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Abstract. We consider a central extension of the sheaf of Lie algebras of maps from
a manifold C

∗ ×X into a finite-dimensional simple Lie algebra, together with the sheaf of
vector fields on C

∗×X . Using vertex algebra methods we construct sheaves of modules for
this sheaf of Lie algebras. Our results extend the work of Malikov-Schechtman-Vaintrob
on the chiral de Rham complex.

0. Introduction.

Two most interesting examples of infinite-dimensional Lie algebras, affine Kac-Moody
algebras and the Virasoro algebra, are associated with a circle as an underlying geometric
object. In this paper we are going to make a transition from the circle to more general
manifolds. To construct an analogue of (untwisted) affine Kac-Moody algebra in this case
we start with the algebra of functions on a manifold with values in a finite-dimensional
simple Lie algebra g, then take its central extension and add the Lie algebra of vector fields
on the manifold, acting as derivations.

Our goal is to develop a representation theory for this class of Lie algebras. Since
we would like to retain the features of the theory of the highest weight modules, we still
need the concept of positive/negative Fourier modes, and for this reason as the underlying

manifold we take X̂ = C
∗ ×X , where X is a smooth irreducible complex algebraic variety

of dimension N . The punctured complex line C
∗ here is a complex analogue of a circle.

We choose to work with complex manifolds only as a matter of technical convenience, and
one could just as well consider X̂ = S1 ×X , where X is a real manifold.

When we look at functions on an algebraic manifold, taking the algebra of globally
defined functions may be inadequate (for example, in case of complex projective manifolds
this algebra contains only constant functions). Instead, it is natural to use the language
of sheaves.

We begin by taking the sheaf Map(X̂, g) of functions on X̂ with values in g, or,
equivalently, functions on X with values in the loop algebra C[t, t−1] ⊗ g. As the space

of the central extension we take the sheaf Ω
1

X̂ associated with the quotient of 1-forms

by differentials of functions Ω1

X̂
/dO

X̂
. There is a 2-cocycle on Map(X̂, g) with values in

Ω
1

X̂ that naturally generalizes the central cocycle on loop Lie algebras. Finally we take a

semidirect product G of this central extension with the sheaf Vect(X̂) of vector fields on

X̂.

To get a representation theory for this sheaf of Lie algebras we need to construct the
sheaves of modules. This is done using vertex algebras. We introduce a sheaf of vertex
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algebras V on X and show that the sheaf of Lie algebras G acts on V. We then construct
sheaves of modules for V, which automatically become modules for G.

If we take g to be a trivial Lie algebra, g = (0), we get representations for the sheaf

of vector fields on X̂. We would like to point out here a connection with the important
construction of the chiral de Rham complex. Chiral de Rham complex was introduced by
Malikov-Schechtman-Vaintrob in [9]. It is a sheaf of vertex superalgebras on X with a
Z-grading and a differential. Malikov and Schechtman [8] show that the chiral de Rham
complex admits the action of the sheaf of Lie algebras C[t, t−1] ⊗ Vect(X). Our result

yield a stronger statement that in fact a larger sheaf Vect(X̂) acts on the chiral de Rham
complex. In addition to this we note that the chiral differential is a homomorphism of
Vect(X̂)-modules.

In classical differential geometry the Lie algebra of vector fields acts on modules of
tensor fields of a fixed type, and modules of differential forms appearing in the classical de
Rham complex are a special case of this. Likewise the modules that we construct here for
Vect(X̂) could be thought of as chiralizations of tensor modules and we get a wider class
of representations than those appearing in the chiral de Rham complex.

In case when X is a torus, the representation theory of toroidal Lie algebras and Lie
algebra of vector fields was developed in [10, 4, 6, 1, 2, 3]. Since (C∗)N can be covered
with a single chart, there was no need to work with sheaves of Lie algebras. In the toroidal
case one gets strong results on irreducibility of the modules [2, 3].

In the present paper we work with the algebraic varieties, however, this theory also
works if X is taken to be an analytic or a C∞ manifold. The loop component C

∗ should
be still viewed in the algebraic setting with the ring of Laurent polynomials as the algebra
of functions.

The structure of this paper is as follows: in Section 1 we introduce the sheaf G of
Lie algebras, generalizing the construction of affine Kac-Moody algebras, in Section 2 we
construct a sheaf V of vertex algebras on X and in Section 3 we define the sheaves of
the generalized Verma modules M and their quotients L. In Section 4 we prove that the
sheaves V, M and L are modules for the sheaf G of Lie algebras. In the final section we
consider a version of our construction in the setting of rational functions on a manifold.

Acknowledgements. I am grateful to Fedor Malikov for the helpful discussions.
This work is supported in part with a grant from the Natural Sciences and Engineering
Research Council of Canada.

1. A sheaf of Lie algebras.

Let X be a smooth irreducible algebraic variety over C of dimension N . Let X̂ =
C

∗ ×X . Fix a finite-dimensional simple Lie algebra g with a symmetric invariant bilinear
form (·|·). We consider the sheaf Map(X̂, g) of locally regular functions on X̂ with values
in g (or, equivalently, functions on X with values in the loop algebra C[t, t−1] ⊗ g). This
becomes a sheaf of Lie algebras over X with pointwise multiplication.

Even though our base manifold is X̂, all sheaves that we consider throughout the
paper are over X , and for each open set U ⊂ X , we will consider functions defined over
Û = C

∗ × U .
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Next we are going to model in this setting the construction of affine Kac-Moody

algebras from the loop Lie algebras. Let Ω
1

X̂ be the sheaf associated with the presheaf

Ω1

X̂
/dO

X̂
, where O

X̂
is the sheaf of rational functions on X̂ and Ω1

X̂
is the sheaf of 1-forms

on X̂ .
We define a central extension sheaf of Lie algebras

Map(X̂, g) ⊕ Ω
1

X̂ ,

where Ω
1

X̂ is central, while the new Lie bracket on Map(X̂, g) is defined by

[f1 ⊗ g1, f2 ⊗ g2] = f1f2 ⊗ [g1, g2] + (g1|g2)f2df1,

where f1, f2 are functions on an open set Û , g1, g2 ∈ g, and is the canonical projection
Ω1

X̂
→ Ω1

X̂
/dO

X̂
.

The sheaf of vector fields Vect(X̂) acts on Map(X̂, g)⊕Ω
1

X̂ and we can form a semidi-
rect product sheaf (

Map(X̂, g) ⊕ Ω
1

X̂

)
⋊ Vect(X̂).

Here the action of Vect
X̂

on Map(X̂, g) is the natural action of vector fields on functions,

while the action on Ω
1

X̂ is via Lie derivative

η(f1df2) = η(f1)df2 + f1dη(f2),

for η ∈ Vect
X̂

(Û), f1, f2 ∈ O
X̂

(Û).
The variety X admits a finite covering by open affine sets {Ui} where each Ui has local

(uniformizing) parameters x1, . . . , xN ∈ OX(Ui) such that Ω1
X(Ui) is a free OX(Ui)-module

of rank N with generators dx1, . . . , dxN [11].

An open covering {Ui} of X yields an open covering {Ûi} of X̂ . We fix a local
parameter t on C

∗, and we identify functions on C
∗ with C[t, t−1], so that

O
X̂

(Ûi) = C[t, t−1] ⊗OX(Ui).

Let G be a sheaf of Lie algebras on X and let M be a sheaf of vector spaces on X .
Definition. A representation (ρ,M) of G is a sheaf morphism

ρ : G ×M → M,

such that for every open set U ⊂ X , the map

ρU : G(U) ×M(U) → M(U)

is a representation of the Lie algebra G(U).
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The main goal of this paper is to construct representations of the sheaf of Lie algebras

G =
(
Map(X̂, g) ⊕ Ω

1

X̂

)
⋊ Vect(X̂).

2. A sheaf of vertex algebras.

We will construct representations using the vertex algebra techniques. Our main
object will be a sheaf V of vertex algebras. Locally this sheaf will be defined as the space
of functions with values in a certain vertex algebra V .

Let us recall the basic notions of the theory of the vertex operator algebras. Here we
are following [5] and [7].

Definition. A vertex algebra is a vector space V with a distinguished vector 1

(vacuum vector) in V , an operator D (infinitesimal translation) on the space V , and a
linear map Y (state-field correspondence)

Y (·, z) : V → (EndV )[[z, z−1]],

a 7→ Y (a, z) =
∑

n∈Z

a(n)z
−n−1 (where a(n) ∈ EndV ),

such that the following axioms hold:
(V1) For any a, b ∈ V, a(n)b = 0 for n sufficiently large;

(V2) [D, Y (a, z)] = Y (D(a), z) = d
dz
Y (a, z) for any a ∈ V ;

(V3) Y (1, z) = IdV ;
(V4) Y (a, z)1 ∈ V [[z]] and Y (a, z)1|z=0 = a for any a ∈ V (self-replication);
(V5) For any a, b ∈ V , the fields Y (a, z) and Y (b, z) are mutually local, that is,

(z − w)n [Y (a, z), Y (b, w)] = 0, for n sufficiently large.

A vertex algebra V is called a vertex operator algebra (VOA) if, in addition, V contains
a vector ω (Virasoro element) such that
(V6) The components L(n) = ω(n+1) of the field

Y (ω, z) =
∑

n∈Z

ω(n)z
−n−1 =

∑

n∈Z

L(n)z−n−2

satisfy the Virasoro algebra relations:

[L(n), L(m)] = (n−m)L(n+m) + δn,−m

n3 − n

12
(rank V )Id, where rank V ∈ C; (2.1)

(V7) D = L(−1);
(V8) V is graded by the eigenvalues of L(0): V = ⊕

n∈Z

Vn with L(0)
∣∣
Vn

= nId.

This completes the definition of a VOA.
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As a consequence of the axioms of the vertex algebra we have the following important
commutator formula:

[Y (a, z1), Y (b, z2)] =
∑

n≥0

1

n!
Y (a(n)b, z2)

[
z−1
1

(
∂

∂z2

)n

δ

(
z2
z1

)]
. (2.2)

As usual, the delta function is

δ(z) =
∑

n∈Z

zn.

By (V1), the sum in the right hand side of the commutator formula is actually finite.
All the vertex operator algebras that appear in this paper have the gradings by non-

negative integers: V =
∞
⊕

n=0
Vn. In this case the sum in the right hand side of the commu-

tator formula (2.2) runs from n = 0 to n = deg(a) + deg(b) − 1, because

deg(a(n)b) = deg(a) + deg(b) − n− 1, (2.3)

and the elements of negative degree vanish.
Another consequence of the axioms of a vertex algebra is the Borcherds’ identity:

(a(k)b)(n)c =
∑

j≥0

(−1)k+j+1

(
k
j

)
b(n+k−j)a(j)c+

∑

j≥0

(−1)j

(
k
j

)
a(k−j)b(n+j)c, k, n ∈ Z.

