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Everyone is familiar with the representation of a curve in the plane using
an algebraic equation such as X2 + Y 2 = 1. Algebraic geometers have learned
that it is more convenient to represent these curves in the equivalent form of
solutions (or zeros) of polynomials. In the case above, the circle is simply the
set of (λ, µ) which are zeros of X2 + Y 2 − 1. Similarly the simultaneous zeros
of several polynomials represent the points of intersection of all of the corre-
sponding curves. The solution of a system of polynomial equations is a natural
extension of the problem of solving linear equations, and arises, for example,
in the Lagrange multiplier method when the constraints and the function to
be optimized are algebraic. Our particular aim is to prove the theorem below
which gives a description of the common zeros of a system of polynomials. It is
interesting in itself because it combines various important concepts and results
from a standard undergraduate curriculum: ideals, quotient rings, homomor-
phism theorems, commuting linear operators and their common eigenvectors.
Although the theorem is not new (see [2], [4] and [3]) and is quite elementary,
we cannot find it undergraduate text books.

If K is any field and f1, ..., fn are polynomials in the ring K[X, Y ], then it is
convenient to consider the ideal J = 〈f1, ..., fn〉 generated by these polynomials.
The set of common zeros in K

2 of f1, ..., fn is clearly the same as the set of
common zeros for all the polynomials in J so we can forget about the particular
polynomials chosen to generate J and simply think about the ideal J itself. We
shall refer to these zeros briefly as the zeros of J . An important advantage of
approaching the problem of the set of common zeros of polynomials (= inter-
section of curves) in this way is that we can take advantage of the structure of
the ring K[X, Y ] rather than simply dealing with a subset of K2. At the same
time we should not lose sight of the geometric interpretation of the theorems
which arise.

In what follows we shall restrict ourselves to the case of two variables, but
at the end of this note we shall point out how all the results can be generalized
to the case of m variables X1, ..., Xm.

To fix notation, consider a finite list of polynomials f1, ..., fn in A := K[X, Y ].
Let J be the ideal in A which they generated and let S ⊆ K2 be the set of all
solutions to f1(X, Y ) = 0, ..., fn(X, Y ) = 0. We shall consider the relationship
between S, J and the quotient ring R := A/J . Note that R is both a ring and
a vector space over K . We are looking for a description of S in the case where
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R is finite dimensional over K.
The special case where J = A (dimK R = 0) occurs exactly when 1 ∈ J and

in this case S = ∅. However, S may be empty even when J is a proper ideal. In
what follows you might find it helpful to keep in mind the following example:
f1 = X + Y − 3 and f2 = X2 + Y 2 − 1 with K = R or C. Check that in this
case we have S = ∅ when K = R (this is obvious from the geometry of the two
curves) whilst |S| = 2 when K = C. Show that 1 + J , X + J is a basis for R
over K.

Proposition 1 dimK R < ∞ if and only if J contains nonzero polynomials
p(X) and q(Y ) (each depending on a single variable).

Proof. If R is finite-dimensional then the set of monomials {X i|i ≥ 0} is linearly
dependent in the quotient ring and thus there exisits a non-zero polynomial
p(X) ∈ J . Likewise, there is a non-zero polynomial q(Y ) ∈ J .

To prove the converse, note that a polynomial p(X) ∈ J may be viewed as a
reduction rule in the quotient ring R and allows to reduce any power of X to a
linear combination of {X i} with i < deg(p). Then R is spanned by a finite set
{X iY j |i < deg(p), j < deg(q)} and is finite-dimensional.

Corollary 2 If dimK R < ∞ then S is finite.

Proof. Let p(X), q(Y ) be non-zero polynomials in J . Denote by P the set of
roots of p(X) and by Q the set of roots of q(Y ). Since every polynomial in ideal
J vanishes at every point in S, we conclude that S is contained in the finite set
P × Q ⊂ K2.

The converse of the corollary is false in general. For example, if K = R

and we take J =
〈

X2 + 1
〉

, then S = ∅ (there are no possible values for the
first coordinate of a zero of J). On the other hand, dimR R is infinite by the
proposition since J contains no nonzero polynomial q(Y ) depending only on Y .
A similar example can be constructed whenever K is not algebraically closed,
but it turns out that this is the only obstruction.

Proposition 3 If K is algebraically closed, and S is finite, then dimK R < ∞.

Proof. The polynomial ring K[X, Y ] in two variables can be embedded in the
ring K(X)[Y ] of polynomials in Y over the field K(X). Note that K(X)[Y ] is
a principal ideal domain. Consider ideal J generated by f1, . . . , fn in the ring
K(X)[Y ]. Every ideal in K(X)[Y ] is principal, so let g = Y d + ad−1(X)Y d−1 +
. . . + a0(X) be the monic generator of J . Let us show that d = 0 and g = 1.
Since J = 〈g〉 we have fk = ghk, where hk =

∑mk

j=0
cjk(X)Y j , k = 1, . . . , n.

