4.4

Point residue bound, Theorem 4.8

Removing a block, Inequality 4.19

Plotkin bound, Theorem 4.5

tp(k,g:n) <tp(k—1,g:n)

tp(k,g:n) <tp(k,g:n—1)

The Elias bound, Theorem 4.7

Result found by hand

Incomplete transversal design method, Theorem 5.1

Table A.10: Abbreviations List of Methods for Transversal Packing Upper Bounds.
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Table A.11: Methods Used to Obtain Values for Upper Bounds for Transversal Packings.



Appendix B

Graphs for Lower Bounds of
Section 3.1
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Q < &= = <

CA(k,g:n)

D(v, k,t)
dim(QG)
DNA

EA
g-partition
g

G

g-ary alphabet
g-set

GDD
ITD

Glossary

x removed from a set.

Smallest integer > x.

Largest integer < .

The mean value of .

The join operator for two graphs.
Adenine.

The block set of an incidence structure.
The number of blocks in an incidence structure.
Cytosine.

Covering array.

Maximum degree in a graph.

Standard packing number.

Dimension of a graph, G.
Deoxyribonucleic acid.

Existential array.

A partition of a set into g pairwise disjoint pieces.

Group size.

Guanine.

A symbol set with g symbols.

A set with g elements.

Group divisible design.

Incomplete transversal design.

Size of block, B.

Complete graph on n vertices.

Complete bipartite graph.

Set of block sizes in an incidence structure.
Largest k, fixing b, in a transversal cover.

Largest k, fixing b, in a transversal packing.
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A

@y
HA,B

MDS

MOLS
PA(k,g:n)
PBD(v,K)
PBTC(k,g:n)
pbtc(k, g : n)

e

RGDD
R.RP(p, k)

~

v, IC, 1)-design

—~~ o~

v, IC, 1)-packing

Number of blocks on which both points x and y appear. 4
Number of points in the intersection of blocks, A and B. 4
Maximum distance separable code. 17
Mutually orthogonal latin squares.

Packing array.

Pairwise balanced design.

Point balanced transversal cover.

Smallest b, fixing k, in a point balanced transversal cover.

Number of blocks through .

W R .3 ~ N 00

Resolvable group divisible design.

©
=~

Restricted resolvable design.

V]
[\™]

Thymine.

Transversal cover.

The set of g such that there exists a TD(k, g).
Transversal design.

Transversal packing.

Smallest b, fixing k£ in a transversal cover.
Largest b, fixing k, of a transversal packing.
Pair covering incidence structure.

Pairwise balanced design.

Pair packing incidence structure.

Number of points in an incidence structure.

N A NN Ot W W e

The point set of an incidence structure.

—_
—_

Minimum clique cover of the complement, G.
Maximum clique in a graph, G. 120

Minimum vertex colouring of a graph, G. 120
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affine plane, 47, 48
1-rotational presentation, 48
applications, 1, 97, 98, 120, 123
transversal covers, ii, 18-24, 122
data compression, ii, 21-23, 122
error free communication, ii, 13-
14, 23-24
software testing, ii, 19-21, 122
transversal packings
optimal disk allocation, ii, 24-25
asymptotic, ii, 13, 15, 16, 26, 52, 54-58,
60, 62-64, 70, 87, 90, 118, 119

base block, 48, 49, 85, 87, 88
Beckett, Samuel, iv
block size recursive method, 28, 31-34,
43, 55-56, 59, 60, 63-64, 87, 90,
118, 127
bound
Elias, 17, 97, 134
Hamming, 17, 96, 97, 134
Plotkin, 17, 92-96, 104, 105, 109
111, 114-116, 119, 121, 134
Singleton, 17, 96

circulant, 85, 87, 88, 127

coding theory, ii, 17, 18, 23-25, 27, 91—
97

dual, 93, 95, 96, 109, 114, 116, 119, 121,
122, 131

F' A, see existential array

existential array, 4, 34

g-partiton, 6, 10, 13, 15, 64, 65, 71
GDD, see group divisible design
graph, 11, 14, 15, 23, 24, 27, 106, 109,
110, 112, 114, 119, 122
1-factorization, 110
bipartite, 103, 112, 113, 122
colouring, 27, 103, 110, 112
equitable, 110
complete, 14, 93, 114, 122
bipartite, 113
construction, ii, 112-115, 119, 122,
131
decomposition, 27, 109, 110, 112,
122
matchings, 106, 109-115, 119, 122
packing, 109-113, 115, 122
group divisible design, 3, 26, 38, 43, 44,
47-49, 53, 55



construction method, ii, 28, 43-51,
53, 54, 127
resolvable, 3, 44, 46, 47

Hamming distance, 5, 17, 92
hole, 3, 4, 29-31, 35, 95, 107, 113, 118,
121

ITD, see transversal design, incomplete
K, see graph, complete
latin square, 4, 16, 18, 21, 43, 116

MacNeish’s theorem, 35-36, 56, 108, 115,
127, 131
MOLS, see latin square

packing, 106
graph, 18, 109-113, 115, 122
pairwise, ii, 2, 18, 91, 97-99, 103,
105
set, 62, 70-74, 88, 90, 119
sphere, 96, 104
pairwise balanced design, 2, 38-43, 52,
57, 58, 61, 108, 115, 116, 120
construction method
transversal covers, 38—43, 57
transversal packings, 108, 127, 131
packing, 97
resolvable, 93, 95, 121, 131
Pascal’s triangle, 72, 73

PBD, see pairwise balanced design
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PBTC(C, see point balanced transversal
cover
permutation, 11, 66, 85
point balanced transversal cover, ii, 7,
26, 37, 65, 71, 72
lower bound, 70-71
prime, 111
prime power, 11, 13, 24, 30, 33, 44, 47,
50, 53, 55, 77, 87, 88, 102, 103,
116, 118, 121
projective plane, 103, 131
degenerate, 58

recursion, 1, 21, 26, 28, 32, 36, 43, 51—
55, 59, 60, 62-64, 87, 90, 100,
106, 112-115, 118-120, 123
resolution class, 3, 38, 45, 46, 95, 96,
114, 121
resolvable, 3
group divisible design, 3, 44, 46, 47
pairwise balanced design, 93, 95, 121,
131
restricted resolvable design, 96, 109,
121

set of distinct representatives, 3840

sets of disjoint blocks, ii, 5, 7, 8, 12,
16, 24, 27, 29-33, 36-38, 40—
43, 46-48, 52, 53, 65, 77, 91-95,
99, 100, 102, 105, 107, 111, 115,
116, 118-120



Shannon, 13, 21-23
simulated annealing, 21, 26, 28, 53-54,
60, 87, 88, 127

t-independent, 6, 13, 15, 64
TD, see transversal design
transversal design, 3, 4, 16, 18, 53
incomplete, 3, 4, 29-31, 107, 118,
123
construction method, ii, 26, 28—
31, 43, 54, 106-107, 118, 119,
134

variance, 37, 82, 85, 86

Wilson’s construction, 16, 120
transversal covers, ii, 26, 28, 3543,
51, 61, 118, 127
asymptotic, 56-58

transversal packings, ii, 106—108, 115,

116, 119, 131

Wilson’s theorem, 55
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