(2.4)
Let us list some other consequences of the axioms of a vertex algebra that we will be

using in the paper. It follows from (V7) and (V8) that

ω(0)a = D(a) (2.5)

and
ω(1)a = deg(a)a, for a homogeneous. (2.6)

The map D is a derivation of the n-th product:

D(a(n)b) = (Da)(n)b+ a(n)Db. (2.7)

It could be easily derived from (V2) that

(Da)(n) = −na(n−1). (2.8)

The vertex algebra V that we need for the construction of the sheaf V, is the tensor
product of four well-known vertex algebras:

V = VHei ⊗ Vgl
N
⊗ Vg ⊗ VVir. (2.9)

Let us describe each tensor factor.
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Consider a Heisenberg Lie algebra Hei with the basis {up(j), vp(j), CHei|
p=1,...,N

j∈Z
} and

the Lie bracket
[up(m), vq(s)] = mδpqδm,−sCHei,

[up(m), uq(s)] = [vp(m), vq(s)] = 0, p, q = 1, . . . , N, m, s ∈ Z,

and the element CHei being central. The vertex algebra

VHei = C[up(−j), vp(−j)|
p=1,...,N
j=1,2,... ]

is a Fock space module for this Heisenberg algebra, in which CHei acts as an identity
operator and the raising operators up(j), vp(j) with j ≥ 1 annihilate the highest weight
vector 1. The generating fields for this vertex algebra are

up(z) = Y (up(−1)1, z) =
∑

j∈Z

up(j)z
−j−1,

vp(z) = Y (vp(−1)1, z) =
∑

j∈Z

vp(j)z
−j−1, p = 1, . . . , N,

with up(0) and vp(0) acting on VHei trivially.
The Virasoro element in VHei is

ωHei =
N∑

p=1

vp(−1)up(−1)1

and rank (VHei) = 2N .
Consider next the affine Lie algebra

ĝlN = C[t, t−1] ⊗ glN ⊕ CCgl
N

with the Lie bracket

[tm ⊗ A, ts ⊗B] = tm+s ⊗ [A,B] +mδm,−sTr(AB)Cgl
N
,

where A,B ∈ glN (C) and Cgl
N

is central.
The second tensor factor Vgl

N
in (2.9) is the universal enveloping vertex algebra for

ĝlN at level 1. It is a highest weight module for ĝlN , with the highest weight vector being
annihilated by the subalgebra C[t] ⊗ glN and Cgl

N
acting as the identity operator. As a

vector space, it is realized as

Vgl
N

= U(t−1
C[t−1] ⊗ glN ) ⊗ 1.

The generating fields of this vertex algebra are

Eab(z) = Y (Eab(−1)1, z) =
∑

j∈Z

Eab(j)z
−j−1, a, b = 1, . . . , N,
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where Eab is a matrix with entry 1 in position (a, b) and zeros elsewhere, and Eab(j) =
tj ⊗ Eab. It follows from this formula that (Eab(−1)1)(n) = Eab(n).

The commutator relations between the generating fields are encoded in n-th products:

Eab(0)Ecd(−1)1 = δbcEad(−1)1 − δadEcb(−1)1,

Eab(1)Ecd(−1)1 = δadδbc1,

Eab(n)Ecd(−1)1 = 0 for n ≥ 2. (2.10)

We consider the following (non-standard) Virasoro element in Vgl
N

:

ωgl
N =

1

2(N + 1)



I(−1)I(−1)1 +

N∑

a,b=1

Eab(−1)Eba(−1)1



 +
1

2
I(−2)1,

where I is the identity matrix. The rank of Vgl
N

is −2N (see [2] for details).
The third tensor factor is the universal enveloping vertex algebra for the affine Kac-

Moody algebra
ĝ = C[t, t−1] ⊗ g ⊕ CCg

at level c. As a vector space Vg = U(t−1C[t−1] ⊗ g) ⊗ 1 with C[t] ⊗ g annihilating the
vacuum vector 1.

For g1, g2 ∈ g, the n-th products in this case are:

g1(0)g2(−1)1 = [g1, g2](−1)1, g1(1)g2(−1)1 = c(g1|g2)1, g1(n)g2(−1)1 = 0 for n ≥ 2.

When the level c is non-critical, c 6= −h∨, where h∨ is the dual Coxeter number of g, the
vertex algebra Vg has a Virasoro element ωg and its rank is

rank (Vg) =
c dimg

c+ h∨
.

To define the last tensor factor, consider the Virasoro Lie algebra Vir with the basis
{L(j), CVir|j ∈ Z} and Lie bracket

[L(m), L(s)] = (m− s)L(m+ s) +
m3 −m

12
δm,−sCVir, m, s ∈ Z,

and CVir being a central element.
The vertex algebra VVir is the universal enveloping vertex algebra for the Virasoro

Lie algebra where the central element CVir acts as a scalar −
c dimg
c+h∨ . It is a highest weight

module for the Virasoro algebra in which the operators L(j) with j ≥ −1 annihilate the
highest weight vector 1. As a space, it is realized as

VVir = U(Vir(−)) ⊗ 1,
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where Vir
(−) is the subalgebra spanned by L(j) with j ≤ −2.

The generator of this vertex algebra is ωVir = L(−2)1 and the generating field of this
vertex algebra is

Y (ωVir, z) =
∑

j∈Z

L(j)z−j−2.

The Virasoro element of V is the sum of the Virasoro elements of its tensor factors:

ω = ωHei + ωgl
N + ωg + ωVir.

The rank of the Virasoro tensor factor was chosen in a way to make the total rank of V
to be 0.

The n-th products for the rank 0 Virasoro element are:

ω(0)ω = Dω, ω(1)ω = 2ω, ω(n)ω = 0 for n ≥ 2.

We begin the construction of the sheaf V with its local description. We have fixed a
covering of X with open affine sets admitting local parameters. Let Ui be one of these
open sets with local parameters x1, . . . , xN .

We set
V(Ui) = V ⊗OX(Ui). (2.11)

The fields vp(z), uq(z), Eab(z) are the “chiralizations” of the vector fields, 1-forms and
(1, 1)-tensors on X respectively, and transform under the changes of coordinates (see (2.17)
below).

Let us define the vertex algebra structure on the space V ⊗ OX(Ui). The vertex
algebra V is embedded as subalgebra V ⊗1 in V ⊗OX (Ui). The state-field correspondence
map Y on the elements of V is defined as above, with the only difference that the action
of vp(0) is now defined as

vp(0) =
∂

∂xp

,

while up(0) still acts as zero.
We define the state-field correspondence map on 1⊗OX(Ui) as

Y (1⊗ f, z) =
∑

s∈Z
N

+

1

s!
u(z)s ⊗

∂sf

∂xs
,

where up(z) is an antiderivative of up(z):

up(z) =
∑

j∈Z\{0}

1

j
up(−j)z

j ,

and in general,
Y (ν ⊗ f, z) =: Y (ν ⊗ 1, z)Y (1⊗ f, z) :,
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for f ∈ OX(Ui), ν ∈ V . Here and throughout the paper we use the multi-index notation,

for s = (s1, . . . , sN ) ∈ Z
N
+ we set s! = s1! . . . sN !, ∂s

∂xs =
(

∂
∂x1

)s1

. . .
(

∂
∂xN

)sN

, u(z)s =

u1(z)
s1 . . . uN (z)sN , etc.
Note that for f, h ∈ OX(Ui),

Y (1⊗ fh, z) = Y (1⊗ f, z)Y (1⊗ h, z).

Proposition 2.1. V ⊗OX(Ui) is a vertex algebra.
Proof. We are going to apply the Existence theorem ([5], Theorem 4.5). The in-

finitesimal translation map D on V ⊗OX(Ui) is defined in the following way:

D(ν ⊗ f) = D(ν) ⊗ f +

N∑

p=1

up(−1)ν ⊗
∂f

∂xp

,

where ν ∈ V , f ∈ OX(Ui).
One has to verify that the generating fields for V ⊗OX (Ui) are mutually local. The

only non-trivial relation is between va(z) and Y (1⊗ f, z). It is easy to check that

[va(z1), ub(z2)] = δabz
−1
1

∑

j∈Z\{0}

(
z2
z1

)j

,

which implies

[va(z1), u(z2)
s] = sau(z2)

s−ǫaz−1
1

∑

j∈Z\{0}

(
z2
z1

)j

,

while

[va(z1), Id⊗ f ] = z−1
1 Id ⊗

∂f

∂xa

.

In the above, ǫa is an element of Z
N with 1 in position a and zeros elsewhere. Combining

these, we get
[va(z1), Y (1⊗ f, z2)]

=
∑

s∈Z
N

+

sa

s!
u(z)s−ǫa ⊗

∂sf

∂xs
z−1
1

∑

j∈Z\{0}

(
z2
z1

)j

+
∑

s∈Z
N

+

1

s!
u(z)s ⊗ z−1

1

∂s

∂xs

∂f

∂xa

=
∑

s∈Z
N

+

1

s!
u(z)s ⊗

∂s

∂xs

∂f

∂xa

z−1
1 δ

(
z2
z1

)
= Y (1⊗

∂f

∂xa

, z2)z
−1
1 δ

(
z2
z1

)
, (2.12)

which implies locality. Verification of other conditions of the Existence theorem is straight-
forward.
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As a corollary of (2.12) we obtain

[va(k), f(m)] =

(
∂f

∂xa

)

(m+k)

. (2.13)

Also note that
up(−1)1 = Dxp. (2.14)

Clearly, for any open subset U ⊂ Ui we have a natural restriction homomorphism of
vertex algebras

resUi,U : V ⊗OX(Ui) → V ⊗OX(U).

Over the intersection Ui ∩ Uj we have defined two vertex algebra structures on V ⊗
OX(Ui ∩Uj). We are now going to construct the gluing isomorphism between these struc-
tures. Let x1, . . . , xN be the local parameters on Ui and x̃1, . . . , x̃N be the local parameters
on Uj . In order to emphasize the fact that the fields vp(z), uq(z), etc., transform under the
change of the local parameters, we will denote them as ṽp(z), ũq(z), etc., when working in
coordinates x̃1, . . . , x̃N .

Under the coordinate changes, the partial derivative operators ∂k = ∂
∂xk

, ∂̃s = ∂
∂x̃s

transform in the standard way:

∂̃a = (∂̃axp)∂p, ∂b = (∂bx̃s)∂̃s.

Throughout this paper we use Einstein notations on summation over repeated indices.
The product of the jacobians of the coordinate changes is the identity:

δab = ∂bxa = (∂bx̃s)(∂̃sxa), δab = ∂̃ax̃b = (∂̃axp)(∂px̃b).

Further differentiating the last equality, we get

0 = ∂qδab = (∂q∂̃axp)(∂px̃b) + (∂̃axp)(∂q∂px̃b) = (∂q∂̃axp)(∂px̃b) + ∂̃a∂qx̃b. (2.15)

The operators ∂r and ∂̃p do not commute and their commutator may be expressed as
follows:

[∂r, ∂̃p] = (∂r∂̃pxq)∂q = −(∂̃p∂rx̃s)∂̃s. (2.16)

We now define the gluing isomorphism Φij : V ⊗ OX(Uj ∩ Ui) → V ⊗OX(Ui ∩ Uj),
where in the first copy we use local parameters x̃1, . . . , x̃N , while in the second we use
x1, . . . , xN . This map will be first defined on the generators of this vertex algebra and
then extended as a vertex algebra homomorphism. In order to simplify notations we will
drop from now on the tensor product symbol, as well as the symbol 1, and write va(−1)f
instead of va(−1)1⊗ f , etc.