There are infinitely many values α ∈ K for which the denominators of the
rational functions ai(X), cjk(X) do not vanish. If d > 0 then for each such α
there exists a root β ∈ K of the polynomial Y d + ad−1(α)Y d−1 + . . . + a0(α).
Then each fk vanishes at (α, β), which would give us infinitely many zeros of
J . Thus the monic polynomial g is the constant polynomial 1. Since g ∈ J
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we can write 1 = f1u1 + . . . fnun for some uj ∈ K(X)[Y ]. Multiplying both
sides of this equality by the denominators of all coefficients of uj , j = 1, . . . , n,
we construct a non-zero polynomial p(X) which belongs to J . Analogously, J
contains a non-zero polynomial q(Y ). By Proposition 1 R is finite-dimensional.

We now study the properties of the quotient ring R in the case that dimK R <
∞. We define two (commuting) linear transformations TX and TY of R into itself
by: TX(u(X, Y ) + J) := Xu(X, Y ) + J and TY (u(X, Y ) + J) := Y u(X, Y ) + J
(because J is an ideal, XJ, Y J ⊆ J , and so TX and TY are well defined).

Our main result describes the zeros of J in terms of the eigenvalues and
common eigenvectors of TX and TY .

Theorem 4 ([4]) Suppose that dimK R < ∞. Then (λ, µ) is a zero of J if and
only if there is a nonzero vector v ∈ R such that TXv = λv and TY v = µv.

Proof. Let p(X), q(Y ) be as above. Suppose (λ, µ) ∈ S. Then p(λ) = 0 and
q(µ) = 0, so p(X) = (X −λ)rp1(X) and q(Y ) = (Y −µ)sq1(Y ) for some r, s > 0
where p1(λ) 6= 0 and q1(µ) 6= 0. Furthermore u(X, Y ) := p1(X)q1(Y ) 6∈ J since
it does not vanish on (λ, µ), but (X − λ)ru(X, Y ), (Y − µ)su(X, Y ) ∈ J . Thus
there exists v(X, Y ) := (X − λ)r1(Y − µ)s1u(X, Y ) with 0 ≤ r1 < r and 0 ≤
s1 < s such that v(X, Y ) 6∈ J but (X −λ)v(X, Y ) ∈ J and (Y −µ)v(X, Y ) ∈ J .
Now v(X, Y ) + J is the required common eigenvector.

Conversely, let v(X, Y ) + J be a common eigenvector for TX and TY with
eigenvalues λ and µ. We want to show that (λ, µ) ∈ S, that is J ⊆ M :=
A(X − λ) + A(Y − µ) where A = K[X, Y ]. Since M has codimension 1 in A, if
J 6⊆ M then A = J + M . But v(X, Y )M ⊆ J by the choice of v(X, Y ), and so
J 6⊆ M implies v(X, Y ) ∈ v(X, Y )J + v(X, Y )M ⊆ J contrary to the fact that
an eigenvector is non-zero.

Corollary 5 |S| ≤ dimK R.

This Corollary follows from the fact that the eigenvectors corresponding to
distinct eigenvalues are linearly independent.

It is well-known that two commuting operators on a finite-dimensional space
over an algebraically closed field have a common eigenvector (provided that the
dimension of the vector space is non-zero). As a consequence we get

Corollary 6 If K is algebraically closed, and 1 ≤ dimK R < ∞, then J has at
least one zero.

Remark 7 What happens if we have more than two variables? There are ob-
vious generalizations of the first proposition, the theorem and their corollaries
to polynomial rings K[X1, ..., Xm] in any (finite) number of variables. A lit-
tle thought shows that they can be proved using natural generalizations of those
proofs given above.

It is also true that Proposition 3 generalizes to polynomial rings of m vari-
ables (over an algebraically closed field!), but the proof above which depends on
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the fact that a polynomial ring in one variable over a field is a principal ideal
ring does not seem to generalize. A proof of the general proposition instead re-
quires Hilbert’s Nullstellensatz which is less elementary. Recently Arrondo [1]
has given an elegant proof of the Nullstellensatz which makes that theorem within
reach of an undergraduate algebra course.

In order to carry out explicit calculations with Theorem 4, one has to work
out a Gröbner basis of ideal J . A computational alternative to this theorem is
the elimination theory (see e.g., [5]), however Theorem 4 is much more attractive
aesthetically. It is a convenient stepping stone towards computational algebra
and algebraic geometry.
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