Φij(f) = f, f ∈ OX(Ui ∩ Uj),

Φij(ũa(−1)1) = up(−1)∂px̃a,

Φij(ṽa(−1)1) = vp(−1)∂̃axp +Esp(−1)∂s∂̃axp,

Φij(Ẽab(−1)1) = Esp(−1)(∂sx̃a)(∂̃bxp) + us(−1)∂̃b∂sx̃a

= Esp(−1)(∂sx̃a)(∂̃bxp) − (∂̃bxp)(−2)(∂px̃a),

Φij(g(−1)1) = g(−1)1, g ∈ g,

Φij(ω̃
Vir) = ωVir.

(2.17)
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Lemma 2.2. The map Φ = Φij extends to a homomorphism of vertex algebras.
Proof. We need to show that the fields corresponding to the images of the genera-

tors satisfy the same relations as the original generating fields. Taking into account the
commutator formula (2.2), we need to show that

Φ(a)(n)Φ(b) = Φ(a(n)b)

for any pair a, b of the generators and all n ≥ 0.
The relations between Φ(vp(−1)1) and Φ(uq(−1)1) have been established in ([9],

Theorem 3.7). Let us verify other relations.
Let us check that

Φ(ṽm(−1)1)(0)Φ(f) = Φ(ṽm(0)f).

In the proof of this lemma we will use extensively the Borcherds’ identity (2.4):

Φ(ṽm(−1)1)(0)Φ(f) =
(
vp(−1)∂̃mxp +Esp(−1)∂s∂̃mxp

)

(0)
f

=
(
∂̃mxp

)
(−1)

vp(0)f = (∂̃mxp)∂pf = ∂̃mf = Φ(ṽm(0)f).

The relations
Φ(ṽm(−1)1)(n)Φ(f) = 0

for n ≥ 1 follow from the degree considerations since the degree of the left hand side is
−n.

Let us show now that

Φ(ṽa(−1)1)(n)Φ(Ẽbc(−1)1) = 0 for n ≥ 0.

We have
Φ(ṽa(−1)1)(0)Φ(Ẽbc(−1)1)

=
(
vp(−1)∂̃axp +Esp(−1)∂s∂̃axp

)

(0)

(
Eqr(−1)(∂qx̃b)(∂̃cxr) + uq(−1)∂̃c∂qx̃b

)

= (∂̃axp)(−1)vp(0)Eqr(−1)(∂qx̃b)(∂̃cxr) + (∂s∂̃axp)(−1)Esp(0)Eqr(−1)(∂qx̃b)(∂̃cxr)

+(∂̃axp)(−1)vp(0)uq(−1)∂̃c∂qx̃b + (∂̃axp)(−2)vp(1)uq(−1)∂̃c∂qx̃b

+(∂s∂̃axp)(−2)Esp(1)Eqr(−1)(∂qx̃b)(∂̃cxr)

= Eqr(−1)(∂̃axp)∂p((∂qx̃b)(∂̃cxr)) + Esr(−1)(∂s∂̃axp)(∂px̃b)(∂̃cxr)

−Eqp(−1)(∂s∂̃axp)(∂qx̃b)(∂̃cxs)

+uq(−1)(∂̃axp)(∂p∂̃c∂qx̃b) + uq(−1)(∂q∂̃axp)(∂̃c∂px̃b) + uq(−1)(∂q∂s∂̃axp)(∂px̃b)(∂̃cxs)

= Eqr(−1)∂̃a((∂qx̃b)(∂̃cxr)) + Eqr(−1)(∂q∂̃axp)(∂px̃b)(∂̃cxr) − Eqr(−1)(∂̃c∂̃axr)(∂qx̃b)

+uq(−1)∂̃a∂̃c∂qx̃b + uq(−1)(∂q∂̃axp)(∂̃c∂px̃b) + uq(−1)(∂̃c∂q∂̃axp)(∂px̃b) = 0.
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In the above we used the relation (2.15).

Φ(ṽa(−1)1)(1)Φ(Ẽbc(−1)1)

=
(
vp(−1)∂̃axp +Esp(−1)∂s∂̃axp

)

(1)

(
Eqr(−1)(∂qx̃b)(∂̃cxr) + uq(−1)∂̃c∂qx̃b

)

= (∂̃axp)(−1)vp(1)uq(−1)∂̃c∂qx̃b + (∂s∂̃axp)(−1)Esp(1)Eqr(−1)(∂qx̃b)(∂̃cxr)

= (∂̃axp)(∂̃c∂px̃b) + (∂s∂̃axp)(∂px̃b)(∂̃cxs) = ∂̃c

(
(∂̃axp)(∂px̃b)

)
= 0.

The relations
Φ(ṽa(−1)1)(n)Φ(Ẽbc(−1)1) = 0 for n ≥ 2

follow trivially from the degree considerations (2.3).
Let us now consider the analogues of (2.10):

Φ(Ẽab(−1)1)(0)Φ(Ẽcd(−1)1)

=
(
Esp(−1)(∂sx̃a)(∂̃bxp) + us(−1)∂̃b∂sx̃a

)

(0)

(
Eqr(−1)(∂qx̃c)(∂̃dxr) + uq(−1)∂̃d∂qx̃c

)

=
(
(∂sx̃a)(∂̃bxp)

)
(−1)

Esp(0)Eqr(−1)(∂qx̃c)(∂̃dxr)

+
(
(∂sx̃a)(∂̃bxp)

)
(−2)

Esp(1)Eqr(−1)(∂qx̃c)(∂̃dxr)

= Esr(−1)(∂sx̃a)(∂̃bxp)(∂px̃c)(∂̃dxr) − Eqp(−1)(∂sx̃a)(∂̃bxp)(∂qx̃c)(∂̃dxs)

+uj(−1)∂j((∂sx̃a)(∂̃bxp))(∂px̃c)(∂̃dxs)

= δbcEsr(−1)(∂sx̃a)(∂̃dxr)−δadEqp(−1)(∂qx̃c)(∂̃bxp)−δaduj(−1)∂̃b∂j x̃c+δbcuj(−1)∂̃d∂j x̃a

= δbcΦ(Ẽad(−1)1) − δadΦ(Ẽcb(−1)1),

and

Φ(Ẽab(−1)1)(1)Φ(Ẽcd(−1)1) =
(
(∂sx̃a)(∂̃bxp)

)
(−1)

Esp(1)Eqr(−1)(∂qx̃c)(∂̃dxr)

= (∂sx̃a)(∂̃bxp)(∂px̃c)(∂̃dxs) = δadδbc.

Verification of the remaining relations is trivial.

Lemma 2.3. Over the triple intersection Ui ∩ Uj ∩ Uk we have Φij ◦ Φjk = Φik.
Proof. Let us denote x̂1, . . . , x̂N the local parameters on Uk. We need to verify the

equality Φij ◦Φjk = Φik on the generators of the vertex algebra V ⊗OX(Uk ∩Uj ∩Ui). For
the functions f ∈ OX(Uk∩Uj ∩Ui) this equality holds since the functions do not transform
under the coordinate changes. Let us carry out the calculations for the generators of V .

Φij (Φjk(ûa(−1)1)) = Φij(ũp(−1)∂̃px̂a)
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= (us(−1)∂sx̃p)(−1)∂̃px̂a = us(−1)(∂sx̃p)(∂̃px̂a)

= us(−1)∂sx̂a = Φik(ûa(−1)1).

Φij (Φjk(v̂a(−1)1)) = Φij

(
ṽp(−1)∂̂ax̃p + Ẽsp(−1)∂̃s∂̂ax̃p

)

=
(
vq(−1)∂̃pxq

)
(−1)

∂̂ax̃p +
(
Erq(−1)∂r∂̃pxq

)
(−1)

∂̂ax̃p

+
(
Erq(−1)(∂rx̃s)(∂̃pxq)

)
(−1)

∂̃s∂̂ax̃p +
(
ur(−1)∂̃p∂rx̃s

)

(−1)
∂̃s∂̂ax̃p

= vq(−1)(∂̃pxq)(∂̂ax̃p) + (∂̃pxq)(−2)vq(0)∂̂ax̃p + Erq(−1)(∂r∂̃pxq)(∂̂ax̃p)

+Erq(−1)(∂rx̃s)(∂̃pxq)(∂̃s∂̂ax̃p) + ur(−1)(∂̃p∂rx̃s)(∂̃s∂̂ax̃p)

= vq(−1)∂̂axq + ur(−1)(∂r∂̃pxq)(∂q∂̂ax̃p) + ur(−1)(∂̃p∂rx̃s)(∂̃s∂̂ax̃p)

+Erq(−1)(∂r∂̃pxq)(∂̂ax̃p) + Erq(−1)(∂̃pxq)(∂r∂̂ax̃p)

= vq(−1)∂̂axq + Erq(−1)∂r∂̂axq = Φik(v̂a(−1)1).

In the above one can use (2.16) to see that the terms with ur(−1) cancel.

Φij

(
Φjk(Êab(−1)1)

)
= Φij

(
Ẽsp(−1)(∂̃sx̂a)(∂̂bx̃p) + ũs(−1)∂̂b∂̃sx̂a

)

=
(
Erq(−1)(∂rx̃s)(∂̃pxq) + ur(−1)∂̃p∂rx̃s

)

(−1)
(∂̃sx̂a)(∂̂bx̃p) + (ur(−1)∂rx̃s)(−1) ∂̂b∂̃sx̂a

= Erq(−1)(∂rx̃s)(∂̃pxq)(∂̃sx̂a)(∂̂bx̃p) + ur(−1)(∂̂b∂rx̃s)(∂̃sx̂a) + ur(−1)(∂rx̃s)(∂̂b∂̃sx̂a)

= Erq(−1)(∂rx̂a)(∂̂bxq) + ur(−1)∂̂b∂rx̂a = Φik(Êab(−1)1).

Corollary 2.4. The map Φij is an isomorphism.
Proof. Setting k = i in the previous Lemma, we get Φ−1

ij = Φji.

As a result of our construction, we get the following
Theorem 2.5. The local data (2.11) together with the gluing maps Φij define a sheaf

V of vertex algebras over X .

3. A sheaf of modules of chiral tensor fields.

In this section we will construct sheaves of modules for the sheaf V of vertex algebras.
First let us discuss the local situation. Let U be an open set contained in Ui, and let

M =
∞
⊕

n=0
Mn be a module for the vertex Lie algebra V(U). The module M is a module for

the Lie algebra

s = Hei ⊕ ĝlN ⊕ ĝ ⊕ Vir.
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This Lie algebra has a natural Z-grading s = ⊕
n∈Z

sn and a triangular decomposition

s = s+ ⊕ s0 ⊕ s− associated with this grading.
Using the standard methods of vertex algebras, we get the following
Proposition 3.1. (i) M0 is a module for the commutative algebra OX(U) with the

action
fm = f(−1)m, f ∈ OX(U), m ∈M0.

(ii) M0 is a module for the Lie algebra s0. The actions of OX(U) and s0 on M0 are
compatible in the following way:

vp(0)fm− fvp(0)m = (∂pf)m,

while the remaining basis elements of s0 commute with OX(U).
(iii) For f ∈ OX(U) introduce the operator T (f, z) on the space U(s−)M0:

T (f, z)ym =
∑

k∈Z
N

+

1

k!
u(z)ky(∂kf)m,

where y ∈ U(s−), m ∈M0. If M is generated by M0 as a V(U)-module then

Y (f, z)ym = T (f, z)ym.

(iv) If M is generated by M0 as a V(U)-module then M = U(s−)M0.
Proof. Part (i) follows from the relation

Y (f, z)Y (h, z) = Y (fh, z)

and the fact that f(n)m = 0 for n ≥ 0, m ∈M0. Part (ii) is a consequence of the statement
that M is a graded s-module and (2.13).

We shall prove part (iii) by induction on the degree of y. For the basis of induction,
deg(y) = 0, so that y = 1, we need to show that

Y (f, z)m =
∑

k∈Z
N

+

1

k!
u(z)k(∂kf)m, (3.1)

for m ∈M0. It is clear that both sides involve only non-negative powers of z. Let us reason
by induction on n the equality of terms up to zn in (3.1). The coefficients at z0 in (3.1)
coincide by the definition of the action of OX(U) on M0. The equality of the coefficients
at zn+1 in (3.1) will follow from the equality of zn terms in

∂

∂z
Y (f, z)m =

∂

∂z
T (f, z)m. (3.2)

Note that
∂

∂z
Y (f, z)m =

N∑

p=1

up(z)Y (∂pf, z)m,
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and also

∂

∂z
T (f, z)m =

N∑

p=1

up(z)T (∂pf, z)m.

Since in the above terms in up(z) with the negative powers of z act trivially (note that
up(0) acts trivially on M since up(z) = d

dz
Y (xp, z)), the equality of zn terms in (3.2)

follows from the induction assumption.
Let us now complete the induction on the degree of y ∈ U(s−). Suppose y = y′y′′,

where y′ ∈ s−, y′′ ∈ U(s−). If y′ is one of ua(−n), Eab(−n) or L(−n), then both operators
Y (f, z) and T (f, z) commute with y′ and we get

Y (f, z)y′y′′m = y′Y (f, z)y′′m = y′T (f, z)y′′m = T (f, z)y′y′′m.

The only non-trivial case is y′ = va(−n). However it follows from (2.12) that

[va(−n), Y (f, z)] = z−nY (∂af, z),

and also

[va(−n), T (f, z)] = z−nT (∂af, z),

thus

Y (f, z)va(−n)y′′m = va(−n)Y (f, z)y′′m− z−nY (∂af, z)y
′′m

= va(−n)T (f, z)y′′m− z−nT (∂af, z)y
′′m = T (f, z)va(−n)y′′m.

Part (iv) follows immediately from (iii).

Corollary 3.2. Let M ′, M ′′ be two V(U)-modules, M ′ =
∞
⊕

n=0
M ′

n, M ′′ =
∞
⊕

n=0
M ′′

n ,

that are generated by M ′
0 and M ′′

0 respectively. Let ψ : M ′ → M ′′ be a homomorphism
of s-modules preserving the grading, such that ψ : M ′

0 → M ′′
0 is a homomorphism of

OX(U)-modules. Then ψ is a homomorphism of V(U)-modules.

The previous Proposition essentially tells us how the vertex algebra V(U) may act on
its modules. Let us now give an explicit construction.

Let W be a rational finite-dimensional simple GLN (C)-module and let Mgl
N

(W ) be

the generalized Verma module at level 1 for ĝlN , induced from the glN -module W . Let
Mg(S) be the generalized Verma module for ĝ at level c, induced from an irreducible g-

module S, and MVir(h) be the Verma module for the Virasoro Lie algebra of rank −
c dimg
c+h∨

with the highest weight vector vh such that L(0)vh = hvh, h ∈ C .
For an open set U ⊂ Ui, the space

M(U) = VHei ⊗Mgl
N

(W ) ⊗Mg(S) ⊗MVir(h) ⊗OX(U)

has a natural structure of a module for the vertex algebra V(U).
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In order to construct the sheaf of modules M, we need to define the gluing isomor-
phisms

Ψij : M(Uj ∩ Ui) → M(Ui ∩ Uj).

Both M(Uj ∩Ui) and M(Ui∩Uj) are the modules for the vertex algebra V(Uj ∩Ui), where
the action on the second module is defined via the isomorphism Φij of vertex algebras.
The isomorphism Ψij of modules that we need to construct must be an isomorphism of
V(Uj ∩Ui)-modules. The map Ψij will be constructed using Corollary 3.2. Note that both
M′ = M(Uj ∩ Ui) and M′′ = M(Ui ∩ Uj) are Z-graded and their top components are:

M′
0 = W ⊗ S ⊗ vh ⊗OX(Uj ∩ Ui),

M′′
0 = W ⊗ S ⊗ vh ⊗OX(Ui ∩ Uj).

We first construct the map Ψij : M′
0 → M′′

0 , which is an isomorphism of OX(Uj ∩
Ui)-modules. Note that the jacobian matrix J (ij) = J = (∂rx̃s)Ers is an element of
GLN (OX(Uj ∩ Ui)). We set

Ψij(w̃ ⊗ s⊗ vh ⊗ f) = (J (ij)w̃) ⊗ s⊗ vh ⊗ f. (3.3)

We claim that this is a homomorphism of s0-modules. Indeed, the action of g on both M′
0

and M′′
0 is the natural action on S, while L(0) acts as multiplication by h on both spaces.

To see that Ψij : M′
0 → M′′

0 is a homomorphism of glN -modules, we need to check that

Φij(Ẽab(0))Ψij(w̃ ⊗ s⊗ vh ⊗ f) = Ψij(Ẽab(0)w̃ ⊗ s⊗ vh ⊗ f).

Applying (2.17), we see that the left hand side equals

Esp(0)Jw̃ ⊗ s⊗ vh ⊗ (∂sx̃a)(∂̃bxp)f,

and to compute the right hand side we use the connection between the action of the group
GLN and its Lie algebra glN on W :

JEab(0)w̃ ⊗ s⊗ vh ⊗ f = (JEab(0)J−1)Jw̃ ⊗ s⊗ vh ⊗ f

= Esp(0)Jw̃ ⊗ s⊗ vh ⊗ (∂sx̃a)(∂̃bxp)f.

Since ua(0) acts on both M′
0 and M′′

0 trivially, the last thing to check is the equality

Φij(ṽa(0))Ψij(w̃ ⊗ s⊗ vh ⊗ f) = Ψij(ṽa(0)w̃ ⊗ s⊗ vh ⊗ f). (3.4)

In the right hand side ṽa(0) acts as ∂̃a, which gives

Jw̃ ⊗ s⊗ vh ⊗ ∂̃af,

while in the left hand side Φij(ṽa(0)) acts as ∂̃a + Esp(0)∂s∂̃axp. The left hand side then
becomes

Jw̃ ⊗ s⊗ vh ⊗ ∂̃af + (∂̃aJ)w̃ ⊗ s⊗ vh ⊗ f + Esp(0)Jw̃ ⊗ s⊗ vh ⊗ (∂s∂̃axp)f.
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In order to evaluate the action of ∂̃aJ we note that (∂̃aJ)J−1 belongs to the Lie algebra
glN , and we get

∂̃aJ = ((∂̃aJ)J−1)J = (∂̃a∂sx̃k)(∂̃kxp)Esp(0)J.

Since (∂̃a∂sx̃k)(∂̃kxp) + ∂s∂̃axp = 0, we establish (3.4).

Having established the homomorphism Ψij : M′
0 → M′′

0 as both s0- and OX(Uj∩Ui)-
modules, we note that M′ is a generalized Verma module for the Lie algebra s, generated
by M′

0,

M′ = U(s−) ⊗M′
0,

thus, Ψij extends uniquely to a homomorphism

Ψij : M′ → M′′

of s-modules. By Corollary 3.2, this is a homomorphism of modules for the vertex al-
gebra V(Uj ∩ Ui). One can immediately see that Ψji ◦ Ψij is the identity map on
M(Uj ∩ Ui), so Ψij is in fact an isomorphism of modules.

The V(Ui)-module M(Ui) has a unique maximal submodule that trivially intersects
with M0(Ui). The quotient module L(Ui) can be written as a tensor product

L(Ui) = VHei ⊗ Lgl
N

(W ) ⊗ Lg(S) ⊗ LVir(h) ⊗OX(Ui),

where Lgl
N

(W ), Lg(S) and LVir(h) are the simple quotients of the corresponding

ĝlN -, ĝ- and Virasoro modules. It is clear that taking this quotient is compatible with
the coordinate change map Ψij , and we obtain a sheaf L of modules for V.

We established the following

Theorem 3.3. Let Lgl
N

be an irreducible highest weight module for the Lie algebra

ĝlN at level 1, such that its glN -submodule W generated the the highest weight vector of
Lgl

N
is a finite-dimensional rational GLN -module. Let Lg be an irreducible highest weight

module for ĝ at level c 6= 0,−h∨, and let LVir be an irreducible highest weight module for

the Virasoro algebra with central charge −
c dimg
c+h∨ . There is a sheaf L of modules for the

sheaf V of vertex algebras, where for an open set Ui with a system of local parameters, the
module L(Ui) is defined as

L(Ui) = VHei ⊗ Lgl
N
⊗ Lg ⊗ LVir ⊗OX (Ui),

and the coordinate change map Ψij is defined on the top graded component by (3.3) and
extended to L(Uj ∩ Ui) as a homomorphism of s-modules.

4. Representations of the sheaf G of Lie algebras.

In this section we are going to show that the sheaf V of vertex algebras admits an
action of the sheaf G of Lie algebras. As an immediate consequence we get representations
of G on the sheaves of modules M and L.
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Let U ⊂ Ui. For f ∈ OX(U) we set the following formal generating series which
coefficients span G(U):

g(f, z) =
∑

j∈Z

tjf ⊗ gz−j−1, g ∈ g,

k0(f, z) =
∑

j∈Z

tjfdtz−j−1,

ka(f, z) =
∑

j∈Z

tjfdxaz
−j−1,

da(f, z) =
∑

j∈Z

tjf∂az
−j−1, a = 1, . . . , N,

d0(f, z) = −
∑

j∈Z

tjf
∂

∂t
z−j−1.

The negative sign in the last formula is chosen to conform with the Virasoro algebra
conventions.

Theorem 4.1. Let V = VHei⊗Vgl
N
⊗Vg⊗VVir be a tensor product of vertex operator

algebras, where Vgl
N

is the universal enveloping vertex operator algebra for ĝlN at level
1 and rank −2N , Vg be the universal enveloping algebra for ĝ at a non-zero, non-critical

level c, and VVir be the universal enveloping Virasoro vertex algebra of rank −
c dimg
c+h∨ , so

that the total rank of V is zero. Let V be the corresponding sheaf of vertex algebras on
X . There is a representation ρ of the sheaf of Lie algebras

G =
(
Map(X̂, g) ⊕ Ω

1

X̂

)
⋊ Vect(X̂)

on the sheaf of vertex algebras V, given locally by the correspondence:

ρ(g(f, z)) = Y (g(−1)f, z), (4.1)

ρ(k0(f, z)) = cY (f, z), (4.2)

ρ(ka(f, z)) = cY (ua(−1)f, z), (4.3)

ρ(da(f, z)) = Y (va(−1)f, z) +

N∑

p=1

Y (Epa(−1)∂pf, z), (4.4)

ρ(d0(f, z)) = Y (ω(−1)f, z) +

N∑

s,k=1

Y (uk(−1)Esk(−1)∂sf, z) −

N∑

p=1

Y (up(−2)∂pf, z). (4.5)

Proof. We need to prove that everything is well-defined and that the Lie brackets
of the vertex operators in the right hand sides of (4.1)-(4.5) match the Lie brackets of the
left hand sides.
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Note that the relation

d

dz
Y (f, z) =

N∑

p=1

Y (up(−1)∂pf, z)

ensures that the elements of d(C[t, t−1]OX(Ui)) act trivially.
We need to show that both sides of (4.1)-(4.5) transform in a compatible way under

the coordinate changes in Ui ∩ Uj , i.e.,

Φ ◦ ρ = ρ ◦ Θ,

where Θ is the coordinate transformation Θ : G(Uj ∩ Ui) → G(Ui ∩ Uj). For (4.1) and
(4.2) this holds trivially. Let us verify this for (4.3)-(4.5).

Φ(ρ(
∑

j∈Z

tjfdx̃az
−j−1)) = cΦ(Y (ũa(−1)f, z)) = cY ((up(−1)∂px̃a)(−1)f, z)

= ρ(
∑

j∈Z

tjf(∂px̃a)dxpz
−j−1) = ρ(Θ(

∑

j∈Z

tjfdx̃az
−j−1)).

Since Θ(
∑

j∈Z t
jf∂̃az

−j−1) =
∑

j∈Z t
j(∂̃axs)f∂sz

−j−1, the verification of compatibility

for (4.4) amounts to checking the equality

Φ
(
ṽa(−1)f + Ẽqa(−1)∂̃qf

)
= vs(−1)(∂̃axs)f + Eks(−1)∂k((∂̃axs)f). (4.6)

Let us prove this equality:
Φ

(
ṽa(−1)f + Ẽqa(−1)∂̃qf

)

=
(
vp(−1)(∂̃axp)+Eks(−1)∂k∂̃axs

)
(−1)

f+
(
Eks(−1)(∂kx̃q)(∂̃axs)+us(−1)∂̃a∂sx̃q

)
(−1)

∂̃qf

= (∂̃axp)(−2)vp(0)f + vp(−1)(∂̃axp)f + Eks(−1)(∂k∂̃axs)f + Eks(−1)(∂kx̃q)(∂̃axs)(∂̃qf)

+us(−1)(∂̃a∂sx̃q)(∂̃qf)

= us(−1)(∂s∂̃axp)(∂pf) + us(−1)(∂̃a∂sx̃q)(∂̃qf) + vp(−1)(∂̃axp)f

+Eks(−1)(∂k∂̃axs)f + Eks(−1)(∂̃axs)(∂kf)

= vp(−1)(∂̃axp)f + Eks(−1)∂k((∂̃axs)f).

Here we used (2.16) in the last step.
Finally, for (4.5) we need to show that

Φ
(
ω̃(−1)f + ũk(−1)Ẽsk(−1)∂̃sf − ũs(−2)∂̃sf

)

= ω(−1)f + ub(−1)Eab(−1)∂af − ua(−2)∂af. (4.7)

Lemma 4.2. Φij(ω̃) = ω.
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Proof. The Virasoro element in V(U) is the sum of the Virasoro elements for the
tensor factors:

ω = ωHei + ωg + ωgl
N + ωVir.

The coordinate change map Φ does not affect the components Vg and VVir, so

Φ(ω̃g) = ωg, Φ(ω̃Vir) = ωVir. (4.8)

One can verify that

Φ(ω̃Hei) = ωHei − (∂kx̃p)(−3)(∂̃pxk) − Esm(−1)(∂sx̃a)(−2)(∂̃axm) (4.9)

and
Φ(ω̃gl

N ) = ωgl
N + (∂kx̃p)(−3)(∂̃pxk) + Esm(−1)(∂sx̃a)(−2)(∂̃axm). (4.10)

Adding (4.8), (4.10) and (4.9) together we get the claim of the Lemma.
Let us check (4.9). Recall that

ωHei = vp(−1)up(−1)1 = vp(−1)(xp)(−2)1.

Then
Φ(ω̃Hei) = Φij(ṽa(−1)(x̃a)(−2)1)

= (vm(−1)(∂̃axm))(−1)(x̃a)(−2)1 + (Esm(−1)(∂s∂̃axm))(−1)(x̃a)(−2)1

= vm(−1)ur(−1)(∂̃axm)(∂rx̃a) + (∂̃axm)(−2)vm(0)(x̃a)(−2)1

+(∂̃axm)(−3)vm(1)(x̃a)(−2)1 + Esm(−1)ur(−1)(∂s∂̃axm)(∂rx̃a)

= ωHei + (∂̃axm)(−2)(∂mx̃a)(−2)1 + (∂̃axm)(−3)(∂mx̃a)(−1)1

−Esm(−1)ur(−1)(∂̃axm)(∂s∂rx̃a)

= ωHei − (∂̃axm)(−1)(∂mx̃a)(−3)1− Esm(−1)(∂sx̃a)(−2)(∂̃axm).

Next let us derive (4.10). The Virasoro element in Vgl
N

is

ωgl
N =

1

2(N + 1)



I(−1)I(−1)1 +
N∑

a,b=1

Eab(−1)Eba(−1)1



 +
1

2
I(−2)1.

We have
Φ(Ĩ(−1)1) = Esp(−1)(∂sx̃a)(∂̃axp) − (∂̃axp)(−2)(∂px̃a)

= I(−1) − (∂̃axp)(−2)(∂px̃a),

Φ(Ĩ(−2)1) = I(−2)1− (D∂̃axp)(−2)(∂px̃a) − (∂̃axp)(−2)(D∂px̃a)

= I(−2)1− 2(∂̃axp)(−3)(∂px̃a) − (∂̃axp)(−2)(∂px̃a)(−2)1,
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and

Φ(ω̃gl
N ) =

1

2(N + 1)

(
Φ(Ĩ(−1))(−1)Φ(Ĩ(−1)1) + Φ(Ẽab(−1))(−1)Φ(Ẽba(−1))1

)

+
1

2
Φ(Ĩ(−2)1)

=
1

2(N + 1)

( (
I(−1)1− (∂̃axp)(−2)(∂px̃a)

)

(−1)

(
I(−1)1− (∂̃bxs)(−2)(∂sx̃b)

)

+
(
Esp(−1)(∂sx̃a)(∂̃bxp)−(∂̃bxp)(−2)(∂px̃a)

)
(−1)

(
Ekm(−1)(∂kx̃b)(∂̃axm)−(∂̃axq)(−2)(∂qx̃b)

))

+
1

2
I(−2) − (∂̃axp)(−3)(∂px̃a) −

1

2
(∂̃axp)(−2)(∂px̃a)(−2)1

=
1

2(N + 1)

(
I(−1)I(−1)1− 2I(−1)(∂̃axp)(−2)(∂px̃a)

+(∂̃axp)(−2)(∂̃bxs)(−2)(∂px̃a)(∂sx̃b) + Esp(−1)Ekm(−1)(∂sx̃a)(∂̃bxp)(∂kx̃b)(∂̃axm)

+((∂sx̃a)(∂̃bxp))(−2)Esp(0)Ekm(−1)(∂kx̃b)(∂̃axm)

+((∂sx̃a)(∂̃bxp))(−3)Esp(1)Ekm(−1)(∂kx̃b)(∂̃axm)

−Ekm(−1)(∂̃bxp)(−2)(∂px̃a)(∂kx̃b)(∂̃axm) − Esp(−1)(∂̃axq)(−2)(∂̃bxp)(∂qx̃b)(∂sx̃a)

+(∂̃bxp)(−2)(∂̃axq)(−2)(∂px̃a)(∂qx̃b)

)

+
1

2
I(−2)1− (∂̃axp)(−3)(∂px̃a) −

1

2
(∂̃axp)(−2)(∂px̃a)(−2)1

=
1

2(N + 1)

(
I(−1)I(−1)1− 2I(−1)(∂̃axp)(−2)(∂px̃a)

+(∂̃axp)(−2)(∂̃bxs)(−2)(∂px̃a)(∂sx̃b) + Esp(−1)Eps(−1)1

+Esm(−1)(∂sx̃a)(−2)(∂̃bxp)(∂̃axm)(∂px̃b) + Esm(−1)(∂̃bxp)(−2)(∂sx̃a)(∂̃axm)(∂px̃b)

−Ekp(−1)(∂sx̃a)(−2)(∂̃bxp)(∂̃axs)(∂kx̃b) − Ekp(−1)(∂̃bxp)(−2)(∂sx̃a)(∂̃axs)(∂kx̃b)

−2Ekp(−1)(∂̃bxp)(−2)(∂kx̃b) + (∂sx̃a)(−3)(∂̃bxp)(∂px̃b)(∂̃axs)

+(∂̃bxp)(−2)(∂sx̃a)(−2)(∂px̃b)(∂̃axs) + (∂̃bxp)(−3)(∂sx̃a)(∂px̃b)(∂̃axs)

+(∂̃bxp)(−2)(∂̃axq)(−2)(∂px̃a)(∂qx̃b)

)

+
1

2
I(−2)1− (∂̃axp)(−3)(∂px̃a) −

1

2
(∂̃axp)(−2)(∂px̃a)(−2)1
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= ωgl
N +

1

2(N + 1)

(
− 2I(−1)(∂̃axp)(−2)(∂px̃a) +NEsm(−1)(∂sx̃a)(−2)(∂̃axm)

+I(−1)(∂̃bxp)(−2)(∂px̃b) − I(−1)(∂sx̃a)(−2)(∂̃axs)

−NEkp(−1)(∂̃bxp)(−2)(∂kx̃b) − 2Ekp(−1)(∂̃bxp)(−2)(∂kx̃b) +N(∂sx̃a)(−3)(∂̃axs)

+(∂̃bxp)(−2)((∂sx̃a)(∂̃axs))(−2)(∂px̃b) +N(∂̃bxp)(−3)(∂px̃b)

−(∂̃bxp)(−2)(∂px̃a)(−2)(∂̃axq)(∂qx̃b)

)
− (∂̃axp)(−3)(∂px̃a) −

1

2
(∂̃axp)(−2)(∂px̃a)(−2)1

= ωgl
N + Esm(−1)(∂sx̃a)(−2)(∂̃axm) −

1

2
(∂̃axp)(−2)(∂px̃a)(−2)1

−(∂̃axp)(−3)(∂px̃a) −
1

2
(∂̃axp)(−2)(∂px̃a)(−2)1

= ωgl
N + Esm(−1)(∂sx̃a)(−2)(∂̃axm) + (∂px̃a)(−3)(∂̃axp).

Now let us establish (4.7):

Φ
(
ω̃(−1)f + ũk(−1)Ẽsk(−1)∂̃sf − ũs(−2)∂̃sf

)

= ω(−1)f + (ub(−1)(∂bx̃k))(−1)

(
Eac(−1)(∂ax̃s)(∂̃kxc) + ua(−1)∂̃k∂ax̃s

)

(−1)
(∂̃sf)

−(ua(−1)(∂ax̃s))(−2)(∂̃sf)

= ω(−1)f + ub(−1)Eac(−1)(∂bx̃k)(∂ax̃s)(∂̃kxc)(∂̃sf) + ub(−1)ua(−1)(∂bx̃k)(∂̃k∂ax̃s)(∂̃sf)

−ua(−2)(∂ax̃s)(∂̃sf) − ua(−1)ub(−1)(∂b∂ax̃s)(∂̃sf)

= ω(−1)f + ub(−1)Eab(−1)(∂af) + ub(−1)ua(−1)(∂b∂ax̃s)(∂̃sf)

−ua(−1)ub(−1)(∂b∂ax̃s)(∂̃sf) − ua(−2)(∂af)

= ω(−1)f + ub(−1)Eab(−1)(∂af) − ua(−2)(∂af).

To complete the proof of Theorem 4.1, we need to show that locally (4.1)-(4.5) define
a representation of the Lie algebra G(Ui).

The Lie bracket in G(Ui) may be encoded using the commutators of the generating
series:

[g1(f, z1), g2(h, z2)] = [g1, g2](fh, z2)z
−1
1 δ

(
z2
z1

)

+(g1|g2)k0(fh, z2)z
−1
1

∂

∂z2
δ

(
z2
z1

)
+ (g1|g2)

N∑

p=1

kp(h∂pf, z2)z
−1
1 δ

(
z2
z1

)
, (4.11)

[da(f, z1), g(h, z2)] = g(f∂ah, z2)z
−1
1 δ

(
z2
z1

)
, (4.12)
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[da(f, z1), k0(h, z2)] = k0(f∂ah, z2)z
−1
1 δ

(
z2
z1

)
, (4.13)

[da(f, z1), kb(h, z2)] = kb(f∂ah, z2)z
−1
1 δ

(
z2
z1

)

+δabk0(fh, z2)z
−1
1

∂

∂z2
δ

(
z2
z1

)
+ δab

N∑

p=1

kp(h∂pf, z2)z
−1
1 δ

(
z2
z1

)
, (4.14)

[da(f, z1), db(h, z2)] =
(
db(f∂ah, z2) − da(h∂bf, z2)

)
z−1
1 δ

(
z2
z1

)
, (4.15)

[ki(f, z1), kj(h, z2)] = 0, (4.16)

[g(f, z1), ki(h, z2)] = 0, (4.17)

[d0(f, z1), g(h, z2)] =

(
∂

∂z2
g(fh, z2)

)
z−1
1 δ

(
z2
z1

)
+ g(fh, z2)z

−1
1

∂

∂z2
δ

(
z2
z1

)
, (4.18)

[d0(f, z1), k0(h, z2)] =
N∑

p=1

kp(f∂ph, z2)z
−1
1 δ

(
z2
z1

)
, (4.19)

[d0(f, z1), ka(h, z2)] =

(
∂

∂z2
ka(fh, z2)

)
z−1
1 δ

(
z2
z1

)
+ ka(fh, z2)z

−1
1

∂

∂z2
δ

(
z2
z1

)
, (4.20)

[d0(f, z1), da(h, z2)] =

(
∂

∂z2
da(fh, z2)

)
z−1
1 δ

(
z2
z1

)

+da(fh, z2)z
−1
1

∂

∂z2
δ

(
z2
z1

)
− d0(h∂af, z2)z

−1
1 δ

(
z2
z1

)
, (4.21)

[d0(f, z1), d0(h, z2)] =

(
∂

∂z2
d0(fh, z2)

)
z−1
1 δ

(
z2
z1

)
+ 2d0(fh, z2)z

−1
1

∂

∂z2
δ

(
z2
z1

)
, (4.22)

where g, g1, g2 ∈ g, f, h ∈ OX(Ui), a, b = 1, . . . , N , i, j = 0, . . . , N .
We will use the commutator formula (2.2) in order to prove that ρ preserves these

relations. For (4.11) we need to verify in V(Ui) the following relations for n-th products:

(g1(−1)f)(0)(g2(−1)h) = [g1, g2](−1)fh+ (g1|g2)cup(−1)h∂pf,

(g1(−1)f)(1)(g2(−1)h) = c(g1|g2)fh,

(g1(−1)f)(n)(g2(−1)h) = 0 for n > 1.

Let us check these equalities:

(g1(−1)f)(0)(g2(−1)h) = f(−1)g1(0)g2(−1)h+ f(−2)g1(1)g2(−1)h

= [g1, g2](−1)fh+ c(g1|g2)up(−1)h∂pf,
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(g1(−1)f)(1)(g2(−1)h) = f(−1)g1(1)g2(−1)h = c(g1|g2)fh.

The last relation holds trivially since the degree of the left hand side becomes negative.
We verify (4.12) in an analogous way:

(
va(−1)f + Epa(−1)∂pf

)
(0)
g(−1)h = f(−1)va(0)g(−1)h = g(−1)f∂ah.

It is easy to see that

(
va(−1)f + Epa(−1)∂pf

)
(n)
g(−1)h = 0 for n > 0.

For the remaining n-th products we will verify only those that have a non-negative
degree. For (4.13) we have

(
va(−1)f + Epa(−1)∂pf

)
(0)
h = f(−1)va(0)h = f∂ah.

To prove (4.14), we compute

(
va(−1)f + Epa(−1)∂pf

)
(0)
ub(−1)h = f(−1)va(0)ub(−1)h+ f(−2)va(1)ub(−1)h

= ub(−1)f∂ah+ δabup(−1)h∂pf,

and (
va(−1)f + Epa(−1)∂pf

)
(1)
ub(−1)h = f(−1)va(1)ub(−1)h = δabfh.

Let us now verify (4.15):

(
va(−1)f + Epa(−1)∂pf

)
(0)

(
vb(−1)h+ Ekb(−1)∂kh

)

= f(−1)va(0)
(
vb(−1)h+ Ekb(−1)∂kh

)
+ va(−1)f(0)vb(−1)h

+(∂pf)(−1)Epa(0)Ekb(−1)∂kh+ (∂pf)(−2)Epa(1)Ekb(−1)∂kh+ Epa(−1)(∂pf)(0)vb(−1)h

= f(−1)vb(−1)∂ah+Ekb(−1)f∂a∂kh− va(−1)(∂bf)(−1)h

+(∂pf)(−1)Epb(−1)∂ah− (∂bf)(−1)Eka(−1)∂kh+ (∂bf)(−2)∂ah−Epa(−1)(∂b∂pf)h

= vb(−1)f∂ah− (∂bf)(−2)∂ah+ Ekb(−1)f∂a∂kh+ Ekb(−1)(∂kf)(∂ah)

−va(−1)(∂bf)h− Eka(−1)(∂bf)(∂kh) − Eka(−1)(∂b∂kf)h+ (∂bf)(−2)(∂ah)

= vb(−1)f∂ah+ Ekb(−1)∂k(f∂ah) − va(−1)(∂bf)h−Eka(−1)∂k((∂bf)h),

and for n = 1:

(
va(−1)f + Epa(−1)∂pf

)
(1)

(
vb(−1)h+ Ekb(−1)∂kh

)

= f(0)va(0)
(
vb(−1)h+Ekb(−1)∂kh

)
+ (∂pf)(−1)Epa(1)Ekb(−1)∂kh

= f(0)vb(−1)∂ah+ (∂bf)(−1)∂ah = −(∂bf)(−1)∂ah+ (∂bf)(−1)∂ah = 0.
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Relations (4.16) and (4.17) hold trivially.
For the commutators involving d0(f, z), we will be using the properties (2.5) and (2.6)

of the Virasoro element. We will also need the following commutator relations (see [2]):

[ω(n), f(m)] = −(n+m)f(n+m−1),

[ω(n), g(m)] = −mg(n+m− 1),

[ω(n), ua(m)] = −mua(n+m− 1),

[ω(n), va(m)] = −mva(n+m− 1),

[ω(n), Eab(m)] = −mEab(n+m− 1) − δabδn+m−1,0
n(n− 1)

2
Id,

[ω(n), ω(m)] = (n−m)ω(n+m−1).

For (4.18) we get

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(0)
g(−1)h

= f(−1)ω(0)g(−1)h+ f(−2)ω(1)g(−1)h

= fD(g(−1)h) + g(−1)(Df)(−1)h = D(g(−1)fh)

and (
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(1)
g(−1)h

= f(−1)ω(1)g(−1)h = g(−1)fh.

For (4.19) we have

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(0)
h

= f(−1)ω(0)h+ f(−2)ω(1)h = f(−1)Dh = up(−1)f∂ph,

and (
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(1)
h

= f(0)ω(0)h+ f(−1)ω(1)h = 0.

To verify that (4.20) holds for ρ, we calculate:

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(0)
ua(−1)h

= f(−1)ω(0)ua(−1)h+ f(−2)ω(1)ua(−1)h+ f(−3)ω(2)ua(−1)h

= f(−1)D(ua(−1)h) + (Df)(−1)ua(−1)h+ f(−3)ua(0)h = D(ua(−1)fh),

for n = 1: (
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(1)
ua(−1)h
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= f(0)ω(0)ua(−1)h+ f(−1)ω(1)ua(−1)h+ f(−2)ω(2)ua(−1)h

= f(0)D(ua(−1)h) + f(−1)ua(−1)h+ f(−2)ua(0)h = ua(−1)fh,

and for n = 2:

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(2)
ua(−1)h

= f(−1)ω(2)ua(−1)h = f(−1)ua(0)h = 0.

To establish (4.21) we need to compute the corresponding n = 0, 1 and 2 products:

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(0)

(
va(−1)h+ Epa(−1)∂ph

)

= f(−1)ω(0)

(
va(−1)h+ Epa(−1)∂ph

)
+ f(−2)ω(1)

(
va(−1)h+ Epa(−1)∂ph

)

+f(−3)ω(2)

(
va(−1)h+ Epa(−1)∂ph

)
+ ω(−1)f(0)va(−1)h

+(Esk(−1)∂sf)(−2)uk(1)va(−1)h+ uk(−1)(Esk(−1)∂sf)(0)
(
va(−1)h+ Epa(−1)∂ph

)

+uk(−2)(Esk(−1)∂sf)(1)Epa(−1)∂ph+2(∂kf)(−3)uk(1)va(−1)h−uk(−2)(∂kf)(0)va(−1)h

= f(−1)D
(
va(−1)h+ Epa(−1)∂ph

)
+ (Df)(−1)(va(−1)h+ Epa(−1)∂ph)

+f(−3)va(0)h− f(−3)∂ah− ω(−1)(∂af)h+
(
D(Epa(−1)∂pf)

)
(−1)

h

+uk(−1)Esk(−1)(∂sf)(0)va(−1)h+ uk(−1)(∂sf)(−1)Esk(0)Epa(−1)∂ph

+uk(−1)(∂sf)(−2)Esk(1)Epa(−1)∂ph+ uk(−2)(∂sf)(−1)Esk(1)Epa(−1)∂ph

+2(∂af)(−3)h+ uk(−2)(∂a∂kf)h

= D(f(−1)va(−1)h) +D(f(−1)Epa(−1)∂ph) + f(−3)∂ah− f(−3)∂ah− ω(−1)(∂af)h

+
(
D(Epa(−1)∂pf)

)
(−1)

h− uk(−1)Esk(−1)(∂a∂sf)h+ uk(−1)(∂sf)(−1)Esa(−1)∂kh

−uk(−1)(∂af)(−1)Epk(−1)∂ph+ uk(−1)(∂af)(−2)∂kh

+uk(−2)(∂af)(∂kh) + 2(∂af)(−3)h+ uk(−2)(∂k∂af)h

= D(va(−1)fh) −D((∂af)(−2)h) +D(Epa(−1)f∂ph) − ω(−1)(∂af)h

+
(
D(Epa(−1)∂pf)

)
(−1)

h+ Epa(−1)(∂pf)D(h) − uk(−1)Esk(−1)(∂s∂af)h

−uk(−1)Esk(−1)(∂af)(∂sh) + (∂af)(−2)Dh+ uk(−2)∂k((∂af)h) + 2(∂af)(−3)h

= D
(
va(−1)fh+ Epa(−1)∂p(fh)

)

−
(
ω(−1)(∂af)h+ uk(−1)Esk(−1)∂s((∂af)h) − uk(−2)∂k((∂af)h)

)
.

For n = 1:

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(1)

(
va(−1)h+ Epa(−1)∂ph

)
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= f(0)ω(0)

(
va(−1)h+ Epa(−1)∂ph

)
+ f(−1)ω(1)

(
va(−1)h+Epa(−1)∂ph

)

+f(−2)ω(2)

(
va(−1)h+Epa(−1)∂ph

)
+ (Esk(−1)∂sf)(−1)uk(1)va(−1)h

+uk(−1)(Esk(−1)∂sf)(1)
(
va(−1)h+ Epa(−1)∂ph

)
+ 2(∂kf)(−2)uk(1)va(−1)h

= f(0)va(−2)h+ f(0)va(−1)Dh+ f(−1)va(−1)h+ f(−1)Epa(−1)∂ph

+f(−2)va(−0)h− f(−2)∂ah+ Esa(−1)(∂sf)h

+uk(−1)(∂sf)(−1)Esk(1)Epa(−1)∂ph+ 2(∂af)(−2)h

= −(∂af)(−2)h− (∂af)(−1)Dh+ va(−1)fh− (∂af)(−2)h+ Epa(−1)f∂ph

+f(−2)∂ah− f(−2)∂ah+ Epa(−1)(∂pf)h+ uk(−1)(∂af)(∂kh) + 2(∂af)(−2)h

= va(−1)fh+Epa(−1)∂p(fh),

and for n = 2:

(
ω(−1)f + uk(−1)Esk(−1)∂sf − uk(−2)∂kf

)
(2)

(
va(−1)h+ Epa(−1)∂ph

)

= f(1)ω(0)(va(−1)h+ Epa(−1)∂ph) + f(0)ω(1)(va(−1)h+Epa(−1)∂ph)

+f(−1)ω(2)

(
va(−1)h+Epa(−1)∂ph

)
+ (Esk(−1)∂sf)(0)uk(1)va(−1)h

+2(∂kf)(−1)uk(1)va(−1)h

= f(1)va(−2)h+ f(1)va(−1)Dh+ f(0)va(−1)h+ f(−1)va(0)h− f(−1)∂ah+ 2(∂af)h

= −(∂af)h− (∂af)(0)Dh− (∂af)h+ f∂ah− f∂ah+ 2(∂af)h = 0,

which proves (4.21).
In the following computation, which establishes (4.22), we will be using (2.8) and the

Borcherds identity (2.4).
We begin with calculating n = 0 product of the elements of the vertex algebra corre-

sponding to d0(f, z) and d0(h, z):

(
ω(−1)f+uk(−1)Esk(−1)∂sf−uk(−2)∂kf

)
(0)

(
ω(−1)h+up(−1)Emp(−1)∂mh−up(−2)∂ph

)

= f(−1)ω(0)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−2)ω(1)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−3)ω(2)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−4)ω(3)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+ω(−1)f(0)ω(−1)h+ ω(−2)f(1)ω(−1)h

+(Esk(−1)∂sf)(−2)uk(1)ω(−1)h+ (Esk(−1)∂sf)(−3)uk(2)ω(−1)h

+uk(−1)(Esk(−1)∂sf)(0)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)
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+uk(−2)(Esk(−1)∂sf)(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−3)(Esk(−1)∂sf)(2)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+3(∂kf)(−4)uk(2)ω(−1)h+ 2(∂kf)(−3)uk(1)ω(−1)h

−uk(−2)(∂kf)(0)ω(−1)h− 2uk(−3)(∂kf)(1)ω(−1)h

= f(−1)D
(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+2(Df)(−1)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+3f(−3)ω(0)h+ f(−3)up(0)Emp(−1)∂mh+ f(−3)up(−1)ω(2)Emp(−1)∂mh

−2f(−3)up(−1)∂ph+ 4f(−4)ω(1)h+ f(−4)up(1)Emp(−1)∂mh− 2f(−4)up(0)∂ph

−ω(−1)f(−2)h+ (Esk(−1)∂sf)(−2)uk(−1)h+ 2(Esk(−1)∂sf)(−3)uk(0)h

+uk(−1)(∂sf)(−1)Esk(0)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−1)(∂sf)(−2)Esk(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)
+ uk(−1)(∂sf)(−3)Esk(2)ω(−1)h

+uk(−1)Esk(−1)(∂sf)(0)ω(−1)h+ uk(−1)Esk(−2)(∂sf)(1)ω(−1)h

+uk(−2)(∂sf)(0)Esk(0)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−2)(∂sf)(−1)Esk(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)
+ uk(−2)(∂sf)(−2)Esk(2)ω(−1)h

+uk(−2)Esk(−1)(∂sf)(1)ω(−1)h

+uk(−3)(∂sf)(1)Esk(0)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−3)(∂sf)(0)Esk(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)
+ uk(−3)(∂sf)(−1)Esk(2)ω(−1)h

+6(∂kf)(−4)uk(0)h+ 2(∂kf)(−3)uk(−1)h+ uk(−2)(∂kf)(−2)h

= D(f(−1)ω(−1)h+ up(−1)Emp(−1)f∂mh− up(−2)f∂ph)

+f(−2)ω(−1)h+ up(−1)Emp(−1)f(−2)∂mh− up(−2)f(−2)∂ph

+3f(−3)Dh− f(−3)up(−1)∂ph− 2f(−3)Dh

−ω(−1)f(−2)h+ (D(Esk(−1)∂sf))(−1)uk(−1)h

+uk(−1)up(−1)Esp(−1)(∂sf)(∂kh) − uk(−1)up(−1)Emk(−1)(∂pf)(∂mh)

+uk(−1)(∂sf)(−2)Esk(−1)h+ uk(−1)(∂sf)(−2)us(−1)∂kh+ uk(−1)(∂kf)(−3)h

−uk(−1)Esk(−1)(∂sf)(−2)h+ uk(−2)(∂sf)(−1)Esk(−1)h+ uk(−2)us(−1)(∂sf)(∂kh)

+uk(−2)(∂kf)(−2)h+ uk(−3)(∂kf)h+ 2uk(−1)(∂kf)(−3)h+ uk(−2)(∂kf)(−2)h

= D
(
ω(−1)fh+ up(−1)Emp(−1)f∂mh− up(−2)f∂ph

)

−2D(f(−3)h) − 3f(−4)h

+(D(Esk(−1)∂sf))(−1)uk(−1)h+up(−1)Esp(−1)(∂sf)Dh+(Duk(−1))(−1)Esk(−1)(∂sf)h
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+us(−1)(∂sf)(−2)Dh+ 3uk(−1)(∂kf)(−3)h+ 2uk(−2)(∂kf)(−2)h+ uk(−3)(∂kf)h

= D
(
ω(−1)fh+ up(−1)Emp(−1)f∂mh− up(−2)f∂ph

)

+D(up(−1)Esp(−1)(∂sf)h) − 3(Df)(−3)h− (Df)(−2)Dh+ up(−1)(∂pf)(−2)Dh

+3up(−1)(∂pf)(−3)h+ 2up(−2)(∂pf)(−2)h+ up(−3)(∂pf)h

= D
(
ω(−1)fh+ up(−1)Emp(−1)∂m(fh) − up(−2)f∂ph

)

−3(up(−1)∂pf)(−3)h− (up(−1)∂pf)(−2)Dh+ up(−1)(∂pf)(−2)Dh

+3up(−1)(∂pf)(−3)h+ 2up(−2)(∂pf)(−2)h+ up(−3)(∂pf)h

= D
(
ω(−1)fh+ up(−1)Emp(−1)∂m(fh) − up(−2)f∂ph

)

−3up(−3)(∂pf)h− 3up(−2)(∂pf)(−2)h− 3up(−1)(∂pf)(−3)h

−up(−2)(∂pf)Dh− up(−1)(∂pf)(−2)Dh+ up(−1)(∂pf)(−2)Dh

+3up(−1)(∂pf)(−3)h+ 2up(−2)(∂pf)(−2)h+ up(−3)(∂pf)h

= D
(
ω(−1)fh+ up(−1)Emp(−1)∂m(fh) − up(−2)f∂ph

)
−D(up(−2)(∂pf)h)

= D
(
ω(−1)fh+ up(−1)Emp(−1)∂m(fh) − up(−2)∂p(fh)

)
.

Let us do the computations for n = 1 product in (4.22):

(
ω(−1)f+uk(−1)Esk(−1)∂sf−uk(−2)∂kf

)
(1)

(
ω(−1)h+up(−1)Emp(−1)∂mh−up(−2)∂ph

)

= f(0)ω(0)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−1)ω(1)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−2)ω(2)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−3)ω(3)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+ω(−1)f(1)ω(−1)h+ (Esk(−1)∂sf)(−1)uk(1)ω(−1)h+ (Esk(−1)∂sf)(−2)uk(2)ω(−1)h

+uk(−1)(Esk(−1)∂sf)(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−2)(Esk(−1)∂sf)(2)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+3(∂kf)(−3)uk(2)ω(−1)h+ 2(∂kf)(−2)uk(1)ω(−1)h− uk(−2)(∂kf)(1)ω(−1)h

= f(0)ω(−2)h+ f(0)ω(−1)Dh+ 2f(−1)ω(−1)h

+2f(−1)up(−1)Emp(−1)∂mh− 2f(−1)up(−2)∂ph+ 3f(−2)ω(0)h+ f(−2)up(0)Emp(−1)∂mh

+f(−2)up(−1)ω(2)Emp(−1)∂mh−2f(−2)up(−1)∂ph+4f(−3)ω(1)h+f(−3)up(1)Emp(−1)∂mh

−2f(−3)up(0)∂ph+ (Esk(−1)∂sf)(−1)uk(−1)h+ 2(Esk(−1)∂sf)(−2)uk(0)h

+uk(−1)(∂sf)(0)Esk(0)(ω(−1)h+ up(−1)Emp(−1)∂mh)
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+uk(−1)(∂sf)(−1)Esk(1)(ω(−1)h+ up(−1)Emp(−1)∂mh)

+uk(−1)(∂sf)(−2)Esk(2)ω(−1)h+ uk(−1)Esk(−1)(∂sf)(1)ω(−1)h

+uk(−2)(∂sf)(1)Esk(0)ω(−1)h+ uk(−2)(∂sf)(0)Esk(1)ω(−1)h

+uk(−2)(∂sf)(−1)Esk(2)ω(−1)h+ 6(∂kf)(−3)uk(0)h+ 2(∂kf)(−2)uk(−1)h

= −2f(−3)h− f(−2)Dh+ 2ω(−1)fh− 4f(−3)h

+2up(−1)Emp(−1)f∂mh− 2up(−2)f∂ph+ 3f(−2)Dh

−up(−1)f(−2)∂ph− 2up(−1)f(−2)∂ph+ Esk(−1)uk(−1)(∂sf)h

+uk(−1)(∂sf)(−1)Esk(−1)h+ uk(−1)(∂sf)(−1)us(−1)∂kh+ uk(−1)(∂kf)(−2)h

+uk(−2)(∂kf)h+ 2uk(−1)(∂kf)(−2)h

= 2ω(−1)fh+ 2uk(−1)Esk(−1)∂s(fh) − 3(Df)(−2)h

−2uk(−2)f∂kh+ uk(−2)(∂kf)h+ 3uk(−1)(∂kf)(−2)h

= 2ω(−1)fh+ 2uk(−1)Esk(−1)∂s(fh) − 3uk(−2)(∂kf)h

−3uk(−1)(∂kf)(−2)h− 2uk(−2)f∂kh+ uk(−2)(∂kf)h+ 3uk(−1)(∂kf)(−2)h

= 2
(
ω(−1)fh+ uk(−1)Esk(−1)∂s(fh) − uk(−2)∂k(fh)

)
.

For n = 2:

(
ω(−1)f+uk(−1)Esk(−1)∂sf−uk(−2)∂kf

)
(2)

(
ω(−1)h+up(−1)Emp(−1)∂mh−up(−2)∂ph

)

= f(1)ω(0)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(0)ω(1)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−1)ω(2)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−2)ω(3)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+(Esk(−1)∂sf)(0)uk(1)ω(−1)h+ (Esk(−1)∂sf)(−1)uk(2)ω(−1)h

+uk(−1)(Esk(−1)∂sf)(2)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+2(∂kf)(−1)uk(1)ω(−1)h+ 3(∂kf)(−2)uk(2)ω(−1)h

= f(1)ω(−2)h+ f(1)ω(−1)Dh+ 2f(0)ω(−1)h+ 3f(−1)ω(0)h

+f(−1)up(0)Emp(−1)∂mh+ f(−1)up(−1)ω(2)Emp(−1)∂mh− 2f(−1)up(−1)∂ph

+4f(−2)ω(1)h+ f(−2)up(1)Emp(−1)∂mh− 2f(−2)up(0)∂ph

+(Esk(−1)∂sf)(0)uk(−1)h+ 2(Esk(−1)∂sf)(−1)uk(0)h

+uk(−1)(∂sf)(1)Esk(0)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)
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+uk(−1)(∂sf)(0)Esk(1)
(
ω(−1)h+ up(−1)Emp(−1)∂mh

)

+uk(−1)(∂sf)(−1)Esk(2)ω(−1)h+ 2(∂kf)(−1)uk(−1)h+ 6(∂kf)(−2)uk(0)h

= −f(−2)h− 2f(−2)h+ 3f(−1)Dh− f(−1)up(−1)∂ph

−2f(−1)Dh+ uk(−1)(∂kf)(−1)h+ 2f(−2)h = 0.

And finally for n = 3:

(
ω(−1)f+uk(−1)Esk(−1)∂sf−uk(−2)∂kf

)
(3)

(
ω(−1)h+up(−1)Emp(−1)∂mh−up(−2)∂ph

)

= f(2)ω(0)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(1)ω(1)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(0)ω(2)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+f(−1)ω(3)

(
ω(−1)h+ up(−1)Emp(−1)∂mh− up(−2)∂ph

)

+(Esk(−1)∂sf)(1)uk(1)ω(−1)h+ (Esk(−1)∂sf)(0)uk(2)ω(−1)h

+2(∂kf)(0)uk(1)ω(−1)h+ 3(∂kf)(−1)uk(2)ω(−1)h

= f(2)ω(−2)h+ f(2)ω(−1)Dh+ 2f(1)ω(−1)h+ 3f(0)ω(0)h+ 4f(−1)ω(1)h

+(Esk(−1)∂sf)(1)uk(−1)h+ 2(Esk(−1)∂sf)(0)uk(0)h

+2(∂kf)(0)uk(−1)h+ 6(∂kf)(−1)uk(0)h

= f(0)Dh+ 3f(0)Dh+ (∂sf)(0)Esk(0)uk(−1)h+ (∂sf)(−1)Esk(1)uk(−1)h = 0.

This completes the proof of Theorem 4.1.

Let us discuss some applications of our results to the chiral de Rham complex, con-
structed by Malikov-Schechtman-Vaintrob [9, 8]. Here we specialize to the case g = (0).
Under this assumption, the sheaf V has a local description

V(Ui) = VHei ⊗ Vgl
N
⊗ VVir ⊗OX(Ui),

where VVir is the universal enveloping vertex algebra for Vir of rank 0. The sheaf V is a
module for the sheaf Vect(X̂) of Lie algebras. The chiral de Rham complex is a sheaf Ωch

of vertex superalgebras on X with a local description

Ωch(Ui) = VHei ⊗ V
Z

N ⊗OX(Ui),

where V
Z

N is a vertex superalgebra associated with the standard Euclidean lattice Z
N .

Malikov-Schechtman-Vaintrob use a fermionic realization of V
Z

N with V
Z

N being Z-graded
by fermionic degree,

V
Z

N =
∞
⊕

k=−∞
V

(k)

Z
N .
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Each component V
(k)

Z
N is an irreducible highest weight module for ĝlN at level 1. This in-

duces a Z-grading on the chiral de Rham complex, Ωch =
∞
⊕

k=−∞
Ω

(k)
ch . The chiral differential

is a map

d : Ω
(k)
ch → Ω

(k+1)
ch

(see [9] for details).

Theorem 4.3. (i) Each component Ω
(k)
ch of the chiral de Rham complex is a module

for the sheaf Vect(X̂) of Lie algebras of vector fields.

(ii) The differential d : Ω
(k)
ch → Ω

(k+1)
ch is a homomorphism of modules for the sheaf

Vect(X̂).

Proof. Applying Theorem 4.1 with g = (0), Lgl
N

= V
(k)

Z
N and LVir being trivial

1-dimensional module for the Virasoro algebra, we obtain that Ω
(k)
ch is a module for the

sheaf of Lie algebras Ω
1

X̂ ⋊ Vect(X̂), from which the first claim follows.
The proof of the second claim is completely analogous to Theorem 10.3 in [3], where

the case of a torus is considered.
Remark. Note that although d : Ω

(k)
ch → Ω

(k+1)
ch is a homomorphism of Vect(X̂)-

modules, it does not commute with the action of Ω
1

X̂ .

5. Lie algebras associated with the field of rational functions on X.

In conclusion of the paper we outline a version of our construction in the setting
of rational functions. Let C(X) be the field of rational functions on X and let R =

C[t, t−1] ⊗ C(X). Consider the corresponding R-modules Ω1
R of 1-forms on X̂ , and VectR

of vector fields on X̂ . Formally these objects may be defined as direct limits over non-empty
open subsets U ⊂ X :

Ω1
R = lim

−→

U

Ω1

X̂
(U), VectR = lim

−→

U

Vect
X̂

(U).

We consider the Lie algebra

GR = R ⊗ g ⊕
(
Ω1

R/dR
)
⊕ VectR,

where the definition of the Lie bracket is completely analogous to one given in section 1.
Alternatively, GR may be defined as a direct limit

GR = lim
−→

U

G(U).

The field C(X) is a finite extension of a purely transcendental extension of C, C(X) =
C(x1, . . . , xN ; y1, . . . , ys), where {x1, . . . , xN} are algebraically independent and yi’s are
algebraic over C(x1, . . . , xN ). Note that Ω1

R is a free R-module with the free generators
dt, dx1, . . . , dxN , and VectR is a free R-module with the generators ∂

∂t
, ∂

∂x1
, . . . , ∂

∂xN

.
We can use {x1, . . . , xN} in place of the local coordinates to define the vertex algebra

VR = VHei ⊗ Vgl
N
⊗ Vg ⊗ VVir ⊗ C(X).
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Our construction yields the following result:
Theorem 5.1. Let VR = VHei ⊗ Vgl

N
⊗ Vg ⊗ VVir ⊗ C(X) be the vertex algebra with

the central charges of the tensor factors the same as in Theorem 4.1.
(i) VR is a module for the Lie algebra GR, where the action is given by (4.1)-(4.5).
(ii) Let Lgl

N
, Lg, LVir be irreducible modules for the vertex algebras Vgl

N
, Vg, VVir

respectively. Then
LR = VHei ⊗ Lgl

N
⊗ Lg ⊗ LVir ⊗ C(X)

is an irreducible module for the Lie algebra GR.
Proof. The only claim that requires a proof here is the irreducibility of LR. Every-

thing else follows immediately from Theorems 4.1 and 4.3 by passing to the direct limit.
To show that LR is irreducible as a GR-module, we note that the fields in (4.1)-(4.5)

that define the action of GR on VR generate the vertex algebra VR. Since Lgl
N

, Lg, LVir

are irreducible modules for the vertex algebras Vgl
N

, Vg, VVir respectively, and the vertex
algebra VHei ⊗ C(X) is simple, we conclude that LR is an irreducible GR-module.
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